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Abstract. This paper describes ECRS, a content encoding scheme for
censorship-resistant peer-to-peer networking. The proposed encoding mech-
anism supports both efficient dissemination of encrypted data as well
as encrypted queries over this data. Intermediaries can verify that an
encrypted response matches an encrypted query without being able to
decrypt either. Furthermore, ECRS allows users to share files encrypted
under descriptive keys which are the basis for querying the network for
content. With the proposed scheme, effective load balancing and swarm
distribution are possible. The encoding mechanism handles data in small
chunks, which can also be efficiently encoded on demand from the plain-
text. The proposed encoding is conceptually simple and easy to imple-
ment.

1 Introduction

Internet censorship is a powerful weapon for oppressive governments, corpo-
rations and pressure groups in stifling dissent and suppressing dissemination
of information. A variety of techniques can be used to censor online informa-
tion; hard drives can be confiscated and searched, traffic can be filtered, and
denial-of-service attacks can be performed against servers. In addition to these
technical measures, individuals can be singled out and subjected to harassment.
A common requirement for censorship in any form is the ability to recognize the
objectionable information.

The goal of the encoding scheme presented in this paper is to make it difficult
to identify information stored or transmitted in a open decentralized wide-area
network where many untrusted peers want to share data. The proposed encod-
ing scheme, called ECRS, allows both content and queries to be encrypted while
being transmitted or stored on the network. This ensures that intermediaries re-
main oblivious to the data they are handling, reducing the chance that they can
be singled out for an attack or held liable. It is important to note that the pri-
mary goal is deniability for the peers storing and transmitting the information.
These peers must be able to claim that decrypting the information is infeasible
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for them. ECRS does not attempt to protect against a censor who knows pre-
cisely which content to censor is able to match a request or response against
that particular content. Using this kind of guessing attack a censor is able to
invert one-way hash functions which are crucial for the security properties of
the protocol. ECRS is supposed to protect intermediaries that merely transmit
information and that need to be able to show that they are unable to recognize
objectionable information for their own protection.1

The meaning of censorship resistance used in this work is a variant of the
formal definition given by [23], in which censorship resistance is defined as the
inability of a censor to restrict a targeted document while allowing at least one
other document to be retrieved. In the context of [23], the adversary is granted
extensive capabilities. In particular, the adversary is allowed to inspect every
request or response, transcript the processing steps of all the peers and then
decide whether to filter (drop) a given response. The primary difference in the
adversary model for ECRS when compared to [23] is that the attacker is not
allowed to be able to guess the exact content that is to be censored. This is an
important restriction in practice. In the absence of such a restriction, [23] shows
that censorship resistance requires a form of private information retrieval for
which each operation has complexity O(n), where n is the size of the datastore.
In return for restricting the guessing capabilities of the adversary, ECRS can
achieve O(1) complexity for its operations. Considering that scalability is also
an important goal, in particular since censorship-resistance for small collections
would be of limited utility, we believe that this is a reasonable trade-off.

As a content encoding mechanism, ECRS could be integrated into almost
any generic peer-to-peer infrastructure to enhance its resistance to censorship.
Specific details on how peers communicate or route data – even though important
for the availability of the service and the privacy of its users – are therefore
orthogonal issues outside of the scope of this paper.

As an encoding scheme, ECRS has to address two important issues. First
of all, users must be able to find content, preferably by searching with simple,
natural language keywords. Metadata related to the contents of the file should be
made available as part of the search result and prior to the download of the actual
file. Metadata can include anything from user-provided content descriptions to
thumbnails (for images) and automatically detected mime-types. Ensuring that
the metadata is an accurate description of the file is outside of the scope of this
paper; recent work on reputation systems [31] provides a partial solution to this
problem. Secondly, the encoding scheme should support swarming – that is, the
download of a file from multiple peers. Since it is possible that identical data
could be inserted by many independent parties, the encoding scheme should

1 If the data cannot be identified, editorial control is technically impossible. In Stratton
Oakmont v. Prodigy, an Internet provider was found liable for hosting a bulletin
board on which offensive messages had been posted. This finding resulted because
the provider had hired individuals to exercise editorial control over content. If the
provider had merely published messages from users without interference, the provider
would potentially not have been held accountable [28].
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always result in identical encodings for identical source files. This special form
of encryption was probably first described in [5] and later termed convergent
encryption [9]. With convergent encryption, the existence of multiple copies of
the same content can be detected; this knowledge can then be used to increase
fault-tolerance, performance and availability.

Unfortunately, it is not enough to just meet requirements related to efficient
storage and retrieval of the content. A public filesharing network should be open
to new participants without any restrictive form of access control. This opens
the network to malicious participants. Thus, the encoding scheme should guar-
antee the integrity of the content, even in the presence of malicious participants.
The encoding mechanism must ensure that invalid replies are detected and that
peers can distinguish valuable content from maliciously generated noise. This
is particularly important in three cases. First, if large files are assembled using
blocks from multiple peers, some of these peers may be malicious and try to
corrupt the file. These corruptions should be detected on a small granularity
level and repaired with correct data from other peers. Second, for searches it
should be difficult for peers to spam the result set; otherwise, the users may
drown in useless information. Finally, intermediaries that are merely routing
the content should be able to detect invalid replies. This enables the existence
of local economies (such as those in [12]) and prevents the retransmission and
replication of corrupted data by non-malicious peers.

This paper introduces the primitives that ECRS uses to achieve these goals: a
specific altered variant of the Content Hash Key (CHK), a primitive used in [5],
and KBlocks, a novel construction which adds functionality to the ECRS scheme
while avoiding a proposed attack on the triple-hash primitive used in [2]. These
primitives allow data to be inserted under multiple natural-language keywords
at minimal cost in space, and queried using natural language boolean searches.
Furthermore, the primitives give ECRS the means to identify, encrypt, decrypt
and verify data, all while avoiding attacks by a non-guessing intermediate ad-
versary. Verification of content by intermediate hosts is made possible without
revealing the keys necessary to decrypt content, and the amount of data cor-
ruption an adversary can inject before being detected is limited to a small size.
Additionally, the construction of these primitives makes ECRS quite scalable,
and assists the encoding scheme in encouraging load-balancing, distribution and
replication of content, and swarming. These primitives (and their functionality)
are described in greater detail later in the paper.

The rest of the paper is organized as follows. Section 2 contrasts the current
work with mechanisms used in other censorship-resistant systems. Section 3 de-
scribes the ECRS encoding scheme in detail. Section 4 lists some extensions to
the basic scheme. Finally, Section 5 discusses attacks on ECRS and contrasts it
with previous work.

This work builds on our earlier paper [2] which was first published at ACISP
2001. Since then, the encoding scheme has been revised to address additional
requirements an to improve the security in various aspects. This paper reflects
these changes.
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2 Related Work

A large number of censorship-resistant (or at least fault-tolerant) publishing
systems have been proposed in recent years [1,4,5,8,10,15,29,30]. The proposed
protocols differ in various aspects unrelated to the specifics of the encoding mech-
anism, such as content replication and the use of anonymous or steganographic
communication. Characteristic of all of these systems is the use of replication
and the need to ensure data integrity. For an overview of content replication
strategies see [6]. The censorship-resistant systems all use some form of content
encoding to hide the specifics of the content from the servers.

2.1 Freenet

The main content encoding scheme used in Freenet [5] uses CHKs: the hash of
the content is used as the key. Freenet has several other types of keys which are
used to refer the user to content-hash keys. These different key types are used to
allow additional features such as content signing, personal namespaces and split-
ting of content. Freenet’s CHK yields the same encrypted data for independent
encryptions. However, it has several disadvantages.

One drawback of Freenet’s CHK is that it does not allow direct sharing of
files from the local drive without encrypting and inserting them first. Thus, if a
node operator wishes to keep content directly accessible on the host, a local copy
of the plaintext must be kept in addition to the encrypted content in the Freenet
database. Also, Freenet does not support swarming. One reason for this is that
Freenet’s CHK encoding can only verify a file in its entirety and not pin-point
corruptions on a smaller scale.

One way to obtain the CHK key of a file in Freenet is to search a private
subspace. A subspace contains a set of CHK keys that have been cryptographi-
cally signed by the owner of the subspace and placed into the subspace under a
certain keyword. These signed references are called subspace-signed keys (SSK).
Given the subspace-prefix and the keyword, users can obtain the CHK key. The
form of the keywords can be freely chosen, allowing for conventions such as dates
in the keyword to be used for updates (in Freenet’s terminology, these are called
date based redirects).

In addition to CHK and SSK keys, Freenet supports KSK keys. A KSK key
is essentially a CHK key stored in plaintext (!) under a keyword. The protocol
attempts to ensure that there cannot be two different CHK keys available in the
network under the same keyword. While collisions for KSK keys are supposedly
not allowed, the protocol cannot prevent them from occurring. If an attacker
inserts meaningless data under a common keyword, Freenet will try to preserve
that content because it is frequently requested. Subsequently, that keyword can
no longer be used for any useful data since the peers attempt to enforce the no-
collisions rule. Note that the no-collision rule cannot be enforced for malicious
peers. For these reasons, the Freenet developers consider the use of KSK keys
insecure and recommend against using them.
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As a result, Freenet effectively does not support any type of keyword-based
search. The CHK keys must be found by using keyservers or ad-hoc applications
built upon the basic solution by using incremental numbers as parts of keywords
in signed namespaces. The disadvantage of keyservers is that they must be main-
tained if the indexed keys are to be kept up-to-date. Freenet does not seem to
use any encryption for the data stored in KSK or SKS keys and therefore fails
to prevent intermediaries from learning the CHK keys, making censorship by
intermediaries easier.

2.2 Free Haven

In Free Haven [8], documents are split into n shares which are distributed over a
number of servers. Any k out of n shares are sufficient to reconstruct the entire
document [24]. To retrieve a document, the user must obtain the key that was
used to sign the document from some source outside the Free Haven network.
The design of Free Haven itself does not discuss any search functionality. The
user then forwards the key to the server which encrypts and sends its share of
the document.

Shares are encoded with an information dispersal algorithm (IDA). Hosts are
still able to exercise editorial control over the content since the IDA does not
prevent hosts from decoding parts of the plaintext. Also, the k out of n share
reconstruction scheme does not allow reconstruction of a file by mixing shares
from independent insertions with different values for k or n.

2.3 Mnet and Mojo Nation

Mnet is the successor of Mojo Nation [32], a peer-to-peer network that was the
first to focus on using economic incentives when trading content. As the descen-
dant of a commercial product, Mnet focuses mostly on efficiency and reliability.
Nevertheless, Mnet encrypts files with AES using a user-supplied key to allow
for privacy. The file is then broken into shares using an erasure code. Multiple
shares are identified with an SHA-1 hash and stored in an inode. The file can be
retrieved using the hash of the inode and the symmetric encryption key.

The use of whole-file AES encryption and the use of an erasure code forces
Mnet, as with Freenet, to store a second copy of the entire file in the Mnet data
store even if the user retains a copy of the file in plaintext. The encoding makes
it infeasible to encode parts of the file on request. The free selection of the AES
key allows independent users to create completely different shares for identical
files. Since the encryption of the content is a perfectly independent pass over
the file, other encodings such as ECRS and Freenet’s encoding could be easily
extended to include this behavior if desired – without the need to mandate a
certain style of AES encryption.

2.4 Publius

Publius [30] is a static network that uses Shamir’s algorithm [26] to split the key
required to restore stored files between the available servers. The encrypted file
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is then stored on all servers. The servers cannot decrypt the file as the key is
never revealed to them.

Publius keys are random strings. The system does not provide any search
mechanism and expects the users to obtain the keys from an alternate source.
Publius never discards any content and thus assumes that disk space is never a
limitation.

2.5 Tangler

The Tangler network [29] is a system where new content is entangled with old
content. This entanglement introduces a dependency which makes it impossible
to retrieve a piece of content if the other content that it was entangled with is lost.
While this makes it impossible to censor specific content without losing unrelated
content (since the entanglement pairs are chosen randomly), this process doubles
the amount of data that must be transported by the network. This scheme fails to
address the fact that an adversary may not care about losing other data when
attempting to censor content. Also, nothing prevents the adversary from first
making a copy of important documents and re-inserting them into the system
after the censorship operation.

Tangler has some similarities with ECRS. In particular, it uses hash trees
for integrity checks on fixed-size blocks of data. However, unlike ECRS, the
Tangler encoding uses Shamir’s secret sharing [26] to entangle the block with
other, pre-existing blocks, preferably from other documents. Both Tangler and
ECRS (as well as Freenet) use cryptographically signed data, which Tangler calls
collections. ECRS has analogous constructions to Tangler’s collections, referred
to in this paper as directories and namespaces; however, unlike ECRS, a Tangler
collection has a versioned root which explicitly lists all of the contents in the
collection, resulting in one of Tangler’s global synchronization problems. Placing
a document in a Freenet subspace or ECRS namespace only requires that it be
adequately signed.

2.6 Gnutella and FastTrack

The FastTrack network2 and modern variants of the Gnutella protocol use the
SHA-1 hash code of the shared files to uniquely identify files. The SHA-1 hash
codes are used to identify identical files stored on different peers. The peers can
then use this information to download the file from multiple sources (swarming).
The problem with this approach is that the SHA-1 hash codes can only be
verified once the entire file has been retrieved. To ruin a download, it suffices for
a malicious peer to contribute just one single invalid block. The presence of an
invalid block could only be detected after the entire file was retrieved. Worse, the
2 Protocol description from the giFT-FastTrack project is available at

http://gnunet.org/papers/FAST-TRACK-PROTOCOL.

http://gnunet.org/papers/FAST-TRACK-PROTOCOL
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simplistic SHA-1 approach does not give peers any way to identify the location
of the invalid block or the malicious peer.

Neither FastTrack nor Gnutella use file encryption. Consequently, they do not
provide any protection from censorship beyond decentralized routing of requests.

2.7 Distributed File Systems

Various distributed file systems based on a peer-to-peer infrastructure have been
built in recent years [7,18,19,22,25]. These systems typically do not focus on
censorship resistance and consequently do not encrypt the contents. Modern
systems like [7,25] route content using distributed hash tables [17,27] to achieve
O(log n) scalability. Writable distributed file systems typically require users to
authenticate themselves before being granted access to the system by one of the
servers [18]. ECRS focuses on encrypting shared data while allowing peers to
verify the integrity of the encrypted data that they are routing. In SUNDR [19] a
similar problem is addressed; here users can detect tampering by the (untrusted)
server that is storing the data in a setting where multiple users are updating the
same data. SUNDR achieves what is called fork consistency, a guarantee that if
the server passes a version that lacks the changes of one client to another client
at one point in time, it can never again make the changes of either client visible
to the others. This is a weaker guarantee than the optimal situation where any
misbehavior is detected; however, it is the strongest possible property that can
be achieved given the security model used. ECRS does not allow users with
distinct pseudonyms to update the same content without essentially creating
two files. This allows ECRS to guarantee that peers can never return an invalid
result since every copy can be uniquely identified at all times.

3 ECRS encoding

ECRS uses two fundamental primitives in the overall encoding scheme. The
majority of the data is encrypted with a variant of Freenet’s CHK encoding [5].
The fundamental idea behind CHK is that content is encrypted with a key that
is derived from a cryptographic hash of the plaintext. The encrypted content is
hashed again to obtain the query hash which is used to request the content. This
key-query pair is what the receiver needs to download and decrypt the content.

The primary difference between the use of CHK in ECRS and that used
in [5] is that ECRS does not subject entire files to the CHK encoding. Instead,
files are split into fixed-size blocks which could then be individually distributed
(and replicated) across peers in the network; this is a natural way to balance
the load and to enable swarming. These fixed-sized blocks can be individually
identified, encrypted, decrypted and verified. Each block is identified by one or
two hash codes, and the blocks are encrypted using a key that is independent of
the hashes used for identification. Verification only requires the encrypted block
and the query; it does not reveal the key required to decrypt the block. ECRS
guarantees that it is hard to forge a response that passes verification for a given
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Fig. 1. Simple encoding of a file using a tree of CHK blocks (DBlocks and
IBlocks are CHK encoded) with one KBlock to allow for a keyword-based
search.

query, and splitting files into blocks allows ECRS to detect data corruption on
the block level. Malicious peers cannot transmit more than the selected block
size of invalid data before being detected.

The second primitive used by ECRS, the KBlock, is completely novel. KBlocks
allow users to securely obtain the key-query pair by entering a natural language
keyword selected by the content provider. The primitive used to achieve this
in [2], the triple hash, is improved on in this work in that KBlocks cannot be
attacked successfully by a non-guessing intermediary. The triple hash scheme was
vulnerable to possibile substitution attacks by intermediaries. KBlocks defeat
this attack by signing content advertisements using deterministically generated
public keys. Additionally, by using KBlocks, documents can be inserted under
multiple keys at a minimal cost in terms of space. Users can perform boolean
searches of the form “a AND b” which then return the documents which were
inserted under a matching set of keywords. Before the download, the user can
refine the search results using the metadata associated with the file.

The rest of this Section gives a bottom-up description of ECRS. After a brief
overview, Part 3.2 shows how individual data blocks are encrypted in order to
make it impossible for the intermediaries to determine what they are storing or
transmitting. Part 3.3 then describes how files are split into those data blocks.
Parts 3.4 through 3.6 motivate and explain how ECRS enables users to search
for content without exposing the plaintext of the keyword or the corresponding
content and how intermediaries can verify that a given encrypted reply matches
the (encrypted) query. Finally, the core of ECRS is summarized in the form of
the encoding algorithm and a protocol example.

3.1 Overview

In ECRS, the encoded representation of a file is a collection of blocks. There are
four types of blocks: DBlocks, IBlocks, SBlocks and KBlocks. The maximum size
of all blocks in ECRS is supposed to be fixed as some small number (e.g. 32Kb).
The blocks are used to create a tree structure of the encoded file (see Figure 1).
The actual file data is encoded in DBlocks which are organized by a tree of
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IBlocks. The IBlocks, which are similar to UNIX inodes [20], are indirection
blocks which encode how the leaf nodes of the tree can be reassembled into the
original file. Every IBlock provides the data required to request, decrypt and
verify the contents of its direct children. Verification is done using hash codes
of the children, similar to the way a Merkle tree [21] works. Given the size of
the file, the top IBlock uniquely identifies the contents of the entire file. KBlocks
and SBlocks facilitate obtaining the key hash (to decrypt) and query hash (to
request) for the top IBlock.

3.2 DBlocks

Every DBlock corresponds to 32Kb of the original file (the last block may be
padded with zeros if the file end does not fall on a 32Kb boundary). DBlocks
are encrypted using a symmetric cipher. For the DBlock that corresponds to a
plaintext block Bi, the key for the cipher is Ki := H(Bi). This guarantees that
the same block will always be encrypted with the same key. Also, the integrity of
the decrypted block can be verified by checking that Ki = H(Bi). The encrypted
block EKi(Bi) can be uniquely identified by its hash Qi := H(EKi(Bi)). A peer
can query for EKi(Bi) using the query hash Qi without revealing Ki. Conse-
quently, the pair (Ki, Qi) can be used to retrieve and decrypt Bi. Intermediaries
can verify that a response EKi(Bi) matches a query hash Qi without knowing
Ki. Freenet [5] uses the same scheme to encrypt entire files (not just blocks) and
the authors call the pair (Ki, Qi) a content hash key (CHK).

3.3 IBlocks

For files larger than the blocksize, multiple CHK keys are required to retrieve
the content. For example, with a blocksize of 32Kb and 512-bit hash codes, a
32Mb file would be split into 1024 DBlocks, B1, . . . , B1024, of length 32Kb each.
Groups of up to 256 CHKs are assembled into one 32Kb IBlock, resulting in four
IBlocks for the 32Mb file. The resulting IBlocks are CHK encrypted in the exact
same manner as the DBlocks and their CHK-keys are again grouped into IBlocks
until only one CHK key is left. For the 32Mb file, the CHKs for the four IBlocks
are thus collected in one final top IBlock. The additional space requirements for
encoding the file are typically less than 1% of the original file size.

3.4 Finding files

The CHK encoding described so far is useful for transmitting content that is
encoded and yet verifiable for intermediaries. However, a practical file-sharing
scheme needs to provide functionality such that the users can obtain the query
hash and the key that are now necessary in order to retrieve and decrypt the
encoded content. While out-of-band communication of those CHK keys is cer-
tainly feasible, an integrated solution is clearly desirable. Related work on secure
indexing [11] allows servers to retrieve documents by keyword without learning
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about the rest of the document. The scheme that will be described in Section 3.6
improves on this by keeping the keyword itself private. Additionally, it still al-
lows intermediaries to verify the correct operation of the server. It also avoids the
need for the publisher to encrypt the document with the public key of a specific
receiver, thereby theoretically permitting arbitrary participants to access same
encrypted content (as long as they are able to obtain or guess the necessary
keyword).

The key problem for the search is that simply publishing CHK keys in plain-
text under certain keywords (as done in Freenet with KSK keys) has various
drawbacks. First, intermediaries would learn about the CHK keys that they are
storing or transmitting, which could allow them to easily censor search results.
Second, the keywords are directly exposed to the intermediaries, which again
would facilitate censorship. Finally, peers would be able to send invalid replies
that refer to inappropriate content. This may be just a nuisance if malicious peers
use this for advertising (a kind of behavior that can be observed on gnutella from
time to time). Possibly worse, if a network wants to economically reward peers
for returning search results, the possibility of returning arbitrary nonsense might
make such incentive schemes impractical.

But how can a system prevent peers from returning invalid responses to a
keyword-based search? Since it is inherent in the nature of such a search that
the initiator does not know precisely what content is desired, it is impossible
for the query to completely determine the reply. For this reason, schemes like
CHK cannot be applied to the keyword-search problem: in CHK, the query hash
completely determines the reply. As a result, a keyword-based search mechanism
where a query should possibly have multiple valid results cannot be implemented
based on CHK. Since for this kind of search there cannot be any completely de-
terministic link between the keyword and the content, ECRS must trust the user
who is uploading the content to provide a valid link. That user must specify ap-
propriate keywords (and metadata) that properly describes the content. Clearly
this trust may be misplaced. The uploader may specify keywords that have no
semantic relation with the content. One solution to this problem is the use of
namespaces, which attack the issue by enabling users to learn which uploaders
are trustworthy.

3.5 Namespaces

One way to avoid searching in an untrustworthy global keyword space that may
contain mostly inappropriately-labeled content is to restrict the search to name-
spaces. A namespace is a keyword space that contains content that is cryp-
tographically signed with the same private key. The concept of namespaces is
also present in Freenet [5], but with Freenet it is not possible to obtain multi-
ple results by searching a namespace. Fortunately, it is easy to add searchable
namespaces to ECRS.

In ECRS, a namespace is identified by a public-private key pair (also referred
to as the pseudonym). The private key is used to sign the content that is placed
into the namespace, and the public key (or more precisely, the hash of the public
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key) is used as a public handle that is used to refer to the namespace. Any
user can create any number of pseudonyms. Once the user accesses files from
a particular namespace it is possible to form an opinion about a particular
pseudonym, which can then be used to target the search.

Adding namespaces to the design requires a new type of block, called an
SBlock. An SBlock contains the key and query hash (CHK) of the top IBlock
together with the metadata belonging to the content, thereby allowing users
that receive an SBlock to download the file. However, this data is encrypted
such that intermediaries do not learn anything about the referenced file. The
encryption key is the hash of an identifier that the inserter chose for the content.
The identifier does not have to be unique and can, for example, be a keyword
(to allow searching the namespace) or a password (for private content). The
encrypted portion of the SBlock is followed by a hash code which is the query
identifier for the SBlock. The query identifier is the hash of the key (which makes
it the hash of the hash of the identifier). When a user searches a namespace, the
request contains the hash of the public key of the pseudonym together with the
query identifier. By using the hash of the key as the query identifier, the correct
SBlock can be identified by intermediaries but not decrypted. At the same time,
only the identifier and the hash of the public key of the pseudonym are required
to construct both the query identifier needed to search the namespace and the
key needed to decrypt the SBlock. Finally, SBlocks contain digital signature of
the other contents. This allows intermediaries to verify that a given SBlock was
created by the owner of the namespace.

Since SBlocks are signed, it is possible to allow updates. Without a digital
signature, a secure update mechanism is impossible, since anyone could publish
a potentially illegitimate update. If the update requires a matching digital sig-
nature, forged updates are impossible. In order to allow content updates, the
metadata of an SBlock can contain information about when and under which
identifiers updates may be published. If such forward pointers are present, the
owner of the namespace can decide to publish updates to a particular file at a
later time. Since the private key used for signing is owned by a single entity,
consistency issues from parallel updates do not arise. ECRS does not prevent
the owner of the namespace from publishing conflicting updates.

It should be recognized that the same file can be part of multiple namespaces
under multiple identifiers without the need for storing the file multiple times in
the network. The IBlocks and DBlocks of the file do not need to be changed
when the namespace or namespace identifier changes.

Namespaces cannot completely solve the search problem. Most importantly,
users would still have to find the namespaces themselves, and while it can be
assumed that users can guess keywords, they are unlikely to be able to guess
public keys for a namespace search. ECRS alleviates this problem by also of-
fering a pure keyword-based search in a global keyword space where any user
can advertise content. Here, the disadvantage is clearly that it is possible for
malicious users to pollute the global keyword space with advertisements and
other inappropriate data. However, it is assumed that in that case users will use
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keywords that are more difficult to guess or only use the global keyword space
to discover trustworthy namespaces, thus avoiding spam most of the time.

3.6 Keyword search

This section describes how information about namespaces or the CHK keys
that are necessary to retrieve a file can be obtained by searching using natural
language keywords – without revealing the keywords to intermediaries. Searching
requires the content provider to supply metadata about the file; in particular,
the content provider must supply a list of keywords. While the metadata is
published as part of the KBlock and made available to the recipient the keywords
are only used to compute the KBlocks and not made available to other users
directly. It is assumed that the user searching for data is able to guess at least
one of these keywords. The nature of the search implies that there is no direct,
cryptographically verifiable relation between the keyword and the content. Many
files can match a given keyword. Different users may sometimes have a different
perception of what is a correct semantic match. Thus, a keyword search always
has the potential of resulting in search results that a user may find inappropriate.
It is also not possible to prevent a user from supplying keywords that have no
semantic relation with the content and thereby increasing the chance of other
users finding undesirable results for those keywords.

Despite these fundamental drawbacks, ECRS should (and can) give some
unusual guarantees for keyword-based searches. First, the keyword used for a
search is not exposed to intermediaries in a way that would allow them to eas-
ily exercise editorial control (i.e. to censor queries). Note again that a guessing
attack in which the intermediary guesses a keyword, computes the respective
query hash, and attempts to match the query hash to the incoming query, is
considered acceptable; plausible deniability for the intermediaries is unaffected
by this attack. Secondly, only peers that have content available under the given
keyword should be able to produce a valid response. In other words, the ulti-
mate responder must have succeeded in guessing the keyword. This is important
since it prevents peers from making up replies for arbitrary requests on-the-fly. If
peers were able to respond to any keyword query without having to at least guess
the keyword, they could use this to spam every possible search, rendering the
keyword search mostly useless. Forcing responders to guess keywords does not
eliminate the problem completely; however, it does limit the attack to the com-
mon, easily-guessed keywords. Finally, the verification that a response is valid
should be possible not only for the final recipient, but also for intermediaries.

ECRS achieves all of this with a new cryptographic primitive called K-
deterministic keys which is a key pair (PubH(K), P rvH(K)) generated from a
keyword K. The hash H(K) of the keyword is used as the seed and the only
input to the pseudo-random number generator that generates the public-private
key pair. The authors are not aware of any previous use of K-deterministic keys.
Given such a key pair, the inserting peer generates KBlocks by signing (with
PrvH(K)) the metadata necessary to download the file. KBlocks are essentially
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H(K)
(as random seed) //

(as key)

��8
88

88
88

88
88

88
88
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Keygen

PrvH(K)

��

PubH(K)

((QQQQQQQQQQQQQ

Join +3 KBlock

MD // Encrypt
EH(K)(MD)

// Sign

66mmmmmmmmmmmmmm [EH(K)(MD)]PrvH(K)

Fig. 2. The construction of a KBlock. The hash H(K) of the keyword K is used
to encrypt the metadata (MD) and to seed the key generator. The obtained
private key PrvH(K) signs the encrypted metadata (EH(K)(MD)), but is not
otherwise used. Finally, the public key PubH(K) is appended to the signed data
to form the KBlock.

like SBlocks with the difference that the K-determinate key is used instead of
the pseudonym. The construction of a KBlock is shown in Figure 2.

A peer searching for K also computes PubH(K) using the same deterministic
key-generation algorithm (PrvH(K) is also computed but not used). The peer
then uses H(PubH(K)) as the query hash. Intermediaries can verify that the
response is valid by checking the KBlocks signature against its public key, and
checking that the public key hashes to the query hash. Yet intermediaries are
unable to decrypt the response or learn the keyword K that was used to generate
the public key without guessing.

In conclusion, using KBlocks it is possible to allow intermediaries to verify the
integrity of replies without learning the plaintext of the keyword or the response.
KBlocks require a keyword guess, making it it harder to reply to arbitrary queries
with random data; they cannot prevent users from inserting such data under
popular keywords. The receiver of the KBlock can retrieve the rest of the file
tree using CHK queries in the same way as it is done for SBlocks.

3.7 Summary

The ECRS encoding algorithm is summarized in Figure 3. Figure 4 shows the
sequence of messages exchanged by peers to download a 64Kb file starting with
a keyword.

4 Extensions

The vanilla ECRS encoding scheme still leaves some practical problems that
should be addressed to facilitate real-life usability. For example, the manual
effort of assigning or guessing keywords should be minimized. Also, the overall
system should be efficient in practice. In particular, the system requires peers
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1. Input: Content C, a list of keywords {K1, ...} and metadata D.
2. Split content C into blocks Bi, each of size 32Kb. Call these DBlocks.
3. Compute hash values Hkey

i = H(Bi), Ei = EHkey (Bi) and Hquery
i = H(Ei). Form

CHKi from (Hquery
i , Hkey

i ). Pad content (with zeros) if needed.
4. Store Ei under the name Hquery

i .
5. If there is more than one block, group the blocks into disjoint sets Ij of up to 256

members. For each Ij , create Iblockj containing the CHKs of the blocks in Ij . Add
zero padding if needed. Process each new 32Kb block obtained as in step 3.

6. If the size of C was smaller than 32Kb (and thus there is only one pair of hashcodes
CHK0), create SBlocks and KBlocks containing CHK0, the metadata D about the
content and the original length of C using keywords Ki according to Figure 2.
Encrypt and sign the resulting SBlocks and KBlocks.

Fig. 3. The ECRS encoding algorithm.

B shares file which is encoded as B1, B2 and one IBlock under keyword “test”.

A → B: Query: H(PubH(“test”))
B → A: Response: ([EH(“test”)(Q0, K0, size)]PrvH(“test”) , PubH(“test”)) (one KBlock)
A → B: Query: Q0 (CHK-query)
B → A: Response: EK0(Q1, K1, Q2, K2) (encrypted IBlock)
A → B: Query: Q1 and Q2 (CHK-query)
B → A: Response: EK1(B1) and EK2(B2) (encrypted DBlocks)

Fig. 4. Example protocol for an ECRS download. (Qi,Ki) is a CHK pair to
request and decrypt block i.

to frequently handle small, per-block queries, many of which may not have a
answer that is locally available. The following subsections present some ideas on
how these issues can be addressed.

4.1 Keyword inference

One problem with ECRS is that the content must often be associated with
keywords. Although this is vastly better than forcing the user to rely on “mean-
ingless” bitstrings as the only identifier, the keys must still be chosen so that
the target audience can guess them. The simplest non-technical solution for this
problem is for a group of users to agree on an informal standard for keywords. If
content providers want to make it easy for others to guess a keyword, it is typ-
ically useful to follow informal conventions for keyword selection. For example,
a reasonable convention may be to only use lower-case letters.

A larger problem for a keyword-based search is that users may be reluctant
to put in the effort to provide good keywords for the content that they provide.
A solution to this problem is the libextractor library [13]. libextractor is a
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SBlock(Alice) 11 Directory1
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SBlock(Bob)
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KBlock(“soda”)

��
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KBlock(“cola”)
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KBlock(“bob”)

OO

Document1 Document2 Document3

Fig. 5. ECRS allows the formation of complicated network structures. In this
example, the SBlock of pseudonym Alice eventually allows to retrieve two of
the documents encoded in the system, as does Kblock for keyword “food”. Boxes
denote simple blocks that serve as entry-points. The directory and the documents
consist of trees of possibly many CHK-encoded blocks. Searching for keyword
“soda” would return two results pointing to different resources. Note that all
the encoded resources, including the one document with no pointers to it, can
be retrieved by knowing the CHK keys of their root IBlocks.

library for metadata extraction that is used to automatically extract keywords
and other metadata, such as descriptions, comments and mime-types from files
of various formats.

4.2 Directories

Another approach to avoiding searches is to group files into directories. Directo-
ries can help with the search problem since they reduce the need for searching.
Also, they can be used to bundle similar content and thus help users avoid in-
appropriately labeled data. If several files of such a directory have appropriate
descriptions, it is likely that the other files will also have been provided by a
non-malicious party.

Integrating directories into the ECRS scheme is fairly straightforward. A
directory is simply a file that contains any number of SBlocks or KBlocks in
plaintext (!). Like files, directories are immutable and are subjected to the same
encoding for sharing.

Note that it is possible for users to assemble a directory that refers to any
combination of files: files the user inserted personally, files that the user down-
loaded, files that the user encountered as search results but never downloaded, or
even invalid data (which would be interpreted as references that correspond to
non-existent files). Directories can also refer to other directories, allowing users
to build navigable structures similar to file systems or the World Wide Web. In
particular it is possible to refer to contents of other users and even to files or
directories that are supposed to be published in the future. Figure 5 illustrates
some of the possible reference relationships between the various constructs.
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4.3 Efficient lookups with bloom filters

Given that a query only requires the transmission of a hash code, the number of
queries that any given peer may receive is quite high. The bandwidth required
for the response can often be discounted, since a peer may only be able to
respond to a fraction of the received queries. Assuming that queries dominate
the traffic, over 50 queries per second could be transmitted over a slow modem
line. Many peers might not be able to perform disk-based database lookups at
such rates. Worse, if peers are sharing gigabytes of content, simply keeping the
index information in memory is also often no longer feasible.

In order to dramatically reduce the necessary number of database accesses,
ECRS can be supplemented with a bloom filter [3], which is a probabilistic data
structure that uses little memory and can be used to filter out queries that
definitely cannot be answered by the local peer. The bloom filter is guaranteed
to allow all queries that can be locally answered through the filter, and will reject
all but a statistically insignificant number of queries that cannot be answered
locally.

The size of the bloom filter in memory that is required to reduce the number
of false-positives to approximately 3% is about one byte (8 bit with 5 bloom
tests, 2−5 ≈ 3%) per entry. This reduces the memory requirements for the index
by a factor of 16-64, depending on the size of the hash. Since a node occasionally
needs to remove content from the local database, additional bit counters for the
bloom filter should be stored on the disk. The assumption is that changes to the
filter are rare compared to the frequency of queries. Queries that pass through
the bloom filter are forwarded to the database layer which then attempts to
locate the content.

5 Discussion

The fact that each DBlock can be encoded independently from any other DBlock
results in an important feature of ECRS called on-demand encoding. Given a
plaintext file and an index that maps a query hash to an offset in the file, the
resulting DBlock can be encoded on-the-fly, without processing any other part
of the file. This can be an important benefit if the user intends to keep the file
in plaintext on the local drive. In this case, the system can index the DBlocks
without replicating the actual data completely, storing only the resulting IBlocks
(and SBlocks and KBlocks) and then later producing the DBlocks only using the
index and the original file. This can result in rather dramatic savings in space
(no replication of encoded content).

Splitting files into blocks might be perceived as having a negative effect on
the preservation of data. If only one of the blocks is lost, the larger file can
no longer be reconstructed. Many other systems [8,32] attempt to address this
problem by either attempting to keep files intact, or by using erasure codes [24]
to patch missing pieces. While erasure codes could be used together with ECRS,
they would conflict with the performance benefits of on-demand encoding. Con-
sequently, the primary mechanism to guard against the loss of files encoded with
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ECRS should be data replication. Since ECRS splits files into blocks it should
be possible for the network to duplicate blocks at a negligible cost per block.
Duplicating a complete file of several gigabytes would be much more costly and
more likely to fail. For large files, it may be difficult for a peer to find individual
hosts that are willing (or able) to provide enough space to replicate the complete
file in its entirety. Also, the traffic burst that a large transfer would impose on
the network might keep the participating nodes busy for too long. Blocks, on
the other hand, can migrate quickly from host to host. Storing a large file on a
single host also fails to facilitate distribution of load for downloading purposes.

5.1 Attacks

ECRS is open to two types of attacks from censors. The most obvious attack
is to guess keywords and use those to compute queries for specific KBlocks.
The adversary can then try to censor these queries. Since the same content can
be available under many keywords, this technique is not necessary successful.
However, this guessing attack does provide the opportunity for limited forms of
censorship. An adversary could create a “blacklist” of keywords and attempt to
legally force operators to filter matching queries or replies.

Instead of predicting keywords, the attacker can also try to obtain the exact
contents of the file (or at least the exact contents of an incriminating part).
This maybe achieved by searching the network for certain keywords and then
downloading the resulting content. This way the attacker can again compute the
query hash for the DBlocks and IBlocks and also obtain the encrypted DBlocks
and IBlocks themselves. Again, the adversary can then try to censor this data.
Note that this attack requires the adversary to obtain a copy of the content and
then exercise a certain amount of control over the peers in the network. As users
must have a way to decrypt the file solely by means of guessing the keyword, this
attack cannot be avoided. A fault-tolerant peer-to-peer routing protocol may be
able to route the content around the censoring peers.

If such an active censorship attack is known to occur on a large scale, a
possible defense would be to publish the content with slight alterations for each
keyword. A single space inserted at the beginning of a text-document is sufficient
to change all blocks of the ECRS encoding.3 While this would defeat the use
of convergent encryption and increase the storage and bandwidth requirements,
this would make it infeasible for the censor to effectively censor all of the variants.
Since such a powerful active attacker is likely to be uncommon, the default in
ECRS is to use convergent encryption.

Both attacks fail to enable intermediaries to exercise editorial control over
content in general. While peers can theoretically be forced to censor well-known
keywords and files, they are unable to censor new keywords or unknown content.
As small changes to the content or keyword are sufficient to make detection
impossible, these types of censorship should be impractical.

3 Note that only operations causing global shifts in the data have this property. One
single-character replacement changes only one root-to-leaf path in the encoding tree.
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Another serious type of attack is spamming the global keyword space with
useless content. Popular keywords are an easy target since they are by nature
easily guessed. Namespaces can theoretically eliminate this problem, however
they create a new difficulty in assessing which pseudonyms represent users that
provide valuable content. A secure reputation system, like Advogato [16], may be
a step towards a technical solution for this problem. A possibly more important
challenge for future work is making such complex solutions easily accessible for
the average user.

5.2 KBlocks or triple-hash

The triple-hash that was used instead of KBlocks in our earlier work [2] allows
for an attack by an active, participating adversary. The following paragraphs first
briefly present the original scheme and discuss the attack, and then compare it
with the KBlock approach taken in this paper.

Let an RBlock be a new kind of block that also contains the metadata of
a file (including the top CHK data). The only difference between RBlocks and
KBlocks is that RBlocks are encrypted and requested using the following triple-
hash scheme. For each keyword k, the RBlock R is encrypted with H(k) and
stored as the pair {H(H(k)), EH(k)(R)}. Using the keyword as the source for
the key allows the receiver of the file to obtain the key by guessing.

Querying for an RBlock is not straightforward. The problem is that the
intuitive choice for a query hash, H(H(k)) does not give intermediaries a way
to verify that the (encrypted) response is correct. Instead of using H(H(k)),
the initiator sends the so-called triple-hash query H(H(H(k))). A peer that has
stored EH(k)(R) under H(H(k)) can match the query hash with the response
and send back the pair {H(H(k)), EH(k)(R)}. Intermediaries can verify that
the proof of authenticity, H(H(k)), hashes to the query H(H(H(k))). Malicious
peers cannot construct the proof H(H(k)) without guessing k or inverting the
hash function.

The problem with the triple-hash is that an adversary that is routing a
response to a triple-hash request can substitute the encrypted content in the
{H(H(k)), EH(k)(CHK, size)} response while maintaining the H(H(k)) token.
The resulting reply {H(H(k)), X} still looks like a valid response to the triple-
hash query H(H(H(k))). The triple-hash thus does not protect against such a
substitution attack by an intermediary. The impact of the attack is such that the
network would propagate and possibly cache the invalid replies. The attack will
not prevent the spread of valid replies through other routes in the system since
multiple results to the same query are possible. Furthermore, any user searching
for K will not see the invalid results. The reason is that the attempt to decrypt
X with H(K) will (with high probability) result in a malformed RBlock. Thus,
the end-user is still protected from this type of spam. Nevertheless, the adversary
can abuse network resources in the form of transmission and caching of invalid
data.

Replacing the triple-hash with KBlocks for ECRS comes at a relatively high
price. Where the triple-hash only requires a simple hash operation to verify
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replies, KBlocks need to perform a public key operation. Worse, when publishing
content or searching, the triple-hash scheme again only requires a few quick hash
operations to compute the query or the content. With KBlocks, the cost increases
to additionally generating a public-private key pair in addition to a public key
operation and hash operations.

Both KBlocks and the triple-hash are vulnerable to the guessing attack.
Guessing is slightly easier for the triple-hash since the computation for each
guess is much cheaper. Overall, KBlocks work better than the triple-hash against
adversaries that indiscriminately attempt to abuse network resources, but at the
expense of higher CPU utilization even in the absence of an attack. Thus, using
the triple-hash scheme may still be reasonable in networks with limited CPU
power or less stringent security requirements.

6 Conclusion

The encoding for censorship-resistant sharing (ECRS) provides plausible deni-
ability by hiding the nature of the queries and responses from intermediaries
through encryption. The encoding uses convergent encryption and produces a
ciphertext that is not significantly larger than the plaintext. Despite the fact that
queries and responses are encrypted, intermediaries can verify that the responses
are valid with respect to a particular query. Thus, the encoding mechanism pro-
vides robustness against tampering and false replies. Additional robustness is
gained in ECRS by splitting files into blocks that can be independently verified,
stored and distributed across the network. This makes it easy for protocols using
ECRS to incorporate features such as swarm distribution [14], load balancing
and microeconomics [12].

Since all handled blocks are small, nodes can participate in the network ac-
tivity even if their own resources are limited. Also, storing small, individually
unintelligible pieces of potentially objectionable content is likely to further sup-
port plausible deniability. While dictionary attacks on the keywords or known
plaintext attacks on the content are still possible, they are harmless with respect
to the goal of deniability for intermediaries. Using K-deterministic public-private
keys for signing content it is possible to verify search results in a global keyword
space.

ECRS is implemented as a part of gnunet, a secure platform for peer-to-
peer networking. In gnunet, ECRS works towards implementing anonymous,
censorship-resistant file-sharing. gnunet is free software and part of the GNU
project. The gnunet code is approximately 100,000 lines of C code. ECRS itself
is implemented in about 8,000 LOC. The code is freely available from the gnunet
webpage4.

4 http://gnunet.org/

http://gnunet.org/


20 C. Grothoff, K. Grothoff, T. Horozov, J.T. Lindgren

Acknowledgements

The authors thank Roger Dingledine for helpful comments on an earlier draft of
this paper.

References

1. Ross Anderson. The Eternity Service. In Proceedings of Pragocrypt 1996, 1996.
2. Krista Bennett, Christian Grothoff, Tzvetan Horozov, and Ioana Patrascu. Ef-

ficient Sharing of Encrypted Data. In ASCIP, volume 2384 of Lecture Notes in
Computer Science, pages 107–120. Springer-Verlag Inc., 2002.

3. Burton Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, 1970.

4. Yuan Chen, Jan Edler, Andrew Goldberg, Allan Gottlieb, Sumeet Sobti, and Peter
Yianilos. A prototype implementation of archival intermemory. In Proceedings of
the Fourth ACM International Conference on Digital Libraries, 1999.

5. Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodorew W. Hong. Freenet:
A distributed anonymous information storage and retrieval system. In Hannes
Federrath, editor, Designing privacy enhancing technologies: International Work-
shop on Design Issues in Anonymity and Unobservability, Berkeley, CA, USA,
July 25–26, 2000: proceedings, volume 2009 of Lecture Notes in Computer Science.
Springer-Verlag Inc., 2001.

6. Edith Cohen and Scott Shenker. Replication strategies in unstructured peer-to-
peer networks. In The ACM SIGCOMM’02 Conference, August 2002.

7. Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.
Wide-area cooperative storage with CFS. In Proceedings of the 18th ACM Sym-
posium on Operating Systems Principles (SOSP ’01), Chateau Lake Louise, Banff,
Canada, October 2001.

8. Roger Dingledine, Michael J. Freedman, and David Molnar. The free haven project:
Distributed anonymous storage service. In Hannes Federrath, editor, Proceed-
ings of Designing Privacy Enhancing Technologies: Workshop on Design Issues in
Anonymity and Unobservability. Springer-Verlag, LNCS 2009, July 2000.

9. John R. Douceur, Atul Adya, Wiliam J. Bolosky, Dan Simon, and Marvin Theimer.
Reclaiming space from duplicate files in a serverless distributed file system. Tech-
nical report, Microsoft Research, 2002.

10. Nick Feamster, Magdalena Balazinska, Greg Harfst, Hari Balakrishnan, and David
Karger. Infranet: Circumventing web censorship and surveillance. In 11th USENIX
Security Symposium, 2002.

11. Eu-Jin Goh. Secure indexes. In Cryptology ePrint Archive, Oct 2003.
12. Christian Grothoff. An Excess-Based Economic Model for Resource Allocation in

Peer-to-Peer Networks. Wirtschaftsinformatik, 3-2003, June 2003.
13. Christian Grothoff. Reading File Metadata with extract and libextractor. Lin-

uxJournal, 6-2005, June 2005.
14. John H. Hartman, Ian Murdock, and Tammo Spalink. The swarm scalable storage

system. In International Conference on Distributed Computing Systems, pages
74–81, 1999.

15. Maurice Herlihy and J. D. Tygar. How to make replicated data secure. In
CRYPTO, pages 379–391, 1987.

16. Raph Levien. Attack resistant trust metrics. Draft available at
http://www.levien.com/thesis/compact.pdf, 2003.



An Encoding for Censorship-Resistant Sharing 21

17. Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information
system based on the xor metric. In Proceedings of IPTPS02, Cambridge, March
2002.

18. David Mazières. Self-certifying file system. PhD thesis, MIT, 2000.
19. David Mazières and Dennis Shasha. Building secure file systems out of byzantine

storage. In Proceedings of the Twenty-First ACM Symposium on Principles of
Distributed Computing (PODC 2002), 2002.

20. Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry. A
fast file system for UNIX. Computer Systems, 2(3):181–197, 1984.

21. Ralph C. Merkle. A certified digital signature. In G. Brassard, editor, Advances
in Cryptology—CRYPTO ’89, pages 218–238. Springer-Verlag, 1990. volume 435
of Lecture Notes in Computer Science.

22. Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen. Ivy: A
read/write peer-to-peer file system. In Proceedings of 5th Symposium on Operating
Systems Design and Implementation, 2002.

23. Ginger Perng, Michael K. Reiter, and Chenxi Wang. Censorship resistance revis-
ited. In Jordi Herrera-Joancomarti, editor, Pre-Proceedings of the 7th International
Workshop on Information Hiding, pages 279–293, 2005.

24. Michael O. Rabin. Efficient dispersal of information for security, load balancing,
and fault tolerance. Journal of the ACM, 36(2):335–348, 1989.

25. Antony I. T. Rowstron and Peter Druschel. Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In Symposium on
Operating Systems Principles, pages 188–201, 2001.

26. Adi Shamir. How to share a secret. In Communications of the ACM, volume 22,
pages 612–613. ACM, 1979.

27. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the 2001 conference on applications, technologies, architectures, and
protocols for computer communications, pages 149–160. ACM Press, 2001.

28. Stratton Oakmont vs Prodigy Services Company, 1995 N.Y. Misc. Lexis 229, (N.Y.
Sup. Ct. Nassau Co., 1995).

29. Marc Waldman and David Mazières. Tangler: A censorhip-resistant publishing
system based on document entanglements. In ACM Conference on Computer and
Communications Security, pages 126–135, 2001.

30. Marc Waldman, Aviel D. Rubin, and Lorrie Faith Cranor. Publius: A robust,
tamper-evident, censorship-resistant, web publishing system. In Proc. 9th USENIX
Security Symposium, pages 59–72, August 2000.

31. Kevin Walsh and Emin Gün Sirer. Fighting peer-to-peer spam and decoys with
object reputation. In P2PECON ’05: Proceeding of the 2005 ACM SIGCOMM
workshop on Economics of peer-to-peer systems, pages 138–143, New York, NY,
USA, 2005. ACM Press.

32. Bryce Wilcox-O’Hearn. Experiences Deploying a Large-Scale Emergent Network.
In Peer-to-Peer Systems: First International Workshop, ITPTS 2002, pages 104–
110. Springer-Verlag Heidelberg, January 2002.


	An Encoding for Censorship-Resistant Sharing
	Christian Grothoff, Krista Grothoff, Tzvetan Horozov, Jussi T. Lindgren

