次世代の高速メモリアーキテクチャの検証

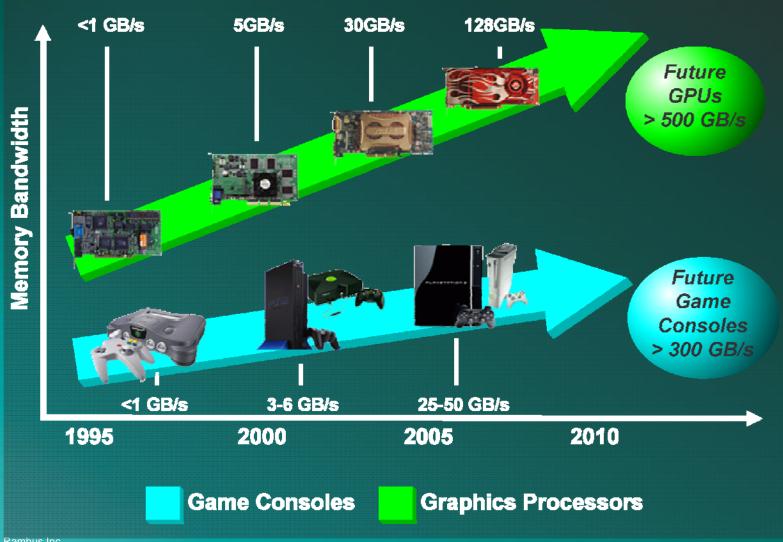
ラムバス株式会社 フィールド アプリケーション エンジニア 佐野 幸司

アジェンダ

- ハイパフォーマンス・アプリケーションに要求される メモリインタフェイス
 - XDR2 アーキテクチャ
- 次世代高速メモリアーキテクチャのデザインと検証
 - ・チャレンジ
 - システムの概要
 - 基板とパッケージの設計とモデリング
 - デバイス評価
 - リンクのモデリング、シミュレーション及び評価
 - ・まとめ

マルチコア アプリケーションにおいての メモリへの要求

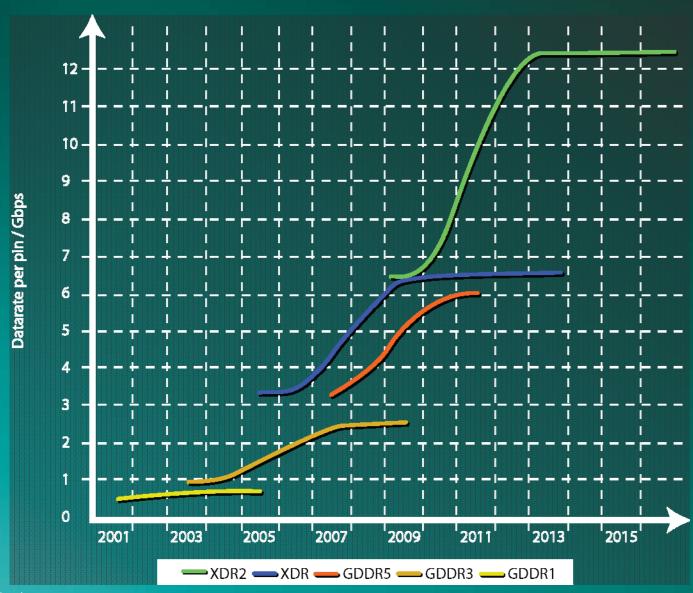
ゲーム



グラフィック マルチコア コンピューティング

- 非常に高いメモリバンド幅
- 様々なメモリ容量
- 様々なアクセス粒度 (Access granularity)

要求されるメモリバンド幅の進化


メモリーパフォーマンスの課題

- 6Gbps以上のデータレートの達成
- メモリ効率/アクセス粒度
- 消費電力効率 / 温度管理
- 低コスト生産
 - シグナルインテグリティーの確保
 - 最小のピン数
 - 最低のクロック周波数
 - パッケージサイズ及びPCB面積の削減

XDR™2 メモリ アーキテクチャの発表

- XDR2は最高速のDRAMテクノロジ
 - 動作周波数は6.4から12.8Gbps
 - デバイスあたりGDDR5の2倍のバンド幅
- 最も消費電力効率の良いハイパフォーマンスメモリ
 - 同じバンド幅でGDDR5に比べ40%低いメモリシステム消費電力
 - 同じ消費電力でGDDR5に比べ最大2倍以上のバンド幅
 - GDDR5に比べ低いクロック周波数
- 受賞歴の有るXDRメモリアーキテクチャの次世代メモリ
 - 500 GB/s以上のシステムバンド幅を実現可能
 - コストリダクションやパフォーマンスアップに対応したメモリアーキテクチャ

XDR パフォーマンス ロードマップ

XDR2アーキテクチャに採用される革新的な技術

革新的な技術	効果
FDMA *	シグナルインテグリティの向上
(Fully Differential Memory Architecture)	・低振幅の差動信号による低消費電力化
FlexLink TM C/A *	•ピン数と面積の縮小
	• 拡張性のある容量とアクセス粒度
Micro-threading	•アクセス粒度を小さくすることが可能
	• 高い処理能力が必要なアプリケーションの最適化
16X Data Rate	・バンド幅の向上
Asymmetric Equalization *	• DRAMの簡素化とコスト削減
Enhanced FlexPhase™ *	• レイアウトを簡素化し等長配線を不要にする

* XDR2のテクノロジ ショウケースであるTerabyte Bandwidth Initiativeに使用された革新的な技術

FDMA

Fully Differential Memory Architecture

- 優れたシグナルインテグリティを提供
- 6Gbps以上のデータレートにて信頼性の高い高速動作

Signals	DDR3/ GDDR5	XDR™	XDR™2
Command / Address	Single Ended	Single Ended	Differential
DQ	Single Ended	Differential	Differential
Clock / Strobes	Differential	Differential	Differential

FlexLinkTM C/A

Full Speed C/A

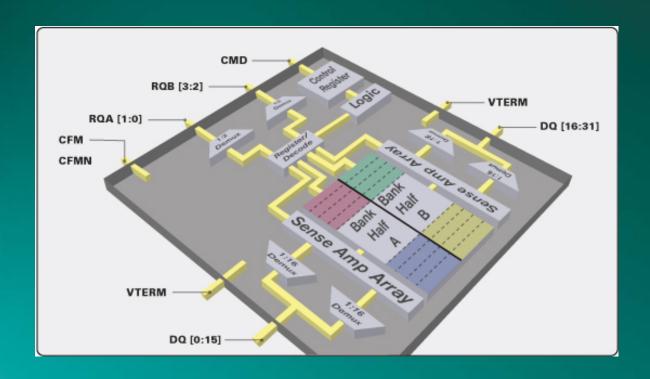
C/A*

DQ

Legacy
28 Wire C/A Interface (DDR2/GDDR3)

Memory Controller C/A

DRAM C/A FlexLink C/A
2 Wire, Point-to-Point
C/A Interface

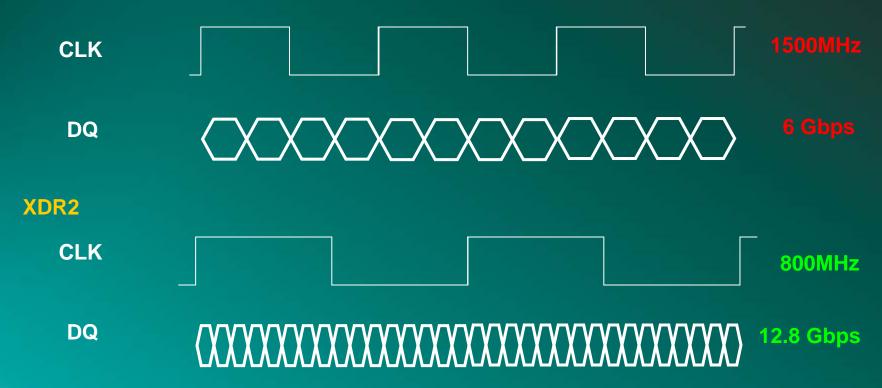

Memory Controller C/A

DRAM C/A

- C/Aのピン数を最少化
- 設計の柔軟性を提供
- 低いパッケージコスト

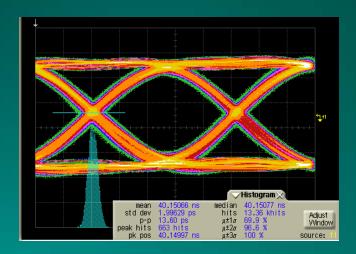
* Command / Address

Micro-threading

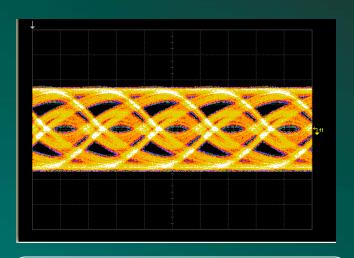


- 4つの独立した物理 メモリスペース毎に RowとColumn アクセス可能
- •32バイトのアクセス 粒度

- より細かいアクセス粒度でより高いメモリバンド幅
- 高いメモリアクセス効率による低消費電力化


16X Data Rate

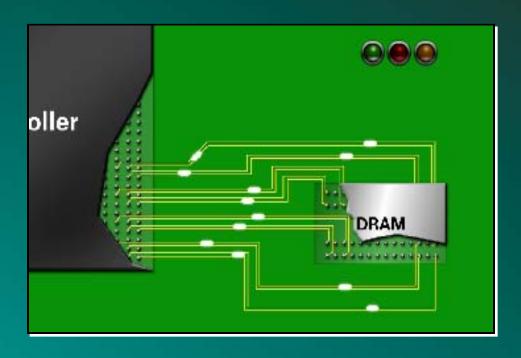
GDDR5



- XDR2はGDDR5の約半分のクロック周波数で2倍のデータレートを提供
- 低いクロック周波数はデザインを簡素化することができ、歩留まりを向上させ コストを低減する

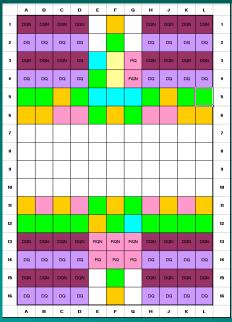
Asymmetric Equalization

Memory Controller Equalized TX Eye



Demonstrated DRAM Unequalized TX Eye

コントローラのみにイコライゼーションを入れることによりDRAM を簡素化し製造コストを低くすることが可能


*As measured in TBI Silicon Test Vehicle

Enhanced FlexPhase™ Technology

・ 細かい位相調整分解能によって、マルチGHzの伝送速度の基 板配線と設計の簡素化が可能

ピン数の比較

Source: Rambus x32 Package Description

Source: 512Mbit x32/x16 GDDR5 Datasheet

XDR2 DRAM Ballout: 124 pins

GDDR5 DRAM Ballout: 170 pins

•XDR2 DRAM は2倍のバンド幅で46ピン少ないピン数1 •XDR2 コントローラでは40%以上のバンド幅あたりのピン効率2

² Power and ground pins not included

XDR2 メモリのまとめ

世界最速のDRAMテクノロジとクラス最高の消費電力効率

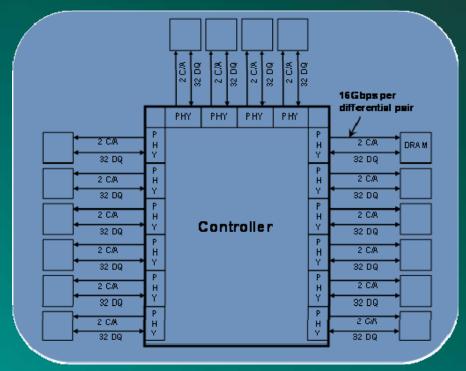
- デバイスあたりGDDR5の2倍のバンド幅
- 同じバンド幅にてGDDR5に比べ40%低いメモリシステム消費電力
- 同じ消費電力にてGDDR5に比べ最大2倍以上ののバンド幅
- グラフィック、ゲーム コンソール及びマルチコア コンピュー ティングにおいて最高のメモリパフォーマンスと効率
- ロードマップにて下位互換性を継続

アジェンダ

- ハイパフォーマンス・アプリケーションに要求される メモリインタフェイス
 - XDR2 アーキテクチャ
- 次世代高速メモリアーキテクチャのデザインと検証
 - チャレンジ
 - システムの概要
 - 基板とパッケージの設計とモデリング
 - デバイス評価
 - ・リンクのモデリング、シミュレーション及び評価
 - ・まとめ

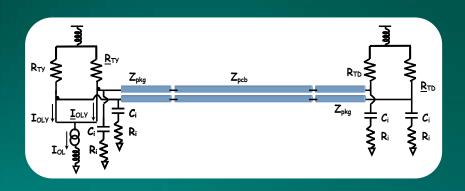
デザインの課題

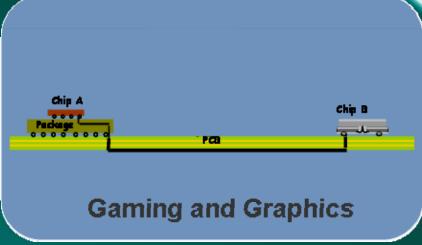
- テラバイトのメモリバンド幅の実現
 - リンクのバンド幅を最大化
 - ・リンクの消費電力を最小化
- システム全体での低コスト化
 - 一般的な基板やパッケージの使用
 - 基板層数の最小化
 - パッケージサイズの最小化
- 複雑な回路は可能な限りコントローラで実現
 - DRAMプロセスは低速なトランジスタと少ないメタル層


シグナル インティグリティの課題

- 伝送路のモデリング
 - 高周波での減衰と反射
- トランスミッタとレシーバのモデリング
 - ノイズとジッタ
- チャンネルと回路の相互作用
- 低いBERでの性能予測
- 受動素子と能動素子の評価
- システム検証

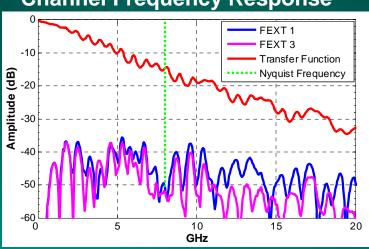
アジェンダ

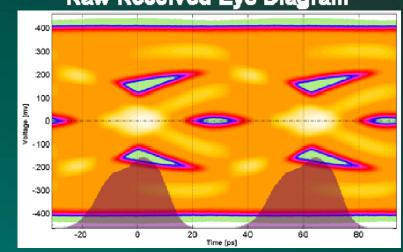

- ハイパフォーマンス・アプリケーションに要求される メモリインタフェイス
 - XDR2 アーキテクチャ
- 次世代高速メモリアーキテクチャのデザインと検証
 - チャレンジ
 - システムの概要
 - 基板とパッケージの設計とモデリング
 - デバイス評価
 - リンクのモデリング、シミュレーション及び評価
 - ・まとめ

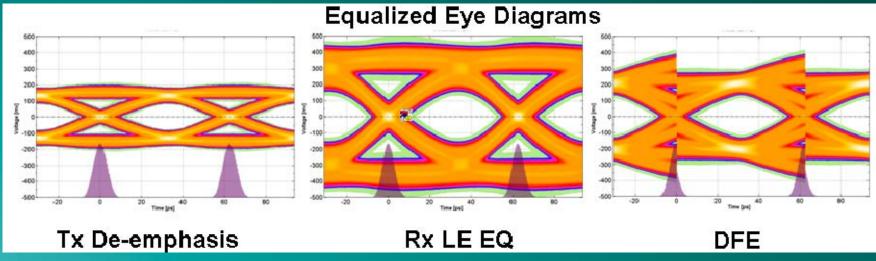

テラバイト メモリシステム

- XDR2のベースとなったTBI(Terabyte Bandwidth Initiative)
- 全差動信号のメモリアーキテクチャ
 - 16 DRAMを使用し、1つのDRAMで64GB/secをサポート
 - ◆ それぞれのDRAMが32ペアのDQと2ペアのコマンド・アドレスを持つ
- データとコマンド・アドレスは16 Gbps

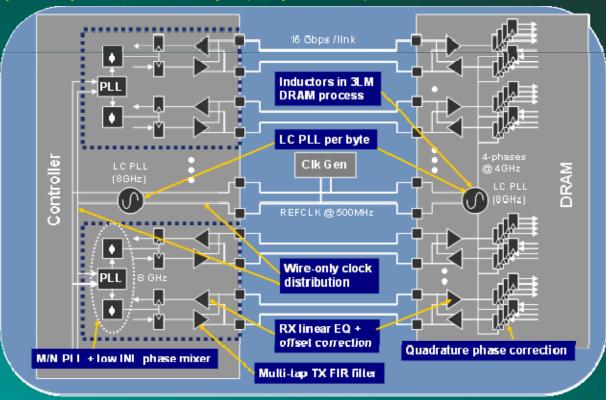
インターコネクト システム




- システム:100Ωの差動インピーダンス
 - PCB: 3インチまでのマイクロストリップライン
 - コントローラパッケージ:最大18mmの配線
 - メモリパッケージ:最大6mmの配線
 - デバイスの寄生性Ci及びRi、オンダイターミネーション(ODT)
- インターコネクトシステムの構成
 - · 結合伝送線路
 - ▼ Sパラメータブロック及び集中定数回路素子

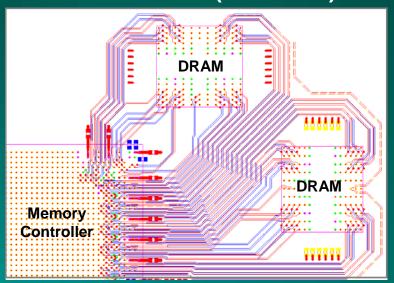

チャンネル 評価

Channel Frequency Response

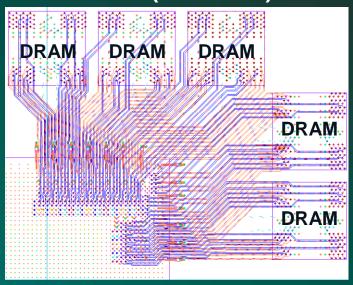

Raw Received Eye Diagram

・ チャンネルは高い減衰 (-15 dB) があるが低いクロストーク

クロッキング アーキテクチャ

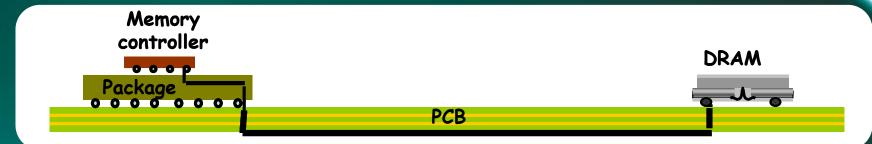

- 非対称クロッキング
 - 低フェーズノイズのLC-VCOを使用したPLL
 - コントローラに多段のPLLを実装

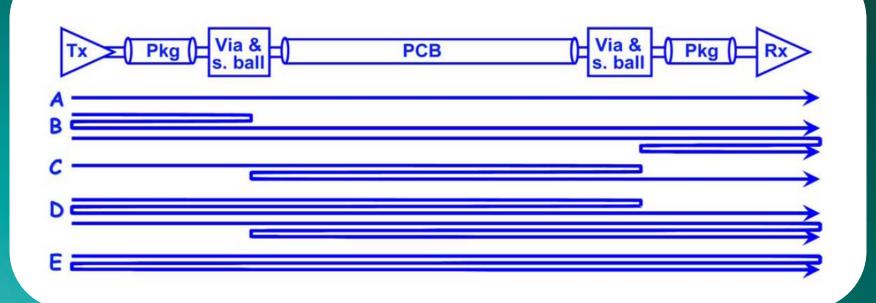
アジェンダ


- ハイパフォーマンス・アプリケーションに要求される メモリインタフェイス
 - XDR2 アーキテクチャ
- 次世代高速メモリアーキテクチャのデザインと検証
 - チャレンジ
 - システムの概要
 - 基板とパッケージの設計とモデリング
 - デバイス評価
 - リンクのモデリング、シミュレーション及び評価
 - ・まとめ

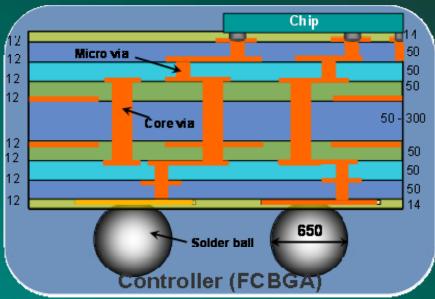
基板配線

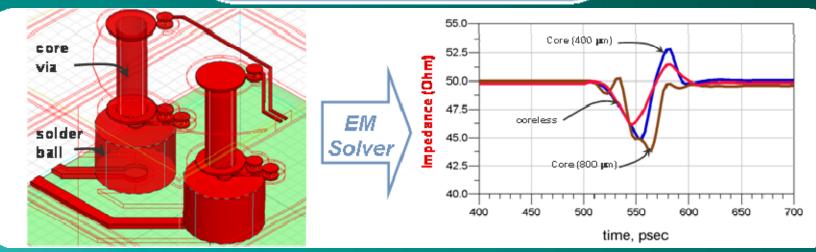
512 GB/sec (Quadrant)

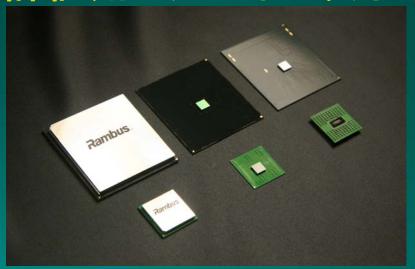

1 TB/sec (Quadrant)*



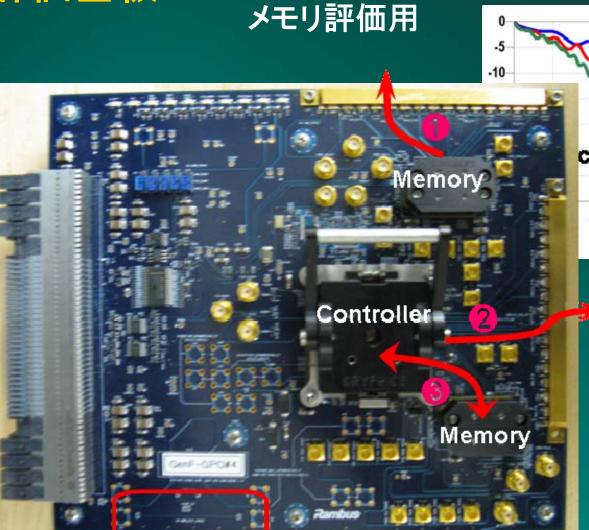
- 512 GB/sec メモリ システム
 - 1.0mmピッチの4層基板 (信号配線は2層)
 - 薄板(Thin-core) パッケージ (信号配線は2層)
- 1 TB/secメモリシステム(信号配線は5層)
 - さらに小さなバンプピッチ: 180μから150μへ
 - さらに小さなBGAピッチ: 1.0mmから0.8mmへ
 - より大きなパッケージ基板: 45 mm

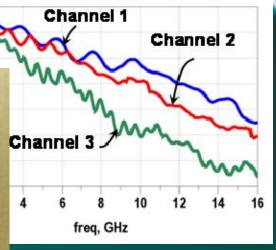

* Only microstrip layers shown


反射の原因


コントローラ パッケージ

コントローラ: 薄板(Thin-core)パッケージ

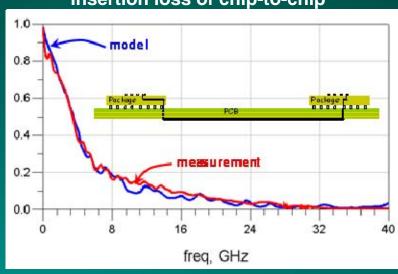

評価用: デバイス及びデモ基板



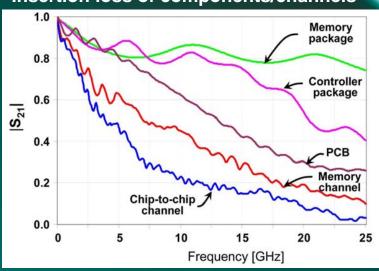
- 65 nm CMOSプロセス
- 将来の コントローラとDRAM製品の実現可能性をデモ
 - ターゲット: 16Gbps @ BER < 1E-21
 - 消費電力及び面積の目標
- ▶ 回路構造上のトレードオフを評価検証
- 電圧とタイミングマージンを確認

評価基板

コントローラ及び リンク評価用

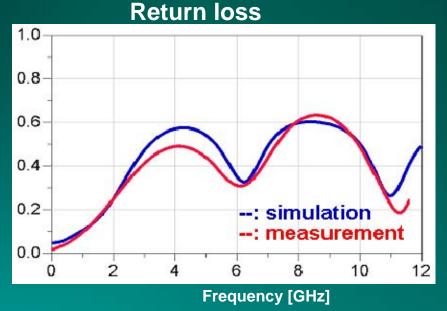

高速信号は2層で 配線

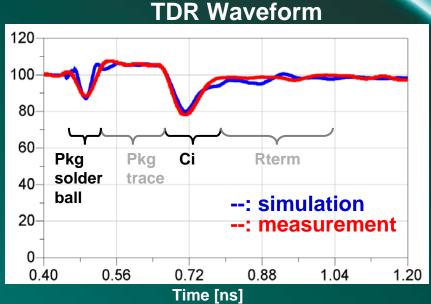
テストクーポン: 40GHzまで評価したマイクロストリップ配線


© 2009 Rambus Inc.
For Presentation purposes only

伝送路の評価

Insertion loss of chip-to-chip




Insertion loss of components/channels

- パッケージは送信端、受信端ともにフリップチップBGAを使用
 - パッケージの配線は18 mmまでの長さ
 - パッケージ及び基板の接合部での大きなインピーダンスの不連続性が発生
 - そのため伝送路の受動素子部分を測定すると、小さなメモリパッケージを 使用したチャンネルより特性が悪い
- 広範囲の周波数帯で良い相関が得られる

コントローラ デバイス 評価

- パッケージの半田ボールにて極めて大きな不連続性がある。
- パッケージの配線インピーダンスはターゲットより高い
- ODTターミネーションの値は周波数による
- Ci ≈ 0.9 pF から 1.1 pF

アジェンダ

- ハイパフォーマンス・アプリケーションに要求される メモリインタフェイス
 - XDR2 アーキテクチャ
- 次世代高速メモリアーキテクチャのデザインと検証
 - チャレンジ
 - システムの概要
 - 基板とパッケージの設計とモデリング
 - デバイス評価
 - リンクのモデリング、シミュレーション及び評価
 - まとめ

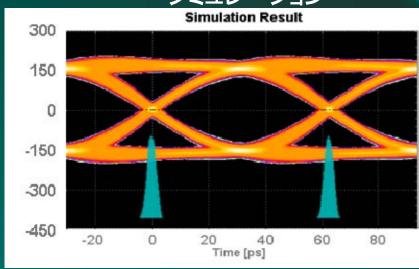
TXイコライザを使用した16 Gbpsのアイダイアグラム

計測結果

Elle Control Setup Measure Calbrate Utilities Help 16 Nov 2007 12:19

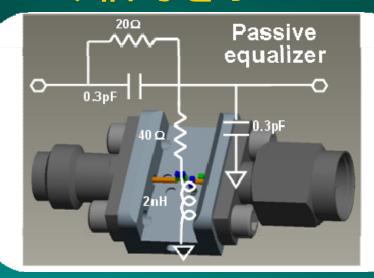
Eye/Mask Mode

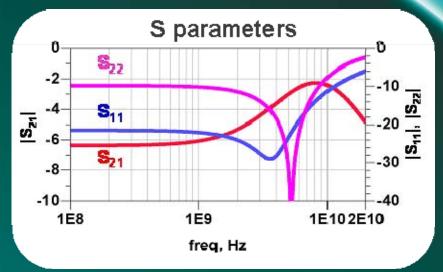
Ethnison
Ratio

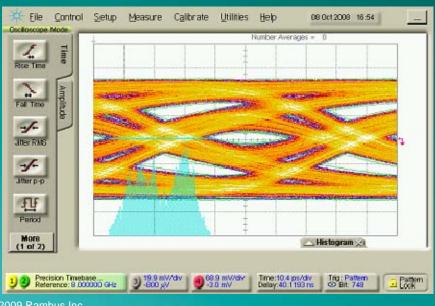

American

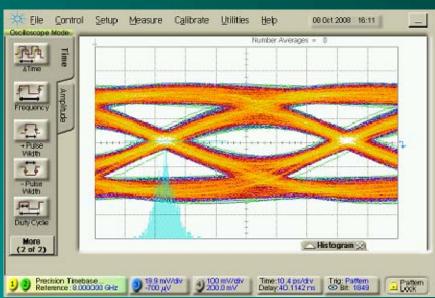
Average

Percentage

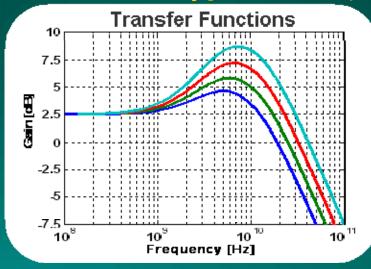

Percen

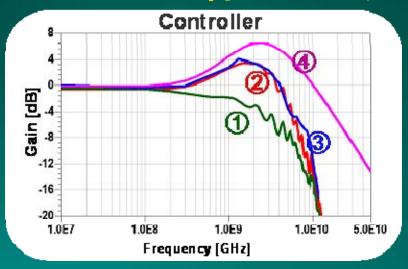

シミュレーション

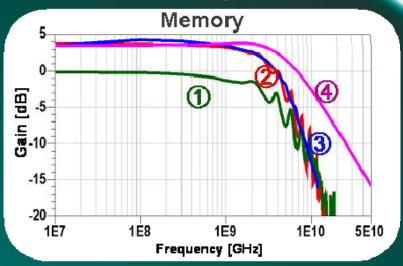



- コントローラの信号をオシロスコープへ
- チャンネルの測定
 - パッケージ及び基板は約3インチ、SMPコネクタから18インチのケー ブルを接続
 - TXイコライザは計測したチャンネルに最適化
- アイダイアグラムの計測とシミュレーション結果でよい相関 が取れている

メモリ信号をオシロスコープへ



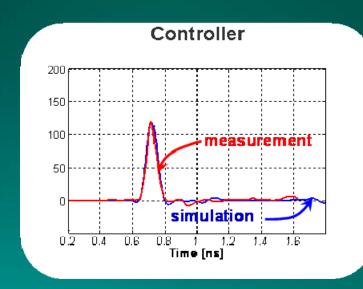

レシーバの線形イコライゼーション評価

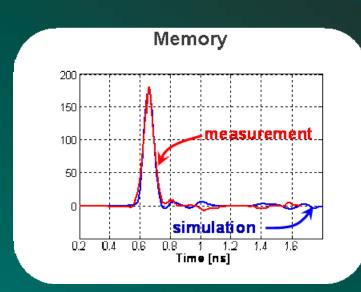


$$H_{EQ}(s) = \frac{k_1(s+z_1)}{(s+p_1)(s+p_2)}$$

- 極と零点を使用してCTLE*をモデリング
 - CTLEパラメータは直接計測できない
- ◆ イコライザの相対的な周波数応答をBERTを使用し計測
 - 正弦波を加えたPRBS信号
 - 正弦波の振幅と周波数の関数をBERで計測
 - CTLEの周波数応答は正弦波の振幅の逆数として得られる

レシーバの線形イコライゼーションの計測

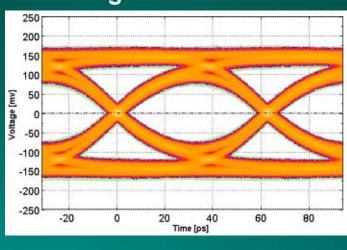


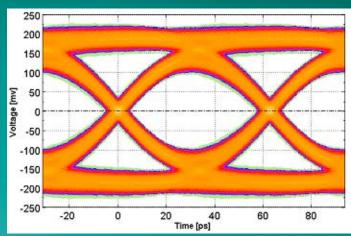


• 周波数応答

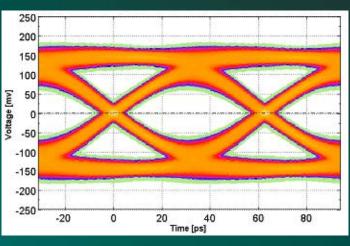
- (1) チャンネルの計測結果
- (2) チャンネル及びレシーバCTLEの計測結果
- (3) チャンネルとレシーバの線形イコライゼーションのモデル
- (4) 抽出されたレシーバCTLEのモデル

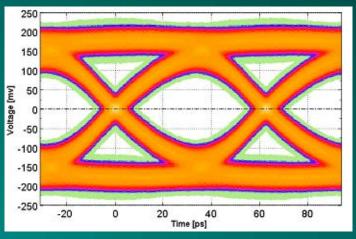
オンチップ計測





- オンチップ計測回路はタイミングと電圧のマージンを 計測可能
- 任意のパターンを使ったリンク全体の応答を計測


オンチップ計測によるアイダイアグラム

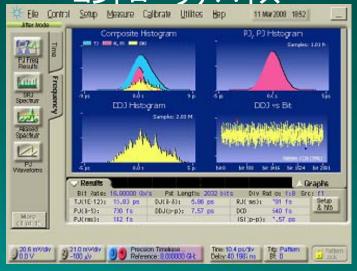

Using Measured SBR*

SI Simulation

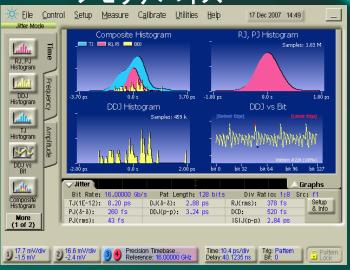
SBRを利用したオンチップ計測結果から生成したアイダイアグラムと シミュレーション結果でよい相関がとれた

39

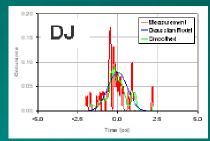
Write Operation

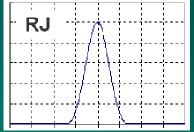

Read Operation

完全なリンクモデル


- 完全なリンクシミュレーションを行うために以下のパラメータも必要となる
 - ・トランスミッタ ジッタ
 - RJ:標準偏差
 - DJ:ピーク・トゥ・ピーク and/or 分布
 - レシーバタイミングの不確実性
 - RJ
 - DJ:ピーク・トゥ・ピーク and/or 分布
 - レシーバ 感度
 - ランダムと確定的な電圧ノイズ
 - •

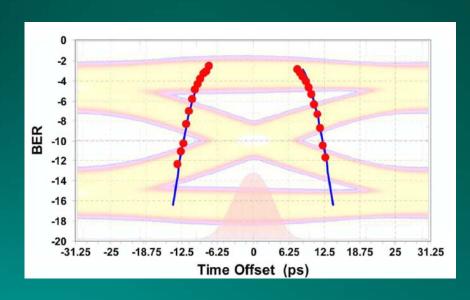
トランスミッタのジッタ計測

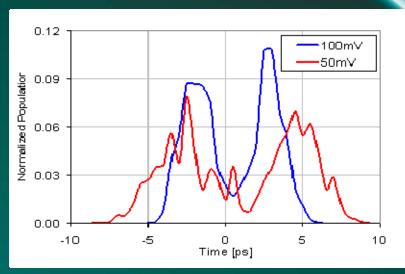

コントローラデバイス



メモリデバイス

- <u>● 分解機能付きオシロスコー</u>プでの計測結果
 - コントローラ
 - RJ (rms) : 791 fs
 - DCD: 540 fs
 - ・メモリ
 - RJ (rms): 378 fs
 - DCD: 520 fs

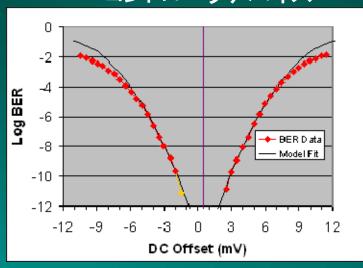


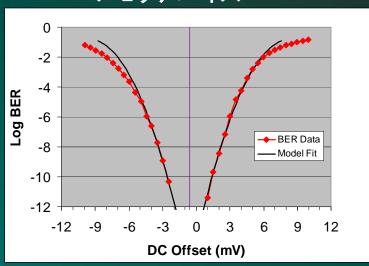


DCD = Duty Cycle Distortion

.1..1._

レシーバのジッタ測定



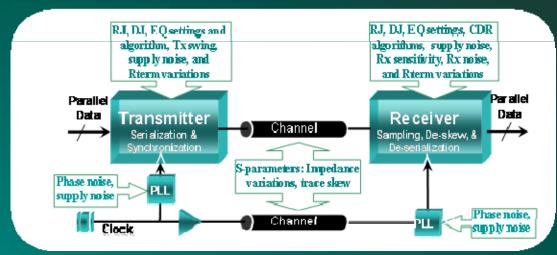

- BERTを使用しレシーバのジッタを測定
 - パターンジェネレータにてディレイを変化させる
 - RJをバスタブカーブの傾斜から抽出
 - DJとRJを分化する
 - DJの分布を入力信号の振幅毎にプロット

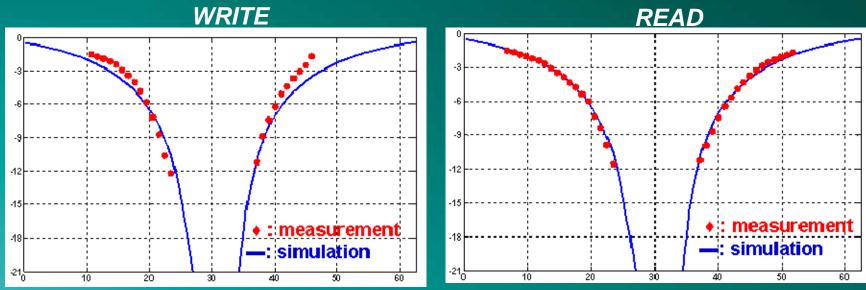
レシーバの評価

コントローラデバイス

メモリデバイス

- DCオフセットの関数としてBERを計測
- 電圧バスタブカーブの傾斜から入力ノイズを抽出
- コントローラ
 - RN : ≤ 1.3 mV rms
 - DN : ≤ 5.0 mV
- ・メモリ
 - RN: \leq 0.8 mV rms
 - DN : ≤ 2.0 mV


アジェンダ


- ハイパフォーマンス・アプリケーションに要求される メモリインタフェイス
 - XDR2 アーキテクチャ
- 次世代高速メモリアーキテクチャのデザインと検証
 - チャレンジ
 - システムの概要
 - 基板とパッケージの設計とモデリング
 - デバイス評価
 - リンクのモデリング、シミュレーション及び評価
 - まとめ

テストシステムの評価結果

Link parameters	WRITE	READ
Target BER	10e ⁻²¹	
Data rate	16 Gbps	
Modulation (no coding)	Binary NRZ	
Technology	TSMC 65-nm G+ CMOS	Emulates 40-nm DRAM process
Supply Voltage (VDDA/VDD/VDDIO)	1.1 V/1.1 V/1.2 V	1.0 V/1.0 V/1.2 V
Tx Swing	±400 mV	±300 mV
Equalization architecture	Tx de-emphasis (1-pre and 3-post)	CTLE with gain peaking > 4 dB
РСВ	3-in microstrip or stripline	
Package (of tx)	Thin-core FCBGA	Two-layer CSP
Device input Ci	0.8 PF	1.0 pF
DCD	0.01 UI	0.01 UI
Tx jitter RJ	0.8 ps rms	0.4 ps rms
Tx jitter DJ	5 ps	5 ps
Rx timing uncertainties, RJ	0.9 ps	1.0 ps
DJ	10 ps	10 ps
Rx sensitivity, random noise	1.3 mV (rms)	1.4 mV (rms)
Deterministic noise*	3 mV	2 mV

リード及びライトのバスタブカーブ

実機とシミュレーションにて非常によい相関がとれた

まとめ

- 高速なデータレートでは、基板及びパッケージ間の整合が取れた接続が必要になる
- パッケージと基板上の配線は広範囲の周波数帯で評価された
- デバイスのリターンロス (Ci) は正確にモデル化された
- トランスミッタとレシーバ回路は正確にモデル化され評価された
- DJ、RJ及びレシーバノイズはモデル化され計測された
- システムシミュレーションによってシステムパフォーマンスを 予測し最適化及び検証を行った
- モデル化及び計測によって得られたパラメータによってリンクのBERは実機とシミュレーションでよい相関がとれた