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1 Introduction

The principal goal guiding the design of any encryp-
tion algorithm must be security. In the real world,
however, performance and implementation cost are
always of concern. Making the assumption that the
major AES candidates are secure (a big assumption,
to be sure, but one that is best dealt with in an-
other paper), the most important properties the al-
gorithms will be judged on will be the performance
and cost of implementation.

In this paper, we will completely ignore secu-
rity. Instead, we will compare the performance of
the leading AES candidates on a variety of common
platforms: 32-bit CPUs, 64-bit CPUs, cheap 8-bit
smart-card CPUs, and dedicated hardware. For each
platform, we first make some general observations
on the performance issues for each of the platforms,
then compare the various AES candidates, and fi-
nally look at the specific issues for each of the can-
didates.

2 Performance as a Function of
Key Length

The speed (both encryption and key setup) of most
AES candidates is independent of key length. That
is, the time required to set up a key and encrypt
a block of text is the same, regardless of whether
the key is 128, 192, or 256 bits long. A minority

of the algorithms have different performance char-
acteristics for different key lengths. The results are
summarized in Table 1.

Nine algorithms—CAST-256, Crypton, DFC,
E2, Frog, HPC, Mars, RC6, and Serpent—are com-
pletely independent of key length. Two algorithms—
Loki97 and Twofish—encrypt and decrypt indepen-
dent of key length, but take different times to set up
different-size keys1. Twofish takes longer to set up
a longer key, while Loki97 actually takes less time
to set up a longer key than it does to set up a
shorter key. Four algorithms—DEAL, Magenta, Ri-
jndael, and SAFER+—encrypt and decrypt at dif-
ferent speeds, depending on key length.

In this paper, we will concentrate on key setup
and encryption for 128-bit keys. Obviously, encryp-
tion speed is more important than key setup speed.
The reader should keep in mind that DEAL and Ma-
genta encrypt 33% slower using 256-bit keys. Rijn-
dael encrypts 20% slower for 192-bit keys and 40%
slower for 256-bit keys. SAFER+ has the largest
performance degradation for large keys; it is 50%
slower for 192-bit keys and 100% slower for 256-bit
keys.

3 Performance on 32-bit CPUs

Efficiency on 32-bit CPUs is one of NIST’s stated
performance criteria. Actually, there are two dif-
ferent 32-bit efficiencies that need to be considered.
The first is what NIST delineated: performance on
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more details.
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Algorithm
Name Key Setup Encryption
CAST-256 [Ada98] constant constant
Crypton [Lim98] constant constant
DEAL [Knu98] increasing 128,192: 6 rounds

256: 8 rounds
DFC [GGH+98] constant constant
E2 [NTT98] constant constant
Frog [GLC98] constant constant
HPC [Sch98] constant constant
Loki97 [BP98] decreasing constant
Magenta [JH98] increasing 128,192: 6 rounds

256: 8 rounds
Mars [BCD+98] constant constant
RC6 [RRS+98] constant constant
Rijndael [DR98a] increasing 128: 10 rounds

192: 12 rounds
256: 14 rounds

SAFER+ [CMK+98] increasing 128: 8 rounds
192: 12 rounds
256: 16 rounds

Serpent [ABK98a] constant constant
Twofish [SKW+98a] increasing constant

Table 1: Speed of AES Candidates for Different Key Lengths.

the high-end Pentium Pro (and similar) CPUs that
are likely to dominate desktop computing for the
next few years. To be sure, this is an arbitrary
measure—in ten years, using Pentium Pro perfor-
mance as a yardstick will seem as quaint as com-
paring algorithm performance on 80286 chips does
today—but it is a good measure of relative high-
end performance. Even when 64-bit CPUs become
commonplace, algorithms that are the fastest on the
Pentium Pro are likely to remain the fastest on these
new microprocessors.

The second is performance on low-end 32-bit
CPUs—such as the 80386 and 68000 variants, as
well as various simple RISC chips—that will increas-
ingly replace 8-bit CPUs on high-end smart cards
and computing-intensive embedded applications.

Performance on these commodity 32-bit CPUs is
much more important than performance on the Pen-
tium Pro/II. Over the course of AES’s lifetime, the
architecture of desktop computing will likely change
beyond recognition. The Pentium Pro/II architec-
ture has oddities not present in other 32-bit CPUs
and also not present in Merced (now called Pentium
III) and other 64-bit CPUs. But just as 8-bit CPUs
are still being used today (and will still be used
tomorrow), commodity 32-bit CPUs will find their

particular price/performance “sweet spot” in widely
deployed embedded applications. Performance on
these CPUs will still be important a decade from
now.

3.1 Comparing Performance on 32-
bit CPUs

We looked at the performance of the major AES can-
didates on both the Pentium and the Pentium Pro.
We either used the data in the candidate’s AES sub-
mission documentation or, where such data was un-
available or unreliable, calculated our own or used
the data from Brian Gladman’s web page [Gla98].
Where we were unsure if a particular optimization
technique would work, we gave the algorithm the
benefit of the doubt. When there were multiple
sources of data, we took the fastest. The results are
shown in Table 2. Numbers derived from estimates
and not from an actual implementation are marked
with an asterisk. Crypton and Rijndael have very
different key setup speeds for encryption and decryp-
tion. Rijndael’s encryption key setup is 300 clocks,
and its decryption key setup is 1400 clocks. Cryp-
tion’s encryption and decryption key setups are 540
and 1370 clocks, respectively. For all tables except
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Algorithm Key Setup Encrypt Encrypt Encrypt
Name Pentium Pro Pentium Pro Pentium Pro Pentium

C (clocks) C (clocks) ASM (clocks) ASM (clocks)
CAST-256 4300 660 600* 600*
Crypton 955 476 345 390
DEAL 4000* 2600 2200 2200
DFC 7200 1700 750 ?
E2 2100 720 410 410*
Frog 1386000 2600 ? ?
HPC 120000 1600 ? ?
Loki97 7500 2150 ? ?
Magenta 50 6600 ? ?
Mars 4400 390 320* 550*
RC6 1700 260 250 700*
Rijndael 850 440 291 320
SAFER+ 4000 1400 800* 1100*
Serpent 2500 1030 900* 1100*
Twofish 8600 400 258 290

Table 2: AES Candidates’ Performance with 128-bit Keys on Pentium-Class CPUs.

that for hashing, we used the average.
The C performance numbers are included be-

cause they were required by NIST, and were in-
cluded in each of the algorithms’ submission doc-
umentation. Since in any application where encryp-
tion speed is a potential bottleneck, the algorithm
will be hand-coded in optimized assembly language,
we primarily focused on assembly language imple-
mentations. The algorithm is a discrete and well-
defined chunk of code with a single entry point that
needs to run fast: a perfect example of something
that should be coded in assembly.2

This comparison is for 128-bit keys; as noted ear-
lier, some algorithms have a running time that de-
pends on the size of the key. We concentrated on
128-bit keys, as these are the fastest (key setup in
Loki97 is the only exception), and will provide ad-
equate security for virtually any application for the
next several decades (at least).

The AES submissions vary greatly in their 32-bit
CPU performance, from 250 clock cycles per block
(RC6) to 6600 (Magenta). Some candidates’ perfor-
mances depends heavily on the particular details of

the 32-bit CPU (RC6 and Mars), while others are
largely CPU-independent.

For bulk encryption, the fastest algorithms on
general 32-bit CPUs are (in order) Twofish, Rijn-
dael, Crypton, and E2, followed by Mars and RC6.
Both Mars and RC6 are significantly faster on 32-bit
CPUs with fast 32-bit multiplications and variable
rotations, like the Pentium Pro and Pentium II, but
are significantly slower on CPUs without these fea-
tures. In fact, both of these algorithms also run more
slowly than the four fastest on a DEC Alpha. Re-
stricting the comparison to the Pentium Pro/II (the
NIST reference platform), the fastest algorithms are
(in order) RC6, Twofish, Mars, Rijndael, Crypton,
and E2. All candidates other than these six are sig-
nificantly slower across all 32-bit CPUs.

For comparison, on a Pentium, DES encrypts at
43 clock cycles per byte, IDEA at 74 clock cycles per
byte, 16-round RC5 at 25 clock cycles per byte, and
Blowfish at 20 clock cycles per byte [PRB98].

For encryption of short blocks of plaintext, it
makes sense to look at both encryption speed and

2For fastest assembly-language performance on current Intel CPUs, Twofish’s implemementation compiles key-dependent
data directly in the encryption and decryption code. In this implementation, a separate copy of the executable code is stored
for each key along with the key-dependent S-box tables. This copy of the code is modified by patching immediate values in
the code with actual subkey values, removing the need to load the subkey from data cache during execution and freeing up
registers. Although this key-specific code could be technically considered to be “self-modifying,” the code is totally reentrant,
and the process is much more akin to compilation. This compilation trick seems to be helpful only in register-poor CPUs like
the Pentium or Pentium Pro, where the availability of an extra register can make a significant difference in performance. Most
other AES candidates could also benefit somewhat from using a similar compiled mode, but the resulting gains are believed to
be fairly small (considerably less than 10%). Twofish has been specially designed to take advantage of this compiled option,
achieving about 20% faster execution than a naive assembly language implementation on a Pentium Pro.
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key setup speed. Again, RC6’s and Mars’s reliance
on CPU-specific operations means that we need
to consider general 32-bit CPUs and the Pentium
Pro/II separately. Table 3 compares the speed to
key and encrypt of six of the AES candidates for
different size texts on the Pentium (and by exten-
sion, most general-purpose 32-bit CPUs.

To calculate key setup speeds in assembly, we es-
timated assembly-language key setup time by taking
the percentage speedup between C and assembly en-
cryption on the Pentium Pro/II, and applying that
to the assembly-language key setup.

Rijndael is the fastest algorithm for small blocks
of text, followed closely by Crypton. What is sur-
prising, though, is how quickly all the algorithms
converge to their raw encryption speed. For 1024-
byte texts—the size of a very small e-mail message—
all the algorithms are within 15%. For 4096-
byte texts—the size of a more reasonable e-mail
message—the speed ordering of the algorithms is the
same as it would be if the key schedule were not
taken into account. Note that the AES candidates
not listed here are slower.

Table 4 compares the speed to key and encrypt of
seven of the AES candidates for different size texts
on the Pentium Pro/II. The primary difference of
note is how much faster RC6 and Mars are on this
one platform.

The speed of the key schedule becomes even more
important when we look at the algorithm as a hash
function. There are many hash function construc-
tions that rely on block ciphers as primitives, and
all involve changing the encryption key with every
block. Table 5 summarizes this data.

These values are the sum of the number of clock
cycles required to set up a key plus the number of
clock cycles required to encrypt one block. Starting
with the data in Table 2, we calculated the Pentium
Pro/II assembly key setup time by multiplying the
C key setup time by the percentage speed improve-
ment between the encryption speed in C and assem-
bly; this is a reasonable first estimate of the speed
improvement of taking the key setup from C to as-
sembly. Then we added in the encryption speeds in
both Pentium Pro/II and Pentium. While the real
performance numbers are likely to be somewhat dif-
ferent, this is a reasonable first estimate.

The fastest hash function is Rijndael, followed
closely by Crypton.3 These two algorithms are par-
ticularly suited as hash functions because key setup
in the encryption direction is much faster than key
setup in the decryption direction. E2, RC6, and

Twofish are slower, but also provide acceptable hash
function performance. SAFER+ and Serpent are
marginal.

All of these speeds are significantly slower than
dedicated hash functions. SHA-1, for example,
hashes at a rate of 13 clock cycles per byte on a
Pentium, and RIPEMD-160 hashes at 16 clock cy-
cles per byte on the same machine [PRB98]. Thus,
it is likely that AES will be used as a hash function
only when space (either code space in software or
gates in hardware) is at a premium.

3.2 Algorithm-Specific Comments on
32-bit Performance

3.2.1 CAST-256

CAST-256 is an incomplete Feistel network. Each
round is fast—17 clock cycles—but 48 rounds gives
a total speed of 815 clock cycles per block. Hence,
CAST-256 is about three times slower than the
fastest AES candidates, even though it uses mostly
32-bit operations. CAST’s use of only simple RISC
operations implies that the relative performance of
CAST-256 will be fairly uniform across processor
types.

3.2.2 Crypton

Crypton is a very clever enhancement to the Square
algorithm [DKR97]. It is structured so that encryp-
tion and decryption are identical operations (with
reversed subkey schedules), and there are two sep-
arate 8-by-8-bit S-boxes used in the transforma-
tion, which are easily built from 4-bit permutations.
Crypton replaces Square’s MDS matrix with a sim-
pler (and admittedly less powerful) diffusion opera-
tion that can be implemented very cheaply in hard-
ware and on smart cards. Perhaps because the S-
boxes and diffusion are weaker than in Square, Cryp-
ton consists of twelve rounds instead of eight for
Square (and ten, twelve, or fourteen for Rijndael).

An optimized version on a 32-bit CPU looks iden-
tical to Square except the fixed lookup tables are dif-
ferent, so performance scales based on the number
of rounds. Encryption speed is 390 clocks per block
in Pentium/Pentium Pro assembler, and is uniform
across different 32-bit CPUs.

3.2.3 DEAL

DEAL has basically the same performance charac-
teristics as triple-DES. It is a six-round Feistel net-

3Previous versions of this report mentioned possible weaknesses in Crypton’s key schedule, making it unsuitable as a hash
function. In the interest of fairness, we withhold judgment on this issue pending better documentation of the weaknesses.
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Text Size
(bytes) Crypton E2 Mars RC6 Rijndael Serpent Twofish
16 73 100 260 146 59 205 175
32 49 63 147 95 39 137 119
64 37 44 91 69 30 103 91
128 30 35 63 57 25 86 70
256 27 30 48 50 22 77 48
512 26 38 41 47 21 73 38
210 25 27 38 45 21 71 31
211 25 26 36 45 20 70 25
212 25 26 35 44 20 69 22
213 24 26 35 44 20 69 21
214 24 26 35 44 20 69 20
215+ 24 26 34 44 20 69 19

Table 3: Clock Cycles, per Byte, to Key and Encrypt Different Text Sizes on a Pentium.

Text Size
(bytes) Crypton E2 Mars RC6 Rijndael Serpent Twofish
16 70 100 246 118 53 193 132
32 46 63 133 67 36 125 93
64 34 44 76 41 27 90 73
128 28 35 48 28 23 73 64
256 25 30 34 22 20 65 48
512 23 28 27 19 19 61 33
210 22 27 24 17 19 58 25
211 22 26 22 16 18 57 20
212 22 26 21 16 18 57 18
213 22 26 20 16 18 57 17
214 22 26 20 16 18 56 17
215+ 22 26 20 16 18 56 16

Table 4: Clock Cycles, per Byte, to Key and Encrypt Different Text Sizes on a Pentium Pro/II.

work with DES itself used as the round function.
The Pentium and Pentium Pro performance is thus
about 2000 clocks per block. In a sense, DEAL is
a straw-man algorithm that provides a worst-case
performance benchmark for AES.

3.2.4 Decorrelated Fast Cipher

DFC is an eight-round Feistel cipher, in which the
round function includes a 64-bit modular addition
and multiplication over 264 + 13, as well as a single
small (6-by-32-bit) S-box lookup. The modular mul-
tiply does a nice job of diffusing bits, but it also hurts
performance significantly. Despite the low number
of rounds, DFC takes 750 clocks per block in assem-
bly language on a Pentium Pro. This is about the
speed of DES and nearly three times slower than

the fastest candidates. Due to the heavy reliance on
multiply operations, we expect the performance on
general 32-bit CPUs to be significantly worse. With
only eight rounds, the speed vs. security tradeoff
for DFC feels mismatched compared to most of the
other AES candidates.

3.2.5 E2

E2 is a twelve-round Feistel cipher, with each round
function including two levels of subkey XOR and
8-by-8-bit S-box lookup, with linear mixing in be-
tween. Only simple RISC operations are used, so
the performance should be relatively uniform across
processor types. The speed of E2 is reasonable at
410 clocks per block in assembly language (making
it the fourth fastest on the Pentium and the sixth
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Algorithm Hash Speed Hash Speed
Name Pentium Pro Pentium

ASM (clocks) ASM (clocks)
CAST-256 282* 282*
Crypton 46* 49*
DEAL 349* 349*
DFC 245* ?
E2 100* 100*
Frog ? ?
HPC ? ?
Loki97 ? ?
Magenta ? ?
Mars 246* 260*
RC6 118* 146*
Rijndael 32* 34*
SAFER+ 193* 212*
Serpent 193* 205*
Twofish 132 175

Table 5: Hash-Function Performance, per Byte, of AES Candidates (128-bit key) on Pentium and Pentium
Pro/II.

fastest on the Pentium Pro/II), and is uniform across
different 32-bit CPUs.

3.2.6 Frog

Frog has a byte-oriented structure. It seems that any
implementation has to operate on individual bytes,
which means that Frog cannot take advantage of 32-
bit operations. This hurts the performance on larger
CPUs. Frog’s key schedule is by far the slowest of
any AES candidate.

3.2.7 Hasty Pudding Cipher

HPC was optimized for 64-bit CPUs. The heavy use
of rotations of 64-bit words are difficult to implement
(and therefore slow) on most 32-bit CPUs.

3.2.8 Loki97

Loki97 is one of the few algorithms that uses a bit-
level permutation. Although these are very fast in
hardware, their cost in software is similar to that of
a full S-box layer. Performance on 32-bit CPUs is
poor compared to most other candidates, and may
be slower than triple-DES.

3.2.9 Magenta

Magenta is, by far, the slowest of any of the AES
candidates. The core of the algorithm is formed by

a byte-level FFT-like structure. This seems to force
any 32-bit implementation to use 8-bit manipula-
tions, which is generally inefficient. Magenta also
has a very large number of operations per round.
Each Π function contains 16 8-bit table lookups.
There are four Π functions in each T , and three
T functions in each round for a total of 192 S-box
lookups per round, and 1152 per encryption with a
128-bit key. (As a comparison, Frog uses a total of
128 S-box lookups per encryption.) There seems to
be no way of implementing Magenta in software at
a speed comparable to the other candidates.

3.2.10 Mars

Mars is a fast cipher that relies on a veritable
“kitchen sink” of primitive operator elements, in-
cluding rotation, multiplication, and 8-by-32-bit S-
box lookups. Mars has the fastest claimed speed for
a C version (390 clocks per block) on the Pentium
Pro of any of the AES candidates. However, this
speed advantage is largely due to the use of a dif-
ferent optimizing compiler (DJGPP), which would
probably benefit other candidates dramatically as
well; using the standard AES compiler (Borland),
Mars is fairly slow at 900 clocks/block.

Mars encryption has three phases: an initial for-
ward mixing, the cryptographic “core,” and a final
mixing. The mixing phases are unkeyed (except for
input/output whitening) and constitute roughly two
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cryptographic cycles each. The cryptographic core
consists of sixteen rounds of an unbalanced Feistel ci-
pher (totaling roughly four cycles), with each round
using a 32-bit to 96-bit keyed expansion function E.
Both fixed and data-dependent rotations are used
extensively throughout the cipher. A careful study
of the encryption round reveals a fairly long crit-
ical path through the E function that limits the
throughput. On a Pentium Pro, this critical path
appears to be at least 12 clock cycles, which leads
to a core processing time of at least 192 clocks per
block. With the forward and reverse mixing requir-
ing at least 100 clocks, the overall speed of this algo-
rithm in assembler on a Pentium Pro appears to be
no faster than 310-320 clocks. Because of its use of
data-dependent rotation and multiplication, the per-
formance of Mars on a Pentium or Pentium MMX
chip is considerably slower: about 550 clocks/block.

As with RC6, the relative performance of Mars
across processor types will vary considerably, and
timing attacks are also of concern in implementa-
tions where multiplies and data-dependent rotations
do not take constant time. Compared to RC6, Mars
is somewhat slower and far less elegant, yet it retains
most of the performance concerns discussed below
for RC6.

3.2.11 RC6

RC6 is by far the most elegant and easily under-
stood AES candidate. It is remarkably simple, as
has become almost expected of Rivest’s ciphers (e.g.,
RC4, RC5). On the AES target platform (Pentium
Pro/Pentium II), it is also the fastest algorithm, at
about 250 clocks per block in assembly language.
The unrolled code size of the encryption routine is
very modest, and a looping version with very good
performance can be implemented with an extremely
small code size (under 200 bytes on the Pentium
family). The performance in C is very good, even
though it is hurt considerably by the lack of intrin-
sic support for rotations in most C compilers.

However, RC6 does not perform anywhere near
as well on many other common platforms. For ex-
ample, on the Pentium (or Pentium MMX) chip,
multiplication and variable rotation opcodes do not
pair, and they require 10 and 4 clocks, respectively.
Thus, the time required for multiplication and rota-
tion alone is 560 clocks per block on a Pentium, with
the other RC6 operations increasing this total to at
least 700 clocks for an optimized assembly version.
Thus, RC6 is nearly three times slower on a Pentium
than on a Pentium Pro. By comparison, most other
candidate algorithms have identical or nearly identi-

cal performance on the two platforms. On a 386/486
(and many embedded CPUs), the multiplication and
rotation speed is also fairly slow. In general, be-
cause it does not rely on “basic” RISC instructions
as most other AES candidates do, RC6’s relative
performance will be much less uniform across pro-
cessor types. This makes it much less attractive for
low-end 32-bit CPUs.

The fact that many processors (e.g., 486, 68000,
smart cards) have data-dependent execution times
for multiplication/rotation is also a concern, since
RC6 could potentially leak key information to a tim-
ing attack. Constant-time implementations of data-
dependent rotations on those platforms is possible,
but at a significant speed penalty.

3.2.12 Rijndael

Rijndael is another variant of Square: a fast cipher
that works very well across all platforms. It boasts
a clean mathematical structure involving only ta-
ble lookup and XOR operations. Although the en-
cryption and decryption algorithms are not exactly
identical, their general structure and performance
are virtually indistinguishable.

Rijndael’s assembly language on both the Pen-
tium and Pentium Pro processors is about 300 clocks
per block. Unlike RC6 and Mars, there are no known
CPU platforms (8-bit or 32-bit) on which Rijndael’s
relative performance would be unduly negatively af-
fected or on which timing attacks would be possible.

3.2.13 SAFER+

SAFER+ is obviously designed for 8-bit CPUs. Ev-
ery operation in SAFER+ is a simple RISC oper-
ation, but there are no 32-bit operations anywhere.
This lack of 32-bit operations, particularly in the dif-
fusion phase involving the PHT and the “Armenian
shuffle,” significantly hurts the relative performance
of this algorithm on modern CPUs. A rough esti-
mate is that SAFER+ with a 128-bit key requires
800 clocks per block on a Pentium Pro in assembly,
which is slower per-byte than DES. On a Pentium,
the speed slows to about 1100 clocks per block. The
throughput decreases further for the larger key sizes;
in fact, SAFER+ with a 256-bit key is slower than
triple-DES. As an SP-network, SAFER+ with a 128-
bit key has only one-fourth the number of cycles of
Serpent, yet it is approximately the same speed. In
general, the speed vs. security tradeoff for SAFER+
feels mismatched compared to most of the other AES
candidates.
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3.2.14 Serpent

Serpent is an extremely conservative SP-network ci-
pher, carefully designed to allow “bit-slice” imple-
mentations on 32-bit CPUs. Its authors claim that
Serpent’s performance on a Pentium Pro is at least
as fast as DES [ABK98a], but this claim involves
C implementations, which are always subject to the
vagaries of compiler optimization.

In assembly language, Serpent is actually con-
siderably slower than a good DES implementation,
which can run at about 45 clocks/byte on a Pen-
tium. A conservative estimate, counting only ALU
operations and assuming (very optimistically) that
all memory accesses can be accomplished for “free,”
shows that Serpent requires at least 900 clocks per
block on a Pentium Pro (56 clocks/byte); in fact, 960
clocks seems like a more likely practical bound. On
a Pentium, this number rises to at least 1100 clocks
per block. An optimized C version can achieve about
1020 clocks per block on a Pentium Pro, proving that
Serpent compiles very well from C (much better than
does DES)—which is an interesting fact but hardly
of great importance here.

The fact remains that the best Serpent software
implementation will be 3–4 times slower than other
candidates, including Mars, Twofish, RC6, and Ri-
jndael. Thus, even a non-conservative version of Ser-
pent with only sixteen rounds would be considerably
slower than these other algorithms. The nature of
the algorithm, which uses basic RISC operations ex-
clusively, strongly suggests that its relative perfor-
mance will not be negatively affected on any plat-
form.

3.2.15 Twofish

Twofish is the fastest AES candidate on a Pentium
(and other 32-bit CPUs), and is second-fastest on
the Pentium Pro/II. Its key setup is about average
(eight are faster, and six are slower); however, for
applications where key setup is a large factor in en-
cryption speed (for small amounts of text), there
are alternate implementations of Twofish that trade
off encryption speed for key setup speed. As a hash
function, for example, Twofish is much more efficient
using one of these alternative implementations. See
[SKW+98a] for details.

Twofish uses only basic RISC operations, and
Twofish’s performance on other 32-bit platforms will
be comparable.

3.3 Comparing Performance of
“Minimal Secure Variants”

In [Bih98], Biham introduced the notion of compar-
ing the algorithms based on their “minimal secure
variants.” Different design teams were more or less
conservative than each other; the number of rounds
in their final submissions was not a fixed percent-
age of the number of rounds they could success-
fully cryptanalyze. Biham tried to normalize the
algorithms by determining the minimal number of
rounds that is secure (either as described by the de-
signers or other cryptographers, or Biham’s “best
guess”), and then added a standard two cycles.

We do not believe that this measurement is a fair
way to compare algorithms. Two examples illustrate
this. One, Biham maintains that the minimal num-
ber of rounds for DFC is 7 and for Serpent is 15.
It seems unreasonable to add two rounds to each,
when that is a 29% increase for DFC and only a
13% increase for Serpent. The comparative analy-
sis clearly shows that one round of DFC is stronger
than one round of Serpent. Two, Biham’s measures
don’t take into account initial and final transforma-
tions for some of the ciphers: e.g., the whitening in
Twofish and the initial/final transformations in E2.
At least in Twofish’s case, the transformations have
the effect of adding a round to the cipher without
the performance penalty.

Aside from the fairness issue, we also question
the usefulness of this measure: we feel that each al-
gorithm should be judged on its own merits, and that
changing the number of rounds is no different than
changing the structure of the rounds. Also, NIST
has not indicated that they would allow algorithms
to be selected with modifications.

And finally, in some cases we even question Bi-
ham’s choice of values. Being about to break ten
rounds of Twofish, for example, seems overly opti-
mistic. If such a metric seems useful, we recommend
that several cryptanalysts be polled for their opin-
ions.

Regardless of these concerns, we include Table 6,
based on Biham’s numbers. We urge caution in us-
ing this data. Biham also presented a table of rel-
ative performance, but he used speeds for compiled
C code [Bih98], which makes no sense for any appli-
cation where speed is important.

4 Performance on 64-bit CPUs

We have some data regarding performance on the
Alpha in Table 7. Aside from DFC and HPC, these
numbers are based on analyzing the algorithms and
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Algorithm Minimal MSR Encrypt MSR Encrypt
Name Rounds Secure Pentium Pro Pentium

Rounds ASM (clocks) ASM (clocks)
CAST-256 48 40 500* 500*
Crypton 12 11 316 358
DEAL 6 9 3300 3300
DFC 8 9 844 ?
E2 12 10 342* 342*
Frog 8 ? ? ?
HPC 8 ? ? ?
Loki97 16 > 36 ? ?
Magenta 6 > 10 ? ?
Mars 32 20 200* 344*
RC6 20 20 250 700*
Rijndael 10 8 233 256
SAFER+ 8 7 700* 963*
Serpent 32 17 478* 584*
Twofish 16 12 194 218

Table 6: Minimal Secure Round Performance of AES Candidates with 128-bit Keys on Pentium-class CPUs.

Algorithm
Name Cycles
CAST-256 600
Crypton 408
DEAL 2528*
DFC 304
E2 471
Frog ?
HPC 376
Loki97 ?
Magenta ?
Mars 478
RC6 467*
Rijndael 340*
SAFER+ 656
Serpent 915
Twofish 360*

Table 7: AES Candidate Performance on the DEC Alpha.
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studying data sheets and not on actual implemen-
tations [Alm99]. Perhaps the most interesting thing
is that, for many of the AES candidates, the Al-
pha is actually slower, in terms of clocks per block,
than the Pentium II. DFC is the fastest algorithm on
the Alpha, followed by Rijndael, Twofish, HPC, and
Crypton. All the other submisions are considerably
slower.

4.1 RC6

RC6’s performance on the DEC Alpha processor is
also hurt by its reliance on multiplications and rota-
tions. The 21164 can run up to 700 MHz (or faster)
and has a 4-way superscalar architecture. The Alpha
can perform a signed 32-bit multiply in 8 clocks, and
a second multiply operation can be started 4 clocks
after the first, so two of them take 12 clocks to-
tal. This multiply opcode should work for RC6’s un-
signed multiplies, assuming that the signed multiply
overflow is properly handled; otherwise, we would
need to use the slower 64-by-64-bit multiply, adding
8 more clocks. The remainder of the RC6 round
logic takes an additional 11 clocks, due in no small
part to the lack of rotation opcodes, which must be
synthesized out of shifts. Thus, an RC6 round re-
quires a total of 23 clocks on the Alpha. At twenty
rounds, this is 460 clocks per block, about twice the
clock count on a Pentium II. In other words, a 600
MHz Alpha runs RC6 at a slower absolute speed (in
Mbits/s) than a 400 MHz Pentium II!

5 Smart-Card Performance

NIST also requires AES to be efficient on smart
cards.

Smart cards with 8-bit CPUs tend to be used in
applications that are not speed-critical. It is usually
the I/O, or other system components, that is the
limiting factor in performance and not the cryptog-
raphy. This having been said, the speed of almost
all the candidates on common 8-bit CPUs seems to
be acceptably fast, given certain assumptions. We
hope that some other group implements the AES
front-runners on a single common smart-card CPU,
so that their performance can be better compared.

There are some applications that require fast en-
cryption operations on an 8-bit CPU, such as au-
tomated toll collection and public transport tickets.
As a rule of thumb, a cipher that is used in these
applications should be as least as fast as DES on an
8-bit CPU.

For 32-bit smart cards, the Pentium performance
numbers give a reasonable relative performance met-

ric (although Mars and RC6 are likely to be rela-
tively slower, due to their use of 32-bit multiplies).

We feel that it is more important to compare
how well each algorithm fits on a smart card CPU
than to measure exactly how fast it runs. One ma-
jor concern is how much RAM the algorithm re-
quires. Most commodity 8-bit smart-card CPUs to-
day include from 128 to 256 bytes of on-board RAM.
Each CPU family typically contains members with
more RAM and a correspondingly higher cost. Sev-
eral of the algorithms have no way to compute sub-
keys on the fly, thus requiring that all the subkeys
be precomputed whenever a key is changed. The
subkeys consume from 150 to 256 bytes of “extra”
RAM; more than is available on many commonly
used CPUs. Although some CPUs include enough
RAM to hold the subkeys, it is often invalid to as-
sume that such a large fraction of the RAM can be
dedicated solely to the encryption function. Obvi-
ously, if an algorithm does not fit on the desired
CPU, with its particular RAM/ROM configuration,
its performance on that CPU family is irrelevant.

For some of the candidates, the performance or
RAM requirements can depend on whether encryp-
tion or decryption is being performed. It is tempting
to consider only one of the two operations, using the
argument that the smart card can perform the more
efficient side of the operation, and the (larger) ter-
minal can perform the less efficient side. Experience
shows that this does not work. Many smart card ter-
minals contain a secure module; in many cases this
secure module is itself a smart card chip. In sev-
eral applications it is a requirement that two smart
cards execute a protocol together, and many exist-
ing protocols use both encryption and decryption on
the same smart card.

5.1 Comparing Performance on
Smart Cards

Each submission discussed smart-card performance,
but it is fairly difficult to compare the speeds given in
the documentation. Most of them involved different
CPUs, different clock rates, and different assump-
tions about subkey precomputation vs. on-the-fly
computation.

Table 8 compares the RAM requirements for the
different AES submissions. Again, the starred val-
ues are estimates. These numbers assume that the
key must be stored in RAM, and that the key must
still be available after encrypting a single block of
text. The results seem to fall into four categories:
algorithms that can fit on any smart card (less than
128 bytes of RAM required), algorithms that can
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Algorithm Smart Card
Name RAM (bytes)
CAST-256 60*
Crypton 52*
DEAL 50*
DFC 200
E2 300
Frog 2300+
HPC ?
Loki97 ?
Magenta ?
Mars 195*
RC6 210*
Rijndael 52
SAFER+ 50*
Serpent 50*
Twofish 60

Table 8: AES Candidates Smart-Card RAM Requirements.

fit on higher-end smart cards (between 128 and 256
bytes of RAM required), algorithms that can only
fit on high-end smart cards (more than 256 bytes
of RAM required), and algorithms that can’t fit on
smart cards (Frog)4.

Even if an algorithm fits onto a smart card, it
should be noted that the card functionality is much
more than block encryption, and the encryption ap-
plication will not have the card’s entire RAM ca-
pacity available to it. So, while an algorithm that
requires about 200 bytes of RAM can theoretically
fit on a 256-byte smart card, it probably won’t be
possible to run the smart-card application that calls
the encryption. For many applications, a RAM re-
quirement of more than 64 bytes just isn’t practical.

Given all these considerations, the only algo-
rithms that seem to be suitable for widespread
smart-card implementation are CAST-256, Crypton,
DEAL, Rijndael, SAFER+, Serpent, and Twofish.

5.2 Algorithm-Specific Comments on
Smart-Card Performance

5.2.1 CAST-256

CAST-256 has an on-the-fly key schedule, meaning
that it can fit well into the RAM of inexpensive
CPUs. However, it should be noted that the subkey
generation on 32-bit CPUs takes about four times as
long as a block encryption, meaning that the over-

all performance suffers significantly when on-the-fly
subkey generation is used. Given that the algorithm
is already fairly slow, this additional overhead may
push the smart card performance of CAST-256 out
of the range of acceptability.

To return the key to a usable state, the algo-
rithm will either have to make a copy of the key (at
the cost of extra RAM), or “unwind” the key sched-
ule (which takes as long as computing it in the first
place). To perform a decryption, the key schedule
has to be performed in a forward direction, and then
unwound during the decryption operation.

The ROM usage for CAST-256 is a point of con-
cern; the S-boxes alone require 4K bytes of ROM.
Adding the code probably will push the total close
to 6K bytes of ROM, which rules out the least ex-
pensive members of almost all CPU families.

5.2.2 Crypton

Crypton should also fit on smart cards. The code
size, including two full 8-by-8-bit S-box tables,
should be easily under 2K bytes. Additionally, if
ROM size is important, the S-boxes can be com-
puted using 4-by-4-bit S-boxes at a considerable cost
in speed, saving 300–400 bytes. Unlike Rijndael,
these estimates include both encryption and decryp-
tion. The RAM usage of Crypton can also be quite

4We do not consider the solution of using EEPROM to store the expanded key, as this is not practical in many smart card
protocols that require the use of a session key. Some algorithms, like Twofish and Rijndael, have significantly reduced RAM
requirements if this solution is used.
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small (52 bytes), or it can precompute subkeys and
use about 230 bytes of RAM to achieve higher speed.

5.2.3 DEAL

DEAL fits on smart cards as well as DES does; i.e.,
reasonably well. The on-the-fly key schedule of DES
means that RAM usage is minimal, and ROM should
be comfortably under 2K bytes. However, the speed
of DEAL will be basically that of triple-DES, which
is quite a bit slower than that of the other AES can-
didates.

For decryption, DEAL suffers from the key
schedule, which can be computed in a forward di-
rection only. Thus DEAL either has to use an ex-
panded key at the cost of extra RAM, or compute
the key schedule forward first, and than backward
during the actual decryption. Of course it should be
noted that calculating DEAL keys requires invoca-
tions of DES, and hence is very slow to compute on
the fly.

5.2.4 Decorrelated Fast Cipher

As with RC6 and Mars, performance will be poor on
8-bit CPUs without a multiply instruction, but for
most CPUs of interest this seems not to be a prob-
lem. The 64-bit multiply used by DFC is not very
fast on most smart cards. Even if they have a mul-
tiply instruction, it typically takes around 10 clock
cycles for an 8-by-8-bit multiply. The overhead of
adding the results of the small multiplies together is
even larger than this in many situations. Because
DFC uses only 8 rounds, the performance with an
expanded key is not as slow as one would expect.
The penalty for generating the key on the fly is un-
fortunately fairly large.

The code and table for DFC fit in less than 2K
bytes of ROM. Using on-the-fly subkey generation,
less than 100 bytes of RAM is required, but the
speed is one-sixth the speed of using precomputed
subkeys (200 bytes of RAM).

As with many of the other candidates, the DFC
key schedule can only be generated in a forward di-
rection. Decryption without an expanded key thus
requires the key schedule to be computed forward
and then backward again during the actual decryp-
tion.

Further information about DFC and smart cards
can be found in [PV98]

5.2.5 E2

On-the-fly subkey generation was explicitly pre-
cluded as part of the design criteria of E2, and the

subkeys alone require 256 bytes of RAM. Thus, the
algorithm takes about 300 bytes of RAM, ruling
out the vast majority of commonly used smart card
CPUs. This fact strongly argues against E2’s ac-
ceptability as a widespread standard for smart card
use.

Unfortunately, no ROM size estimates are given
in the submission documents, but we estimate that
the code and tables for E2 should fit comfortably in
less than 2K of ROM.

5.2.6 Frog

Frog’s round structure is very suitable for implemen-
tation on smart cards. Unfortunately, the key sched-
ule requires over 2300 bytes of RAM. For almost all
smart card applications used and proposed today,
Frog would not be a suitable block cipher.

5.2.7 Hasty Pudding Cipher

Hasty Pudding was optimized for 64-bit CPUs. Im-
plementation on a smart card looks difficult. The
expanded key table is 256 entries of 64 bits each,
which requires 2K bytes of RAM. As with Frog, this
seems to make HPC very unsuitable for practical
smart card applications.

5.2.8 Loki97

The Loki97 round uses two S-boxes, one of which has
13 input bits. A full table of this S-box requires 8K
bytes of ROM. Most implementations will probably
choose not to store the S-boxes but instead generate
the required entries on the fly using the definition.
This is very inefficient, since it involves multiplica-
tion over a finite field. This can be implemented
with tables, but then it would be just as big as the
S-box table the implementation is trying to avoid.
Doing the multiply using shift-and-XOR would slow
down the algorithm by a factor of five to ten.

An expanded key requires nearly 400 bytes of
RAM. As this is impractical in most situations, we
will assume that the key is generated on the fly. As
with many other ciphers, the key schedule can only
be computed in the forward direction. Decryption
thus requires the key schedule to be computed twice.

We do not have any reasonable numbers for the
speed of Loki97 on a smart card. With an expanded
key, it looks to be slower than DES (per byte). With-
out an expanded key, it is about four times as slow.
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5.2.9 Magenta

Magenta’s structure is well-suited to implementation
on smart cards. The byte structure provides a nat-
ural implementation on 8-bit CPUs. The memory
requirements are very limited, and there is no key
schedule to compute. However, due to the very large
number of operations in Magenta, the resulting per-
formance is still relatively low.

5.2.10 Mars

The ROM size for Mars is of some concern, partic-
ularly since it requires a 2K byte ROM just for the
S-box. The size of this table alone is larger than the
total ROM usage of most other AES candidates. No
estimates of code/table size are given in the Mars
submission paper [BCD+98], but certainly at least
3K bytes would be required (and probably more).
This size is not absolutely fatal, but it certainly rules
out some cost-sensitive applications.

We find the discussion on smart card perfor-
mance in the Mars submission paper to be basi-
cally useless, since only a very hypothetical CPU
is discussed (unlike any actual 8-bit CPU we’ve ever
seen). The comment in the Mars paper that smart
cards are “typically equipped with a dedicated [i.e.,
hardware] crypto unit” seems to evade the issue.
Any algorithm can run in dedicated hardware; the
whole point is to allow the AES algorithm to run in
software on the smart card without requiring cus-
tom hardware design to be added to an otherwise
off-the-shelf CPU. Furthermore, the assertion is not
correct. Although there are many smart cards with
a crypto unit, the great majority of these are only
designed for public-key algorithms. There are very
few smart cards that have hardware support for DES
or a similar block cipher.

As with RC6, a minor concern is that perfor-
mance will be poor on 8-bit CPUs without a multi-
ply instruction, but for most CPUs of interest this
seems not to be a problem. Even with a multiply in-
struction, the multiply will be one of the slow parts
of Mars, as each 32-by-32-bit multiply has to be built
up from 10 separate 8-by-8-bit multiplies.

Mars has no on-the-fly subkey generation and re-
quires 160 bytes of subkey RAM. When added to the
16 bytes of plaintext and 16 bytes of key, plus other
scratch variables, it appears that about 200 bytes
of RAM are required. This amount of RAM rules
out most commodity smart card CPUs. The Mars
team has pointed out that it is theoretically possible
to compute subkeys on the fly, but the performance
of this approach is so poor as to rule it out as an
effective alternative.

The use of multiplications and variable rotations
in Mars raises a concern about possible timing at-
tacks, because it is almost guaranteed that one of
these two operations will have variable timing on 8-
bit CPUs. Avoiding these variabilities in the timing
will result in a speed and/or size penalty.

5.2.11 RC6

RC6’s small code size should carry over very nicely
into the smart card world. A minor concern is that
performance will be poor on 8-bit CPUs without a
multiply instruction, but for most CPUs of interest
this seems not to be a problem. Still, even on 8-bit
CPUs that do have a multiply instruction, RC6 is
not among the fastest candidates.

RC6 has no on-the-fly subkey generation and re-
quires 176 bytes of subkey RAM. When added to
the 16 bytes of plaintext and 16 bytes of key, plus
other scratch variables, it appears that over 210
bytes of RAM are required. This amount of required
RAM means that RC6 cannot fit on most commod-
ity smart card CPUs.

The use of multiplications and variable rotations
in RC6 raises a concern about possible timing at-
tacks, because it is almost guaranteed that one or
the other of these two operations will have variable
timing on 8-bit CPUs.

5.2.12 Rijndael

Rijndael was clearly designed with smart cards in
mind [DR98b]. It fits in a very small ROM foot-
print (under 1K bytes) and has one of the fastest
smart card speeds of any of the candidates. On-the-
fly subkey generation allows a minimal RAM foot-
print of only 36 bytes. If enough RAM was avail-
able to hold 160 bytes of precomputed subkeys, the
speed of Rijndael would be even faster. This 36-
byte RAM footprint assumes that the key itself is
stored in EPROM; otherwise, an additional 16 bytes
of RAM is required. Alternately, the subkey com-
putation must be “unwound” after each block is en-
crypted, lowering throughput considerably.

Perhaps the only negative comment about Rijn-
dael on smart cards is that the performance numbers
in the paper do not include a decryption function.
Including decryption would increase the code size
somewhat (probably between 512 and 1024 bytes),
and decryption speed would be slower (possibly
twice as slow) than encryption speed due to the co-
efficients of the inverse MDS matrix. As we pointed
out before, there are many applications that require
both encryption and decryption in the smart card,

13



but even in decryption mode Rijndael is very com-
petitive.

5.2.13 SAFER+

Given the 8-bit nature of SAFER+, it is not surpris-
ing that the algorithm fits well and performs well on
smart cards. The code and table size should be easily
less than 2K bytes of ROM. The RAM usage should
be quite reasonable as well because of the simple on-
the-fly key schedule. Unlike most other candidates,
the round keys can be generated in any order, mak-
ing the key-schedule aspects of the encryption and
decryption very similar.

5.2.14 Serpent

Serpent was also clearly designed with smart cards in
mind [ABK98b]. It can have a very small ROM foot-
print (under 1K bytes) or a somewhat larger bitslice
version (2K) for higher performance. Serpent’s on-
the-fly key schedule allows for fairly minimal RAM
usage. The decryption routine has to compute a
simple linear pre-key recursion forwards to the end,
adding a very small overhead to the first decryption,
and then step backwards through the key schedule.
Similar to many on-the-fly key schedules, Serpent
usually requires an extra copy of 256 bits of key ma-
terial in RAM (in addition to the key itself); al-
ternately, this RAM could be saved by undoing the
linear recursion after processing each block at the
cost of a minor performance degradation.

5.2.15 Twofish

Twofish was designed with smart cards in mind. Its
subkeys can be computed on the fly, and can encrypt
and decrypt in 60 bytes of RAM (this includes space
for the key, text, and working registers). Encryp-
tion and decryption are the same speed, and both
efficient, in this implementation. If more RAM is
available, Twofish can encrypt and decrypt at faster
speeds. Several levels of space/speed are available;
see [WS98, SKW+98b, SKW+99] for details.

6 Hardware Performance

For ultimate performance, only hardware implemen-
tations will do, so NIST has correctly required that
AES be efficient in silicon. While most of the algo-
rithms have several possible tradeoffs of silicon area
versus performance, the most interesting figures here
are the highest possible throughput and the silicon

area required to achieve it. This metric has some as-
sociated ambiguity, because, for example, different
interleaving modes may achieve dramatically differ-
ent speeds. Nonetheless, our analysis here gives em-
phasis to the fully parallel hardware versions, since,
if the cost of such an implementation is reasonably
low, none of the other tradeoffs needs to be consid-
ered.

Critical is the requirement for fast context
switching. Many applications, such as IPSec, require
a hardware encryptor to switch contexts efficiently.
Algorithms requiring subkey precomputation have a
lower key agility due to the precomputation time,
and they also require extra RAM to hold the pre-
computed subkeys, as compared to algorithms with
true on-the-fly subkey generation. The amount of
RAM required to hold a key context is shown below
in Table 9. For many applications, the time required
to switch in even 128 bytes is prohibitive.

6.1 Comparing Performance in Hard-
ware

The speed of almost all the candidate algorithms in
hardware seems to be acceptably fast, given certain
assumptions. That having been said, it is fairly diffi-
cult to compare the results given in the AES submis-
sion papers. Most estimates involve different process
technologies (e.g., 0.35 micron vs. 0.25 micron), dif-
ferent size metrics (e.g., gates vs. silicon area), dif-
ferent design methodologies (e.g., FPGA vs. gate ar-
ray vs. custom layout), different assumptions about
subkey precomputation (precomputed vs. on-the-fly
generation), and different operating conditions (e.g.,
best case vs. worst case). Thus, our comments here
are based on estimates, and we try to stay away from
precise comparisons. Instead we focus on high-level
issues that affect relative efficiency and speed.

6.2 Algorithm-Specific Comments on
Hardware Performance

6.2.1 CAST-256

CAST-256 is large in hardware because the 4K bytes
of ROM used for S-boxes is monolithic and cannot
be reduced in size by serializing, as with most other
algorithms. This means the algorithm has a much
smaller range of speed–area tradeoffs. As in soft-
ware, the algorithm is relatively slow because of the
large number of rounds compared to most other can-
didates, implying more clocks per block.

In practice, the key agility is effectively quite low,
despite the fact that the subkeys can be generated
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Algorithm Key Context
Name RAM (bytes)
CAST-256 0
Crypton 0
DEAL 0
DFC 0
E2 256
Frog 2300+
HPC ?
Loki97 ?
Magenta ?
Mars 160
RC6 176
Rijndael 0
SAFER+ 0
Serpent 0
Twofish 0

Table 9: Hardware Key-Context RAM Requirements.

on the fly. This is because the key schedule uses the
same large S-box multiple times, meaning that the
subkey circuitry has to include another large ROM,
or the ROM must be time-multiplexed with encryp-
tion, slowing the algorithm down even further.

6.2.2 Crypton

Crypton is probably the most hardware-friendly
AES candidate. It has all the hardware benefits of
Rijndael, without any of the major concerns. In par-
ticular, encryption and decryption use the identical
circuitry, and there are no large ROMs for S-boxes.
In fact, a fully instantiated version (i.e., all twelve
rounds), with performance approaching 2 Gbit/s,
can be realized in under 50,000 gates! It would be
simple to build significantly smaller versions without
affecting performance by iterating at a much higher
clock rate; for example, a four-round instantiation
should take under 15,000 gates and still provide over
1.5 Gbit/s.

6.2.3 DEAL

DEAL is just like triple-DES in speed and size. The
size numbers are actually fairly reasonable, but it is
difficult to achieve 1 Gbit/s using triple-DES in to-
day’s technology (without interleaving) because of
the sheer number of rounds required.

6.2.4 Decorrelated Fast Cipher

The largest element in DFC is clearly the 64-bit
modular multiplier. This element can easily be se-
rialized to perform the operation in multiple clocks
to trade off area for speed. The ROM size required
is quite modest at sixty-four 32-bit words. Unfor-
tunately, the DFC submission paper gives no hard-
ware estimates. It appears that a fully parallel DFC
should have a reasonable area: not too large, but
not too small. Assuming a 20 nsec modular multi-
ply (extrapolated from Alpha multiply times), with
a 30 MHz clock rate for one round, a speed of about
500 Mbit/s is achievable.

Key agility is not very high, since subkey gener-
ation takes significantly longer than a block encryp-
tion. On-the-fly subkey generation is possible but
even slower.

6.2.5 E2

E2 is large in hardware. A fully parallel version
requires sixteen 256-byte ROMs. One particularly
annoying feature of the design is the use of a mul-
tiplication in only the initial and final permutation;
this requires the inclusion of a complete multiplier
circuit that gets very little use. It is possible to se-
rialize the circuit to various levels and trade off area
for space, but a careful study of the algorithm leaves
the overall impression that hardware considerations
were not paramount during the design.

In addition, the key agility is quite low by design,
and requiring 256 bytes of RAM to hold subkeys sig-
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nificantly increases the hardware size.

6.2.6 Frog

Frog’s bomb permutation addressing is an operation
that is not directly supported in hardware. Still, it
is simple to create a logical circuit that is equivalent.
The key schedule and S-box lookups, on the other
hand, are problematic. The key schedule requires
2300 bytes of RAM, making it one of the most costly
AES submissions from a hardware point of view. A
straightforward implementation has to perform 128
S-box lookups in the RAM. It seems virtually impos-
sible to do this in less than 128 RAM cycle times. If
we assume a 10 nsec RAM access time (correspond-
ing to a 100 MHz clock) we get a throughput of only
100 Mbit/s. The only way to increase the speed
seems to be to use a faster RAM.

Overall, Frog is very costly to implement in hard-
ware, and creating an implementation capable of
anything more 100 Mbit/s seems a challenge. The
key agility of Frog is also exceptionally low.

6.2.7 Hasty Pudding Cipher

We have not studied the different ways of imple-
menting HPC in hardware in any detail. For our
discussion, we only look at the 128-bit case. Each
round consists of a long sequence of boolean opera-
tions with 4 table lookups into the KX table. The
KX table alone requires 2 KB RAM. The boolean
operations can be done very efficiently in hardware,
so the table lookups seem to be the hardware bot-
tleneck.

Filling the KX table from the key is a very ex-
pensive operation. It requires 4 table accesses for
each of the 256 steps for each of the 3 passes for a
total of over 3000 table accesses. A straightforward
implementation requires at least 3000 clock cycles
for a key setup. Thus the key agility of HPC is very
low.

6.2.8 Loki97

Of the primitive operations in Loki97, the S-boxes
are the most complex. Due to the particular choice
of the S-boxes, they can probably be implemented as
a direct boolean function instead of a table lookup.
Once that has been done, the round function is very
fast. The S-box lookups can either be done all in par-
allel (if there are enough copies of the S-box logic) or
in serial fashion, providing a nice tradeoff between
speed and area.

Loki’s key schedule is about three times as expen-
sive as the encryption itself. Furthermore, it doesn’t

support decryption without a large number of pre-
computations. This suggests that the key should
be expanded in hardware, at the cost of 192 bytes of
RAM. Key agility is reasonable, as a straightforward
key setup requires 48 clock cycles.

6.2.9 Magenta

Magenta provides a lot of flexibility in the hard-
ware implementation. The implementor can choose
how many f -circuits to implement. Each round re-
quires 384 evaluations of the f -function, and natural
choices would be 1, 2, and 32 f -circuits. Even with
32 copies of the circuit, each round still requires 12
clock cycles. At six rounds for a full encryption,
a “natural” implementation requires 72 clock cycles
per block. Assuming a 100 MHz clock rate, this
translates into a speed of about 180 Mbit/s. It seems
hard to make implementations that are significantly
faster than this.

Magenta’s key agility is excellent: there is no key
setup time required.

6.2.10 Mars

The kitchen-sink nature of Mars makes hardware im-
plementation unwieldy. Note that an implementa-
tion requires a full multiplier, a full rotator, and a
large (2K byte) S-box ROM. Each of these blocks is
large and limits the ability to build a small hardware
module with reasonable performance. The Mars pa-
per [BCD+98] estimates a size of 70,000 “cells,”
which is certainly considerably larger than many of
the other candidates.

Because there is no on-the-fly subkey generation,
the key agility of Mars in hardware is fairly low.
For example, precomputing all the subkeys appar-
ently requires 280 clocks, while an entire block can
be normally processed in about 50 clocks. Even if
the precomputation for the “next” key is performed
in parallel with an encryption, the time to change a
key still dominates.

6.2.11 RC6

The simplicity of this algorithm lends itself nicely
to hardware. There are many very useful speed–size
tradeoffs possible, such as time-multiplexing only a
single multiplier and rotator, using a bit-serial (or
multi-bit) multiplier/rotator, etc.

The size and performance numbers in the sub-
mission [RRS+98] are clearly derived from a full cus-
tom layout, and are thus difficult to compare directly
to the estimates from almost all the other candi-
dates. It should be noted that every other candidate
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would also benefit dramatically from a full custom
layout, but the vast majority of hardware implemen-
tations today are built with gate arrays or standard
cells. Also, the speed numbers seem incredibly opti-
mistic; performing a 32-by-32-bit multiply in 3 nsec
and a 32-bit rotation in 1 nsec in a 0.25 micron
process is not conservative.5 The estimates in the
RC6 paper might possibly be for nominal or best-
case conditions (process, temperature, voltage), but
certainly not the average-to-worst-case estimates re-
quired in any manufacturable design.

This is not to say that RC6 cannot be built in
a reasonable size and at a reasonable performance,
but the estimates seem highly optimistic. In other
words, it is our belief that the size and speed of RC6
in hardware are good, but not as stellar as repre-
sented in the paper.

Because there is no on-the-fly subkey generation,
the key agility of RC6 in hardware is fairly low. For
example, precomputing all the subkeys requires 132
clocks, while an entire block can be normally pro-
cessed in 20–40 clocks. Even if the precomputation
for the next key is performed in parallel with an en-
cryption, the time to change a key still dominates.

6.2.12 Rijndael

Rijndael fits and performs reasonably well in hard-
ware. The use of only XOR operations (instead of
additions) means that carry propagation times are
avoided, although conventional carry look-ahead cir-
cuits make this issue much less important than the
authors suggest [DR98a]. The simple on-the-fly key
schedule for Rijndael means that key agility is very
high, with a key change effectively taking zero time.

The major concern with Rijndael in hardware
is that a fully parallel version requires sixteen 256-
byte ROMs, for a total of 4K bytes of ROM.
This is not terribly unreasonable for a very high-
performance design, but a gate-level S-box (e.g.,
Crypton, Twofish) would have cut the hardware size
significantly, although it might have affected the
cryptanalysis. Fortunately, it is fairly easy to build
lower performance versions of Rijndael with fewer
S-box ROMs, accepting a slowdown inversely pro-
portional to the number of ROMs.

It should also be noted that building decryption
in hardware will probably double the chip size, since
neither the S-box nor the MDS matrix of encryption
can be used at all for decryption. This total asym-
metry between encryption and decryption building
blocks of Rijndael seems to be unique among the

AES candidates, and its most annoying impact is on
the hardware implementation. Also, the key agility
for decryption is lower (about one block time), since
the key schedule must be run forward for one entire
block before decryption can begin.

6.2.13 SAFER+

SAFER fits reasonably well in hardware. A fully
parallel version requires sixteen 256-byte ROMs and
can run at acceptable speeds, but it is possible to
serialize the S-box lookups to various levels to trade
off speed for area. Decryption is not identical to
encryption, but fortunately the same ROMs can be
used, although the mixing transforms are quite dis-
tinct and thus increase area. The key agility is high,
thanks to the simple key schedule.

6.2.14 Serpent

Serpent fits reasonably well in hardware and has a
nice set of performance tradeoffs. A fully parallel
version would require a total of 256 S-boxes, each a
4-bit permutation, for an equivalent of 2K bytes of
“table,” although the S-boxes can be built with di-
rect logic. The round function should run quite fast,
giving very nice performance at one clock per round.
Note that decryption requires the inverse permuta-
tions and linear transformations, thus doubling this
portion of the logic. Fortunately, there are many
possible serialized versions of Serpent; for example,
a bit-serial version performs one S-box lookup per
clock, cutting the gate count (and the throughput)
dramatically. The ability to perform almost a linear
tradeoff of area versus speed is very attractive.

The key agility of Serpent in hardware is very
good, allowing on-the-fly subkey computation, or a
precomputation time equal to a single block encryp-
tion time.

6.2.15 Twofish

Twofish was designed from the beginning with hard-
ware implementations in mind [SKW+98a]. There
are many possible space–time tradeoffs that make
the algorithm efficient both for high-speed and for
low gate-count implementations.

The key agility is high, both for encryption and
decryption, because the key schedule can be run on
the fly in either direction. This feature is rare among
the candidates. Hence, the additional RAM required

5To validate this impression, we spoke extensively with experienced commercial multiplier designers and took the Intel
Pentium II 0.25 micron CPU multiplier (4 clocks at 400 MHz = 10 nsec) as a case in point.

17



for the expanded key is 0; however, hardware im-
plementations can save approximately 10,000 gates
with a key context of 50% of the key size.

7 Conclusions

The most obvious conclusion that can be drawn from
this exercise is that it is very difficult to compare ci-
pher designs for efficiency, and even more difficult to
design ciphers that are efficient across all platforms
and all uses. It’s far easier to design a cipher to
be efficient on one platform, and then let the other
platforms come out as they may. Most of the AES
candidates seem to have done this.

In the previous sections, we have tried to sum-
marize the efficiencies of the AES candidates against
a variety of metrics. The next thing to do is to as-
sign a numerical score to each metric and each al-
gorithm, then weights to each of the metrics, and
finally to calculate an overall score for the different
algorithms. While appearing objective, this would
be more subjective than we want to be; we leave it
as an exercise to the reader.

The performance comparisons will most likely
leave NIST in a bit of a quandary. The easiest thing
for them to do would be to decide that certain plat-
forms are important and others are unimportant,
and to choose an AES candidate that is efficient on
only the important platforms. Unfortunately, AES
will become a standard. This means AES will have
to work in a variety of current and future applica-
tions, doing all sorts of different encryption tasks.
Specifically:

• AES will have to be able to encrypt bulk data
quickly on top-end 32-bit and 64-bit CPUs.
The algorithm will be used to encrypt stream-
ing video and audio to the desktop in real time.

• AES will have to be able to fit on small 8-bit
CPUs in smart cards. To a first approxima-
tion, all DES implementations in the world are
on small CPUs with very little RAM. They are
in burglar alarms, electricity meters, pay-TV
devices, and smart cards. Sure, some of these
applications will get 32-bit CPUs as those get
cheaper, but that just means that there will be
another set of even smaller 8-bit applications.
These CPUs will not go away; they will only
become smaller and more pervasive.

• AES will have to be efficient on the smaller,
weaker 32-bit CPUs. Smart cards won’t be
getting Pentium-class CPUs for a long time.
The first 32-bit smart cards will have simple

CPUs with a simple instruction set. 16-bit
CPUs will be used in embedded systems that
need more power than an 8-bit CPU, but can’t
afford a 32-bit CPU.

• AES will have to be efficient in hardware, in
not very many gates. There are lots of encryp-
tion applications in dedicated hardware: con-
tactless cards for fare payment, for example.

• AES will have to be key agile. There are many
applications where small amounts of text are
encrypted with each key, and the key changes
frequently. IPsec is an excellent example of
this kind of application. This is a very dif-
ferent optimization problem than encrypting
a lot of data with a single key.

• AES will have to be able to be parallelized.
Sometimes you have a lot of gates in hardware,
and raw speed is all you care about.

• AES will have to work on DSPs. Sooner or
later, your cell phone will have proper encryp-
tion built in. So will your digital camera and
your digital video recorder.

• AES will need to work as a hash function.
There are many applications where DES is
used both for encryption and authentication;
there just isn’t enough room for a second cryp-
tographic primitive. AES will have to serve
these same two roles.

Choosing a single algorithm for all these appli-
cations is not easy, but that’s what we have to do.
It might make more sense to have a family of algo-
rithms, each tuned to a particular application, but
NIST’s current plan is that there will be only one
AES. And when AES becomes a standard, customers
will want their encryption products to be “buzzword
compliant.” They’ll demand it in hardware, in desk-
top computer software, on smart cards, in electronic-
commerce terminals, and in other places we never
thought it would be used. Anything chosen as AES
has to work in all those applications.

8 Authors’ Biases

As authors of the Twofish algorithm, we cannot
claim to be unbiased commentators on the AES sub-
missions. However, we have tried to be evenhanded
and fair. If Twofish comes out looking like one of the
best candidates, it is because we realized early on in
the Twofish design process that our submission had
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to be efficient in a wide variety of applications and
a wide variety of platforms, and took pains to make
sure that is true. We were surprised to discover that
most of the other submitters did not take the same
efficiency requirements into account.

Many of the performance numbers in this paper
are estimates; we simply did not have time to code
each submission in optimized assembly language. As
more accurate performance numbers appeared, we
have updated the tables in this paper. We will con-
tinue to do so.
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