Open File Report OFBM 07-02.0

BEDROCK GEOLOGIC MAP OF THE ALLENSVILLE QUADRANGLE, HUNTINGDON AND MIFFLIN COUNTIES, PENNSYLVANIA

By Thomas A. McElroy and Donald M. Hoskins Pennsylvania Geological Survey

PENNSYLVANIA GEOLOGICAL SURVEY FOURTH SERIES HARRISBURG

2007

Open-File Report Disclaimer

No Warranty:

These data files and accompanying documentation are provided "as is," and the user assumes the entire risk as to their quality and performance.

The Commonwealth of Pennsylvania makes no guarantee or warranty concerning the accuracy of information contained in the geographic data or accompanying documentation. The Commonwealth of Pennsylvania further makes no warranties, either expressed or implied, as to any other matter whatsoever, including, without limitation, the completeness or condition of the product, or its fitness for any particular purpose. The burden for determining fitness for use lies entirely with the user.

Although these data have been processed successfully on a computer system at the Bureau of Topographic and Geologic Survey, the Commonwealth of Pennsylvania makes no warranty, expressed or implied, regarding the use of the data files or accompanying documentation on any other computer system, nor does the act of distribution constitute any such warranty.

Limitation Of Liability:

The user shall save the Commonwealth of Pennsylvania harmless from any suits, claims, or actions arising out of the use of or any defect in the data files or accompanying documentation.

The Commonwealth of Pennsylvania assumes no legal liability for the accuracy, completeness, or usefulness of the data files and accompanying documentation. In no event shall the Commonwealth of Pennsylvania have any liability whatsoever for payment of any consequential, incidental, indirect, special, or tort damages of any kind, including, but not limited to, any loss of profits arising out of use of or reliance on the geographic data.

Use And Access Constraints:

Not for commercial resale.

These data sets are not designed for use as a primary regulatory tool in permitting and siting decisions. This is public information and, as such, it may be used as a reference source and may be interpreted by organizations, agencies, units of government, or others based on needs; however, each user is responsible for the appropriate application of the data. Federal, state, or local regulatory bodies are not to reassign to the Bureau of Topographic and Geologic Survey any authority for the decisions they make using these data sets.

The data sets are not meant for site-specific analysis or for use at finer (i.e., larger, more detailed) scales. Users are not to misrepresent the data sets by presenting them at scales for which they are not intended, nor to imply that presentation at such scales is approved by the Bureau of Topographic and Geologic Survey.

Material from this report may be published if credit is given to the Bureau of Topographic and Geologic Survey

This report has been prepared in accordance with the open-file reporting standards of the Bureau and Topographic and Geologic Survey. It has not undergone external peer review.

ACKNOWLEDGEMENTS: This report was funded in part by the USGS National Cooperative Geologic Mapping Program.

The complete open-file report can be obtained from the web site of the Bureau of Topographic and Geologic Survey at: <u>http://www.dcnr.state.pa.us/topogeo</u>

Suggested Citation: McElroy, T. A., and Hoskins, D. M., 2007, Bedrock geology of the Allensville quadrangle, Huntingdon and Mifflin Counties, Pennsylvania: Pennsylvania Geological Survey, 4th ser., Open-File Report OFBM 07–02.0, 26 p., Portable Document Format (PDF).

Bedrock Geology of the Allensville Quadrangle, Huntingdon and Mifflin Counties, Pennsylvania

Tom McElroy and Donald Hoskins (retired)

Pennsylvania Geological Survey, 3240 Schoolhouse Road, Middletown, PA 17057-3534

UNIT DESCRIPTIONS

ORDOVICIAN

Axemann Formation

The Axemann Formation crops out along the axis of the Jacks Mountain Anticline in a small area on the east edge of the quadrangle. It underlies an area of 0.75 mi². On the adjacent Belleville quadrangle, the formation is at least 1000 feet thick. The upper approximately 500 feet are exposed in the Allensville quadrangle.

The Axemann Formation consists of interbedded, vaguely laminated medium-gray cherty limestone with interbeds of laminated dolostone that weathers to a very light gray. It is thin to thick bedded with platy layers. Layering is mostly discontinuous with uneven surfaces. Fossils found in the unit include stromatolites, crinoids, gastropods, and burrows.

It is exposed at several small outcrops along Kishacoquillas Creek. The best exposures are at $40^{\circ}34'20$ ''N $77^{\circ}45'50$ W (Station 4139) where about 15 feet of section are exposed, and at $40^{\circ}34'52$ ''N $77^{\circ}45'34$ ''W (Station 4129) where about 20 feet of section are exposed.

Bellefonte Formation

The Bellefonte Formation crops out in the Kishacoquillas Valley on the flanks and plunging nose of the Jacks Mountain Anticline. It is approximately 1250 feet thick. The formation mainly underlies cultivated fields on discontinuous rolling low hills that occupy much of the central portion of Kishacoquillas Valley, adjacent to low areas underlain by the Loysburg Formation.

It consists of light-to-medium-gray, aphanitic to crystalline dolostone. Weathered surfaces show laminated layers with local gently curving surfaces that may be stromatolites. Layers are 4 inches to 2 feet thick. Deep solution features along joint surfaces are common in weathered outcrops. Some layers contain redeposited quartz in blebs up to 1 inch in diameter.

Outcrops showing an appreciable thickness are rare. Most natural outcrops expose less than 5 feet of section..

At 40°32'37"N 77°47'06"W (Station 3942), on a hillside behind a barn, approximately 50 feet of steeply south dipping dolostone is exposed with deep, extensively weathered solution cavities that follow joints. At 40°33'32"N 77°46'31"W (Station 4178) about 20 feet of finely laminated dolostone with crystalline infilling and 2-3 inches of highly fragmented infilling is exposed in an old quarry in the lower part of the unit.

Its contact with the Axemann Formation is probably conformable and gradational.

Loysburg Formation

The Loysburg Formation crops out in the Kishacoquillas Valley, on the flanks of the Jacks Mountain Anticline, where the anticline plunges to the southwest, and along an unnamed fault. It is about 475 feet thick. The formation mainly underlies cultivated fields in lowland between low hills that underlie the Loysburg Formation's overlying and underlying formations.

The lower member consists of light-gray weathering medium-gray limestone interbedded with very light-gray weathering dolostone. This unit contains "tiger stripes" which, on weathered surfaces, are irregular, horizontal, very light gray bands, and irregular, mainly vertical extensions connecting the horizontal bands, in a darker- weathering light-gray limestone.

The upper member of the formation consists of interbedded medium dark-gray laminated and non-laminated dolostone and limestone in thin (2-3 inches) to thick (3 feet) layers. In some outcrops, layers are platy. Weathered surfaces on some limestone layers exhibit small, apparently highly fragmented fossil debris, interbedded with layers having recrystallized calcite that are finely laminated and non-fossil bearing. Dolostone units are laminated and thick. The upper portion is only seen in small outcrops. It was not possible to delineate the members on the map because outcrops are widely spaced, and there is insufficient float or difference in topographic expression to allow interpolation between them. The contact of the Loysburg with the Bellefonte Formation is probably conformable and gradational. It is best seen at 40°33'56'N 77°45'31''W (Station 5031).

Coburn through Hatter Formations, undifferentiated

These units crop out in the Kishacoquillas Valley, underlying cultivated fields along its north side and underlying mainly colluviated slopes along it south side. The mapped unit contains, in ascending order, the Hatter, Snyder, Benner, Nealmont, Salona, and Coburn formations, which were defined by other workers in fully exposed outcrops that are not on the Allensville quadrangle. Total thickness of all the units is about 850 feet. The units were mapped together because the defined stratigraphic differences do not produce distinctive topographic expression, lithologic uniqueness, soil color, or float material that allow accurate definition of the formations or structural relationships.

Natural outcrops are rare. Existing outcrops are primarily very small, mostly in cultivated fields, excavated along roadways and in a few small quarries located in the lower third of the mapped unit.

The lower one-third of the mapped unit consists of medium- to medium-dark-gray limestone in layers 1 inch to 3 feet thick, some with lighter-weathering clasts. Layering appears to be anastomosing. Some layers have widely dispersed body fossils, whereas others contain abundant body fossils. Many thin layers consist of highly fragmented fossil debris. Fossils include crinoids, trilobites (*Cryptolithus*), brachiopods, cephalopods, gastropods, stromatolites, ostracods, bryozoa, coral, and pelecypods. Some layers exhibit small solution "holes". Small caves form along joints. The upper two-thirds of the mapped unit along the north side of the Jacks Mountain Anticline underlies a low topographic ridge with extremely rare, very small outcrops. Bedding layers are thin, with lumpy weathered surfaces. The float scattered in cultivated fields is mostly small, angular to rounded, platy, non-fossiliferous hand specimens of medium-gray, aphanitic limestone. The contact with the Loysburg Formation was not observed, but is probably gradational. A good exposure is at Whitehall School ($40^{\circ}35'12"N 77^{\circ}46'17"W$, Station 4896) where about 40 feet of section are exposed. The most extensive exposure is at an inactive quarry ($40^{\circ}33'28"N 77^{\circ}48'15"W$, Station 3889) where Rones (1969) measured the section.

Reedsville Formation

The Reedsville Formation crops out on the flanks of the Kishacoquillas Valley and on valley-facing slopes of Jacks and Stone Mountains. It is exposed in numerous small borrow pits along the lower slopes of Jacks and Stone Mountains in the medial portion of the formation. Exposures of the lowermost and uppermost portions are much rarer. It is about 1800 feet thick.

The Antes Member is at the base of the formation. Its contact with the Coburn Formation is sharp and conformable. It consists of very dark-gray to black claystone with interbeds of resistant clayey limestone. This unit may be missing along the detachment zone at the base of the Reedsville. It is best exposed at low water in the bed of the westernmost stream discharging from Kings Hollow, 40033'38"N 77048'32"W (Station 4825).

The lower portion of the Reedsville Formation consists of medium-dark to dark-gray claystone weathering into "pencils". Zones of siderite nodules are present. Thin zones of silty claystone define layering that is otherwise difficult to ascertain. It is well exposed at the Peachy Shale Pit, 40035'19"N 77047'01"W. At this pit, joints with secondary mineralization are common.

The medial portion contains the bulk of the Reedsville Formation and consists of medium dark gray spheriodal weathering claystone, with rare discontinuous zones of fossils and rare interbeds of medium light-gray silty claystone.

The upper portion of the formation consists of interbedded light-to-medium-gray shaly claystone and thin (1 inch to 3 inch) to thick bedded (3 feet) crossbedded sandstone. Many sandstone interlayers are highly fossiliferous, calcareous, and very fine grained; some have highly calcareous zones of fossil debris. Fossils found include brachiopods, crinoids, gastropods, bryozoa, trilobites (Cryptolithus), ostracods, and cephalopods. About 150 feet of section are exposed at 40030'30''N 77048'57''W (Station 5124).

Bald Eagle Formation

The Bald Eagle Formation crops out on the Kishacoquillas Valley-facing slopes of Jacks and Stone Mountains. It forms a steep, distinct topographic bench below the Juniata Formation that is easily visible. Its lower portion consists of thick to massively bedded gray-to-reddish-gray to brownish-gray, fine-grained, prominently crossbedded sandstone; its upper portion consists of interbedded medium- to very coarse-grained sandstone with quartz pebble conglomerate (the Lost Run Member). The Lost Run Member was not mapped separately because of insufficient outcrop. The sandstone contains shale clasts as well as quartz pebbles. At 40°35'22"N 77°47'56"W (Station 4931), it contains pyritic concretions.

The contact of the Bald Eagle with the Juniata Formation was established as the uppermost resistive bed forming the prominent, mappable topographic ridge, which results in a considerably thinner unit than elsewhere reported, with a maximum thickness in the Allensville quadrangle of 250 feet. Elsewhere where exposures of this contact are visible, the contact is disputed.

Along Allensville Road below the Lost Run Member, the Bald Eagle Formation is well exposed with interbedded thin to thick bedded, crossbedded, fine-grained non-quartzitic sandstone, with shale and hackly-weathering siltstone interbeds. Bedding in the sandstone ranges from 3 inches to 4 feet. The contact with the underlying Reedsville Formation is selected at the uppermost sandstone layers that contain brachiopods and other fossils. At this section approximately 100 feet is exposed.

Juniata Formation

The Juniata Formation underlies steep to gentle slopes along Jacks and Stone Mountains extending from just below the crests of these mountain toward the axis of the Jacks Mountain Anticline. Its thickness is about 1100 feet. It consists of grayish-red, fine-grained sandstone with well-developed crossbedding. Included are interbedded red claystone units. The lower part, directly above the Bald Eagle Formation, is yellowish-gray sandstone.

Mapping the upper contact is based on observing that grayish-red non-quartzitic float is present below the mountain crest. Mapping of the lower contact is based on mapping of the topographical ridge underlain by the upper conglomerate portion (Lost Run Member) of the Bald Eagle Formation. The contact was not observed, but is probably gradational.

At 40°37'26N 77°45'23"W (Station 4084), approximately 200 feet of grayish-red, fineto medium-grained non-quartzitic sandstone is exposed in the bed of a forest road. This is the only outcrop of Juniata Formation observed in the quadrangle. At this outcrop, layering ranges from 3 inches to 8 inches. Light grayish-red claystone clasts are included in some layers. Weathering of the layers produced rounded edges, unlike the sharp-edged quartzite and sandstone layers in the overlying and underlying formations.

SILURIAN

Tuscarora Formation

The highly resistant Tuscarora Formation crops out on the crests of Jacks and Stone Mountains, exposing the lower portion of the formation. It forms very steep slopes on the southeast and northwest flanks of these mountains, respectively, where abundant colluvium with large boulders blankets their flanks and covers the underlying bulk of the estimated 700 feet thickness. Where exposed, the Tuscarora consists of light-gray to white, rarely pale red and greenish-gray fine- to coarse-grained quartzite with interbedded shale. Generally a maximum of 40 feet of section is exposed. The quartzite is very hard, well-cemented, crossbedded and, in exposure of its lower portions, contains dispersed pebbles. Small pits where siderite nodules weathered out are common. The trace fossils *Arthrophycus* and *Skolithos* are present but not common. Bedding is mostly thick.

Its contact with the underlying Juniata Formation was not observed but is probably conformable and interbedded. The contact is at, or near, the crests of Jacks and Stone Mountains, based on float and reddish soils that are present on the slopes opposite to the direction of dip, below the crestal outcrops.

Allensville Road, which crosses Stone Mountain, and Jacks Mountain Road offer excellent, accessible outcrops.

Cotter (1982) provides a thorough description of the Tuscarora Formation in central Pennsylvania, including a detailed description of the outcrops on Jacks Mountain Road.

Rose Hill Formation

The Rose Hill Formation crops out on the southeast flank of Jacks Mountain and the northwest flank of Stone Mountain, where it underlies steep slopes and is wholly covered with colluvium derived from the Tuscarora Formation. It is about 1000 feet thick. Where exposed, the Rose Hill Formation is a light-olive-gray to grayish-red and pale-brown claystone with interbeds of thin very fine-grained sandstone with manganese staining. The substantial iron-rich resistant sandstone beds found elsewhere in Pennsylvania are not present.

Because of the colluvium cover, only two outcrops were seen on the Allensville quadrangle. These exposures reveal less than 20 feet of section. The most accessible exposure, at 40°31'03"N 77°47'07"W (Station 3479), is a shale pit on the southeast flank of Jacks Mountain, on the north side of Jacks Mountain Road. Another shale pit on the northwest flank of Stone Mountain at 40°30'54"N 77°52'11W (Station 4807), is adjacent to a gated private road. The contact of the Rose Hill Formation with the Tuscarora Formation was not observed, but is probably conformable and gradational. The contact is at a sharp break in slope caused by the contrast in hardness between the formations and is easily mapped on stereographic photos.

Keefer Formation

The Keefer Formation is a light-gray to yellowish-brown, very fine- to coarse- grained, fossiliferous, siliceous sandstone that is locally hematitic. Northwest of Stone Mountain it is conglomeratic. It is well-bedded with beds thin to thick and crossbedded. It is found only on the southeast flank of Jacks Mountain and the northwest flank of Stone Mountain. On both mountains, it is covered with colluvium and only float was seen. The float is distinguished from float derived from the Tuscarora Formation, with which it is commonly intermixed, by the abundant fossils it contains. The most common fossils are crinoids and brachiopods. It is a resistant unit, and forms low ridges visible on stereo photographs. Mapping was based on topographic expression and highest float found. It is about 70 feet thick. Its contact with the Rose Hill Formation was not observed, but is probably conformable.

Bloomsburg and Mifflintown Formations, undifferentiated

The Bloomsburg and Mifflintown Formations crop out low on the southeast flank of Jacks Mountain and on the northwest flank of Stone Mountain, where they underlie steep slopes. The Bloomsburg Formation is predominantly grayish-red claystone. It contains some sandstone, thin, impure limestone and grayish-green shale. The sandstone unit (Moyer Ridge Member) in the upper one-third of the formation has beds 2 to 3 feet thick and contains vertical joints resealed with quartz, some of which is crystalline. It contains vertical Skolithos burrows. The sandstones of the Moyer Ridge Member are harder than the overlying Wills Creek Formation and the underlying claystones. Consequently, the Moyer Ridge Member has a topographic expression that assists in mapping local geologic structure. While the Moyer Ridge Member is distinctive, outcrops are too few to map it separately. Claystones exhibit hackly weathering caused by cleavage, making determination of bedding difficult. The Mifflintown Formation is greenish-gray shale interbedded with medium-gray, fossiliferous limestone. While the formations are distinct, no outcrops of the Mifflintown Formation were observed because of colluvium cover, so the two units are combined in this quadrangle for mapping purposes. The nature of their contact is not known. The contact with the Keefer Formation is sharp. Combined thickness is about 800 feet.

There are several exposures of the lower Bloomsburg Formation along an unnamed gully on the southwest flank of Jacks Mountain. Interbedded claystones and limestones are present in the Bloomsburg in this gully. The outcrops begin at $40^{\circ}31'50$ "N $77^{\circ}45'23$ "W. The Moyer Ridge Member is best exposed on the quadrangle at $40^{\circ}34'49$ "N $77^{\circ}49'56$ "W (Station 3588) in an inactive quarry that is about 200 feet southwest of the intersection of Martin Road and Flat Road. It is well exposed in a shale pit on East Branch Road about 600 feet north of the quadrangle boundary.

Wills Creek Formation

The Wills Creek Formation crops out low on the southeast flank of Jacks Mountain, on the northwest flank of Stone Mountain, and on the northern edge of the quadrangle. On the mountain flanks, it occupies steep, colluvium-covered slopes. Because of the colluvium cover, only one exposure was found on Jacks Mountain, and none on Stone Mountain. Topography at its northern outcrop is hilly, with relief of about 150 feet. Outcrops on the northern edge of the quadrangle are sparse and generally small.

The formation consists of greenish-gray shaly to platy claystones with interbeds of very fine-grained light-olive-gray non-calcareous sandstone and local limestone. Sandstone is most common in the upper part of the formation, and forms low ridges that were observed on the flanks of Jacks and Stone Mountains. In the adjacent Belleville quadrangle, the lower part of the formation contains siltstone layers and red shale resembling the Bloomsburg Formation. These were not seen on the Allensville quadrangle because of colluvium cover, but are probably present. It is moderately well- bedded, with fissile to thick beds. The claystones are commonly highly cleaved. The formation is about 600 feet thick. The contact with the Bloomsburg Formation.

The best outcrop on the quadrangle is on the south side of Blue Lick Hollow, behind a farm equipment storage shed, at 40°37'22"N 77°52'19"W (Station 4174). About 15 feet are exposed.

Tonoloway Formation

The Tonoloway Formation crops out in a valley on the axis of a 3rd order breached anticline within the unnamed synclinorium in the southeast part of the quadrangle, low on the southeast flank of Jacks Mountain, and on the flanks and axis of the Broad Top Synclinorium. The valley in the synclinorium has low relief. Relief is also low in the area underlain by the Tonoloway Formation on the southeast flank of Jacks Mountain. Slopes along the same crop become steep and colluvium-covered to the southwest. On the southeast side of the Broad Top Synclinorium the Tonoloway Formation occupies steep, colluvium-covered slopes. Along the axis of the Broad Top Synclinorium and on its northwestern limb, slopes are moderately steep and outcrops are common.

The Tonoloway Formation consists of thinly laminated limestones and dolostones. Dolostones are most common in its lower portions. Fossils are sparse, although brachiopods, ostracods and one coral were observed. Bedding ranges from thick (3-5 feet) to platy with argillaceous partings. It is commonly extensively folded into complex 4th and 5th order folds. In structurally complex areas, some layers within the normal sedimentary sequence consist of highly fragmented carbonate with small solution cavities and secondary calcite crystals. These layers appear to be solution breccia. Elsewhere in Pennsylvania, mud cracks are common. Only one example of this sedimentary structure was noted on the Allensville quadrangle. While the

Tonoloway Formation elsewhere in Pennsylvania is karstic, the only sinkholes found on the Allensville quadrangle are along the northwest flank of Stone Mountain. Many of these are associated with an inferred fault. The contact with the Wills Creek Formation was not observed but is probably gradational. Thickness is about 700 feet.

The Tonoloway Formation is nowhere on the quadrangle fully exposed. About 20 feet are exposed along Standing Stone Creek across from its confluence with the creek draining Murphy Hollow. It is extensively exposed along Rte. 26 about 3000 feet south of Summit School Road. A substantial outcrop is on a rib south of Blue Lick Hollow, and there are numerous exposures in the usually dry creek bed that parallels Summit School Road.

SILURIAN AND DEVONIAN

Keyser Formation

The Keyser Formation crops out on the flanks of a 3rd order anticline within the unnamed synclinorium in the southeast part of the quadrangle, low on the southeast flank of Jacks Mountain, and on the flanks and axis of the Broad Top Synclinorium. It underlies moderate slopes in the quadrangle's southeast and Jacks Mountain areas, and steep slopes on the flanks of the Broad Top Synclinorium. The Keyser Formation is moderately well exposed in small outcrops in the Allensville quadrangle.

The Keyser Formation is a dark-gray, fossiliferous, crystalline limestone with thinlylaminated limestone in its upper portion that resembles the Tonoloway Formation. Fossils found in the formation include brachiopods, ostracods, gastropods, coral, and bryozoa. It is wellbedded, with beds flaggy to thick. Some beds are massive. A few clastic beds up to 1.5 feet thick were observed. The basal nodular limestone found elsewhere in Pennsylvania is not present northwest of Stone Mountain, and is uncommon in the rest of the quadrangle. Calcite-filled fractures are common. Below the contact with the Old Port Formation on East Branch Road, the Keyser Formation is a calcilutite in layers 1 inch to 3 feet thick with laminae and sparse fossils. It is platy bedded in layers separated by thick beds. Its contact with the Tonoloway Formation is sharp. While few sinkholes were found in the Keyser, on the western edge of the quadrangle there is a closed depression that covers about ½ square mile that extends onto the Donation quadrangle and includes the mapped Keyser. The formation is about 170 feet thick.

The upper portion of the Keyser Formation is well exposed along East Branch Road near the intersection with Barr Road at 40°36'47"N 77°49'02"W (Station 3718). Almost all exposures are small. There are no quarries of any significant size on the quadrangle.

DEVONIAN

Old Port Formation

Lower Member. The lower member of the Old Port Formation crops out in four belts in the unnamed synclinorium in the southeast part of the quadrangle and on the flanks and axis of the Broad Top Synclinorium. It commonly underlies steep slopes adjacent to the Ridgeley Member. It forms the crests of Orebank and Bald Ridges and caps several hilltops on the northwest side of the Broad Top Synclinorium.

At the top of the lower member is the Shriver chert, seen only as float in several places. No outcrops were observed. It is a dark-gray to black chert that weathers to light gray to white or yellow-brown. It is thin, probably 25 feet thick or less. Below the Shriver chert, the formation is dominantly a dark gray, massive limestone. Eight miles east of the eastern border of the Allensville quadrangle, on the newly constructed Lewistown Route 22-522 bypass, a road cut in the Old Port Formation revealed thin beds of very fine-grained sandstone, shale, chert, and siltstone in the limestone. These lithologies were not observed in the Allensville quadrangle, but are probably present. The road cut is now paved over. Limestone in the lower Old Port Formation is well-bedded, fossiliferous, crystalline calcarenite. Bedding surfaces exposed on East Branch Road west of Barr Road exhibit widely spaced anastomosing fractures. Layers immediately above the contact with the Keyser Formation contain chert blebs and locally extensive "ropy" chert in a 3 feet thick zone. Fossils are commonly siliceous. Brachiopods, crinoids, bryozoa, ostracods, gastropods, and *tentaculites* were found. The limestones are karstic. Sinkholes are common, and Rupert Cave, located about one mile west-southwest of Spring Run Church, has over 7,000 feet of mapped passage. The member is about 200 feet thick.

Outcrops are common, but nowhere is it fully exposed. About 50 feet of section are exposed near Dry Run where it cuts through Rocky Ridge. Its contact with the underlying Keyser Formation is present on Barr Road near its intersection with East Branch Road. The contact is marked by the presence of tubular chert.

Ridgeley Member: The Ridgeley Member crops out on the flanks and axis of the Broad Top Synclinorium and within the structurally complex unnamed synclinorium in the southeast part of the quadrangle. Its hardness is highly variable. Where it is cemented by silica, it forms high crags. Numerous crags are exposed on Rocky Ridge and on the northwest flank of the Broad Top Synclinorium. Southeast of Orebank Ridge, where the sandstone is calcite-cemented, it lies topographically below the underlying Shriver chert of the Old Port Formation.

The Ridgeley Member consists of fine- to very coarse-grained, white and light gray to buff, fossiliferous sandstone. Fossils are dominantly brachiopods. Some crinoids and gastropods are also found. In the northwest portion of the quadrangle, granules to small pebbles are dispersed in the sandstone. At Martins Gap and along Rocky Ridge, it exhibits extensive large "holes" where material has weathered out. It is medium to thick bedded, with a thickness of 75 feet. In some places it exhibits ductile deformation that obliterates bedding. In nearby Mapleton Depot, immediately southwest of the Allensville quadrangle, it is quarried for glass sand.

The Ridgeley Member is an excellent marker unit for mapping due to its distinctive lithology and commonly prominent narrow ridges. Its contact with the underlying Shriver chert was not directly observed and is assumed to be gradational. The best exposure of the Ridgeley Member seen is just west of the Allensville quadrangle, on Wesley Chapel Road. The member forms a dip slope here, and approximately half of the unit is exposed. Both hard and soft lithologies are exhibited. Hunters Rock on Wesley Chapel Road is a crag about 60 feet high exhibiting prominent cross-bedding.

Onondaga Formation

The Onondaga Formation is present on the flanks and axis of the Broad Top Synclinorium and is inferred to underlie the axes of three 3rd order synclines within the structurally complex unnamed synclinorium in the southeast part of the quadrangle. The synclines are north of Bald Ridge and south of Dunmire and Orebank Ridges. On the southeast flank of the Broad Top Synclinorium, where dips are steep to overturned, the Onondaga Formation generally occupies steep, colluvium-covered slopes. On the northwest flank, where dips are lower, slopes are gentler. In the southeast part of the quadrangle, near Dunmire and Orebank Ridges, slopes underlain by the Onondaga Formation are steep and colluvium-covered. The Onondaga Formation is rarely exposed in the Allensville quadrangle because of the thinness of the unit and low resistance to erosion. Only one outcrop was observed in the southeast area. Small outcrops were found on the flanks of the Broad Top Synclinorium.

The Onondaga Formation has two members. The lower member is the Needmore shale, a medium- to medium-light-gray, generally calcareous shale that commonly has pencil cleavage caused by the intersection of bedding and cleavage. Layering in most outcrops is obscure. Weathered surfaces exhibit iron staining. It contains a few fossils; brachiopods and trilobites were found. It is about 80 feet thick. The upper member is the Selinsgrove limestone. The upper 10 feet contain dark- to medium-gray, argillaceous limestone beds up to 6 inches thick interbedded with cleaved(?) claystone. Bedding surfaces contain small round solution features. Southeast of Garrett Knob there are four sinkholes, up to 20 feet in diameter and 10 feet deep, developed in the Selinsgrove limestone. The size of the sinkholes implies a thickness of at least 20 feet., for a total formation thickness of 100 feet. Fossils are sparse, but brachiopods, coral, trilobites and burrows were seen. The member is too thin, with too few outcrops, to map separately.

While the contact with the Ridgeley Member of the Old Port Formation was not observed, it is probably sharp and conformable. The best outcrops are at $40^{\circ}35'34''$ N 77°50'07"W (Station 4605), along Rte. 26 100 yards west of Jackson Corner where thin limestones are interbedded in the shales, and in Martins Gap.

Marcellus Formation

The Marcellus Formation is present on the flanks and axis of the Broad Top Synclinorium and is inferred to underlie the axes of two 3rd order synclines southeast of Orebank and Dunmire Ridges that are within the structurally complex unnamed synclinorium in the southeast part of the quadrangle. Because the Marcellus is easily eroded, it underlies low areas and is commonly covered with colluvium. The two valley floors it underlies in the unnamed synclinorium are completely covered with colluvium to the extent that not even float was observed. Its presence is inferred from dips of the flanking Ridgeley Member of the Old Port Formation and unit thicknesses. Colluvium covering the formation in the Broad Top Synclinorium area is commonly thin enough to find float and small outcrops of the underlying Marcellus lithologies.

The Marcellus Formation consists of fissile grayish-black to black carbonaceous clay shale. It contains abundant pyrite, particularly near its base. Although bentonites are contained within the formation, none were observed in outcrop in the Allensville quadrangle. Limestone occurs locally and may be seen in an outcrop at 40°35'28"N 77°51'13"W (Station 4705), located about 3000 feet southeast of Jackson Corner. Although it is only about 70 feet thick, its distinctive lithology makes it an excellent marker unit.

Its contact with the Selinsgrove Member of the Onondaga Formation is sharp and conformable. It is well exposed at $40^{\circ}35'34"$ N $77^{\circ}50'07"W$ (Station 4605) along the East Branch of Standing Stone Creek where 15 feet of the Selinsgrove Member and 25 feet of the Marcellus Formation are exposed. The largest exposure is a borrow pit about 1000 feet southwest of the intersection of East Branch Road and Allensville Road at $40^{\circ}35'47"N$ $77^{\circ}50'02"W$ (Station 4694).

Mahantango Formation

The Mahantango Formation underlies portions of the west-central and northwestern portion of the Allensville quadrangle along the Broad Top Synclinorium. The formation supports low, indistinct hills and topographically distinct ridges such as Brush Ridge near the western boundary of the quadrangle. Natural exposures are rare. Most observable exposures are in small to moderate size borrow pits which reveal that the absence of exposures is the result of all slopes being covered by thick colluvium of pencil-shaped claystone fragments. The principal lithology of the Mahantango Formation is sparsely fossiliferous, medium-dark-gray claystone that weathers to olive gray. Cleavage is prominent in most claystone layers and obscures the regional strike and dip of the rocks. Structural attitudes are provided by a few widely dispersed layers of micaceous, sparsely fossiliferous, dark-gray weathering to olive-gray, very fine-grained sandstone layers. Stratigraphic units approximately 25-40 feet thick of thin to thick bedded, dark gray, very fine-grained, sparsely fossiliferous sandstone support Brush Ridge and a paralleling lower ridge along Dry Run.

The uppermost claystones of the Mahantango are abundantly fossiliferous and provide a distinctive lithology that marks the upper contact of the formation with the overlying Harrell Formation. The upper contact is exposed along the private road described below in the Harrell Formation along Standing Stone Creek. Here the upper one foot of the Mahantango is a hard, dark gray limestone (the Tully limestone) that is profusely fossiliferous with fossils similar to those in the immediately underlying claystones.

The lower contact of the Mahantango Formation with the underlying Marcellus Formation is nowhere exposed on the quadrangle. Elsewhere the contact is a gradational contact marked by a grading upward from the black fissile Marcellus Formation to very dark gray to dark gray non-fissile claystones. The formation is about 1000 feet thick.

The best exposures of the formation are in the moderately sized borrow pit along Martin Gap Road, at $40^{\circ}34'34''N 77^{\circ}51'14''W$ (Station 4459) and in natural exposures along Dry Run at $40^{\circ}33'02''N 77^{\circ}52'15''W$ (Station 4021) and at $40^{\circ}32'56''N 77^{\circ}52'10''W$ (Station 4461) where it has eroded a gap in Brush Ridge.

Harrell Formation

The Harrell Formation is present only in the west-central portion of the Allensville quadrangle, underlying and paralleling the Brallier Formation along its outcrop belt in the Broad Top Synclinorium. The Harrell occupies a distinctive lower slope marked by a discernable slope angle change at the base of the Brallier Formation. Only two outcrops of the Harrell Formation were observed in the quadrangle. The Harrell Formation principally consists of fissile, black, shaly claystone which grades upward in the medial and upper portions to very dark gray to dark gray claystones with interbeds of black shale. Throughout its outcrop belt the formation is largely obscured by colluvium from the overlying Brallier Formation. The base of the formation and also identified by the change in lithology from black fissile claystone to dark gray, non-fissile, abundantly fossiliferous claystones.

An 80% complete section of the Harrell Formation was observed just west of the western boundary of the Allensville quadrangle on the hill slope west of Dry Run along a private road, between 40°32'54"N 77°52'31"W and 40°32'41"N 77°52'37"W. The exposed section consists of deeply weathered fissile black claystones, weathering to gray and dark-brownish-gray claystones. The formation's black shales are interbedded with very dark to dark-gray claystones in the medial and upper portions. It is 100 feet thick.

The lower portion of the Harrell is exposed along a second private road at 40°34'05"N 77°52'24"W (Station 5673) above the outcrops of the Mahantango Formation on the steep hillslope paralleling Standing Stone Creek just north of where the creek course is a sharp "U" near the western boundary of the Allensville quadrangle. At this locality the lower Harrell is underlain by the Tully limestone and abundantly fossiliferous Mahantango Formation claystones. The lower contact is sharp and conformable.

Brallier Formation

The Brallier Formation is present only in the west-central portion of the Allensville quadrangle. The stratigraphically youngest unit of the quadrangle occupies the shallowly dipping sides and axis of the Broad Top Synclinorium. The Brallier supports topographic ridges with steep slopes. Few outcrops are seen, except along ridge tops and along constructed roads and trails. Here, outcrops in the Brallier consist of thin, planar bedded to flaggy, light-olive-gray micaceous siltstone and interbedded olive-gray, very fine-grained sandstone in layers 1 to 2 inches thick. Interbedded with these outcrops are light-olive-gray shaly claystones that make up the bulk of the approximately 150 feet of section present in the quadrangle. The basal contact with the underlying Harrell Formation is sharp and conformable, but rarely seen due to extensive colluvium that is derived from, and mantles the steep slopes underlain by, the lower Brallier. The base of the formation was mapped at a prominent break in slope at the top of the underlying Harrell Formation.

The base of the formation was observed along a private road leading downward from the ridge top to Dry Run immediately west of the western quadrangle boundary at 40°32'51"N 77°52'34"W (Station 4450). At this locality a two-foot thick, olive-gray, very fine-grained sandstone marks the base of the Brallier. Above the formation base at this locality the principal lithologies are fissile, dark to very-dark-gray, laminated claystones with minor interbedded siltstones until near the top of the slope where zones of very planar bedded, flaggy, fine-grained sandstones appear.

STRUCTURE

Folds are the dominant geologic structures in the Allensville quadrangle. The folds are all sizes, from 1^{st} order (wavelength > 10 miles) to 5^{th} order (hand specimen size) (Nickelsen, 1963). General trends of the folds are northeast-southwest. The folds plunge to the southwest, away from the Juniata culmination. This culmination, which is east of the quadrangle, is a transverse belt that extends approximately north-south from western Perry County to southwestern Clinton County and encompasses the structurally highest portions of all the anticlines (Gwinn, 1970). First order folds are the Broad Top Synclinorium, which traverses the northwest portion of the quadrangle, the Jacks Mountain Anticline, which crosses the middle of the quadrangle, and part of the northwest flank of an unnamed 1^{st} order synclinorium that is in the southeast portion of the quadrangle. Many smaller folds, from 3^{rd} to 5^{th} order, occur within the major folds.

Several major faults traverse the area. The pre-Alleghanian Orogeny Antes-Coburn Detachment Fault is exposed in the Kishacoquillas Valley (Nickelsen, 1988). It separates two mechanically dissimilar lithologies, the underlying carbonate sequence and the overlying sequence of shales, siltstone, and sandstones. The Bearpen Hollow Fault, a splay thrust fault originating in the Antes-Coburn Detachment Fault (Nickelsen, 1988), is in the northeast corner of the quadrangle. The Stone Mountain Duplex, which consists of discrete blocks that have been rotated so that their bedding strikes north of the ridge trend, is located south of 40°32'30"N (Nickelsen, 1988). A reverse fault in the Kishacoquillas Valley and two thrust faults, one in the Kishacoquillas Valley, and one on the northwest flank of Stone Mountain, are present.

Most claystones display cleavage, which is prominent in the Reedsville and Mahantango formations.

Folds

The folds in the Allensville quadrangle are flexural-slip folds. Beds do not change in thickness across the folds, indicating little deformation within individual beds. Within each fold limb, limited outcrops imply bed attitude is constant, with no bending except in the fold hinges. Consequently, the width of the hinge is narrow compared to the dimensions of the fold. This geometry is characteristic of the Ridge and Valley structural province in Pennsylvania (Nickelsen, 1963). Slickensides are commonly seen on bedding surfaces, indicating that the principal deformational mechanism was slip of the bedding surfaces between the beds.

The dominant fold in the quadrangle is the Jacks Mountain Anticline. It is a breached anticline. Ordovician carbonates are exposed along its axis in the Kishacoquillas Valley. The Silurian-age Tuscarora Formation is on the crests of the mountains flanking the valley, about 1000 feet above the valley floor. Dips on the southeast side of the axis of the anticline are significantly steeper than those on the northwest side, up to the crest of Stone Mountain. Northwest of the crest, dips are similar those on the southeast side of the anticline. Smaller folds are found on the flanks of the valley in the Reedsville Formation and throughout the valley. Because outcrops are generally small, few of the smaller folds are seen, but they are probably common. A cluster of 4th order anticlines is seen along Kishacoquillas Creek southwest of Waynesburg Road, where a small dome is also present. The anticlinal axis plunges to the southwest, so progressively older rocks are exposed on its axis to the northeast. A 5th order anticline with prominent south dipping cleavage is revealed in a small shale pit at 40°36'16"N 77°46'26"W (Station 5465). It is in the Reedsville Formation and may be related to the Bearpen Hollow folded thrust fault.

The southwest plunge of the Broad Top Synclinorium results in the youngest rocks in the quadrangle, the Brallier Formation, being exposed along its axis on the western border of the quadrangle. Dips are steeper on its southeast flank and there are smaller folds contained within it. Overturning of fold limbs occurs north and west of Garret Knob. A non-continuous exposure of the Ridgeley Member just west of Garret Knob has some beds overturned, while some are upright. The exposure defines the south flank of a 4th order syncline whose axis plunges south in the areas of overturning without affecting the linearity of the exposure. A 5th order syncline in the Wills Creek Formation is visible at 40°37'27"N 77°49'01W (Station 4381).

There are three 3rd order anticlines and three 3rd order synclines in the southeast portion of the quadrangle that are on the northwest flank of an unnamed 1st order synclinorium. The axis of the synclinorium is southeast of the Allensville quadrangle. Dips are steep to overturned. The multitude of 3rd order folds is probably related to ductility of the Upper Silurian to Middle Devonian rocks exposed. The valley underlain by the 3rd order syncline south of Orebank Ridge is flat-bottomed, sloping to the southwest. Because the area is covered with colluvium, no exposures were seen, and it is not known if the flatness is a function of structure. There is no uniformity of direction of plunge of the axes of the 3rd order folds. Some plunge to the northeast, some to the southwest. No lower order folds were seen, but that is probably a consequence of a lack of large outcrops.

Faults

The most significant fault in the quadrangle is the Antes-Coburn Detachment Fault, which is at or near the contact between the Antes Member of the Reedsville Formation and the Coburn Formation (Nickelsen, 1988). It separates two mechanically dissimilar lithologies, the underlying 2-mile-thick carbonate sequence and the overlying 5-mile-thick sequence of shales, siltstone, and sandstones. Gwinn (1970) determined that the underlying carbonates were shortened twice as much as the overlying shales, siltstone and sandstones.

The detachment fault is best seen at the Reedsville exit of US 322, on the Burnham quadrangle. Only one exposure of the fault is seen on the Allensville quadrangle, at 40°33'37"N 77°48'32"W (Station 4825). Here Coburn Formation limestones are exposed in a creek bed. Twenty-five feet northwest in the creek bed is a shear zone in black claystone of the Antes Member, striking N74E with vertical beds. The shear zone is interpreted to be the physical expression of the detachment fault. Twenty-five feet northwest of the shear zone, shallowly northwest-dipping Antes is exposed.

South of Rockville, the mapped trace of the fault cuts out half of the carbonates of the Coburn-Hatter sequence. Where the fault is inferred from float, it is common to see Reedsville shale, not the Antes Member, adjacent to the Coburn Formation.

The crest of Stone Mountain south of 40°32'30"N exhibits an uneven, knobby form. This area is the Stone Mountain duplex, which consists of discreet fault-bound blocks of the Tuscarora, Juniata and Bald Eagle formations that have been rotated so that their bedding strikes at an acute angle north of the ridge trend. For a complete description refer to Nickelsen (1988, p. 101-102). Each block is in a zone that is bounded on both sides by thrusts or steep reverse faults. Pre-folding imbricate faults that strike parallel to bedding in the blocks cause multiple duplications of the Bald Eagle-Tuscarora section. Nickelsen interpreted that the Stone Mountain duplex was localized to the Juniata-Tuscarora-Rose Hill sequence and that a separate duplex affected the Reedsville-Bald Eagle-Juniata sequence. We have reinterpreted, based on available data, that it is more appropriate to represent the pre-folding imbricate faults that are seen rotating the Bald Eagle, Juniata, and Tuscarora formations as one duplex.

The Bearpen Hollow Fault is a refolded thrust fault that cuts off the southwest end of an unnamed ridge underlain by the resistant rocks of the Bald Eagle Formation, 0.6 miles west of the unincorporated community of Rockville. Traced to the northeast from the cutoff, the Bearpen Hollow Fault cuts upward in stratigraphic section until in the adjoining McAlevys Fort quadrangle it also cuts off the Tuscarora Formation exposed on Stone Mountain. Although colluvium hides the trace of the fault south of Rockville, it is mapped northeastward from the cutoff of the unnamed ridge to a mapped repeat of the Coburn-Hatter carbonates at the east border of the quadrangle.

A reverse fault is in the Kishacoquillas Valley, southeast of the anticlinal axis and parallel to it. The fault extends from the southern border of the quadrangle to one-half mile west of the eastern quadrangle boundary. A thrust fault in the valley, mapped by Nickelsen (1988), is north of and parallel to the anticlinal axis and extends from the southern border of the quadrangle to Sharpsburg. A second thrust fault is on the northwest flank of Stone Mountain. It was not directly observed, but inferred from having to fit 2700 feet of stratigraphic section into a space

1700 feet wide. A line of sinkholes that are oriented parallel to regional strike is interpreted to be the location of the fault.

Cleavage

Most claystones cropping out in the quadrangle exhibit prominent cleavage. Formations in which cleavage was seen are the Reedsville, Wills Creek and Mahantango formations. The Bloomsburg Formation commonly also has prominent cleavage, but not enough of it was seen to characterize it. Pencil cleavage is common in claystones from the Reedsville and Mahantango formations.

REFERENCES

- Cotter, Edward, 1982, Tuscarora Formation of Pennsylvania: Society of Economic Paleontologists and Mineralogists, Eastern Section, Lewistown, PA, Guidebook, 105 p.
- Gwinn, V. E., 1970, Kinematic patterns and estimates of lateral shortening, Valley and Ridge and Great Valley provinces, central Appalachians, south-central Pennsylvania, in Fisher, G. W., Pettijohn, F. J., Reed, J. C., Jr. and Weaver, K. W., eds., Studies of Appalachian Geology: Central and Southern: New York, Interscience Publishers, p. 133-146.
- Nickelsen, R. P., 1963, Fold patterns and continuous deformation mechanisms of the central Pennsylvania folded Appalachians, in Tectonics and Cambrian-Ordovician stratigraphy, central Appalachians of Pennsylvania, Pittsburgh Geological Society and Appalachian Geological Society, Guidebook, P. 13-19.
- Nickelsen, R. P., 1988, Structural evolution of folded thrusts and duplexes on a first-order anticlinorium in the Valley and Ridge Province of Pennsylvania: Geological Society of America Special Paper 222, p. 89-106.
- Rones, Morris, 1969, A lithostratigraphic, petrographic and chemical investigation of the lower Middle Ordovician carbonate rocks in central Pennsylvania: Pennsylvania Geological Survey, 4th ser., General Geology Report 53, 224 p.

Table 1. Planar measurements.

Station	Latitude	Longitude	Strike	Dip	Description	Station	Latitude	Longitude	Strike	Dip	Description
4759		-77.86277	115		Inclined	5037	40.55778	-77.77097	32		Inclined
4761		-77.86172	47		Inclined	5040	40.55604	-77.76898	35		Inclined
4764	40.60515		53		Inclined	5044	40.55958	-77.76950	53		Inclined
4767	40.60162	-77.86087	178		Inclined	5046	40.56029	-77.76888	32		Inclined
4770	40.60645		13		Inclined	5047	40.55873	-77.76837	48		Inclined
4771	40.60851	-77.87011	55		Inclined	5048	40.55717	-77.76794	38		Inclined
4774	40.60724	-77.86908	125		Inclined	5050	40.55463	-77.77023	38		Inclined
4775	40.60967	-77.85983	220		Inclined	5051	40.55299	-77.77431	36		Inclined
4777	40.60646	-77.86050	90		Inclined	5053	40.53519	-77.81383	200		
4779	40.60783		128		Inclined	4114	40.61378	-77.86374	225		Inclined
4793			228		Inclined	4117	40.61610		42		Inclined
4794			60		Inclined	4119	40.61280	-77.86994	70		Inclined
4795			215		Inclined	4120	40.61264		200		Inclined
4796	40.61697	-77.85469	234		Inclined	4135	40.57627	-77.76868	228		Inclined
4798		-77.85511	42		Inclined	4136	40.57522	-77.76820	220		Inclined
4800	40.60822	-77.85426	35		Inclined	4137	40.57024	-77.76304	220		Inclined
4807	40.51511	-77.86981	193		Inclined	4138	40.57106	-77.76303	70		Inclined
4810	40.61941	-77.84626	52		Inclined	4139	40.57227	-77.76377	61		Inclined
4812	40.61977	-77.84850	55		Inclined	4140	40.57150	-77.77106	238		Inclined
4814	40.61986	-77.85036	218	12	Inclined	4142	40.57169	-77.76643	170		Inclined
4817	40.61443	-77.85976	67	32	Inclined	4143	40.57336	-77.76830	222	20	Inclined
4824	40.55913	-77.80576	205		Inclined	4144	40.57236	-77.76705	245	19	Inclined
4825	40.56040	-77.80891	212		Inclined	4146	40.56535	-77.77181	74		Inclined
4746	40.60105	-77.85801	139	36	Inclined	4147	40.56674	-77.77206	63	19	Inclined
4751	40.60831	-77.85745	167		Inclined	5396	40.52892	-77.80168	41		Inclined
4827	40.55388	-77.79845	185	5	Inclined	5399	40.53128	-77.80423	46	32	Inclined
4829	40.52652	-77.81623	230	26	Inclined	5400	40.53089	-77.80598	235	11	Inclined
4722	40.58931	-77.87177	75	36	Inclined	5402	40.53236	-77.79951	46	50	Inclined
4685	40.58447	-77.87449	48	18	Inclined	5403	40.53513	-77.79539	46	47	Inclined
4686	40.58560	-77.87460	52	37	Inclined	5405	40.53899	-77.79652	62	10	Inclined
4687	40.57356	-77.86443	50	23	Inclined	5407	40.53914	-77.79498	51	30	Inclined
4688	40.57279	-77.86952	122	13	Inclined	5408	40.53848	-77.79401	37	53	Inclined
4692	40.59906	-77.83108	40	57	Inclined	5410	40.54498	-77.82643	215	23	Inclined
4700	40.59545	-77.84018	0	0	Horizontal	5411	40.51886	-77.82029	40	38	Inclined
4714	40.59233	-77.86957	65	22	Inclined	5412	40.52122	-77.81519	60	51	Inclined
4717	40.59240	-77.87368	80	19	Inclined	5413	40.51105	-77.83054	56	28	Inclined
4719	40.59400	-77.87460	80	15	Inclined	5415	40.50971	-77.82979	63		Inclined
4702	40.59544	-77.84318	52		Inclined	5418		-77.80981	190	7	Inclined
4709	40.59518	-77.87037	70	15	Inclined	5425		-77.80897	25	10	Inclined
4711		-77.86711	52		Inclined	5428		-77.80608	184		Inclined
4734		-77.87280			Inclined	5431		-77.80482	276		Inclined
4735		-77.87362	70		Inclined	5435		-77.80185	220		Inclined
4831		-77.81799	242		Inclined	5439	40.53159		55		Inclined
4832		-77.77724			Inclined	5442	40.52988		224		Inclined
4835		-77.77546	242		Inclined	5443	40.56483		208		Inclined
4839		-77.77900	232		Inclined	5444	40.56599		215		Inclined
4840		-77.77734			Inclined	5445		-77.79212	245		Inclined
4842		-77.77952	217		Inclined	5449		-77.81792	213		Inclined
4855		-77.78127	265		Inclined	5450		-77.81911	220		Inclined
4858		-77.78035	240		Inclined	5460	40.52967	-77.83157	218		Inclined
4860		-77.78115			Inclined	5462	40.53317	-77.83646	227		Inclined
4862		-77.78679			Inclined	5467	40.56527	-77.79438	211		Inclined
4863	40.58011	-77.79040	250	36	Inclined	4820	40.52238	-77.83812	40	42	Inclined

Table 1. Planar measurements.

Station	Latitude	Longitude	Strike	Dip	Description	Station	Latitude	Longitude	Strike	Dip	Description
4865	40.57682		222		Inclined	5483	40.52183		210		Inclined
4866			185		Inclined	5487	40.51853	-77.82176	47		Inclined
4869	40.56980	-77.80390	220		Inclined	5553	40.50017	-77.85533	215		Inclined
4872	40.56763	-77.79514	230		Inclined	5568	40.54018	-77.80054	45		Horizontal
4873	40.56540	-77.79904	222		Inclined	5571	40.53333	-77.80439	70		Inclined
4886	40.59981	-77.75149	225		Inclined	5572	40.53306	-77.80656	185		Inclined
4887	40.59815	-77.75189	234		Inclined	5573	40.53353	-77.80827	214		
4888	40.59288	-77.75610	232		Inclined	5576	40.58384	-77.84785	226		Inclined
4889	40.59498		237		Inclined	5578	40.57727	-77.84776	190		Inclined
4890	40.59547	-77.75605	251		Inclined	5590	40.58304	-77.84538	220		Inclined
4892	40.59199	-77.76123	245		Inclined	3350	40.50840	-77.77027	40		
4895		-77.76847	256		Inclined	5673	40.56800	-77.87340	0		Horizontal
4914	40.59261	-77.79285	250		Inclined	5684	40.56345	-77.86826	170		Inclined
4918		-77.79448	232		Inclined	5693	40.55377	-77.87238	195		Inclined
4921	40.58448		213		Inclined	5703	40.55962	-77.87142	198		Inclined
4928	40.57817	-77.80006	217		Inclined	5704	40.55978	-77.87217	200		Inclined
4929	40.58745	-77.80302	205		Inclined	5705	40.55812	-77.87330	185		Inclined
4925	40.58940	-77.79894	203		Inclined	5706	40.55712	-77.87341	195		
4932	40.59074	-77.79957	228		Inclined	5707	40.55462	-77.87496	197		
4933	40.59093	-77.79768	218		Inclined	5775	40.51268	-77.84828	217		Inclined
4941	40.59475	-77.76538	258		Inclined	3777	40.55420	-77.83879	183		Inclined
4944	40.58033	-77.80223	241		Inclined	3779	40.55261	-77.84007	215		Inclined
4946	40.58178	-77.79234	222		Inclined	3780	40.54829	-77.84319	215		Inclined
4947	40.56702	-77.80197	227		Inclined	3806	40.59984	-77.75144	242		Inclined
4949		-77.81193	218		Inclined	3808	40.59981	-77.75439	240		Inclined
4958	40.56091	-77.80218	208		Inclined	3813	40.60202	-77.85690	0		Horizontal
4959		-77.80182	208		Inclined	3815	40.60325	-77.85763	0		Horizontal
4962	40.55707	-77.79904	201		Inclined	3816	40.60383	-77.85794	158		Inclined
4966	40.55675	-77.80310	187		Inclined	3817	40.59367	-77.82069	212		Inclined
4968	40.55554	-77.80644	205		Inclined	3818	40.50028	-77.87083	205		Inclined
4978	40.55152	-77.80013	190		Inclined	3819	40.50161	-77.87031	204		Inclined
4980	40.55258	-77.79972	200		Inclined	3820	40.50267	-77.86992	180		Inclined
4988	40.55296	-77.80819	187		Inclined	3821	40.50433	-77.86942	155		Inclined
4990		-77.80811	202		Inclined	3822	40.50603		202		Inclined
4991		-77.81039	214		Inclined	3824		-77.86806	153		Inclined
4992		-77.80808	235		Inclined	3825	40.50861		198		Inclined
4952		-77.80647	195		Inclined	3827		-77.86683	171		Inclined
4997		-77.80435			Inclined	3828		-77.86647	196		Inclined
5000		-77.80591	222		Inclined	3830		-77.86586	160		Inclined
5003		-77.81262	188		Inclined	3831		-77.86531	190		Inclined
5007		-77.81213	211		Inclined	3837	40.52778		180		Inclined
5009		-77.81745	206		Inclined	3838	40.52911	-77.85822	182		Inclined
5011		-77.81469	218		Inclined	3839	40.52994		184		Inclined
5012		-77.81097	226		Inclined	3948	40.52300		0		Horizontal
5013			225		Inclined	3952	40.52670		48		Inclined
5018	40.57297	-77.75148	65		Inclined	3957		-77.81277	215		Inclined
5027		-77.75556			Inclined	3958	40.60087		33		Inclined
5030		-77.75851	40		Inclined	3963	40.60357	-77.81939	32		Inclined
4459		-77.85392	215		Inclined	3966		-77.81656	72		Inclined
4461		-77.86952	197		Inclined	3975		-77.81146	190		Inclined
4465		-77.86197	180		Inclined	3978		-77.81204	208		Inclined
4466		-77.81627	25		Overturned	3985		-77.81501	55		Inclined
4467		-77.81863	24		Vertical	3986	40.61407	-77.81469	57		Inclined
			∠ -f	00		0000	10101-01		01	.0	

Table 1. Planar measurements.

Station	Latitude L	ongitude	Strike	Dip [Description	9	Station	Latitude	Longitude	Strike	Dip	Description
4468		77.82090	220		nclined		132	40.57955	-77.76126	229		Inclined
4471	40.60528 -		47		nclined		134	40.58001	-77.76301	232		Inclined
4473		77.81841	60		nclined		841	40.53253	-77.85575	160		Inclined
4477		77.81800	214		nclined		842	40.53392	-77.85489	181		Inclined
4483		77.81592	52		nclined		844	40.53492	-77.85367	161		Inclined
4485		77.81400	69		nclined		846	40.53686	-77.85211	199		Inclined
4485 4495		77.80273	70		nclined		847	40.53080	-77.85019	199		Inclined
		77.80278	145		nclined		849					Inclined
4500			32					40.54089	-77.84906	208		Inclined
4502		77.82793			nclined		851	40.54258	-77.84789	177		
4507		77.83406	103		nclined		852	40.50058	-77.86617	151		Inclined
4510		77.83572	110		nclined		853	40.50178	-77.86575	177		Inclined
4513		77.83626	55		nclined		854	40.50300	-77.86486	156		Inclined
4514		77.83722	270		nclined		855	40.50397	-77.86419	166		Inclined
4519		77.83777	135		nclined		856	40.51136	-77.86158	177		Inclined
4520		77.83568	79		nclined		857	40.52153	-77.85481	197		Inclined
4522		77.83698	10		nclined		858	40.52350	-77.84936	212		Inclined
4524	40.59626 -		45		nclined		859	40.52717	-77.84594	213		Inclined
4526		77.87380	155		nclined		860	40.53014	-77.84417	231		Inclined
4539		77.87220	190		nclined		863	40.53022	-77.84169	227		Inclined
4541		77.83376	32		nclined		864	40.54164	-77.83039	202		Inclined
4542		77.83396	67		nclined		865	40.54878	-77.82514	217		Inclined
4544	40.60204 -	77.83382	59		nclined		866	40.55200	-77.82300	213		Inclined
4547		77.83564	40	48 Ir	nclined	3	868	40.53578	-77.81639	207	11	Inclined
4550	40.60571 -	77.83699	74	18 Ir	nclined	3	869	40.50322	-77.85667	77	7	Inclined
4551	40.60575 -	77.83700	70	20 Ir	nclined	3	871	40.50914	-77.84572	234	20	Inclined
4553	40.61246 -	77.80988	38	84 O	Overturned	3	873	40.51050	-77.84667	235	70	Overturned
4557	40.59794 -	77.84068	85	7 Ir	nclined	3	875	40.52575	-77.82869	203	24	Inclined
4558	40.59696 -	77.84270	144	26 Ir	nclined	3	876	40.52800	-77.82631	248	68	Inclined
4560	40.59747 -	77.83892	74	46 Ir	nclined	3	878	40.52972	-77.81606	214	21	Inclined
4562	40.62495 -	77.83896	215	23 Ir	nclined	3	880	40.51400	-77.82422	51	40	Inclined
4582	40.61481 -	77.84270	178	8 Ir	nclined	3	881	40.51161	-77.82739	44	55	Inclined
4586	40.61460 -	77.84484	176	8 Ir	nclined	3	882	40.50950	-77.82467	47	47	Inclined
4589	40.61668 -	77.84081	60		nclined	3	885	40.54553	-77.78347	280	35	Inclined
4592		77.84148	104		nclined		886	40.54114	-77.80856	188		Inclined
4593	40.61320 -	77.84179	184	49 Ir	nclined	3	887	40.54211	-77.80944	204		Inclined
4594	40.61434 -		185		nclined		889	40.55781	-77.80411	213		Inclined
4596	40.61197 -		96		nclined		890	40.56081	-77.80739	188		Inclined
4598	40.60283 -		58		nclined		891	40.56633		207		Inclined
4599	40.58710 -		205		nclined		892	40.57047	-77.79503	237		Inclined
4605	40.59288 -		198		nclined		895	40.58831	-77.78233	225		Inclined
4609	40.59609 -		0		lorizontal		900	40.58714	-77.77064			Inclined
4611	40.60293 -		25		nclined		901	40.56714	-77.76961	67		Inclined
4612	40.60485 -		73		nclined		902	40.56592	-77.76842	39		Inclined
4617	40.60581 -		128		nclined		904	40.58353	-77.76506	225		Inclined
4620	40.59754 -		123		nclined		905	40.59111	-77.75456	231		Inclined
4622	40.59666 -		0		lorizontal		907	40.57739	-77.75478	50		Inclined
4623		77.82504	92		nclined		909	40.56725	-77.75903	52		Inclined
4624		77.82304	215		nclined		909 912	40.55475	-77.77969	63		Inclined
4624 4625			215 22		Verturned		912 913					Inclined
	40.60471 -							40.55111	-77.77164	39		
4628	40.60476 -		76 50		nclined		914	40.54978	-77.77961	55		Inclined
4629	40.60351 -		50		nclined		917	40.54439	-77.78347	59		Inclined
4630	40.60297 -		212		nclined		918	40.54300	-77.78494	58		Inclined
4633	40.60014 -	11.82808	240	90 V	'ertical	3	919	40.54536	-77.78658	52	47	Inclined

Table 1. Planar measurements.

Station	Latitude	Longitude	Strike	Dip	Description	Station	Latitude	Longitude	Strike	Dip	Description
4635	40.60934		65		Inclined	3921	40.53103	-77.79122	43		Inclined
4636			48		Inclined	3923	40.59281	-77.76114	222		Inclined
4637	40.58574		73		Inclined	3924	40.57100	-77.82900	193		Inclined
4641	40.58392	-77.86945	23		Inclined	3924	40.60897	-77.77164	64		Overturned
4566	40.58392		40		Inclined	3923	40.60897	-77.77578	193		Overturned
4634			240		Inclined	3929	40.61378	-77.77667	215		Inclined
4614	40.60778	-77.85311	50		Inclined	3930	40.61350	-77.77611	215		Inclined
4646	40.60936	-77.83923	165		Inclined	3932	40.61200	-77.77394	39		Overturned
4649	40.60558	-77.84459	204		Inclined	3934	40.61125	-77.77258	58		Overturned
4651	40.60393	-77.84429	0		Horizontal	3936	40.61333	-77.77144	69		Overturned
4652	40.60579	-77.84769	125		Inclined	3939	40.52175	-77.86236	355		Inclined
4152	40.56939	-77.77305	185		Inclined	3940	40.52403	-77.86136	165	30	Inclined
4123	40.58513	-77.75323	232		Inclined	3941	40.52592	-77.86036	148		Inclined
4124			234		Inclined	3944	40.61272	-77.77281	55		Overturned
4126	40.58584		222		Inclined	3946	40.54531	-77.75542	45		Inclined
4127		-77.75641	212		Inclined	3947	40.54667	-77.75367	45		Inclined
4128	40.58275		214		Inclined	4153	40.61378	-77.86132	195		Inclined
4130	40.58183	-77.75937	55		Inclined	4157	40.60834	-77.85982	62		Inclined
2570	40.62111	-77.75242	42	70	Overturned	4163	40.61018	-77.85742	63		Inclined
2571	40.62189	-77.75419	45		Overturned	4164	40.61295	-77.85845	48	61	Inclined
2880	40.51886	-77.75431	48	57	Inclined	4171	40.60738	-77.86692	90	11	Inclined
2940	40.50381	-77.75025	220	60	Inclined	4172	40.62475	-77.86003	217	13	Inclined
2943	40.50500	-77.75164	72	43	Inclined	4173	40.62240	-77.86465	35	20	Inclined
2945	40.51156	-77.75175	48	49	Inclined	4174	40.62277	-77.87207	60	17	Inclined
2974	40.50861	-77.75033	240	62	Overturned	4177	40.56211	-77.77513	59	24	Inclined
2975	40.50894	-77.75067	50	90	Vertical	4178	40.55888	-77.77521	15	21	Inclined
2976	40.50986	-77.75172	28	45	Inclined	4179	40.55984	-77.77304	45	20	Inclined
3068	40.56922	-77.75169	55	36	Inclined	4180	40.55707	-77.77813	55	9	Inclined
3155	40.51378	-77.75531	70	90	Vertical	4181	40.55585	-77.77924	20	3	Inclined
3172	40.51522	-77.75558	90	43	Overturned	4182	40.56549	-77.76962	66	30	Inclined
3173	40.51336	-77.75236	225	55	Inclined	4183	40.56409	-77.77107	55	36	Inclined
3341	40.51066	-77.76786	230	90	Vertical	4184	40.56719	-77.76633	60	19	Inclined
3351	40.50667	-77.77481	45	90	Vertical	4185	40.56832	-77.76701	78	28	Inclined
3352	40.50772	-77.77594	222	56	Inclined	4187	40.57675	-77.75936	218		Inclined
3385	40.51368	-77.75814	55		Overturned	4188	40.57622	-77.75832	350	10	Inclined
3390		-77.76230	43		Overturned	4189		-77.75990	212		Inclined
3403		-77.76243	223		Inclined	4191		-77.75894	60		Inclined
3405		-77.76948	50		Vertical	4192		-77.75783	38		Inclined
3413		-77.76504	50		Inclined	4195	40.57307	-77.75545	50		Inclined
3416		-77.76240	48		Inclined	4196		-77.75420	55		Inclined
3418		-77.76106	50		Inclined	4197		-77.75529	63		Inclined
3442		-77.75271	45		Inclined	4198		-77.75367	52		Inclined
3443		-77.75381	43		Inclined	4200	40.56481	-77.75711	55		Inclined
3451		-77.76095	52		Inclined	4242		-77.85102	35		Vertical
3452		-77.76224	30		Inclined	4244		-77.84611	40		Inclined
3453		-77.75979	50		Inclined	4245	40.61777	-77.84193			Horizontal
3455		-77.75670	45		Inclined	4245	40.62314		217		Inclined
3435		-77.75013	200		Inclined	4236	40.62314	-77.84891	217		Inclined
3435 3439			200		Inclined	4236					Inclined
3439 3440		-77.75631			Inclined	4238		-77.84798	24		
		-77.76593	232					-77.84902	36		Inclined
3472		-77.77167	250		Inclined	4249		-77.83774	201		Inclined
3479		-77.78535	43		Inclined	4252		-77.84122	5		Inclined
3480	40.51299	-77.77686	45	0	Horizontal	4253	40.62258	-77.84172	214	38	Inclined

Table 1. Planar measurements.

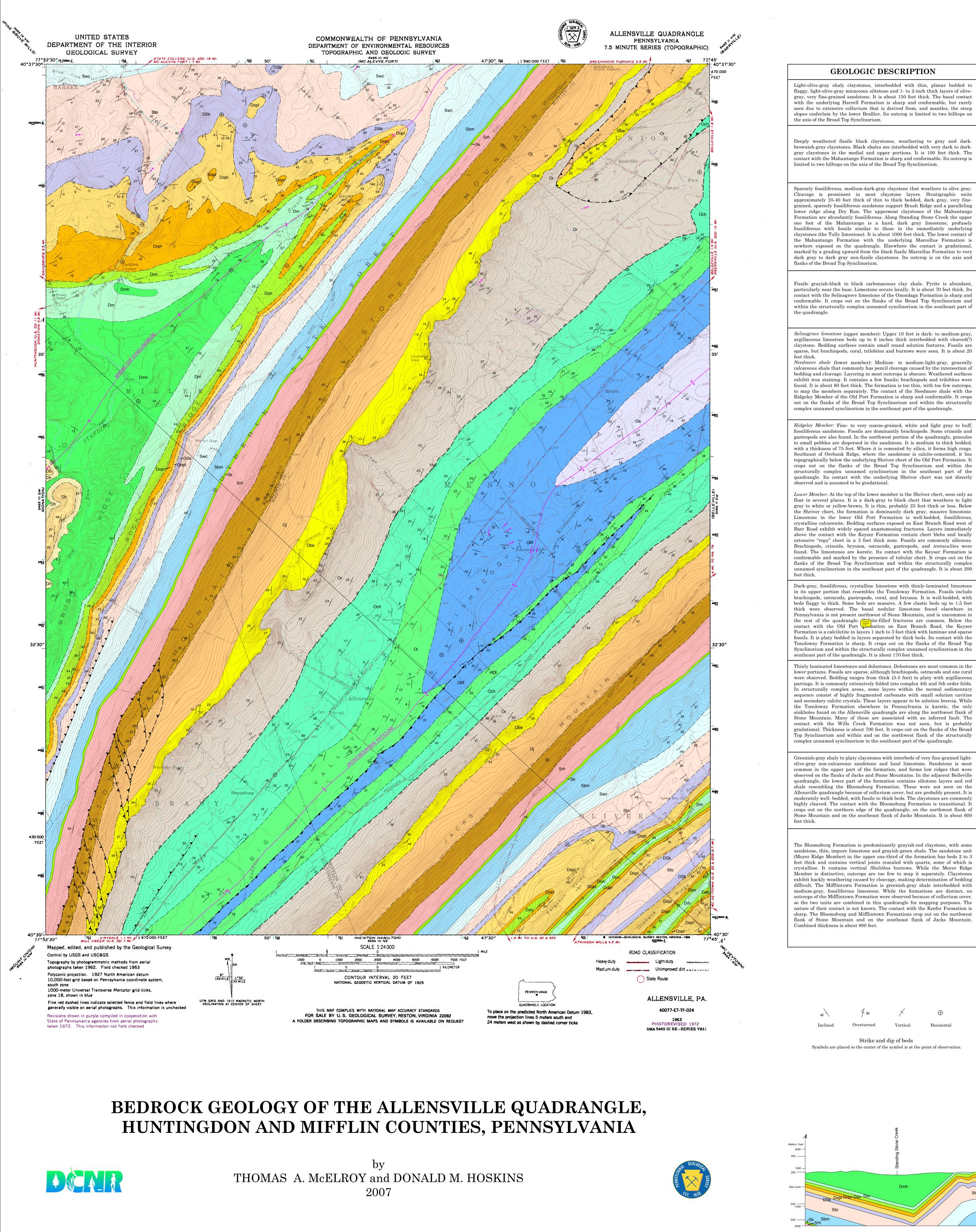

Station	Latitude	Longitude	Strike	Dip	Description	Station	Latitude	Longitude	Strike	Dip	Description
3481		-77.77297	55		Inclined	4258	40.62156		55		Inclined
3491	40.50087	-77.75233	60		Inclined	4259	40.61582	-77.87276	45		Inclined
3504		-77.75705	40		Inclined	4260	40.61429	-77.87443	42		Inclined
3505			43		Inclined	4261	40.61686		35		Inclined
3507	40.53920	-77.76312	44		Inclined	4262	40.62003	-77.87031	75		Inclined
3508	40.54056	-77.76158	45		Inclined	4263	40.61408	-77.86867	80		Inclined
3509	40.54198		60		Inclined	4264	40.61553	-77.86872	233		Inclined
3510	40.50317	-77.75203	40		Vertical	4267	40.50321	-77.84037	28		Inclined
3535	40.50062	-77.78535	213		Inclined	4269	40.51381	-77.82806	55		Inclined
3537	40.50202	-77.78529	220		Inclined	4273	40.61879	-77.82385	28		Inclined
3548		-77.78017	222		Inclined	4345	40.61237	-77.83601	252		Inclined
3554	40.50357	-77.78791	35		Inclined	4346	40.61820	-77.81138	63		Inclined
3575	40.61407	-77.75421	232		Inclined	4675	40.59929	-77.85119	54		Inclined
3579		-77.75381	52		Vertical	4678	40.59514	-77.85150	80		Inclined
3581			30		Overturned	4680	40.59420	-77.85754	80		Inclined
3584	40.56592	-77.83061	207		Inclined	4672	40.60458	-77.83176	54		Inclined
3586	40.57154		207		Inclined	4674	40.60132	-77.83897	54		Inclined
3588	40.57154	-77.83216	202		Inclined	4896	40.58673	-77.77152	217		Inclined
3590	40.57287	-77.84984	208		Inclined	4897	40.58435	-77.78248	217		Inclined
3591	40.57205	-77.84955	200		Inclined	4905	40.57908	-77.80240	215		Inclined
3592	40.61259	-77.75369	52		Inclined	5056	40.55363	-77.77113	47		Inclined
3592 3594	40.61239	-77.75277	295		Inclined	5060	40.55239	-77.77169	47		Inclined
3594 3595	40.60949		295		Horizontal	5061	40.55259	-77.77367	43		Inclined
3636	40.52271	-77.75507	52		Inclined	5062	40.55589	-77.77539	40		Inclined
3638		-77.75590	52		Inclined	5062	40.555511	-77.77467	40		Horizontal
3641	40.52683		55		Inclined	5063	40.55643	-77.77329	40 52		Inclined
3643		-77.75828	50		Inclined	5065	40.55520	-77.77222	32		Inclined
3653		-77.76882	220		Inclined	5005	40.55502	-77.78188	35		Inclined
			220 52		Inclined	5074	40.55502	-77.79182	35		Inclined
3655 3658	40.51605 40.52771	-77.75280	52 75		Inclined	5078	40.53612	-77.78403	35		Inclined
3662	40.52957	-77.75585	50		Inclined	5078	40.54623	-77.78692	57		Inclined
	40.52957	-77.75625	40		Inclined	5081	40.54623	-77.75809	52		Inclined
3663 3666	40.53035		40		Inclined	5084	40.56302	-77.76269	52 60		Inclined
3670	40.53310		40		Inclined	5087	40.56302		55		Inclined
3679		-77.76437			Inclined	5088		-77.76337	33		Inclined
3686		-77.82478	55 195		Inclined	5089	40.56175		40		Inclined
3688		-77.82271	203		Inclined	5090	40.56122		40		Inclined
3690		-77.82202	203		Inclined	5092	40.54439		42		Inclined
3690 3694		-77.81827	217		Inclined	5093	40.54498		20		Inclined
3694 3705		-77.82109	38		Overturned	5094	40.54498		20 35		Inclined
3705 3711			215		Inclined	5096	40.54526		35 40		Inclined
3711 3712		-77.81866	215		Inclined	5097	40.54616		40 50		Inclined
3712		-77.82647	65		Inclined	5098	40.55238		50 55		Inclined
								-77.75867			Inclined
3715		-77.81984	95		Inclined	5101	40.55692	-77.75422	44		
3718		-77.81744			Inclined	5102	40.55495		65		Inclined
3765		-77.83057	207		Inclined	5106	40.53139		45		Inclined
3766		-77.83173	203		Inclined	5107	40.53901		45		Inclined
3769		-77.83257	202		Inclined	5108	40.53150		38		Inclined
3771		-77.83336	235		Inclined	5109	40.53146		48		Inclined
3773		-77.83609	216		Inclined	5489	40.52500		220		Inclined
3776		-77.83796	193		Inclined	5490	40.52409		210		Inclined
4653		-77.84824	52		Inclined	5491	40.51685		210		Inclined
4656	40.60775	-77.85091	86	1	Inclined	5492	40.51759	-77.83361	215	19	Inclined

Table 1. Planar measurements.

Station	Latitude	Longitude	Strike	Dip	Description	Station	Latitude	Longitude	Strike	Dip	Description
4659	40.60777	-77.84751	40		Inclined	5496	40.52057	-77.81715	22		Inclined
4665	40.59912	-77.84357	50		Inclined	5499	40.5223	-77.81751	210		Inclined
4325		-77.86314	220		Inclined	5500	40.52159	-77.81893	43		Inclined
4328	40.57661	-77.85759	0		Horizontal	5501	40.50459	-77.84212	56		Inclined
4330	40.61070	-77.82791	51		Inclined	5504	40.50502	-77.84484	227		Inclined
4331	40.60671	-77.83102	57		Inclined	5505	40.50608	-77.84438	110		Inclined
4334	40.62445	-77.83263	35		Inclined	5506	40.50608	-77.84193	217		Inclined
4338	40.62145	-77.83247	8		Inclined	5476	40.52826	-77.83611	238		Inclined
4330	40.62057	-77.83259	205		Inclined	5479	40.52093		230		Inclined
4340			205		Horizontal	5480	40.52093	-77.82918	230		Inclined
4342 4292	40.54504		207		Inclined	5472	40.52102	-77.82381	114		Inclined
4292 4294			185		Inclined	5519	40.53000	-77.83836	230		Inclined
4294 4308		-77.87098	215		Inclined	5520	40.51351	-77.83731	230		Inclined
4308		-77.87239	215		Inclined	5525	40.51374	-77.84370	53		Inclined
4310		-77.87026	210			5529		-77.82267	222		Inclined
4312 4314	40.53595 40.53795		200		Inclined Inclined	5529	40.53438 40.50813	-77.85802	198		Inclined
					Inclined						
4315 4318	40.54000 40.54112	-77.86866 -77.86731	188 202		Inclined	5532 5535	40.50333 40.51664	-77.85665 -77.84085	325 66		Inclined Inclined
		-77.86564									
4321	40.54327		185 53		Inclined	5538	40.51634	-77.83958	235		Inclined
4275	40.61925	-77.81053			Inclined	5539	40.51100	-77.84584	338		Inclined
4278	40.62155	-77.82689	50		Inclined	5541	40.50968	-77.84898	220		Inclined
4279	40.62083		44		Inclined	5292	40.55413	-77.78573	115		Inclined
4280	40.61343	-77.82395	46		Inclined	5295	40.55569	-77.78561	165		Inclined
4281	40.62238		202		Inclined	5296	40.56282	-77.79237	220		Inclined
4283		-77.86047	48		Inclined	5302	40.54355	-77.79850	200		Inclined
4284	40.61981	-77.86130	250		Inclined	5312	40.54441	-77.80552	212		Inclined
4286			55		Inclined	5314	40.54767	-77.82134	209		Inclined
4289			60		Inclined	5318	40.54542	-77.81601	231		Inclined
4290			47		Inclined	5319	40.53682	-77.80632	250		Inclined
4366	40.62482	-77.81704	62		Inclined	5320	40.53287	-77.81387	215		Inclined
4368	40.62178	-77.81487	52		Inclined	5322	40.53108	-77.81068	210		Inclined
4370	40.61861	-77.80903	242		Inclined	5323	40.53054	-77.80940	209		Inclined
4371	40.62216	-77.81044	90		Inclined	5331	40.52525	-77.79197	45		Inclined
4375		-77.81400	45		Inclined	5333	40.52625	-77.79061	25		Inclined
4379		-77.81489	46		Inclined	5343		-77.78625	54		Inclined
4386		-77.81287	52		Inclined	5344		-77.79037	228		Inclined
4387		-77.81518	65		Inclined	5346		-77.79218	47		Inclined
4388		-77.86478	205		Inclined	5348		-77.79362	352		Inclined
4397		-77.81249	190		Inclined	5366		-77.82248	196		Inclined
4398		-77.81170	161		Inclined	5372		-77.82452	215		Inclined
4414		-77.81270	48		Overturned	5376		-77.81791	225		Inclined
4416		-77.81286	35		Overturned	5377		-77.81298	58		Inclined
4418		-77.81111	63		Inclined	5378	40.52533		57		Inclined
4424		-77.81085	55		Overturned	5112		-77.79450	50		Inclined
4427		-77.83242			Inclined	5113		-77.79240	50		Inclined
4437		-77.86671	198		Inclined	5114		-77.80029	52		Inclined
4438		-77.87000	200		Inclined	5116		-77.81038	67		Inclined
4441		-77.87007	195		Inclined	5118		-77.80710	52		Inclined
4455		-77.87292	200		Inclined	5119		-77.80707	40		Inclined
3989		-77.78369	242		Inclined	5121		-77.81028	48		Inclined
3991		-77.78390	235		Inclined	5124		-77.81619	45		Inclined
3992		-77.78611	225		Inclined	5125		-77.81178	56		Inclined
3994	40.58778	-77.78790	235	5	Inclined	5129	40.60315	-77.78862	212	27	Inclined

Table 1. Planar measurements.

Station	Latitude	Longitude	Strike	Dip	Description	Station	Latitude	Longitude	Strike	Dip	Description
3995	40.59472	-77.79218	198		Inclined	5133	40.60485	-77.78848	235		Inclined
3997	40.59630	-77.79331	210		Inclined	5136	40.58026	-77.80376	193		Inclined
3998	40.58481	-77.83802	212		Inclined	5137	40.52040	-77.85352	205		Inclined
4006	40.58067	-77.84170	217		Inclined	5159	40.56936	-77.81860	187		Inclined
4015		-77.86189	197		Inclined	5162	40.57066	-77.81813	202		Inclined
4019			195		Inclined	5168	40.51897	-77.85793	185		Inclined
4020	40.54711	-77.86606	197		Inclined	5171	40.51378	-77.86061	205		Inclined
4021	40.55058	-77.87075	175		Inclined	5175	40.57822	-77.80581	207	24	Inclined
4023	40.62211	-77.86081	55		Inclined	5177	40.57111	-77.81731	225		Inclined
4025	40.61803	-77.76415	42	33	Overturned	5178	40.57103	-77.81513	195	17	Inclined
4026	40.61355	-77.77005	60		Overturned	5180	40.57109	-77.81240	210	23	Inclined
4027	40.60977	-77.77642	55	20	Overturned	5181	40.53146	-77.84515	223	27	Inclined
4029	40.61291	-77.77463	220	25	Inclined	5183	40.53199	-77.84605	190	23	Inclined
4032	40.61557	-77.83936	145		Inclined	5184	40.53232	-77.84666	185		Inclined
4038	40.61625	-77.83754	0		Horizontal	5189	40.52900	-77.84784	225		Inclined
4040		-77.83729	183		Inclined	5190	40.53260	-77.84379	225	23	Inclined
4043	40.61267	-77.77854	233		Inclined	5193	40.55087	-77.82577	200	10	Inclined
4047	40.61870	-77.77057	215	46	Inclined	5197	40.55128	-77.82954	200	29	Inclined
4050	40.61596	-77.77446	220	44	Inclined	5202	40.54948	-77.83247	185	38	Inclined
4053	40.62177	-77.76808	222	45	Inclined	5210	40.54388	-77.83624	227	25	Inclined
4054	40.61128	-77.78029	228	37	Inclined	5222	40.54282	-77.83308	226	27	Inclined
4055	40.59749	-77.79429	205	49	Inclined	5225	40.55139	-77.77971	95	28	Inclined
4056	40.55047	-77.82366	222	33	Inclined	5226	40.55342	-77.77650	40	33	Inclined
4058	40.55279	-77.82270	205	29	Inclined	5229	40.55229	-77.77707	35	30	Inclined
4059	40.55456	-77.82193	195	18	Inclined	5230	40.55159	-77.77668	145	28	Inclined
4060	40.55578	-77.82160	220	33	Inclined	5238	40.54315	-77.78964	45		Inclined
4061	40.55781	-77.82068	220	17	Inclined	4845	40.56323	-77.79727	215	25	Inclined
4063	40.55655	-77.82119	215	20	Inclined	5253	40.54115	-77.79898	210	12	Inclined
4069	40.56223	-77.85514	30	50	Overturned	5256	40.54226	-77.79683	0	0	Horizontal
4073	40.56024	-77.84789	208	50	Inclined	5258	40.54431	-77.79455	190	6	Inclined
4076	40.59412	-77.86060	160	15	Inclined	5260	40.55960	-77.79517	195	10	Inclined
4080	40.61837	-77.85820	52	63	Inclined	5263	40.55825	-77.79705	185	24	Inclined
4081	40.61768	-77.85717	210		Inclined	5266	40.55190	-77.79516	205		Inclined
4085	40.62405	-77.75700	25		Vertical	5268	40.55207	-77.79192	195		Inclined
4093	40.62238	-77.75541	288	41	Inclined	5269	40.55603	-77.78869	96	16	Inclined
4095		-77.76118	52		Overturned	5273		-77.79120	231		Inclined
4101		-77.85577	265		Inclined	5274		-77.79231	226		Inclined
4102		-77.85583	225		Inclined	5276		-77.79417	122		Inclined
4103		-77.85626	260		Inclined	5277		-77.79391	109		Inclined
4107		-77.85900	268		Inclined	5279		-77.79012	145		Inclined
4109		-77.86044	38		Inclined	5285		-77.78800	105		Inclined
4906		-77.80272	204		Inclined	5288	40.55762		342		Inclined
4908		-77.80443	205		Inclined	5289		-77.78400	105		Inclined
4910		-77.79138	230		Inclined	5394	40.52787	-77.80207	45	45	Inclined
5034	40.55699	-77.76985	43	35	Inclined						

	EXP	LANATION		
CRIPTION		UNIT	ENVIRONMENTAL CHARACTERISTICS ¹	GEOLOGIC DESCR
ded with thin, planar bedded to nd 1- to 2-inch thick layers of olive- at 150 feet thick. The basal contact		BRALLIER	Well yields should be adequate for domestic use. The remote, limited area of outcrop make it unlikely formation will be exploited for high-demand use. Water may be hard with high concentrations of iron and manganese.	Light gray to yellowish-brown, very fine to coarse
sharp and conformable, but rarely rived from, and mantles, the steep	F	ORMATION	Stability is fair to good. Steep cuts can be maintained except in weathered shale. Excavation is easy to moderately difficult. It should be excavated to sound	sandstone that is locally hematitic. Northwe conglomeratic. It is well bedded with beds thin t found only on the southeast flank of Jacks Mount
outcrop is limited to two hilltops on		Db	Good source of road material and random fill.	Stone Mountain. On both mountains it is covered was seen. It is about 70 feet thick. Its contact wit not seen, but is probably conformable.
s, weathering to gray and dark-		HARRELL	Well yields should be adequate for domestic use. The remote, limited area of outcrop make it unlikely formation will be exploited for high-demand use. Water may be hard with high concentrations of iron and manganese.	
nterbedded with very dark to dark- portions. It is 100 feet thick. The harp and conformable. Its outcrop is	F	ORMATION	Stability is fair. Considerable shale-chip rubble forms in exposed cuts. Cuts parallel to bedding have poor stability. Unweathered rock is easy to moderately difficult to excavate.	Where exposed, the Rose Hill Formation is a ligh
ld Top Synclinorium.		Dh	Good source of subgrade and light-duty road surfacing because of uniformity of material and relative ease of excavation	pale-brown claystone with interbeds of thin ver manganese staining. The substantial iron-rich r elsewhere in Pennsylvania are not present. It cr
aystone that weathers to olive gray. tone layers. Stratigraphic units				flank of Jacks Mountain and the northwest fla wholly covered with colluvium derived from th
hick bedded, dark gray, very fine- port Brush Ridge and a paralleling	ЛЛА	AHANTANGO	Well yields are adequate for domestic use. Wells in valleys can supply adequate yields for high-demand uses. Limited water quality data suggest good quality.	about 800 feet thick. Its contact with the Tuscar and gradational.
ost claystones of the Mahantango ng Standing Stone Creek the upper , dark gray limestone, profusely		ORMATION	Stability is low to moderate in cut slopes. Excavation is moderately easy using heavy equipment. Blasting is required only in deep cuts. Foundation support strength is moderate, suitable for heavy structures if excavated to sound	Light-gray to white, rarely pale red and greenis
e in the immediately underlying 1000 feet thick. The lower contact of iderlying Marcellus Formation is		Dmh	bedrock. Drilling rates are relatively rapid.	quartzite with interbedded shale. Generally a ma exposed. The quartzite is very hard, well-cen
where the contact is gradational, fissile Marcellus Formation to very nes. Its outcrop is on the axis and			Used locally for shale aggregate and common fill. Some parts may have potential for structural clay products and lightweight aggregate.	exposure of its lower portions, contains dispers siderite nodules weathered out are common. The <i>Skolithos</i> are present but not common. Beddin
-			Well yields are adequate for domestic use and may be adequate for high-demand	obscured by crossbedding. It is about 700 feet this Jacks and Stone Mountains. Its contact with conformable and interbedded.
is clay shale. Pyrite is abundant, locally. It is about 70 feet thick. Its	Μ	ARCELLUS	applications. Water quality may be poor, with high iron and manganese and a hydrogen sulfide odor.	Grayish-red, fine-grained sandstone with well-dev are interbedded red claystone units. The lower
e Onondaga Formation is sharp and the Broad Top Synchinorium and rnclinorium in the southeast part of	F	ORMATION	Cut slope stability is low to moderate. Steep slopes tend to deteriorate rapidly. It is moderately easy to excavate in most places using heavy equipment. Foundation support strength is suitable for heavy structures if excavated to	Eagle Formation, is yellowish-gray sandstone. A quadrangle, layering ranges from 3 inches to claystone clasts are included in some layers. Th
		Dm	sound bedrock. Drilling rates are rapid. Used locally for shale aggregate and common fill.	Formation was not observed, but is probably grad 1100 feet. It crops out on the northwest flank southeast flank of Stone Mountain.
er 10 feet is dark- to medium-gray, thick interbedded with cleaved(?)			Limited data suggest adequate yield for domestic use. There are no data	The upper portion consists of interbedded me
round solution features. Fossils are d burrows were seen. It is about 20			available for high-demand wells. One water-quality sample indicates good quality water, although Geyer and Wilshusen (1982) indicate that iron and hydrogen sulfide may be problems.	sandstone with quartz pebble conglomerate (Los Member was not mapped separately because of i portion of the formation consists of thick to mas
- to medium-light-gray, generally eavage caused by the intersection of rops is obscure. Weathered surfaces		ONONDAGA ORMATION	Cut slope stability is low to moderate. Excavation using heavy equipment is easy in the shale and moderately difficult in the limestone. Blasting may be required	gray to brownish-gray, fine-grained, prominently sandstone contains shale clasts as well as quarts Reedsville Formation is gradational. Its maximum
ils; brachiopods and trilobites were on is too thin, with too few outcrops, ct of the Needmore shale with the		Don	to excavate the limestone. Foundation support strength is moderate to high, and is generally suitable for heavy structures if excavated to sound bedrock. Drilling rates are moderate to rapid.	crops out on the northwest flank of Jacks Mount Stone Mountain, where it forms a distinct bench.
i is sharp and conformable. It crops norium and within the structurally			Poor to fair source of common fill. The upper limestone has been quarried on a	The upper portion consists of interbedded light-to and thin (1 inch to 3 inch) to thick bedded (3 feet) sandstone interlayers are highly fossiliferous, calo
east part of the quadrangle.			very limited scale.	some have highly calcareous zones of fossil debri the bulk of the Reedsville Formation and co spheriodal weathering claystone, with rare disco
ined, white and light gray to buff, tly brachiopods. Some crinoids and portion of the quadrangle, granules			Well yields are adequate for domestic use. Where the Ridgeley is leached of carbonate, primary porosity can provide high yields. Water quality is good.	rare interbeds of medium light-gray silty clayston medium-dark to dark-gray claystone weathering
tone. It is medium to thick bedded, ented by silica, it forms high crags. ndstone is calcite-cemented, it lies		RIDGELEY MEMBER	Cut slope stability is moderate to high in unleached sandstone. Leached sandstone can be weak. Excavation is easy to difficult. Foundation	nodules are present. Thin zones of silty clays otherwise difficult to ascertain. The Antes Ma formation. It consists of very dark-gray to blac
r chert of the Old Port Formation. It Cop Synclinorium and within the um in the southeast part of the	OLD	Dopr	strength is moderate to high. Drilling rates are slow to rapid.	resistant clayey limestone. The Reedsville Form northwest flank of Jacks Mountain and the lo Mountain. Its contact with the Coburn Formation
ng Shriver chert was not directly) PORT		The Ridgeley Member is a source of glass sand.	about 1,800 feet thick. The mapped unit contains, in descending order, t
per is the Shriver chert, seen only as black chert that weathers to light cobably 25 feet thick or less. Below	tT FO		Well yields are adequate for domestic use. Water quality is good.	Benner, Snyder and Hatter formations. Differenti impractical because of lack of outcrop, similariti- distinctive topographic expression. Float scattered
ntly dark gray, massive limestone. ation is well-bedded, fossiliferous, posed on East Branch Road west of	FORMATION	LOWER	Stability is low in cut slopes in the shale. It is moderately high in the other lithologies, if they are unweathered. Shale and fractured siltstone can generally	upper two-thirds of the mapped unit to be no aphanitic limestone. Bedding layers are thin, wi The lower one-third of the mapped unit consists
sing fractures. Layers immediately ion contain chert blebs and locally	FION	MEMBER	be removed using medium to heavy equipment. Unweathered siltstone and limestone require blasting. Foundation support is moderate to high, and is suitable for heavy structures if excavated to sound bedrock. The limestones may	gray limestone in layers 1 inch to 3 feet thick, clasts. Layering appears to be anastomosing. Som body fossils, whereas others contain abundant b
ne. Fossils are commonly siliceous. gastropods, and <i>tentaculites</i> were tact with the Keyser Formation is		Dopl	develop sinkholes. Drilling rates are slow to moderate.	consist of highly fragmented fossil debris. Foss (<i>Cryptolithus</i>), brachiopods, cephalopods, gastrop bryozoa, coral, and pelecypods. Total thickne
f tubular chert. It crops out on the d within the structurally complex t of the quadrangle. It is about 200			Siltstone is a fair source of aggregate and common fill. The limestone has been quarried.	approximately 850 feet. The units crop out on the of the Kishacoquillas Valley. The contact with the seen, but is probably gradational.
ne with thinly-laminated limestone			Wells yields are adequate for domestic use and may be adequate for high-	The upper member consists of interbedded med
noloway Formation. Fossils include nd bryozoa. It is well-bedded, with e. A few clastic beds up to 1.5 feet			demand uses. Water is generally hard but otherwise of good quality. Stability is moderate in cut slopes. Block falls may be a serious problem if	non-laminated dolostone and limestone in thin layers. In some outcrops, layers are platy. V limestone layers exhibit small, apparently hig
r limestone found elsewhere in one Mountain, and is uncommon in fractures are common. Below the	KEYSI	ER FORMATION	bedding is undercut. Excavation is very difficult. Blasting is required in most places. Foundation strength is moderate to high and suitable for most heavy structures. The bedrock surface should be investigated for sinkholes, pinnacles,	interbedded with layers having recrystallized ca and non-fossil bearing. Dolostone units are lan member consists of light-gray weathering mediu
East Branch Road, the Keyser feet thick with laminae and sparse by thick beds. Its contact with the		DSk	and clay pockets. Drilling rates are moderate. Solution cavities may cause borehole caving or drill-bit deflection.	with very light-gray weathering dolostone. This which, on weathered surfaces, are irregular, hor and irregular, mainly vertical extensions connect
nt on the flanks of the Broad Top mplex unnamed synclinorium in the 170 feet thick.			Good source of crushed stone for aggregate. Formerly used extensively in the production of lime.	darker- weathering light-gray limestone. Be similarities of limestone lithology, and absen expression, the members are not mappable in th
Dolostones are most common in the prachiopods, ostracods and one coral			Well yields are adequate for domestic and high-demand uses. Water is	feet thick. Its contact with the Bellefonte Formatic gradational. It crops out in the Kishacoquillas Val
(3-5 feet) to platy with argillaceous nto complex 4th and 5th order folds. rs within the normal sedimentary	т	ONOLOWAY	commonly hard and high in dissolved solids.	Light-to-medium-gray, aphanitic to crystalline
ponate with small solution cavities appear to be solution breccia. While Pennsylvania is karstic, the only		ORMATION	Stability is generally moderate in cut slopes. Rockfalls may occur along joints or bedding planes. Excavation is moderate to difficult using heavy equipment. Deep excavation in unweathered rock requires blasting. Foundation support is	show laminated layers with local gently cur stromatolites. Layers are 4 inches to 2 feet thick joint surfaces are common in weathered ou
le are along the northwest flank of tiated with an inferred fault. The		Sto	moderate to high if excavated to sound bedrock. The bedrock surface should be investigated for sinkholes, pinnacles, and clay pockets. Drilling rates are moderate. The sides of large-diameter holes tend to cave badly.	redeposited quartz in blebs up to 1 inch in diame thick, and crops out in the Kishacoquillas Valley. Formation is probably conformable and gradation
was not seen, but is probably crops out on the flanks of the Broad northwest flank of the structurally			Potential source of crushed stone.	
east part of the quadrangle.				Interbedded, vaguely laminated medium-gray che laminated dolostone that weathers to a very light
interbeds of very fine-grained light- ocal limestone. Sandstone is most n, and forms low ridges that were			Well yields are adequate for domestic use. Wells in valleys can supply adequate yields for high-demand uses. Water quality may be poor, with high acidity, iron, dissolved solids, and sulfates.	with platy layers. Layering is mostly disconti Fossils found in the unit include stromatolit burrows. It is at least 1000 feet thick, which
lountains. In the adjacent Belleville n contains siltstone layers and red ion. These were not seen on the		ILLS CREEK ORMATION	Stability in cut slopes is low to moderate. Slopes deteriorate rapidly because of the susceptibility of argillaceous and calcareous rocks to physical and chemical	elsewhere in Pennsylvania. The upper 500 feet quadrangle. It crops out in the Kishacoquillas Va the quadrangle.
cover, but are probably present. It is beds. The claystones are commonly sburg Formation is transitional. It		Swc	weathering. Excavation is easy to difficult using heavy equipment, depending upon the degree of weathering. Deep cuts require blasting. Foundation support is adequate for heavy structures if excavated to sound bedrock. Drilling rates	This geologic map was funded in part by the USG
drangle, on the northwest flank of of Jacks Mountain. It is about 600			are moderate to rapid. Poor to fair source of common fill.	Mapping Program. Geology based on field mapping by T. A. McElroy and D.
			Well yields are adequate for domestic use. Water from the Bloomsburg	The base map has been modified from U. S. Geological S file of the Allensville 7.5-minute quadrangle (1972), Uni- projection, Zone 18 north, NAD 1927.
y grayish-red claystone, with some sh-green shale. The sandstone unit			Formation may be hard, with high concentrations of iron and manganese. Water from the Mifflintown Formation is generally of good quality, but hard. Stability in cut slopes in the Bloomsburg Formation is low to moderate.	Digital map production by T. G. Whitfield and T. A. McF
rd of the formation has beds 2 to 3 aled with quartz, some of which is burrows. While the Moyer Ridge		OMSBURG AND FFLINTOWN	Stability in cut slopes in the Bloomsburg Formation is low to moderate. Sandstone and siltstone intervals are susceptible to block falls where bedding is undercut. Excavation is moderately easy to difficult using heavy equipment.	This report has been prepared in accordance with the o Bureau of Topographic and Geologic Survey. It has not u

ndercut. Excavation is moderately easy to difficult using heavy equipment. Blasting may be required where hard sandstones and siltstones are encountered. Foundation support strength is generally suitable for heavy uctures if it is excavated to sound bedrock. Drilling rates are moderate to apid. Stability in cut slopes in the Mifflintown Formation is low to moderate. Debris and rock falls may occur in excavations. Excavation is relatively easy to difficult using heavy equipment. Limestone may require blasting. Foundations support strength is generally suitable for heavy structures. Drilling rates are moderate to rapid. The Bloomsburg Formation is an excellent source of material for the manufacture of brick and probably other structural clay products. The

Mifflintown Formation is a good source of road material, fill, and possible brick

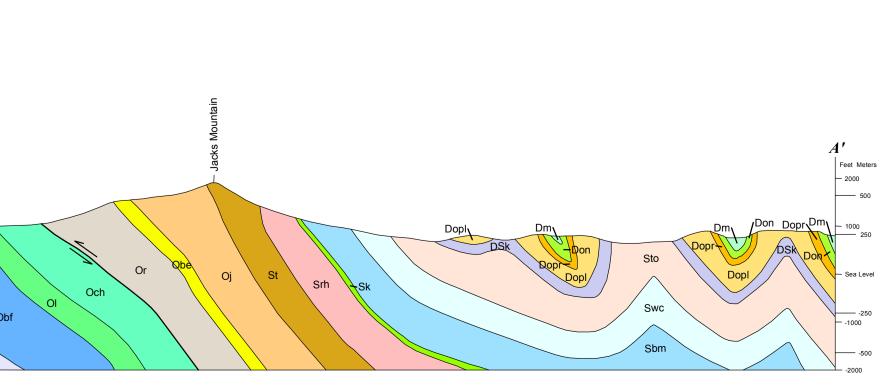
and expanded aggregate.

FORMATIONS.

UNDIFFEREN-

TIATED

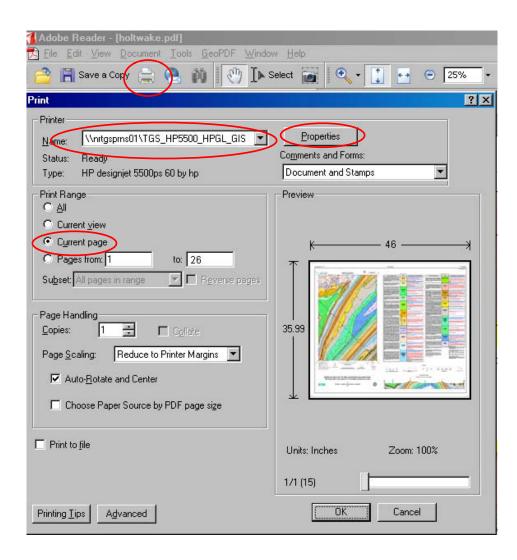
Sbm


SYMBOLS

Minor fold axis Anticline fold axis Synchiorium fold axis Contacts Arrow indicates direction of plunge. **CROSS SECTION** (Horizontal scale same as map scale; no vertical exaggeration) Open File Report OFBM 07-02.0

GEOLOGIC DESCRIPTION	XPLANATION (cor UNIT	ENVIRONMENTAL CHARACTERISTICS ¹
GEOLOGIU DESUKIPTION	UNIT	No data for wells drilled only into the Keefer Formation are available. Yields
Light gray to yellowish-brown, very fine to coarse grained, fossiliferous, siliceous sandstone that is locally hematitic. Northwest of Stone Mountain it is conglomeratic. It is well bedded with beds thin to thick and crossbedded. It is found only on the southeast flank of Jacks Mountain and the northwest flank of Stone Mountain. On both mountains it is covered with colluvium and only float was seen. It is about 70 feet thick. Its contact with the Rose Hill Formation was not seen, but is probably conformable.	KEEFER FORMATION Sk	 should be adequate for domestic use. Low pH and high iron are possible. Stability in cut slopes is moderately high. Block falls may occur where bedding is undercut. Excavation is difficult, requiring blasting, except where it is thoroughly leached. Foundation support strength is moderate to high, and suitable for heavy structures if excavated to sound bedrock. Drilling rates are moderate. Except where it is thoroughly leached, a good source of rock fill, riprap, and rock protection.
Where exposed, the Rose Hill Formation is a light-olive-gray to grayish-red and pale-brown claystone with interbeds of thin very fine-grained sandstone with manganese staining. The substantial iron-rich resistant sandstone beds found elsewhere in Pennsylvania are not present. It crops out only on the southeast flank of Jacks Mountain and the northwest flank of Stone Mountain and is wholly covered with colluvium derived from the Tuscarora Formation. It is about 800 feet thick. Its contact with the Tuscarora Formation is conformable and gradational.	ROSE HILL FORMATION Srh	 Well yields are adequate for domestic use. Water may be hard, and commonly has high concentrations of iron and manganese. Stability in cut slopes is low to moderately high. Rockslides and block falls can be a serious problem where bedding is undercut. Excavation is relatively easy using heavy equipment in shale and siltstone, but can be difficult in sandstones, which may require blasting. Foundation support strength is moderate to high, and suitable for heavy structures if excavated to sound bedrock. Drilling rates are high in shale and siltstone, and slow to moderate in sandstone and limestone. The shale is a good source for manufacturing common brick and shale aggregate.
Light-gray to white, rarely pale red and greenish-gray fine- to coarse-grained quartzite with interbedded shale. Generally a maximum of 40 feet of section is exposed. The quartzite is very hard, well-cemented, crossbedded and, in exposure of its lower portions, contains dispersed pebbles. Small pits where siderite nodules weathered out are common. The trace fossils <i>Arthrophycus</i> and <i>Skolithos</i> are present but not common. Bedding is mostly thick. It may be obscured by crossbedding. It is about 700 feet thick. It crops out on the crests of Jacks and Stone Mountains. Its contact with the Juniata Formation is conformable and interbedded.	TUSCARORA FORMATION St	 Well yields are adequate for domestic use. Water quality is good, but may be acidic. There are few data available because of mountainous terrain. Stability in cut slopes greater than 25 degrees is moderate to high, but subject to serious block falls if the bedding or jointing is undercut. Excavation is extremely difficult, requiring blasting. Foundation support strength is high, suitable for the heaviest structures if it is excavated to sound bedrock. Drilling rates are very slow. Good source of riprap and natural building stone.
Grayish-red, fine-grained sandstone with well-developed crossbedding. Included are interbedded red claystone units. The lower part, directly above the Bald Eagle Formation, is yellowish-gray sandstone. At the one outcrop seen on the quadrangle, layering ranges from 3 inches to 8 inches. Light grayish-red claystone clasts are included in some layers. The contact with the Bald Eagle Formation was not observed, but is probably gradational. Its thickness is about 1100 feet. It crops out on the northwest flank of Jacks Mountain and the southeast flank of Stone Mountain.	JUNIATA FORMATION Oj	Well yields are adequate for domestic use, and possibly for high-demand use.Water is commonly hard, with high iron.Cut slope stability is good. Excavation is difficult. Foundation support strength is good, if excavated to sound bedrock. Drilling rates are slow.Good source of road material, riprap, and building stone.
The upper portion consists of interbedded medium- to very coarse-grained sandstone with quartz pebble conglomerate (Lost Run Member). The Lost Run Member was not mapped separately because of insufficient outcrop. The lower portion of the formation consists of thick to massively bedded gray-to-reddish- gray to brownish-gray, fine-grained, prominently crossbedded sandstone. The sandstone contains shale clasts as well as quartz pebbles. Its contact with the Reedsville Formation is gradational. Its maximum thickness is about 250 feet. It crops out on the northwest flank of Jacks Mountain and the southeast flank of Stone Mountain, where it forms a distinct bench.	BALD EAGLE FORMATION Obe	Well yields are adequate for domestic use, and possibly for high-demand use.Limited data suggest the water may be high in iron, manganese, and lead.Cut slope stability is good. Excavation is difficult. Foundation support strength is good, if excavated to sound bedrock. Drilling rates are slow.Good source of road material, riprap, embankment facing, and fill.
The upper portion consists of interbedded light-to-medium-gray shaly claystone and thin (1 inch to 3 inch) to thick bedded (3 feet) crossbedded sandstone. Many sandstone interlayers are highly fossiliferous, calcareous, and very fine grained; some have highly calcareous zones of fossil debris. The medial portion contains the bulk of the Reedsville Formation and consists of medium dark gray spheriodal weathering claystone, with rare discontinuous zones of fossils and rare interbeds of medium light-gray silty claystone. The lower portion consists of medium-dark to dark-gray claystone weathering into "pencils". Zones of siderite nodules are present. Thin zones of silty claystone define layering that is otherwise difficult to ascertain. The Antes Member is at the base of the formation. It consists of very dark-gray to black claystone with interbeds of resistant clayey limestone. The Reedsville Formation crops out on the lower northwest flank of Jacks Mountain and the lower southeast flank of Stone Mountain. Its contact with the Coburn Formation is sharp and conformable. It is about 1,800 feet thick.	REEDSVILLE FORMATION Or	Well yields are adequate for domestic use, and possibly for high-demand use. Water quality is generally good, but iron and manganese concentrations may be high. Cut slope stability is fair. Foundation support strength is good, if excavated to sound bedrock. Drilling rates are fast. Good source of road material and fill.
The mapped unit contains, in descending order, the Coburn, Salona, Nealmont, Benner, Snyder and Hatter formations. Differentiating these units in the field is impractical because of lack of outcrop, similarities of lithology, and absence of distinctive topographic expression. Float scattered in cultivated fields shows the upper two-thirds of the mapped unit to be non-fossiliferous, medium-gray, aphanitic limestone. Bedding layers are thin, with lumpy weathered surfaces. The lower one-third of the mapped unit consists of medium- to medium-dark- gray limestone in layers 1 inch to 3 feet thick, some with lighter-weathering clasts. Layering appears to be anastomosing. Some layers have widely dispersed body fossils, whereas others contain abundant body fossils. Many thin layers consist of highly fragmented fossil debris. Fossils include crinoids, trilobites (<i>Cryptolithus</i>), brachiopods, cephalopods, gastropods, stromatolites, ostracods, bryozoa, coral, and pelecypods. Total thickness of all the formations is approximately 850 feet. The units crop out on the northwest and southeast sides of the Kishacoquillas Valley. The contact with the Loysburg Formation was not seen, but is probably gradational.	COBURN THROUGH HATTER FORMATION, UNDIFFEREN- TIATED Och	Well yields are adequate for domestic use. Units below the Nealmont Formation may have yields adequate for high-demand use. Water is generally hard, and may have high iron, manganese and dissolved solids. Because much of the land underlain by these units is used for agriculture, high nitrate is possible. Cut slope stability is good, except for steeply dipping beds inclined toward construction. Foundation support strength is good, if excavated to sound bedrock. Sites should be investigated for possible collapse areas. Excavation is difficult. Bedrock pinnacles are a special problem. Drilling rates are moderate. Good source of road material and fill.
The upper member consists of interbedded medium dark-gray laminated and non-laminated dolostone and limestone in thin (2-3 inches) to thick (3 feet) layers. In some outcrops, layers are platy. Weathered surfaces on some limestone layers exhibit small, apparently highly fragmented fossil debris, interbedded with layers having recrystallized calcite that are finely laminated and non-fossil bearing. Dolostone units are laminated and thick. The lower member consists of light-gray weathering medium-gray limestone interbedded with very light-gray weathering dolostone. This unit contains "tiger stripes" which, on weathered surfaces, are irregular, horizontal, very light gray bands, and irregular, mainly vertical extensions connecting the horizontal bands, in a darker- weathering light-gray limestone. Because of lack of exposure, similarities of limestone lithology, and absence of distinctive topographic expression, the members are not mappable in this quadrangle. It is about 475 feet thick. Its contact with the Bellefonte Formation is probably conformable and gradational. It crops out in the Kishacoquillas Valley.	LOYSBURG FORMATION OI	 Well yields may be adequate for high-demand use. Water quality is generally good, but it may be hard and is easily contaminated. Cut slope stability is good, except for steeply dipping beds inclined toward construction. Foundation support strength is good, if excavated to sound bedrock. Sites should be investigated for possible collapse areas. Excavation is difficult. Bedrock pinnacles are a special problem. Drilling rates are moderate. Good source of road material and fill.
Light-to-medium-gray, aphanitic to crystalline dolostone. Weathered surfaces show laminated layers with local gently curving surfaces that may be stromatolites. Layers are 4 inches to 2 feet thick. Deep solution features along joint surfaces are common in weathered outcrops. Some layers contain redeposited quartz in blebs up to 1 inch in diameter. It is approximately 1250 ft thick, and crops out in the Kishacoquillas Valley. Its contact with the Axemann Formation is probably conformable and gradational.	BELLEFONTE FORMATION Obf	 Well yields are adequate for domestic use. Wells in valleys can supply adequate yields for high-demand uses. Water is hard. Because much of the land underlain by the Bellefonte Formation is used for agriculture, high nitrate is possible. Cut slope stability is good, unless the depth of cut is extreme. Foundation stability is good, but a construction site should be investigated thoroughly for solution openings. Excavation is difficult. Bedrock pinnacles are a special problem. Drilling rates are moderate. Good source of road material, riprap, building stone, embankment facing, and fill.
Interbedded, vaguely laminated medium-gray cherty limestone with interbeds of laminated dolostone that weathers to a very light gray. It is thin to thick bedded with platy layers. Layering is mostly discontinuous with uneven surfaces. Fossils found in the unit include stromatolites, crinoids, gastropods, and burrows. It is at least 1000 feet thick, which is twice as thick as reported elsewhere in Pennsylvania. The upper 500 feet are exposed on the Allensville quadrangle. It crops out in the Kishacoquillas Valley, in the east-central part of the quadrangle.	AXEMANN FORMATION Oa	 Well yields are adequate for domestic and high-demand use. Water quality is generally good. Because much of the area underlain by the Axemann Formation is used for agriculture, high nitrate is possible. Cut slope stability is good, but steeply dipping beds inclined toward a cut may require moderate to gentle slopes. Foundation support strength is good, if excavated to sound bedrock. Sites should be investigated for possible collapse areas. Excavation is difficult. Bedrock pinnacles are a special problem. Drilling rates are moderate. Good source of road material and fill.
This geologic map was funded in part by the USGS National Cooperative Geologic Mapping Program. Geology based on field mapping by T. A. McElroy and D. M. Hoskins 2005-2007. The base map has been modified from U. S. Geological Survey digital raster graphic (DRG) file of the Allensville 7.5-minute quadrangle (1972), Universal Transverse Mercator (UTM) projection, Zone 18 north, NAD 1927. Digital map production by T. G. Whitfield and T. A. McElroy. This report has been prepared in accordance with the open-file reporting standards of the Bureau of Topographic and Geologic Survey. It has not undergone external peer review. This map is part of the open-file report referenced by the report number in the upper right corner of the map. The entire open-file report can be obtained from the Bureau of Topographic and Geologic Survey website: http://www.dcnr.state.pa.us/topogeo		 ¹ Blue type refers to groundwater characteristics, red type to engineering characteristics, and black type to mineral resources Groundwater and engineering characteristics are from: Fleeger, G. M., McElroy, T. A., and Moore, M. E., 2004, Hydrogeologic and well-construction characteristics of the rocks of Pennsylvania: Pennsylvania Geological Survey, 4th ser., Water Resource Report 69, CD-Rom. Geyer, A. R. and Wilshusen, J. P., 1982, Engineering characteristics of the rocks of Pennsylvania, Pennsylvania Geological Survey, 4th ser., Environmental Geology Report 1, 300p. Taylor and others, 1982, Groundwater resources of the Juniata River basin, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 54, 131p. Duplex faults on Stone Mountain modified from: Nickelsen, R. P., 1988, Structural evolution of folded thrusts and duplexes on a first-order anticlinorium in the Valley and Ridge Province of Pennsylvania, Geological Society of America Special Paper 222, p. 97-105.

Thrust fault Thrust fault Detachment fault Reverse fault inferred concealed inferred inferred Faults Line decorations on upper plate.


Line of geologic cross section

PRINTING INSTRUCTIONS

All pages of the document except the geologic plate are 8.5 x 11 inches. The geologic plate is 48 inches wide and 36 inches high. To print the entire document on letter paper, simply execute the print command in Adobe Acrobat Reader or Adobe Acrobat. The geologic plate should automatically be reduced to fit on the letter-sized paper.

If you wish to plot the map at its published size of 48 x 36 inches, open the Acrobat file and display the map. Next, execute the File/Print command. When the print dialog opens click the radio button for "Current Page." Next, make sure the plotting device is selected as the current printer and open the properties for that device. Navigate to the page setup and select a paper size that is at least 48 x 36 inches. Your plotting device may include the ability to specify the exact dimensions of the paper. If you select paper that is smaller than 48 x 36 inches, the Acrobat Print dialog provides a "fit to page" option that will automatically resize the map to fit on the paper selected. Just keep in mind that the verbal scale will only be correct when the map is printed at its published size of 48 x 36 inches.

