
Supporting Multi-row Distributed Transactions with Global Snapshot Isolation
Using Bare-bones HBase

Chen Zhang
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

Email: c15zhang@cs.uwaterloo.ca

Hans De Sterck
Department of Applied Mathematics

University of Waterloo
Waterloo, Canada

Email: hdesterck@math.uwaterloo.ca

Abstract—Snapshot isolation (SI) is an important database
transactional isolation level adopted by major database man-
agement systems (DBMS). Until now, there is no solution for
any traditional DBMS to be easily replicated with global SI
for distributed transactions in cloud computing environments.
HBase is a column-oriented data store for Hadoop that has been
proven to scale and perform well on clouds. HBase features
random access performance on par with open source DBMS
such as MySQL. However, HBase only provides single atomic
row writes based on row locks and very limited transactional
support. In this paper, we show how multi-row distributed
transactions with global SI guarantee can be easily supported
by using bare-bones HBase with its default configuration so
that the high throughput, scalability, fault tolerance, access
transparency and easy deployability properties of HBase can be
inherited. Through performance studies, we quantify the cost of
adopting our technique. The contribution of this paper is that
we provide a novel approach to use HBase as a cloud database
solution with global SI at low added cost. Our approach can
be easily extended to other column-oriented data stores.

Keywords-Cloud Database; HBase; Snapshot Isolation

I. INTRODUCTION

Snapshot isolation (SI), proposed by Berenson et al. [4],
is an important database transactional isolation level which
guarantees that all reads made in a transaction will see a
consistent snapshot of the database that remains unaffected
by any other concurrent update transactions. The transaction
itself will successfully commit only if none of its updates
conflict with any concurrent updates committed since that
snapshot. For example, consider a transaction T1 that reads
data items x and y and then reads x, writes x and commits.
Meanwhile, another transaction T2 writes x (when T1 reads
y) and commits. In this scenario, with a snapshot taken
before T1’s first operation, T1 will get the same value for
both reads of x even if T2 writes to x in between T1’s reads
of x. T2 will attempt to commit before T1, and with the
“first-committer-wins” rule, T2 succeeds and T1 fails, since
T1’s update on x conflicts with that of T2 which occurs after
the snapshot for T1 was taken, and before T1 commits.

The benefit of using SI is that reads will never be blocked,
resulting in increased concurrency and high throughput
while still avoiding various kinds of data inconsistency

referred to as anomalies [4]. However, SI does not guarantee
serializability (recently, in 2008, [6] proposed a novel way
to support serializability on existing DBMS that support SI)
and will have the “Write Skew” anomaly, in which case
separate transactions update different items bounded by a
shared constraint and commit successfully, resulting in a
global database state that breaks the bounding constraint.
This anomaly can be tolerated if its occurrence is minimized
due to proper programming and when better system perfor-
mance is desired, especially in read-heavy loads. Another
phenomenon allowed by SI is that the second of two
consecutive transactions initiated by the same client or user
may not see the updates of the first (successful) transaction,
since SI does not require the snapshot that a transaction reads
from to be the most recently committed snapshot before
the transaction starts. Major DBMS including Microsoft
SQL Server, Oracle, MySQL, PostgreSQL, Firebird, H2,
Interbase, Sybase IQ, and SQL Anywhere support SI due
to its performance benefits.

With the proliferation of cloud computing, it would be
good for applications that require SI to take advantage of
what cloud computing can provide. Unfortunately, there is
currently no solution for traditional DBMS to be easily repli-
cated with global SI for distributed transactions (transactions
involving two or more network hosts) in cloud computing
environments. For example, the recent commercial release
of Microsoft SQL Azure supports a cloud-based relational
database service built on SQL Server technologies. How-
ever, it is essentially based on database partitioning into a
shared-nothing architecture and does not support distributed
transactions, let alone global SI, across multiple partitions.
Note that SQL Azure does support SI for transactions within
a single database. Oracle 11g uses Oracle Streams for rapid
database replication. However, it is still required that all
tightly coupled branches of a distributed transaction must
run on the same instance. Only between transactions and
between services can transactions be load-balanced across
all of the database instances. This means that global SI
for distributed transactions across database instances is not
supported either.

HBase is an alternative to supporting basic database
functionality on clouds with random access performance on
par with open source relational databases such as MySQL.
Hadoop is a popular open source cloud computing frame-
work that has proven to scale and perform well on clouds
[1]. HBase provides a distributed, column-oriented data store
modeled after Google’s Bigtable [7]. Although HBase is not
a full-fledged DBMS and only provides simple syntax to
query sparse tables with no SQL and Join support, it has
been demonstrated to successfully support a wide spectrum
of useful applications from commercial vendors and web
sites that used to employ DBMS in the backend, such
as, Adobe, Streamy, etc. However, HBase only provides
single atomic writes based on row locks and very limited
transactional support (See Section II.C). This is because
transactions for HBase and the like (such as HyperTable) are
intrinsically distributed transactions involving multiple data
store locations, which is expensive to manage. In a more
general sense, column-oriented data stores face difficulties
in handling transactions because the operations are column-
based, meaning that instead of easily locking down and
operating on a row as in traditional DBMS, operations on
a row are split into sub-operations on individual columns.
Row locks are also inefficient in column stores because that
is not how the data are stored physically [2]. As a result, no
work has been done to achieve SI for multi-row distributed
transactions with HBase or other column-oriented stores.

In this paper, the main contribution is to provide a novel
mechanism that uses HBase as a cloud database solution for
simple database transactions with global SI at low added
cost. In our approach, we make use of several HBase features
for achieving SI. We adopt a global transaction ordering
method and design several HBase tables to manage SI over
simple database transactions composed of read and write
operations, i.e., select (read), insert (write), update (write),
and delete (write) operations, over multiple data rows. We
show how these simple database transactions with global
SI guarantee over the whole cloud can be easily supported
by using bare-bones HBase with its default configuration
so that the high throughput, scalability, fault tolerance,
access transparency and easy deployability of HBase can
be inherited.

The remainder of the paper is structured as follows:
in Section II we introduce some background information
concerning the operational definition of global SI, the in-
troduction to HBase, and related work. In Section III we
describe our technique for achieving global SI with HBase.
In Section IV we evaluate the performance of our technique.
Section V concludes.

II. BACKGROUND

A. Global SI

SI was originally proposed for centralized database sys-
tems [4]. It is not in the ANSI/ISO SQL standard but is

adopted by major DBMS due to its better performance than
Serializablity. SI can be formally defined as follows:

Definition 1. SI: A transaction history conforms to SI if, for
every successfully committed transaction T, 1) there exists a
snapshot timestamp start(T) such that T sees the database
in a state that contains the updates from all the transactions
that have committed up to start(T), and 2) T is allowed to
commit only if, when T is ready to commit, there are no other
transactions with conflicting updates that have committed
after start(T).

In SI, the database system thus assigns a timestamp
start(T) to a transaction T which identifies the snapshot
of the database that T will read from. This snapshot will
not be affected by any other updates after start(T) and
will be used throughout T’s lifespan by T. start(T) can
be chosen to be any time less than or equal to the actual
start time of transaction T. When T commits, the system
assigns T a timestamp commit(T) more recent than the actual
start time of T. If no conflicting committed updates from
other transactions happen after start(T), T can successfully
commit. Global SI is obtained by applying the definition
above to distributed or replicated database systems.

B. HBase

HBase is the database component of Hadoop. Hadoop is
an open source implementation of a subset of Google’s sys-
tem for large-scale data processing: MapReduce [8], Google
File System [9] and BigTable [7]. In HBase, applications
store data into sparse tables, which are tables with rows
having varying numbers of columns. Every data row has
a unique and sortable row key. Columns are grouped into
column families. The data for the same column family
are stored physically close on disk for efficient querying.
HBase employs a master-slave topology. Tables are split
for distributed storage into row-wise “regions”. The regions
are stored on slave machines called “region servers”. Each
region server hosts distinct row regions. As a result, a
transaction could involve multiple region servers, becoming
a distributed transaction. In HBase, both the master and
region servers rely on the Hadoop Distributed File System
(HDFS) to store data. In the latest release at the time
of writing (version 0.20.1), a pool of multiple masters is
supported eliminating a single point of failure. When a
region server fails, its data can be recovered from HDFS
and be hosted by a new replacement region server.

Table I shows an example HBase table taken from
the HBase website (slightly modified). The table con-
tains one row with row key “com.cnn” and columns “an-
chor:cnnsi.com” and “anchor:my.look.ca” grouped by col-
umn family “anchor:”. Each HBase row-column pair, for
example, row “com.cnn” and column “anchor:my.look.ca”,
is assigned a timestamp (a Java Long type number), either
explicitly passed in by the user when it is inserted, or

Table I
AN EXAMPLE HBASE SPARSE TABLE

Row Key Timestamp Column Value
com.cnn T9 anchor:cnnsi.com cnn

T9 anchor:my.look.ca cnn.com
T8 anchor:my.look.ca bbc.com

implicitly assigned by the system. The value for each row-
column pair is uniquely determined by its row key, column
and timestamp. Currently, only simple queries using row
keys and timestamps are supported in HBase, with no SQL
or Join queries. An iterator-like interface is available for
scanning through a row range. However inadequate the
query capability may seem, if the tables are formulated
properly, some efficient problem-specific search methods can
be developed, especially for data with graph-like structures
such as directed acyclic graphs for workflows [15].

HBase has a rudimentary set of primitives for transactions
that are built on top of its row lock mechanism (note that
HBase only has exclusive locks). For every transaction,
writes are applied when committing the transaction. The read
and write sets for each transaction are kept and checked
at commit time by each region server involved to see if
there exist any conflicting write sets from other concurrent
transactions committed after the transaction starts. If there
are no conflicts, each region server will vote “yes” for
this transaction. If all the region servers have voted “yes”,
the transaction can proceed to commit. However, from this
point on, no mechanism exists to guarantee whether the
transaction would continue or abort, which may happen in
the event of a failure of the client mid-commit, after region
servers voted “yes”. If the transaction does not crash and
continues to commit, then it locks the rows and writes.
Nevertheless, lost updates could occur if two concurrent
transactions commit at roughly the same time on conflicting
rows. Suppose transaction T1’s write set contains row x, y
and z, transaction T2’s write set contains row y and z, and
there are no conflicting updates to x, y or z committed from
other transactions since T1 and T2 started. T1 and T2 will
both proceed to commit and could write to the conflicting
rows interleavingly which results in lost updates since future
reads from clients are normally made with the most recent
timestamp. In short, the transactional support provided by
HBase does not satisfy SI and is not reliable for practical
transactional processing.

C. Related Work

Currently, there is no solution for traditional DBMS to
be easily replicated on a large scale with global SI for
distributed transactions in a cloud computing environment.
This is mainly because it is expensive to maintain strong
data consistency among replicated database replicas with a
high degree of scalability [10], [11], [12], [13]. It is also

non-trivial to deploy multiple full-fledged traditional DBMS
on-demand on clouds. Existing cloud-scale data services
such as HBase, Amazon SimpleDB and HyperTable do
not support ACID (Atomicity, Consistency, Isolation and
Durability) transactions with satisfactory isolation levels
and data consistency guarantees. [5] shows an attempt to
use Amazon S3 as a storage system for general-purpose
database applications but only provides low-level protocols
to read and write data from and to the S3 storage service,
sacrificing ACID properties for scalability and availability.
HadoopDB [3] is a new project aiming at analytical database
use cases that rarely involve conflicting update transactions
(mainly read-only with a few serialized insertions of new
records) and the prototype is also based on data partitioning
which does not support SI over distributed transactions. It
also requires extra SQL parsing and planning and demands
the existence of a traditional DBMS on every processing
node which is expensive to deploy and configure. The most
relevant research on transactions for HBase is described in
[14], which presents a scalable transaction manager for cloud
database services to execute serializable ACID transactions
of web applications, using HBase. They implemented a
Transaction Processing System composed of a number of
Local Transaction Managers (LTM). Their system first loads
data from HBase, splits the loaded data across LTMs and fur-
ther replicates the data for fault tolerance, which introduces
extra overhead in data management, system deployment and
maintenance as well as performance, compared to using
bare-bones HBase. Data freshness cannot be guaranteed be-
cause of the existence of multiple data copies. Additionally,
the list of primary keys accessed by the transaction must be
given before executing the transaction whereas in normal
transactions, data items are usually not all known at the
beginning of a transaction but known only when they are
accessed. This further means for example that range queries
cannot be supported by their system. In comparison to their
system, we support common transactions that don’t need
a complete list of all the data items accessed at transaction
starting time. This requires more complex logic than using a
known list of primary keys from the start. More importantly,
we support global SI which has significant performance
benefits compared to serializability, and our system does not
require additional processes to be deployed to provide the
transaction support.

III. GLOBAL SI WITH HBASE

In this section, we describe in detail our mechanism
for achieving distributed transactions with global SI using
HBase. We handle two types of transactions, read-only and
update transactions. A read-only transaction consists of read
operations only, whereas an update transaction may contain
a combination of multiple read, insert, update and delete
operations. Our technique uses bare-bones HBase with its
default configuration. The general idea is to create several

Table II
IDENTIFICATION LABELS

Name Type Globally Order
of Label Unique Significant
start (Si) timestamp no yes
write (Wi) unique ID yes no
precommit (Pi) unique ID yes no
commit (Ci) timestamp yes yes

HBase tables to manage snapshots, update conflicts, and
concurrent transaction commits, and to guarantee database
ACID properties. We make use of some essential HBase
features to achieve global SI in distributed transactions in a
convenient way. Firstly, the HBase master maintains a single
table-like global view for all clients. This is useful because
any data change is instantly visible to all clients. Secondly,
HBase supports storing multiple versions of data under the
same row and column, differentiated by timestamps, and
allows concurrent reads and writes of new data versions.
This means that all versions of data may be reconstructed
and reads/writes with different versions don’t block each
other, offering very high throughput. Thirdly, HBase sup-
ports atomic row writes so that simultaneous writes on the
same data item do not garble data. Finally, HBase provides
a simple and efficient search mechanism on sparse columns
with non-empty values. For example, it is easy and fast to
return all the rows in a very big table containing records
related to a person named “Bill Gates”, if that name is used
as a sparse column name with non-empty values in those
rows. This is useful when we search for conflicting updates
made by concurrent transactions.

Additionally, we use four different identification labels
for four types of transaction operations. They are the start,
write, precommit and commit labels, each acquired by a
transaction when it starts, writes, precommits and commits.
These labels play different types of roles in the system. As is
shown in Table II, the start and commit labels are globally
well-ordered timestamps. Commit timestamps are globally
unique for each transaction, but two transactions can have
the same start time. The write and precommit labels are
unique IDs, but they do not correspond to a global time and
their order is not significant. Read transactions only need to
acquire a start timestamp, while each update transaction will
have to acquire all four types of labels.

The general approach to handle transactions on individual
data columns is as follows. For read-only transactions, first
get a start timestamp which identifies the snapshot the
transaction will read from. Every subsequent read in the
read-only transaction will only see the latest version of data
up to the snapshot. Update transaction T also first gets a
start timestamp identifying the snapshot, and it gets a write
label to be used later for all writes to the data tables. Every

Table III
VERSION TABLE

Data Item Location Commit Timestamp
L1 C1
L2 C2

Table IV
COMMITTED TABLE

Commit Timestamp L1 L2
Ci Wi Wi
Cj Wj

transaction T maintains a data structure to store its read
and write sets. When reading a data item, get the newest
version of data committed up to the snapshot, unless the
data has been read or written by T before, in which case
the version of data from the data structure is read instead.
When writing to a data item (insert/update/delete, delete is
handled as inserting an empty value), write to the HBase user
data tables directly, taking as the HBase write timestamp the
transaction’s unique write label. Record the write operation
in the data structure mentioned above. All the writes are
performed immediately and do not wait until commit time.
This can be done because HBase supports concurrent writes
of new data versions differentiated by timestamps. When
trying to commit, get a precommit label and go through a
precommit process to make sure that there are no concurrent
commit requests for transactions trying to update conflicting
data items. Finally, proceed to commit atomically. More
details of our approach are given now.

A. Data Structures

To achieve global SI, we need to create several simple
HBase tables in addition to the user data tables to store
transaction management metadata. The tables are: Version
Table, Committed Table, Precommit Table and several iden-
tification label tables.1

The Version Table is used for retrieving the commit
timestamp of the transaction that wrote the last-known
committed version of a data item. A data item is represented
as a row in the Version Table. The row key is the data item
location (a concatenation of the table name, row key and
column name where the data item is stored in the user data
tables). The column value is the commit timestamp of the
transaction. For example, the first row in Table III means the
last-known committed version of the data item with location
“L1” is committed by a transaction with commit timestamp
“C1”. This commit timestamp is used by read operations to
minimize the search scope for finding the latest committed
data version according to the snapshot, as explained below.

1Column families for tables are omitted for simplicity.

Table V
PRECOMMIT TABLE

Precommit Label L1 L2 Committed
Pi Y Y Ci
Pj Y

The Committed Table keeps records of all the data
items each committed transaction writes to. A transaction
is deemed as committed only after its corresponding record
appears in the Committed Table. The Committed Table is
used to check for conflicting update transactions at transac-
tion commit time and to retrieve the latest committed data
versions according to a transaction snapshot. Each row in the
Committed Table represents a committed update transaction.
The transaction commit timestamp is used as the row key so
that we can easily check all the committed updates within
a timestamp range. Each column in a row is named as a
data item location. The value for a column is the write
label used for writing to the data item by the transaction.
For example in Table IV, the first row stores records for
a transaction committed at timestamp “Ci” that writes to
data item “L1” and “L2” with HBase write timestamp “Wi”.
As soon as a transaction record is successfully inserted into
the Committed Table, the transaction has been committed
atomically and its results are made durable (supported by
HDFS). The atomicity is guaranteed because HBase supports
atomic row writes and we are inserting a single row to the
Committed Table. The Precommit Table is used to detect and
avoid concurrent commit requests on potentially conflicting
data items. This can be illustrated using the same example
scenario given when explaining problems with the HBase’s
built-in transactional support in Section II.C. In this case,
if T1 and T2 try to commit at almost the same time,
scanning the Committed Table won’t show any conflicting
updates and thus they would both proceed to commit at
the same time, making lost updates possible. The use of
the Precommit Table can avoid such kind of problems from
happening. Each row in the Precommit Table represents a
tentative commit request from an update transaction. The
row key is the precommit label and the columns are the
data locations a transaction has written to, with an extra
column called “Committed”. The values of the data location
columns written to are set to “Y” which simply means that
the field is non-empty, in order to leverage the efficient
column search mechanism provided by HBase mentioned
before. If the value of the “Committed” column is set to
“Y”, it means that the transaction corresponding to that row
has already been successfully committed. See Section III.C
for more details on how precommit works.

To issue globally unique labels, we use several label
tables, namely, the “Write Label” Table, the “Precommit
Label” Table and the “Commit Timestamp” Table (Table

Table VI
WRITE LABEL TABLE

Write Label Counter
current label 78

Table VII
COMMITTED INDEX TABLE

Most Recent Snapshot Snapshot Value
current snapshot 98

VI shows the Write Label Table, and the other two label
tables are similar). Each of these tables is used as a global
sequencer for issuing unique incremental integer labels.
Furthermore, we also need another table called “Committed
Index” Table to store the most recently assigned snapshot.
See Section III.B for more details about the usage of these
tables. Finally, we also need a DataSet (DS) for each
transaction T: A Java HashMap containing the most recent
data values of the data locations read or written by T, indexed
by data item location (e.g., (L1, value), (L2, value), etc.).

B. Identification Labels and Timestamps

As mentioned before, we need four types of identification
labels. The uniqueness of write, precommit and commit
labels is based on an atomic HBase function named “incre-
mentColumnValue”. After setting an initial Java long type
number as value for a cell (row R, column C) in a table, if
“incrementColumnValue” is called on that cell, the value
of the cell will be incremented atomically and the new
value will be returned. Therefore, in our system, we define
three globally accessible tables for the three types of labels,
each named after the label name with only one column and
one row, as explained above. Considering write labels for
example, a transaction gets its write label by calling the
“incrementColumnValue” function on the Write Label Table,
and the system will automatically increment the value by
one in the table and return the value to the transaction as its
write label. In this way, all write labels are globally unique.
Moreover, the Commit labels are globally well-ordered in
time, and can be used as a global time system to order
committed transactions, on which the SI system can be built.

Obtaining start timestamps for transactions, however, is
trickier. The purpose of a start timestamp is to identify
the snapshot from which a transaction will read, so that
the transaction will take into account data from all transac-
tions committed up to the snapshot time. Furthermore, this
snapshot has to be consistent to the transaction during the
whole lifespan of the transaction. Since all the committed
transaction information is stored in the Committed Table, a
straightforward way to define a start timestamp of a transac-
tion is to look into the Committed Table and define the start
timestamp by the latest commit timestamp. In this way, a
transaction will be able to retrieve all committed transactions

before its start timestamp. There is, however, a potential
problem with such an approach. Since a transaction obtains
its commit timestamp before writing to the committed table,
it is possible that a transaction Ti gets its commit timestamp
before transaction Tj, yet takes longer to finish the commit
process and therefore only appears later in the Committed
Table. During this process, if transaction Tk starts, it may
see Tj in the Committed Table and Choose Cj as its start
timestamp Sk, such that it will read from transaction Tj
and all transactions with smaller commit timestamps than
Cj in the Committed Table. However, Ti with Ci<Cj may
appear in the Committed Table after Tk has already started to
read, thus potentially corrupting the snapshot that Tk reads
from. Therefore, in order to impose consistent snapshots, we
choose, when Tk starts, its start timestamp Sk as the largest
Cj in the Committed Table that is part of an increasing
sequence starting from the smallest Cj in the table, without a
gap. Indeed, if the first Ci in the Committed Table has value
1, then, for any Ci, all integer values from 1 to Ci have
to appear in the Committed Table eventually, since commit
timestamp values are only given out to transactions that will
commit. If there is no gap between Ci and any earlier commit
timestamps already present in the Committed Table, one can
be sure that no new committed transactions Tj with Tj<Ti
will appear in the Committed Table, so Ci can be used as a
valid snapshot time. In this way, it can be guaranteed that
a transaction will always see the same fixed set of earlier
transactions during its whole transaction lifetime. This ap-
proach may sacrifice a few recent transactions in order to
be consistent. However, according to the SI definition, SI
is satisfied. Furthermore, in order to make determining the
start timestamp more efficient, each transaction will store
its start timestamp in the “Committed Index” table so that
all the following transactions can start searching for gaps
starting from this point on afterward.

C. Protocol Walkthrough

The detailed approach for doing an update transaction
Ti with global SI is as follows (using the data shown
in the tables in Section III.A as example): 1) Get start
timestamp Si and write timestamp Wi. 2) Read/Write data
items. 3) Go through a Precommit phase to determine if
there are potential conflicts. 4) Commit. Note that read-only
transactions only need to obtain the start timestamp and then
read; there is no need for Precommit or Commit.

To Read (select) a data item, for example, from location
L1, first check if L1 is in the DS. If found, use that
value and return; otherwise, proceed as follows: 1) Get the
“Commit Timestamp” for L1 from the Version Table. If the
record exists, it will return C1; otherwise, set C1=∞. 2) If
C1<=Si: Scan the Committed Table in the range [C1, Si],
read the latest version from the Committed Table and use it
to read from L1. Update the DS as well as L1’s record in
the Version Table. 3) If C1>Si: Scan the Committed Table

in the range [1, Si]; if found, read the latest version from
the Committed Table and use it to read from L1; otherwise,
read from L1 and update the DS only.

To write (insert, update and delete), for example, to
location L1, first check if L1 is in the DS. If found, update
that value; otherwise, add a new entry for L1 to the DS.
Then write to HBase with timestamp Wi. Because Wi is
unique among transactions, it is safe for transaction Ti to
write to HBase without the danger of garbling data.

To Precommit: 1) Get Precommit label Pi and check
the Committed Table in the range [Si+1,∞) for rows that
contain columns conflicting with Ti’s writeset. If there are
any, abort; otherwise, add a row Pi to the Precommit Table,
put “Ys” in all updated data item columns (L1, L2, for
example). 2) Check the Precommit Table in the full range
for rows (except itself) that contain conflicting columns. If
there is any conflicting record that does not have its commit
timestamp in the column “Committed” yet, or if there is
any conflicting record with a commit timestamp under the
column “Committed” that is larger than Si, abort and delete
row Pi. Otherwise, proceed to commit.

Note that the sequence of checking must be first the
Committed Table and then the Precommit Table, in order
to rule out the case in which some conflicting concurrent
commits have not shown up yet during the first check in the
Committed table. This works because, in order for those in-
progress commit records to show up in the Committed table,
they must have already finished the Precommit process and
have records in the Precommit table.

To commit: 1) Get a Commit timestamp Ci. 2) Add a
row Ci to the Committed Table, with the update data items
as columns, and the write timestamp Wi as value for those
columns. 3) Set the “Committed” column for row Pi in the
Precommit Table to “Ci”.

We discuss the correctness of our approach according
to the database ACID properties. Atomicity and durability
are maintained as described in the commit procedure above
because adding a row in the Committed table is guaranteed
to be atomic and durable by HBase. We assume that as
long as atomicity is maintained and only valid data are
inserted to the HBase tables, the consistency property is
also maintained. For the isolation property, according to
the read procedure above, only the data from committed
transactions up to when the snapshot is taken are read
except for the data just written by the transaction itself.
Additionally, write operations from different transactions
won’t interfere or overwrite one another because no writes
to the same data item with the same timestamp are allowed.
Therefore, isolation, in particular, global SI, is maintained.

IV. PERFORMANCE EVALUATION

To quantify the cost of adopting our approach, we are
interested to know the performance of our implementation

in the following aspects: (1) The cost of our label and times-
tamp acquisition mechanism mentioned in Section III.B. We
want to investigate whether the mechanism would become
a performance bottleneck because every transaction would
need to access a small number of globally accessible tables
for obtaining labels and timestamps. (2) The cost of scanning
a growing Committed Table without using the Version Table
for getting the latest data version up to the transaction snap-
shot for read operations. This would illustrate the rationale
of using the Version Table whose purpose is to minimize the
range of rows to scan in the Committed Table. (3) The cost
of performing sequential reads and writes with transactional
SI compared to the cost of performing the same set of
reads and writes with pure HBase (without transactions).
The benchmarks we use are adapted from Section 7 of
the Google BigTable paper [7] because HBase also targets
random access performance similar to BigTable.

We implemented a java class called TransactionalSI and
several scripts for setting up the initial tables needed. A
client program is also implemented to submit transactions
to HBase. HBase is deployed on a 3-machine cluster con-
nected with GigE ethernet. The “gridbase1” machine has 2
dual-core 2.6Ghz CPUs and 8GB of memory; “gridbase2”
has 2 quad-core 2.0GHz CPUs and 8GB of memory; and
“gridbase3” has 4 quad-core 1.6GHz CPUs and 16GB of
memory. Both the Hadoop HDFS namenode and the HBase
master run on “gridbase1”. Each “gridbase” machine also
runs an HBase region server. Note that in our tests, we
run concurrent clients which are evenly distributed across
all three machines. The clients are running on the same
machines as the HBase servers, competing for machine
resources. Thus, our tests are intended for proof-of-concept
purpose only.

Total Throughput vs Number of Clients

0

100

200

300
400

500

600

700

800

3 6 9 12 15 18 21 24

Number of Clients

T
o
t
a
l

T
h
r
o
u
g
h
p
u
t

(
#

o
f

i
n
c
r

o
p
e
r
a
t
i
o
n
s

p
e
r

s
e
c
o
n
d
)

Figure 1. Label mechanism total throughput vs total number of clients.

Figure 1 shows the throughput of using one globally
accessible table to issue unique timestamps with varying
number of total concurrent clients. In this test, all clients
continuously and consecutively acquire timestamps from a
single global table location using the “incrementColumn-
Value” method. The results show that with our 3-machine
cluster, the HBase region server serving the single-row
global table reaches a highest throughput of issuing about
700 timestamps per second, implying an upper limit of

serving 2.5 million transactions per hour. Theoretically, the
server should maintain the maximum throughput as the
number of clients increases. However a slight decrease of
throughput is witnessed in Figure 1, due to the competition
of resources from the clients running on the server machines.
Overall, the performance is still quite good considering our
client deployment and cluster machine capacity. Figure 2

Time to Traverse a Resultset vs Scan Row Range

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

Scan Row Range

Ti
me
 t
o
Tr
av
er
se
 a

Re
su
lt
se
t
(m
s)

Figure 2. Time for scanning a row range in an HBase table as a function
of the number of rows scanned.

shows the time spent in scanning an increasing number of
rows of a single table. There is a linear relationship between
the time spent and the number of rows scanned, indicating
that in our SI protocol the time to scan the Committed Table
grows linearly with the number of rows to be scanned, if we
don’t use the Version Table. When this number is growing
large due to the accumulation of committed transaction
records through time, the time spent in scanning for reads
will become overly costly. As such, the Version Table is
necessary, given that it limits the number of rows to be
scanned within a reasonably small range, especially for data
items read frequently. Figure 3 and Figure 4 compare the

SI Read vs HB Read

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 20 30 40 50

Number of Operations per Transaction

Ti
me

 p
er

 O
pe

ra
ti

on
(m
s) SI read per op

HB read per op

Figure 3. SI Write vs HBase Write with varying transaction length.

SI Write vs HB Write

0
20
40
60
80

100
120
140
160

1 2 3 4 5 6 7 8 9 10 20 30 40 50

Number of Operations per Transaction

Ti
me
 p
e
r
Op
er
at
io
n

(m
s) SI write per op

HB write per op

Figure 4. SI Write vs HBase Write with varying transaction length.

overall performance of sequential read/write operations with

transactional SI, and with pure HBase without transactions.
In the tests, we measure the total time a single client
spends on performing transactions with a varying number of
read/write operations per transaction, compared to the cost of
performing the same set of reads and writes with pure HBase
without transactional concerns. Figure 3 shows that the cost
of doing reads in transactions with SI is about twice the cost
of using HBase directly, but larger for very short transactions
with less than four read operations. The extra cost in using
SI is introduced by the need to search for a proper version
up to the transaction snapshot which involves a point-read to
the Version Table and a short scan on the Committed Table,
and by the need to acquire a start timestamp. The test is
set up such that locations are read from frequently and thus
appear in the Version Table, and only short scans of the
Committed Table are required for reading. For infrequently
read values, the read time will be longer. Figure 4 shows
that the cost of doing writes with SI is much higher for very
short transactions with less than four write operations, and
becomes about the double of the cost of using pure HBase
with relatively short transactions containing five to ten write
operations. The cost goes down further as the transactions
contain more write operations to become almost the same as
the cost for doing writes with pure HBase. The reason for the
high performance penalty in short transactions is due to the
extra Precommit and Commit processes which require the
scanning of the Precommit and Committed tables, and the
cost of acquiring the four labels/timestamps. These costs are
amortized as the number of operations per transaction grows.
In general, for medium-size transactions under light loads
and without write conflicts between concurrent transactions,
we can expect the cost of adopting our technique to be about
double the cost of using pure HBase. We would argue that
the added cost is reasonably low considering the benefits of
having transactional SI over the whole cloud.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we describe an approach to use HBase as
a cloud database solution for simple multi-row distributed
transactions with global SI guarantee. We make use of
several HBase features for achieving global, cloud-wide SI,
and we design a set of HBase tables to support global
SI for simple database transactions. We show the validity
of our approach in terms of database ACID properties
and quantify the cost of our approach with performance
evaluations. For future work, we may support more complex
database queries, further optimize our approach for better
performance, and include appropriate handling of failing
processes. Extending our approach to other cloud-scale
column-oriented data services is also in our agenda.

REFERENCES

[1] Terabyte sort. http://sortbenchmark.org/.

[2] D. Abadi, P. Boncz, and S. Harizopoulos. Column-oriented
Database Systems. In Proceedings of the VLDB Endowment,
2(2):1664–1665, 2009.

[3] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silber-
schatz, and A. Rasin. Hadoopdb: An Architectural Hybrid
of Mapreduce and DBMS Technologies for Analytical Work-
loads. In Proceedings of the VLDB Endowment, 2(1):922–
933, 2009.

[4] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil,
P. O’Neil. A Critique of ANSI SQL Isolation Levels. Pro-
ceedings of the 1995 ACM SIGMOD International Conference
on Management of Data, 1–10, 1995.

[5] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and
T. Kraska. Building a Database on S3. In Proceedings
of the 2008 ACM SIGMOD International Conference on
Management of Data, 251–264, 2008.

[6] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable
Isolation for Snapshot Databases. In Proceedings of the 2008
ACM SIGMOD International Conference on Management of
Data, 729–738, 2008.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable:
A Distributed Storage System for Structured Data. In OSDI,
205–218. USENIX Association, 2006.

[8] J. Dean and S. Ghemawat. Mapreduce: Simplified Data
Processing on Large Clusters. Communications of the ACM,
51:107–113, 2008.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
File System. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles, SOSP ’03, 29–43, 2003.

[10] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The Dangers
of Replication and a Solution. In Proceedings of the 1996
ACM SIGMOD International Conference on Management of
Data, 173–182, 1996.

[11] K. Salem, K. Daudjee. Lazy Database Replication with
Snapshot Isolation. In Proceedings of the VLDB Endowment,
715–726, 2006.

[12] Y. Lin, B. Kemme, M. Patino-Martinez, and R. Jimenez-
Peris. Applying Database Replication to Multi-player Online
Games. In Proceedings of 5th ACM SIGCOMM Workshop
on Network and System Support for Games, Article No.15,
2006.

[13] C. Plattner and G. Alonso. Ganymed: Scalable Replication
for Transactional Web Applications. In Proceedings of the
5th ACM/IFIP/Usenix International Middleware Conference,
155–174, 2004.

[14] Z. Wei, G. Pierre, and C.-H. Chi. Scalable Transactions for
Web Applications in the Cloud. In Proceedings of the Euro-
Par Conference, LNCS 5704, 442–453, 2009.

[15] C. Zhang and H. De Sterck. CloudWF: A Computational
Workflow System for Clouds Based on Hadoop. In Proceed-
ings of the 1st International Conference on Cloud Computing,
CloudCom ’09, LNCS 5931, 393–404, 2009.

