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Playing Linear Number Board Games—But Not Circular Ones—Improves
Low-Income Preschoolers’ Numerical Understanding

Carnegie Mellon University

Geetha B. Ramani
University of Maryland

Robert S. Siegler

A theoretical analysis of the development of numerical representations indicated that playing linear
number board games should enhance preschoolers’ numerical knowledge and ability to acquire new
numerical knowledge. The effect on knowledge of numerical magnitudes was predicted to be larger when
the game was played with a linear board than with a circular board because of a more direct mapping
between the linear board and the desired mental representation. As predicted, playing the linear board
game for roughly 1 hr increased low-income preschoolers’ proficiency on the 2 tasks that directly
measured understanding of numerical magnitudes—numerical magnitude comparison and number line
estimation—more than playing the game with a circular board or engaging in other numerical activities.
Also as predicted, children who had played the linear number board game generated more correct
answers and better quality errors in response to subsequent training on arithmetic problems, a task
hypothesized to be influenced by knowledge of numerical magnitudes. Thus, playing linear number
board games not only increases preschoolers’ numerical knowledge but also helps them learn from future

numerical experiences.
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Among the most serious educational challenges facing the
United States is the large discrepancy in academic performance
between children from different economic backgrounds. Children
from impoverished backgrounds achieve at a much lower level
than other students throughout the course of schooling (e.g.,
Alexander & Entwisle, 1988; Geary, 1994, 2006). One important
reason is that these children start school with far less academic
knowledge than peers from more affluent families; substantial
differences are present even before children start kindergarten.
Although these differences in preschoolers’ knowledge are present
in many subjects, they appear to be especially substantial in
knowledge of mathematics (Case, Griffin, & Kelly, 1999).

Crucial to understanding this phenomenon is specifying the
types of mathematical knowledge on which the discrepancy is
present. On nonverbal numerical tasks, preschoolers’ performance
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does not vary with economic background (Ginsburg & Russell,
1981; Jordan, Huttenlocher, & Levine, 1992; Jordan, Levine, &
Huttenlocher, 1994). However, on tasks with verbally stated or
written numerals, the knowledge of preschoolers and kindergart-
ners from low-income families lags far behind that of peers from
more affluent families. The differences are seen on a wide range of
foundational tasks: recognizing written numerals, reciting the
counting string, counting sets of objects, counting up or down from
a given number other than 1, adding and subtracting, and compar-
ing numerical magnitudes (Ginsburg & Russell, 1981; Griffin,
Case, & Siegler, 1994; Jordan et al., 1992; Jordan, Kaplan, Olah,
& Locuniak, 2006; Jordan et al., 1994; Saxe, Guberman, & Gear-
hart, 1987; Starkey, Klein, & Wakeley, 2004; Stipek & Ryan,
1997).

These early differences in mathematical knowledge have an
enduring impact. Kindergartners’ performance on tests of mathe-
matical knowledge is predictive of mathematical achievement in
third, fifth, and eighth grade and even in high school (Duncan et
al., 2007; Stevenson & Newman, 1986). This stability over time of
individual differences in mathematical knowledge exemplifies the
typical positive relation between early and later knowledge (Brans-
ford, Brown, & Cocking, 1999), but the stability of individual
differences in math is unusually great. For example, in six longi-
tudinal studies reviewed by Duncan et al. (2007), the standardized
beta coefficients relating early and later mathematical knowledge
were more than twice as large as the coefficients relating early and
later reading proficiency, control of attention, and socioemotional
competence. These findings and related ones motivated us to
analyze the sources of individual differences in young chil-
dren’s numerical knowledge and to use the analyses to generate
methods for helping low-income preschoolers increase their
knowledge.
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A Theoretical Analysis of Numerical
Magnitude Development

Increases with age and experience in reliance on linear repre-
sentations of numerical magnitudes seem to play a central role in
the development of mathematical knowledge. Both changes in
representations of numerical magnitudes and the relation of these
changes to the growth of mathematical knowledge have been
illustrated in research on number line estimation. The number line
estimation task that has been used in this research involves pre-
senting lines with a number at each end (e.g., 0 and 100) and no
other numbers or marks in between; the goal is to estimate the
location on the number line of a third number (e. g., “Where would
74 go?”). This task is particularly revealing because it transpar-
ently reflects the ratio characteristics of the number system. Just as
60 is twice as large as 30, the distance of the estimated position of
60 from 0 should be twice as great as the distance of the estimated
position of 30 from 0. More generally, estimated magnitude (y)
should increase linearly with actual magnitude (x) with a slope of
1.00, as in the equation y = x.

Early in development, however, children’s estimates often do
not increase linearly with numerical magnitude. Many preschool-
ers, including ones who can count perfectly from 1 to 10, do not
even understand the rank order of those numbers’ magnitudes.
This poor understanding of the rank order of numerical magnitudes
is evident in preschoolers’ inaccurate numerical magnitude com-
parison (Ramani & Siegler, 2008; Whyte & Bull, 2008), number
line estimation (Siegler & Ramani, 2008; Whyte & Bull, 2008),
and performance on several other measures of numerical magni-
tude understanding (Condry & Spelke, 2008; Le Corre & Carey,
2007).

Even after children learn the rank order of numbers’ magni-
tudes, they still do not immediately represent the magnitudes as
increasing linearly. For example, on numerical magnitude com-
parison, a task that requires only knowledge of the rank order of
numbers’ magnitudes, kindergartners from middle-income fami-
lies are about 90% accurate for numbers between 0 and 100 (Laski
& Siegler, 2007). However, the same children’s number line
estimates in the same numerical range often do not fit any linear
function well (Geary, Hoard, Byrd-Craven, Nugent, & Numtee,
2007; Geary, Hoard, Nugent, & Byrd-Craven, 2008; Siegler &
Booth, 2004). It is not until second grade that most children
generate linearly increasing estimation patterns on 0—100 number
lines, and it is not until fourth grade that they do so on 0-1,000
number lines (Booth & Siegler, 2006). The fact that second graders
often generate linear estimation patterns for the 0—100 range but
nonlinear ones for the 0-1,000 range, despite the tasks being
identical except for the numbers being estimated, suggests that
experience with the particular range of numbers is crucial to the
acquisition of linear estimation patterns. Evidence from the num-
ber line estimations of the Mundurcu, an Amazonian indigenous
people who usually have little, if any, formal education and whose
language has few number words, provides converging evidence
that numerical experience, rather than maturation, is crucial to the
acquisition of linear representations (Dehaene, Izard, Spelke, &
Pica, 2008). Mundurcu adults generate systematic number line
estimation patterns, but the estimates increase nonlinearly with
increasing numerical magnitude.

The development of linear patterns of number line estimates is
not an isolated phenomenon. Rather, it seems to reflect the devel-
opment of a quite general linear representation of numerical mag-
nitudes. This representation is not invariably used on numerical
tasks even in adulthood (Banks & Coleman, 1981; Holyoak &
Mah, 1982), but it is used on an increasing range of tasks. Reliance
on this linear representation grows to a similar extent between
second and fourth grades on three different estimation tasks:
number line, numerosity, and measurement estimation (Booth &
Siegler, 2006). Degree of linearity of number line estimates cor-
relates positively with overall math achievement test performance
at all grade levels between kindergarten and fourth grade, and the
same is true with linearity of numerosity and measurement esti-
mation at the two grade levels for which relevant data exist
(second and fourth grade; Booth & Siegler, 2006; Geary et al.,
2007; Siegler & Booth, 2004). These relations between linearity of
estimates on the three estimation tasks and math achievement test
scores are substantial, typically ranging between r = .50 and r =
.60 within each grade.

These findings raise the following question: What types of
experiences lead children to first represent the magnitudes of
verbally stated or written numerals as increasing linearly? Count-
ing experience during the preschool period probably contributes,
but such experience appears insufficient to create the linear rep-
resentations. Children often count perfectly in a numerical range at
least a year before they generate linear representations of numer-
ical magnitudes in that range (Le Corre, Van de Walle, Brannon,
& Carey, 2006; Ramani & Siegler, 2008; Schaeffer, Eggleston, &
Scott, 1974).

If counting experience is insufficient to yield linearly increasing
magnitude representations, then what other numerical experiences
might contribute? One common activity that seems ideally de-
signed for producing such representations is playing linear numer-
ical board games—that is, board games with linearly arranged,
consecutively numbered, and equal-sized spaces (e.g., Chutes and
Ladders.) Such board games provide multiple cues to both the
order of numbers and the numbers’ magnitudes. The greater the
number in a square, the greater (a) the number of discrete move-
ments of the token that the child has made, (b) the number of
number names that the child has spoken, (c) the number of number
names that the child has heard, (d) the distance that the child has
moved the token, (e) the endpoint of the token’s travel, and (f) the
amount of time that has passed since the game began. The linear
relations between numerical magnitudes and these kinesthetic,
auditory, visuospatial, and temporal cues provide a broadly based,
multimodal, embodied foundation for a linear representation of
numerical magnitudes.

Seen from another perspective, such board games provide a
physical realization of the mental number line, hypothesized to be
the central conceptual structure for understanding numerical oper-
ations in general and numerical magnitudes in particular (e.g.,
Case & Okamoto, 1996; Dehaene, 1997). Linear number board
games also provide children with practice at counting and at
numeral identification, at least when players are required to name
the squares through which they move (e.g., saying “6, 7~ after
starting on the 5 and spinning a 2). Thus, playing such games
would be expected to improve counting and numeral identification
skills as well as performance on tasks that require understanding of
numerical magnitudes.
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Recent studies have demonstrated the usefulness of this analysis
for improving the numerical knowledge of preschoolers from
low-income backgrounds (Ramani & Siegler, 2008; Siegler &
Ramani, 2008). Playing a linear numerical board game with
squares numbered from 1 on the left end to 10 on the right for four
15-20-min sessions yielded the predicted improvements in pre-
schoolers’ proficiency on four numerical tasks: numerical magni-
tude comparison, number line estimation, counting, and numeral
identification. The gains remained evident 9 weeks after the post-
test (Ramani & Siegler, 2008). Peers who played an identical
game, except for the squares varying in color rather than number,
did not improve on any of the tasks. Moreover, amount of board
game experience outside the laboratory context correlated posi-
tively with proficiency on all four tasks, and children from middle-
income backgrounds reported playing board games (but not video
games) at home and at the homes of friends and relatives more
often than preschoolers from low-income families. Together, these
findings strongly suggest that differences among individuals and
socioeconomic groups in experience playing board games contrib-
ute to differences in early numerical knowledge. In the present
study, we tested not only whether the linearity of the board game
is important for building a linear representation but also whether
representing numerical magnitudes linearly enhances learning of
novel arithmetic problems.

The Present Study

We pursued four main goals in this study. The first was to test
the representational mapping hypothesis: The greater the transpar-
ency of the mapping between physical materials and desired in-
ternal representations, the greater the learning of the desired inter-
nal representation. As numerous students of analogical reasoning
have noted (e.g., Doumas, Hummel, & Sandhofer, 2008; Gentner
& Markman, 1997; Goswami, 2001; Holyoak & Thagard, 1995;
Richland, Morrison, & Holyoak, 2006), physical representations
that capture key structural features of desired internal representa-
tions and map onto them in transparent ways are often particularly
compelling. They are both easier to acquire and easier to remember
than analogies in which the mapping between physical and internal
representations is less direct.

The implication of the representational mapping hypothesis in
the present context is that if the desired internal representation of
numerical magnitudes is a linear number line, then playing the
number game with a linear board should promote greater learning
of numerical magnitudes than playing the identical game with a
circular board. This prediction rests on the assumption that chil-
dren find it easier to form linear than circular representations of
numerical magnitudes. If this assumption is false, then it should be
as easy to form a circular representation of numerical magnitude in
response to experience with a circular board as to form a linear
representation in response to experience with a linear board. How-
ever, there were several reasons to hypothesize that the linear
representation is easier to acquire than a circular representation.

A great deal of evidence suggests that adults and older children
usually represent numerical magnitudes in a form akin to a mental
number line. Dehaene, Bossini, and Giraux (1993, p. 394) stated
this view succinctly:

A representation of number magnitude is automatically accessed
during parity judgments of Arabic digits. This representation may be

likened to a mental number line (Restle, 1970), because it bears a
natural and seemingly irresistible correspondence with the left-right
coordinates of external space.

If, as Dehaene et al. suggested, something akin to a horizontally
oriented mental number line is the natural way of representing
numerical magnitudes, then the representational mapping hypoth-
esis implies that playing the game on a linear board should pro-
mote greater learning of numerical magnitudes than playing the
game on a circular board.

However, another hypothesis is also plausible. It may be as easy
to form a circular representation as a linear one if relevant expe-
rience is provided. Circular external representations sometimes are
used to depict numerical magnitudes (e.g., analog clocks, speed-
ometers, scales for weighing food). In addition, adults can generate
and use circular internal representations of numerical magnitudes
if asked to do so (Béchtold, Baumiiller, & Brugger, 1998), and
children also might be able to do so if asked. From this perspec-
tive, the common use of linear representations described by
Dehaene et al. (1993) and many others may reflect the experiences
through which children typically learn about numerical represen-
tations rather than the notion that linear representations are easier
to learn.

The present examination of low-income preschoolers’ reactions
to linear and circular board games provided an atypical but valu-
able type of evidence about whether linear representations of
numerical magnitudes are indeed more natural than circular
ones—evidence regarding learning. If one representation is easier
to form than another, then children should more efficiently learn
that representation from relevant experiences. In the present con-
text, if the internal linear representation is easier to form than the
internal circular representation, then children who initially do not
use either representation should learn more from experience with
linear external representations of numerical magnitudes than from
experience with circular external representations of the same nu-
merical magnitudes.

The comparison between learning from linear and circular
boards is particularly interesting because the circular board in-
cludes several of the same cues to magnitudes that are available on
the linear board—auditory, kinesthetic, and temporal cues—and
the validities of these cues are identical on the two boards. The
only cues that that are different when playing the game on the two
boards are those of linear distance traveled and spatial end point in
the direction of motion. However, such spatial cues are highly
salient for young children, as indicated by their strong reliance on
them on number conservation, liquid and solid quantity conserva-
tion, relative time judgment, and relative speed judgment tasks
(Levin, 1977; Piaget, 1952; Siegler & Richards, 1979). This ten-
dency to rely on spatial cues to judge relative numbers, amounts,
times, and speeds may be part of a general tendency to think of
quantitative dimensions in ways akin to a mental number line
oriented horizontally in space.

Extending the representational mapping hypothesis further, the
greater learning that is predicted for children who play the game
with the linear board should be specific to tasks that assess knowl-
edge of numerical magnitudes. There was no reason to predict that
the linear board would promote greater improvement than the
circular board in counting or in numeral identification because
those skills do not depend in any obvious way on a linear repre-
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sentation of numerical magnitudes. Instead, the linear board and
the circular board were expected to be equally effective in pro-
moting learning of counting and numeral identification because
playing the game on them requires identical counting and numeral
identification activities. No cues that seemed likely to contribute to
either skill were present on one board but not the other. Thus, the
first major prediction of this study was that experience with a
linear board would produce greater learning than experience with
a circular board on number line estimation and numerical magni-
tude comparison tasks.

The second major goal of the present study was to test the
prediction that forming a linear representation of numerical mag-
nitudes should improve young children’s ability to learn answers
to arithmetic problems. As noted previously, the knowledge of
numerical magnitudes of many preschoolers from low-income
backgrounds is very poor. Even their knowledge of the rank order
of numerical magnitudes is shaky. When comparing the magni-
tudes of pairs of numbers from 1-9, a task on which perfect
accuracy requires only knowledge of the rank order of the num-
bers, the low-income 4- and 5-year-olds in Ramani and Siegler’s
(2008) study only answered 70% of problems correctly (vs. a 50%
chance level). If children do not even know the rank order of the
magnitudes of numbers, then learning arithmetic is reduced to
learning nonsense syllables; there is no more reason that 3 + 3 =
6 than 3 + 3 = 2.

Linear representations of numerical magnitudes seem likely to
help children learn arithmetic because such representations main-
tain equal subjective spacing throughout the entire range of num-
bers, thus facilitating discrimination among answers to different
problems. At least two prior findings are consistent with the
hypothesis that linear numerical magnitude representations facili-
tate arithmetic learning. First, linearity of number line estimates is
positively correlated with arithmetic proficiency among first
through fourth graders (Booth & Siegler, 2006, 2008). Second,
representing the magnitudes involved in arithmetic problems by
displaying on a computer screen horizontally oriented bars whose
lengths are proportional to the sizes of addends and sums facili-
tates first graders’ learning of the sums (Booth & Siegler, 2008).
Playing the linear number board game was expected to produce a
greater increase in correct answers and also errors that are closer to
the correct answer than playing the circular board game.

Increasing percentages of “close miss” errors among children
who had played the linear board game, both in absolute terms and
relative to children in the other two groups, would be particularly
strong evidence of the importance of numerical magnitude repre-
sentations in learning arithmetic. Why other than an improved
sense of numerical magnitudes would children who earlier had
played the linear board game increasingly retrieve answers to
arithmetic problems that were wrong but close to the right answer?
Why else would the same trends not be seen among children in the
other two groups who received the identical arithmetic training
procedure?

A third goal of the present study was to examine whether
playing the board games produced greater learning than engaging
in other types of numerical activities. Prior studies used a control
condition in which children played the same board game but with
colors rather than numbers in the squares. Thus, a child might spin
a spinner and say, “red, blue,” rather than “7, 8.” This condition
controlled for a variety of plausible alternative hypotheses—time

spent interacting with the experimenter, time spent moving a token
in a careful one-square-at-a-time manner, intervening numerical
experience in the classroom—but it did not indicate whether other
numerical experiences of the types that occur most often in pre-
schools might be just as useful or more useful than playing the
linear number board game.

Three relatively frequent numerical activities in preschool are
reciting the counting string, counting objects, and naming numer-
als (Ginsburg & Russell, 1981; Saxe et al., 1987). These are often
conducted as group activities, and feedback regarding an individ-
ual child’s correctness or incorrectness does not appear to be
common. To determine whether playing numerical board games
had effects above and beyond those of such common preschool
activities, we provided children in the numerical control activities
condition with counting and numeral naming tasks similar to those
that are common in preschool classrooms. The prediction was that
playing linear numerical board games would lead to greater learn-
ing of numerical magnitudes than engaging in these control activ-
ities, which do not require understanding of numerical magnitudes.
Thus, playing the linear numerical board game was expected to
lead to superior performance on the number line, magnitude com-
parison, and arithmetic learning tasks. No prediction was made for
the numeral identification and counting tasks because all condi-
tions required children to engage in such activities.

A fourth goal of this study was to more deeply understand how
individual differences influence learning of numerical information.
This goal subsumed two related issues: stability of individual
differences over the course of learning for the entire sample and
relations of the learning of children below and above the median in
initial knowledge. Relevant to the first issue, Ramani and Siegler
(2008) found that individual differences in pretest performance
were stable on both a posttest that followed 2 weeks of linear board
game experiences and on a follow-up test 2 months later. That is,
the same children who scored highest on the pretest also scored
highest after the learning experiences, even though both children
toward the top of the distribution and toward the bottom learned a
considerable amount between pretest and posttest. We wanted to
test whether the same stability of individual differences would be
present under the two novel experimental conditions— circular
number board game and numerical control activities—that were
examined in the present study.

The second issue was the relative learning of children above and
below the median in initial knowledge. Even if the same children
were highest in numerical knowledge before and after game play-
ing experience, the gap between children of greater and lesser
knowledge might increase, decrease, or remain unchanged. Learn-
ing might be greatest among children who already have a reason-
able amount of numerical knowledge (the often observed rich get
richer effect), it might be greatest among children whose initial
knowledge is especially poor (a catching up effect, perhaps be-
cause of the experimental experience constituting a higher propor-
tion of these children’s total numerical experience), or it might be
independent of initial knowledge (similar experience leading to
similar learning). This issue was important for practical as well as
theoretical reasons; the findings could help determine whether an
identifiable subset of children, in particular those with little initial
knowledge, did not learn much from playing the board games.
Such a finding would trigger efforts to improve the games so that
these children, too, would benefit.
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Method
Participants

Participants were 88 preschoolers (56% female) ranging in age
from 4 years, 0 months to 5 years, 5 months (M = 4 years, 8
months, SD = 0.47). Among them, 34% were African American,
61% were Caucasian, and 5% were Asian, Hispanic, biracial, or
unknown. The children were recruited from seven Head Start
classrooms and two childcare centers, all of which served families
with very low incomes. The families from the Head Start class-
rooms met the income requirements for Head Start established by
the federal government for 2007 (e.g., for a family of three, annual
income below $17,170). Almost all of the other families (96%)
received government subsidies for childcare expenses.

Children within each Head Start or childcare center were ran-
domly assigned to one of three conditions: the linear board game
condition, the circular board game condition, or the numerical
control condition. The linear board condition included 30 children
(M = 4 years, 8 months, SD = 0.46; 60% female; 40% African
American, 53% Caucasian, 7% Asian, Hispanic, biracial, or un-
known). The circular board game condition included 29 children
(M = 4 years, 8 months, SD = 0.45; 52% female; 31% African
American, 62% Caucasian, 7% Asian, Hispanic, biracial, or un-
known). The numerical activities control condition included 29
children (M = 4 years, 8 months, SD = 0.52; 55% female; 31%
African American, 69% Caucasian). An additional 3 children (2 in
the circular board game condition and 1 in the numerical activities
control condition) were present for the pretest but did not complete
the experiment because they were absent for an extended period.
The experimenters were a female postdoctoral research associate
of Indian descent (Geetha B. Ramani) and a female Caucasian
research assistant.

Materials and Procedure

All of the preschoolers met individually with an experimenter
for five 15-20 min sessions within a 3-week period. Sessions were
held in either their classroom or an unoccupied room nearby. Each
experimenter met with the same children for all sessions in the
study and with approximately equal numbers of children in each of
the three conditions.

Linear board game condition. A board 52 cm wide and 24 cm
high was used in the linear board game condition. The name of the
game, The Great Race, was printed at the top of the board. Below
the name were 10 equal-sized squares of different colors arranged
in a horizontal array. Each square contained one number, with the
numerical magnitudes increasing from left to right. The word
“Start” was just to the left of the “1” square; the word “End” was
just to the right of the “10” square.

The game also included a spinner with a “1” half and a “2” half,
as well as a bear token and a rabbit token. The child chose the bear
or rabbit token before each session to represent his or her progress
on the board; the experimenter took the remaining token. Because
of children almost always choosing to go first, and that being a
substantial advantage in this game, children won most games.

At the beginning of each session, the experimenter told the child
that they would take turns spinning the spinner and that whoever
reached the end first would win. Then the experimenter said that
on each turn, the player who spun the spinner would move her or

his token the number of spaces indicated on the spinner. The
experimenter also told the child to say the numbers on the spaces
through which the token moved. Thus, children who were on the
square with a 3 and spun a 2 would say, “4, 5,” as they moved.

If a child erred or could not name the numbers, then the
experimenter correctly named them and the child then had to
repeat the numbers while moving the token. One common error
involved children not naming the numbers in the squares as they
moved their token and instead counting the number of squares they
moved their token forward. Children who made this error would,
if they were on the fourth square and spun a 2, say “1, 2” as they
moved their token instead of “5, 6.” When children erred in this
way, the experimenter reminded them to name the numbers in the
squares as they moved. If the child did not correct the error, then
the experimenter would point to and name the numbers in the
squares and have the child repeat them as she (the experimenter)
pointed to the squares. Preschoolers played the game approxi-
mately 20 times, with each game lasting about 3 min. Children
were not told explicitly “that’s right” or “that’s wrong,” but the
correction procedures in both the linear and circular board game
conditions provided implicit feedback.

Circular board game condition. The only difference between
the linear and circular board game conditions was the board itself.
There were two circular boards, each divided into 12 wedges. Both
were 38 inches (96.52 cm) high and 41 inches (104.14 cm) wide.
Ten of the wedges, those located approximately at the locations of
2:00 through 10:00 on an analog clock, included the numbers 1-10
ordered consecutively. On one board, the numbers increased
clockwise; on the other, the numbers increased counterclockwise.
Also on the circular board were two wedges of the same size at the
top of the board that did not contain numbers and that separated the
numbers 10 and 1. One of these wedges contained a picture of a
tree and the word “Start;” the other contained a picture of a trophy
and the word “Finish.” The color of the wedge in which each
number appeared was the same as on the corresponding square of
the linear board. The procedure followed in the circular board
condition was identical to that in the linear board condition. Half
of the children in this condition played the clockwise version of the
game (n = 15), and the other half played the counterclockwise
version (n = 14). As with the linear board game condition,
preschoolers played the circular board game approximately 20
times over Sessions 1-4, with each game lasting about 3 min.

Numerical activities control condition. Preschoolers in the
numerical activities control condition were presented three tasks in
a continuing cycle: number string counting, numeral identification,
and object counting. Whichever activity would have been next at
the end of one session was first at the following session. On the
object counting task, children were asked to count a row of
between 1 and 10 poker chips, with the exact number varying
randomly. The procedures for the other two tasks—number string
counting and numeral identification—were the same as those used
to assess those skills on the pretest and posttest; they are described
in the next section.

Each child in the numerical activities control condition was
matched with a child of the same age (within 2 months) in one of
the board game conditions. The length of each session for each
child in the numerical control condition was equated with that of
the matched child. Thus, if a child in a board game condition
played the game for 16 min in Session 2, the matched child in the
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numerical activities control condition also engaged in those activ-
ities for 16 min in Session 2. General praise and encouragement
were presented periodically, but no specific feedback regarding
correctness was presented in this condition.

Measures of Numerical Knowledge

At the beginning of Session 1, children were administered a
pretest that included five numerical tasks presented in the follow-
ing order: counting, number line estimation, magnitude compari-
son, numeral identification, and arithmetic. At the end of Session
4, a posttest was presented that included the first four of these tasks
in the same order as on the pretest. The posttest for the remaining
task (arithmetic) was presented at the end of Session 5, after
children had been presented opportunities to learn previously
unknown answers to arithmetic problems.

Counting. Children were asked to count from 1 to 10. Count-
ing was coded as correct up to the first error (e.g., if a girl counted
“1,2,3,4,5,6, 8,9, 10,” her score was 6).

Number line estimation. Children were presented 18 sheets of
paper, one at a time. On each sheet was a 25-cm line, with “0” just
below the left end and “10” just below the right end. A number
from 1-9 inclusive was printed approximately 2 cm above the
center of the line, with each number printed on 2 of the 18 sheets.
All numbers from 1-9 were presented once before any number was
presented twice; the nine numbers were ordered randomly both
times. Children were told that they would be playing a game in
which they needed to mark the location of a number on a line. On
each trial, after asking the child to identify the number at the top
of the page (and helping if needed), the experimenter asked, “If
this is where 0 goes (pointing) and this is where 10 goes (pointing),
where does N go?”

Numerical magnitude comparison. Children were presented a
20-page booklet, each page displaying two numbers between 1 and
9 inclusive, and asked to choose the bigger number. The experi-
menter first presented two warm-up problems with feedback, fol-
lowed by 18 experimental problems without feedback. The 18
experimental problems were a randomly chosen half of the 36
possible pairs. On the warm-up problems, the experimenter
pointed to each number and asked, for example, “John (Jane) had
one cookie and Andy (Sarah) had six cookies. Which is more: one
cookie or six cookies?” On the two warm-up problems, the exper-
imenter corrected any errors that were made (e.g., “Actually, six
cookies is more than one”) and repeated the problems until the
child answered them correctly. On the 18 experimental problems,
half of the children within each condition were presented a given
pair in one order (e.g., “Is six cookies more than three cookies?”)
and half in the opposite order (“Is three cookies more than six
cookies?”).

Numeral identification. The task involved 10 randomly or-
dered cards, each with a numeral from 1-10 on it. On each trial, the
experimenter held up a card and asked the child to name the
numeral.

Arithmetic problems and training. The arithmetic pretest was
composed of four addition problems presented in the following
order: 2 + 1,2 + 2,4 + 2, and 2 + 3. Children were asked,
“Suppose you have N oranges and I give you M more; how many
oranges would you have then?”” As on the other pretest and posttest
tasks, no feedback was given.

At the beginning of Session 5, children received training on the
first two arithmetic problems that they had answered incorrectly on
the pretest. The training involved presenting the two problems and
their answers three times in alternating order. For example, chil-
dren who erred on all four problems on the pretest were presented
2 + 1 and 2 + 2 in the first cycle of Session 5,2 + 2 and 2 + 1
in the second cycle, and 2 + 1 and 2 + 2 in the third cycle. The
problems were presented in the same “oranges” context as on the
pretest. Children needed to answer each problem within 5 s; if they
failed to do this, they were prompted to answer. On each trial, after
children stated their answer, they were asked to explain how they
obtained that answer. Then, they were given feedback and told the
right answer. For example, on 2 + 2, they were told either “That’s
right; 2 + 2 is 4,” or “No, 2 + 2 is 4.” The children’s explanations
indicated that on almost all trials (96%), they retrieved the answer
from memory or guessed. After the third cycle of feedback prob-
lems, children received the addition posttest, in which they were
presented the same four problems in the same order as on the
pretest and asked to state the answer.

Results

Preliminary analyses comparing the performance of children
who used the clockwise and the counterclockwise circular boards
indicated no differences on any measure. Children who played the
clockwise version scored directionally higher on three posttest
tasks and directionally lower on the other two. Therefore, no
distinction between the two circular boards was made in further
analyses. Preliminary analyses examining age differences also did
not reveal any differences; therefore, age was not included in
further analyses.

Multivariate Analyses

We first examined multivariate effects of condition and session
across number line estimation, magnitude comparison, counting,
and numeral identification tasks (arithmetic performance was not
included because the multivariate analysis of variance was in-
tended to measure direct effects of playing the board games, and
arithmetic performance reflected subsequent experience with the
addition problems). For the magnitude comparison and numeral
identification tasks, the dependent measure was number of correct
answers. For the counting task, the dependent measure was num-
ber of numbers counted correctly before the first error. For the
number line estimation task, two measures—linearity and slope—
were included because they provide somewhat different types of
information. The ideal function relating actual and estimated mag-
nitudes on the number line test is perfectly linear (R}, = 1.00) with
a slope of 1.00. However, estimates can increase in a perfectly
linear function with a slope far less than 1.00, and estimates can
increase with a slope of 1.00 but not fit a linear function very
closely. For this reason, both measures were included.

A 3 (condition: linear board game, circular board game, or
numerical activities control) X 2 (session: pretest or posttest)
repeated-measures multivariate analysis of variance was con-
ducted on the five measures described above. Effects emerged for
session, F(5, 81) = 13.26, p < .001, ni = .45, and the Condi-
tion X Session interaction, F(10, 164) = 3.83, p < .001, nﬁ =.19.
To better understand the interaction, and to examine the consis-
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tency of results across tasks, we conducted univariate analyses for
each task.

Number Line Estimation

Linearity. Linearity of number line estimation was the mea-
sure that most directly corresponded to the hypothetical construct
of a linear representation of numerical magnitude. Among children
who played the linear board game, the variance in the group
median estimates for each number that was accounted for by the
best fitting linear equation increased substantially from pretest
(22%) to posttest (94%). As shown in Figures 1, 2, and 3, changes
were much smaller among children who played the circular board
game (11% vs. 26%) or who participated in the numerical activi-
ties control condition (43% vs. 57%).

Analyses of individual performance provided converging evi-
dence. Linearity of individual children’s number line estimates
varied with session, F(1, 85) = 21.92, p < .001, nﬁ = .21, and
with the Condition X Session interaction, F(2, 85) = 8.52, p <
.001, ni = .17. The interaction between condition and session
resulted from the linear board game producing greater pretest—
posttest improvement than the other two conditions. Among chil-
dren who played the linear board game, the mean percentage of
variance in individual children’s estimates that was accounted for
by the best fitting linear function increased from 14% on the
pretest to 39% on the posttest, #(29) = 4.75, p < .001, d = 1.03.
In contrast, there were no significant changes among children who
played the circular board games (15% vs. 21%) or who partici-
pated in the numerical activities control condition (16% vs. 18%).
Viewed from another perspective, the linearity of pretest estimates
of children in the three conditions did not differ (mean R, = .14,
.15, and .16), but the posttest estimates of children who had played
the linear board game were considerably more linear than those of
children who had played the circular board game (mean R}, = .39
vs. .21), #(57) = 2.50, p < .05, d = 0.65, or who had engaged in
the numerical control activities (mean R}, = .39 vs. .18), #(57) =
2.90, p < .01, d = 0.76. Linearity of estimates did not differ for the
latter two conditions.

Slope. Among children who played the linear board game, the
slope of the group median estimates for each number increased
substantially from pretest to posttest (.03 vs. .78). No comparable
changes in slope occurred among children who played the circular
board games (.03 vs. .12) or among children who participated in the
numerical control activities (.05 vs. .09; see Figures 1, 2, and 3).
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Figure 1. Pretest and posttest linearity of number line estimation in the

linear board game condition: group median data.
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Figure 2. Pretest and posttest linearity of number line estimation in the
circular board game condition: group median data.

Analyses of the slopes of individual children’s number line
estimates provided converging evidence for the group-level pat-
tern. As in the analyses of linearity, the slopes varied with session,
F(1, 85) = 38.16, p < .001, nﬁ = .31, and with the Condition X
Session interaction, F(2, 85) = 11.16, p < .001, nﬁ = .21. The
interaction between condition and session once more reflected
larger gains among children who played the linear board game. In
this group, the mean slope of number line estimates increased
substantially from pretest to posttest (mean slope = .04 vs. .61),
#(29) = 5.65, p < .001, d = 1.26. Among children who played the
circular board games, the slopes of number line estimates in-
creased from pretest to posttest, though less dramatically (mean
slope = .09 vs. .28), #(28) = 2.34, p < .05, d = 0.48. Among
children in the numerical control condition, pretest—posttest
changes were not significant (.12 and .20). Viewed from another
perspective, slopes in the three conditions did not differ on the
pretest (mean slope = .04, .09, and .12). However, on the posttest,
the slopes of the estimates of children who had played the linear
board game were higher than those of children who had played the
circular board game (mean slope = .61 vs. .28), #(57) = 2.71,p <
.01, d = 0.71, or who had participated in the control condition
(mean slope = .61 vs. .21), #(57) = 3.37, p < .01, d = 0.88. Again,
slopes did not differ between children who had played the circular
board game and children who had engaged in the numerical
control activities.

Accuracy. To obtain a composite measure of the accuracy of
children’s number line estimates, and to allow comparison with
previous studies, we examined percent absolute error (PAE):
PAE = [(Estimate — Actual Number)/Scale of Estimates] X 100.
For example, if a child marked the location of 5 on a 0—10 number
line at the position that corresponded to 9, the PAE would be 40%:
[(9 — 5)/10] X 100.

Accuracy of number line estimation varied with session, F(1,
85) = 25.71, p < .001, n§ = .23, and with the Condition X
Session interaction, F(2, 85) = 3.77, p < .05, m; = .08. Among
preschoolers who played the linear board game, PAE decreased
substantially from pretest to posttest (29% to 21%), #(29) = 4.85,
p < .001, d = 1.01. Among preschoolers who played the circular
board game, a smaller but significant improvement also was
present (29% to 26%), 1(28) = 2.14, p < .05, d = 0.43. PAE of
preschoolers in the numerical control condition did not change
significantly from pretest to posttest (28% and 25%). Pretest PAE
of children in the three conditions was comparable (29%, 29%, and
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Figure 3. Pretest and posttest linearity of number line estimation in the
numerical control activities condition: group median data.

28%), but posttest PAE of children who had played the linear
board game was superior to posttest PAE of both those who had
played the circular board game (21% vs. 26%), t(57) = 2.59, p <
.05, d = 0.67, and those who had engaged in the numerical control
activities (21% vs. 25%), t(57) = 2.41, p < .05, d = 0.63. Posttest
PAE did not differ for the circular board game and numerical
control activities conditions.

Numerical Magnitude Comparison

Number of correct magnitude comparisons varied with the Con-
dition X Session interaction, F(2, 85) = 5.43, p < .01, n}f = .12.
This interaction resulted from the linear board game producing
greater gains in magnitude comparison accuracy than the circular
board game or the numerical control activities. Among children
who played the linear board game, percent correct magnitude
comparisons increased from 68% on the pretest to 77% on the
posttest, #(29) = 3.79, p < .01, d = 0.51. In contrast, there was no
change over sessions in magnitude comparison accuracy for chil-
dren who played the circular board game (70% correct on the
pretest and 71% correct on the posttest) or who participated in the
numerical control condition (69% correct on the pretest and 65%
correct on the posttest). Magnitude comparison performance on the
pretest did not differ among the three conditions (68%, 70%, and
69% correct), but on the posttest, children who had played the
linear board game answered more magnitude comparison items
correctly than did children in the numerical control activities
condition (77% vs. 65%), t(57) = 2.88, p < .01, d = 0.75. There
was no difference on the posttest in magnitude comparison accu-
racy for the circular board game and numerical control conditions.

Counting

There were no significant effects on the counting task. The
reason was simple—almost all children in all three conditions were
at ceiling on both the pretest and the posttest. That is, almost all
children counted to 10 without an error in the linear board game
condition (90% of children on the pretest and 93% on the posttest),
the circular board game condition (90% of children on the pretest
and 97% on the posttest), and the numerical control condition
(86% of children on both pretest and posttest).

Numeral Identification

Number of correct numeral identifications varied with session,
F(1, 85) = 18.80, p < .001, nﬁ = .18, and with the Condition X

Session interaction, F(2, 85) = 3.21, p = .05, nf, = .07. The
interaction between condition and session resulted from differing
gains in numeral identification among children in the three condi-
tions. Children who played the linear board game improved from
a mean of 6.0 correct identifications of numerals on the pretest to
7.3 correct identifications on the posttest, #(29) = 3.95, p < .001,
d = 0.47. Children who played the circular board games improved
from 6.6 to 7.3 correct identifications from pretest to posttest,
1(28) = 3.17, p < .01, d = 0.23. In contrast, the numeral identi-
fication skills of children in the numerical control condition did not
improve: 6.6 correct on the pretest and 6.8 correct on the posttest.
There was no difference among the three conditions on the pretest
(6 vs. 6.6 vs. 6.6 correct identifications) or on the posttest (7.3 vs.
7.3 vs. 6.8). However, the pretest—posttest changes suggested that
playing both linear and circular board games led to improvements
in numeral identification.

Arithmetic

In analyzing the arithmetic data, we examined both number of
correct answers and absolute error (the absolute value of the
distance of the child’s response from the sum). These analyses
were limited to the two items on which children received training;
there were no differences in performance on the two nontrained
items.

To determine whether prior experience influenced subsequent
learning of answers to arithmetic problems, we first examined
whether the number of arithmetic problems that children in the
three groups answered correctly differed after the arithmetic train-
ing. Two children were excluded from these analyses—in one case
because the child answered all four problems correctly on the
pretest and in the other because of experimenter error.

Children who earlier had played the linear board game answered
more addition problems correctly after training on them than did
children who earlier had played the circular board game (45% vs.
30% correct) or children who earlier had engaged in the numerical
control activities (45% vs. 28% correct), X2(4, N = 86) = 11.46,
p < .05. Number of correct answers in the circular board game and
numerical activities control groups did not differ. The absolute
amount of learning by children in the linear board game group—
from 0% correct on the pretest to 45% correct on the posttest—was
quite impressive given the brevity of the training.

Analyses of absolute error on the arithmetic problems yielded
similar results. Among children who had played the linear board
game, the absolute error on the arithmetic problems decreased
from pretest to posttest (mean error = 2.3 vs. 1.1), #(29) = 2.93,
p < .01, d = 0.78. In contrast, there was no change in absolute
error among children who had played the circular board game
(mean error = 1.9 vs. 1.7) or among those who had engaged in the
numerical control activities (mean error = 2.2 vs. 3.6). No differ-
ences in mean absolute error were present among the three groups
on either the pretest or the posttest (pretest Ms = 2.3, 1.9, and 2.2;
posttest Ms = 1.1, 1.7, and 3.6). The large difference in posttest
means made the lack of a significant difference surprising. The
main reason appeared to be that 2 children in the numerical
activities control group generated extremely inaccurate estimates
on the posttest, which inflated the within-group variance. When a
square-root transformation was applied to all of the data to reduce
variability, posttest addition answers of children who had played
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the linear board game tended to be more accurate than those of
peers who had engaged in the numerical control activities, #(57) =
1.88, p = .07, d = 0.49.

These analyses include trials that children answered correctly
(where their absolute error was 0) as well as trials that involved
errors. To determine whether there were differences in the quality
of errors per se, we compared the absolute error on the 55% least
accurate answers in each condition on pretest and posttest (the
percentage of answers that were erroneous for all three groups at
both times of measurement). A Kruskal-Wallis test indicated that
on the pretest, there were no differences in the quality of errors of
children in the three conditions, H(2) = 2.66, mean ranks = 51.62,
41.98, and 49.91 for the linear, circular, and control conditions,
respectively. In contrast, on the posttest, errors of children in the
linear board group were closer misses than those in the other
conditions, H(2) = 12.81, p < .01, mean ranks = 34.59, 54.10,
and 56.11 for the linear, circular, and control conditions, respec-
tively. Among children in the linear board game condition, abso-
lute error on the 55% least accurate answers decreased from pretest
to posttest (3.33 to 2.00), Wilcoxon test, Z = 5.21, p < .001. In
contrast, among children in the other two groups, absolute errors
on the 55% least accurate answers did not change from pretest to
posttest. Thus, from pretest to posttest, percentage of correct
addition answers increased and errors tended to become closer to
the correct answer among children who had previously played the
linear numerical board game but not among children in the other
two conditions.

The results of the arithmetic training suggest that improvements
in children’s numerical magnitude knowledge from playing the
linear board game aided their learning of the addition problems
from the arithmetic training. To examine the contribution of nu-
merical magnitude knowledge to learning answers to addition
problems, we converted the linearity of individual children’s num-
ber line estimates and the number of correct magnitude compari-
sons at posttest to z scores and the two z scores were summed to
create a composite measure of magnitude knowledge. A linear
regression was conducted using this composite measure to predict
absolute error on the addition problems at posttest. This composite
measure of numerical magnitude knowledge predicted the absolute
error at posttest (R? = .04), F(1, 85) = 3.35, p = .04, one-tailed.

Individual Differences

To examine the stability of individual differences in numerical
knowledge from pretest to posttest, and to determine whether the
experimental manipulations altered individual differences within
each condition, we computed pretest—posttest correlations sepa-
rately for each condition. The individual differences proved quite
stable in all three conditions. As shown in Table 1, this was
especially the case in the numerical activities control group. In that
condition, children’s relative proficiency was highly stable for all
four tasks and all five measures. Given that numerical knowledge
changed less in this condition than in the others, the greater
stability of individual differences is not entirely surprising. None-
theless, the absolute amount of stability of the individual differ-
ences was striking, if for no other reason than demonstrating the
reliability of the measures.

Individual differences were also quite stable from pretest to
posttest in the two experimental conditions in which greater learn-

Table 1
Pretest—Posttest Correlations for Each Task in Each Condition

Numerical Circular board  Linear board
Task control group game group game group
Numeral identification .84 93 .80
Magnitude comparison 56" T4 697
Counting 737 .04 66"
Number line linearity .88 60" 33
Number line slope .83 38" 27

“p <05 *p<.0l. *p< .00l

ing occurred: the linear and circular board game conditions. In
both of those conditions, performance on three of the four tasks
showed substantial stability (see Table 1). The exception in the
circular board game condition was counting performance, an ex-
ception that was attributable to ceiling effects (90% of children in
that condition counted perfectly on the pretest and 97% on the
posttest). The exception in the linear board game condition in-
volved number line performance; the reason why individual dif-
ferences in that condition on that task were less stable than in the
other conditions and on the other tasks may have been due to floor
effects on the pretest (half of the children generated number line
slopes on the pretest that were negative).

Existing Knowledge and Acquisition of New Knowledge

Who benefited most from playing the linear board game? To
find out, we divided children in the linear board game condition,
the condition that produced consistent improvement on all mea-
sures, into those performing above and below the median on the
pretest. Then we compared pretest and posttest performance on
each task of children in each subgroup. The pattern of changes on
the four tasks is shown in Figure 4.

Number line linearity. The 30 participants in the linear board
game condition were divided into a group of 16 children for whom
the best fitting linear function accounted for 8% or less of the
variance in pretest number line estimates (M = 4%) and a group of
14 children for whom the best fitting linear function accounted for
9% or more of the variance in pretest estimates (M = 26%). The
linearity of individual children’s number line estimates varied with
session, F(1, 28) = 23.04, p < .001, nf) = .45. It increased from
pretest to posttest both for those who scored below the median on
the pretest (4% to 37%), t(15) = 4.47, p < .001, d = 1.59, and for
those who scored above it (26% to 41%), 1(13) = 2.29, p < .05,
d = 0.58. The two groups differed on the pretest (4% vs. 26%),
1(28) = 4.17, p < .001, d = 1.55, but not on the posttest (37% vs.
41%), reflecting larger gains in the group that performed less well
on the pretest.

Number line slope. The median split on pretest performance
resulted in a group of 15 children with below average slopes (M =
—0.23, SD = 0.15, range= —0.48 to —0.02) and a group of 15
children with above average slopes (M = 0.30, SD = 0.31,
range = —0.01 to 1.01). Among children who played the linear
board game, slope varied with pretest performance, F(1, 28) =
5.31, p < .05, nﬁ = .16; session, F(1, 28) = 38.83, p < .001,
nz = .58; and the Pretest Performance X Session interaction, F(1,
28) = 7.22, p < .01, T]f, = .21. Slopes increased from pretest to
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Figure 4. Pretest and posttest performance of children who generated
below average or above average pretest performance.

posttest for those whose pretest slope was below the median (mean
slope = —0.23 vs. 0.59), #(14) = 6.12, p < .001, d = 2.14, and for
those whose pretest slopes were above the median (mean slope =
0.30 vs. 0.63), #(14) = 2.59, p < .05, d = 0.72. The interaction
reflected greater improvement from pretest to posttest among
children whose initial performance was below the median. Slopes
of children in the two groups differed on the pretest (mean
slopes = —0.23 vs. 0.30), #28) = 5.89, p < .001, d = 2.15, but
not on the posttest (mean slopes = 0.59 and 0.63).

Numeral identification. Children were divided into a group of
13 with poorer initial numeral identification skills (6 or fewer
correct identifications; M = 3.1) and a group of 17 with better
initial numeral identification skills (7 or more correct identifica-
tions; M = 8.3). Number of correct numeral identifications varied
with pretest performance, F(1, 28) = 64.13, p < .001, nlﬁ = .70;
session, F(1, 28) = 23.38, p < .001, 1],2) = .46; and the Pretest
Performance X Session interaction, F(1, 28) = 9.19, p < .01,
ni = .25. Children whose pretest performance was below the
median improved from 3.1 to 5.4 correct identifications, #(12) =
3.90, p < .01, d = 1.07, and children whose pretest performance
was above the median improved from 8.3 to 8.8 correct identifi-
cations, #(16) = 2.17, p < .05, d = 0.43. The two groups differed
on both the pretest (3.1 vs. 8.3 correct identifications), #(28) =
9.19, p < .001, d = 3.38, and the posttest (5.4 vs. 8.8 correct
identifications), #(28) = 5.22, p < .001, d = 1.91, though the
pretest differences were larger.

Numerical magnitude comparison. Children were divided into
a group of 16 with 67% or fewer accurate magnitude comparisons
on the pretest (M = 54%) and a group of 14 with above 67%
correct comparisons (M = 84%). Number of correct comparisons
varied with group, F(1, 28) = 50.59, p < .001, nﬁ = .64; session,
F(1, 28) = 17.54, p < .001, ni = .39; and the Group X Session

interaction, F(1, 28) = 11.56, p < .01, m_ = .29. The two groups
differed on both the pretest (54% vs. 84% correct), #(28) = 8.40,
p < .001, d = 3.04, and the posttest (69% vs. 85% correct),
1(28) = 2.86, p < .001, d = 1.45. However, learning was again
greater among those whose initial performance was relatively
poor. Magnitude comparison accuracy improved for children with
lower pretest magnitude comparison accuracy (54% vs. 69% cor-
rect), #(15) = 5.37, p < .001, d = 1.46, but not for children with
higher pretest accuracy (84% vs. 85% correct).

Counting. No analysis was possible because 100% of children
with pretest scores above the median counted perfectly.

Arithmetic. A median split on addition pretest performance led
to identification of a group of 16 children with average absolute
error of 2 or more (M = 3.13) and a group of 14 children with
average absolute error of less than 2 (M = 1.25). Average absolute
error varied with group, F(1, 28) = 4.79, p < .05, nﬁ = .15;
session, F(1, 28) = 10.28, p < .01, ni = .27; and the Group X
Session interaction, F(1, 28) = 10.97, p < .01, nfj = .28. Once
again, learning was greater among children whose pretest perfor-
mance was worse. Absolute error on all trials improved from
pretest to posttest for children who generated larger errors on the
pretest (mean error = 3.13 vs. 0.94), #(15) = 5.23, p < .001, d =
1.81, but not among those who generated smaller errors on the
pretest (mean error = 1.25 vs. 1.29). The two groups differed on
the pretest (mean error = 3.13 vs. 1.25), #(28) = 4.48, p < .001,
d = 1.64, but not on the posttest (mean error = 0.94 vs. 1.29).

Might the ceiling effects that were so strong on the counting task
also have made it impossible for children with pretest scores above
the median to learn as much from the linear board game on the
other four tasks? The answer appeared to be no. On the pretest, the
percentage of children in the above median group whose scores
were at ceiling was 0% on number line estimation, 0% on mag-
nitude comparison, 18% on numeral identification, and 0% on
arithmetic. On the posttest, the percentage of these children who
were at ceiling was 0% on number line estimation, 6% on mag-
nitude comparison, 35% on numeral identification, and 21% on
arithmetic. Children whose pretest scores were above the median
also produced far less learning than was possible. For example, on
magnitude comparison, performance among these children im-
proved only from 84% to 85% correct; on numeral identification,
it improved only from 8.3 to 8.8 answers correct; and on the
arithmetic task, children with below median pretest scores actually
answered more accurately on the posttest. Thus, ceiling effects
could not explain why children with more initial knowledge
learned less than children with less initial knowledge.

Discussion

The results of this study were consistent with each of its main
hypotheses. Playing the linear number board game led to consid-
erably greater learning than playing the circular game or engaging
in the numerical control activities. The advantages of playing the
game with the linear rather than the circular board were specific to
measures that reflected understanding of numerical magnitudes.
Individual differences were quite stable from pretest to posttest
within each condition, even in the linear board condition where
substantial learning occurred. Probably most striking was the
learning to learn effect in arithmetic: Children who earlier had
played the linear board game learned more from subsequent prac-
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tice and feedback on addition problems than children in the other
two conditions. Thus, increasing understanding of numerical mag-
nitudes is crucial not just for its direct effects but also because it
improves children’s subsequent learning of arithmetic. In this
concluding section, we examine several implications of these
findings.

Implications for Arithmetic Learning

The present findings suggest a different perspective on the
processes involved in arithmetic learning than the typical one.
Learning of answers to arithmetic problems has usually been
viewed as a simple associative process (e.g., Campbell, 1991;
Zbrodoff & Logan, 2005). Within some models, arithmetic per-
formance depends on the frequency of past problem presentation,
which is viewed as determining the strength of association be-
tween each problem and its correct answer (e.g., Ashcraft, 1992;
Ashcraft & Christy, 1995). Within other models, the answers that
learners generated in past efforts to solve a problem determine the
associative strength between the problem and both correct and
incorrect answers (Siegler & Shipley, 1995; Siegler & Shrager,
1984). Yet, other models emphasize priming of associations be-
tween problems and answers, interference between problems that
share operands, and associations between pairs of operands and
answers to other arithmetic operations (Campbell, 1987, 1991;
Campbell & Graham, 1985).

The impact of numerical magnitude representations on arith-
metic performance has received far less attention. Evidence doc-
umenting this influence has long been available, but it has been
explained away as a byproduct of associative processes. For ex-
ample, data from verification tasks indicate that people are slower
to reject close misses (e.g., 4 + 6 = 12) than errors that are farther
in magnitude from the correct answer (e.g., 4 + 6 = 18). Ashcraft
and Stazyk (1981) explained such verification data by hypothesiz-
ing that addition answers are represented in an associative net-
work, much like a multiplication table, and that interference from
the correct answer lengthens the time to reject close misses. A
different associative explanation of magnitude effects has been
advanced for data from production tasks. Siegler (1988) found that
close misses (e.g., 5 X 2 = 12) are retrieved more often than errors
more distant in magnitude (5 X 2 = 18). He noted that most errors
generated by repeated addition, the main backup strategy in mul-
tiplication, are close in magnitude to the correct answer and argued
that the close misses produced through repeated addition become
associated with the problem, leading to their being retrieved and
stated more often than other errors.

The present data in no way argue against the importance of
associative processes in arithmetic. However, they do argue that
understanding of magnitudes plays an additional role that cannot
be easily explained by these associative accounts. Children in the
three conditions of the present study had identical opportunities to
associate arithmetic problems with their answers, yet children who
previously had played the linear board game learned considerably
more from the arithmetic experience than children in the other two
conditions. What type of learning process would lead to this
pattern?

Our analysis begins with an analogy to story comprehension:
Magnitudes seem to play a role in learning arithmetic (and other
numerical information) akin to the role of gist in learning the

content of stories. Bransford and Franks’s (1971) and Bransford
and Johnson’s (1973) classic studies demonstrate that understand-
ing the gist of a story is essential for learning its content. The same
passage can be remembered perfectly or not at all, depending on
whether readers can extract its gist.

Understanding of numerical magnitudes, like understanding of
gist, improves recall. There’s a reason why newscasters and pun-
dits often confuse numbers like 400 million and 400 billion but
never numbers like 4 and 40. In the one case, they do not under-
stand the numbers’ magnitudes; in the other, they do. Similarly,
understanding numerical magnitudes makes recalling answers to
arithmetic problems more like recalling a set of related and mean-
ingful facts than like recalling a list of unrelated words.

The analogy can be applied to understanding elementary school
children’s relatively good knowledge of whole numbers and their
poor knowledge of fractions. No second grader would say that 3 +
3 = 3, yet many sixth graders say that 1/3 + 1/3 = 2/6 (Carpenter,
Corbitt, Kepner, Lindquist, & Reys, 1981). Similarly, no second
grader would say that 274 is smaller than 83, but most fifth and
sixth graders say that .274 is larger than .83 (Hecht, 1998; Hecht,
Close, & Santisi, 2003; Kouba, Carpenter, & Swafford, 1989;
Resnick & Omanson, 1987).

This analogy leads to the following question: Through what mech-
anism would knowledge of numerical magnitudes facilitate the learn-
ing of answers to arithmetic problems? One plausible hypothesis is
that the mental number line serves as a retrieval structure that im-
proves encoding, storage, and retrieval of numerical information by
organizing the information around the numbers’ magnitudes. Re-
trieval structures appear to be a key component of expert memory on
such diverse tasks as remembering configurations of chess pieces
(Chase & Simon, 1973), sequences of numbers (Chase & Ericsson,
1982), restaurant orders (Ericsson & Polson, 1988), and intermediate
steps within multidigit mental multiplication (Staszewski, 1988). The
ways in which retrieval structures enhance recall, recognition, and
other forms of memory have been specified within computer simu-
lations of expertise in computer programming, mental multiplication,
and other areas (e.g., Adelson & Soloway, 1988; Richman, Stasze-
wski, & Simon, 1995).

In the present context, playing the linear board game seems to have
helped preschoolers form a retrieval structure for encoding, storing,
and retrieving single-digit numbers. The clearest evidence of the
effects on encoding came from the arithmetic error data. The posttest
arithmetic errors of children who had played the linear board game
were closer to the correct answer than their pretest errors had been, a
pattern not shown by children in the other two conditions. This pattern
was strongly indicative of enhanced encoding of numerical magni-
tudes during learning. Why else would children who had played the
linear board game increasingly make close miss errors, whereas
children in the other two conditions, who were given identical arith-
metic experience, did not do the same? The fact that children who had
played the linear board game also generated a greater number of
correct answers to the arithmetic problems suggests that after receiv-
ing feedback on them, the children’s storage and retrieval of correct
answers also benefited from having played that game.

A child who uses a linear mental number line as a retrieval
structure for numerical information is in a position to induce
regularities among the answers to arithmetic problems. For exam-
ple, in whole number addition, a child who accurately represents
numerical magnitudes could learn that the sum is invariably
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greater than either addend, that pairs of large single-digit addends
have answers closer to 18 than pairs of small or medium size
single-digit addends, and that the sum is always closer to the larger
addend than to the smaller one. Such knowledge considerably
constrains the potential answers to single-digit arithmetic prob-
lems. It also makes possible generation of useful strategies. For
example, noticing that the sum is always closer to the larger
addend than to the smaller one is essential for generating the min
strategy (adding by counting on from the larger addend). These
results suggest that future models of arithmetic will benefit from
including retrieval structures or other mechanisms that embody
numerical magnitude representations.

The Representational Mapping Hypothesis

One major goal of this study was to test the representational
mapping hypothesis, which states that the greater the transparency
of the mapping between physical materials and desired internal
representations, the greater the learning of the desired internal
representation. In the present context, this hypothesis implied that
a linear board game would lead to greater learning than a circular
board game because the linear board more closely resembled the
desired mental representation. The advantage was hypothesized to
be specific to tasks that benefit from linear representations of
numerical magnitude.

The data were consistent with this hypothesis. On the number
line estimation task, linearity, slope, and accuracy were all greater
on the posttest for those who played the game with the linear board
than for those who played it with the circular board. On the
magnitude comparison task, accuracy improved from pretest to
posttest among children who played the game with the linear board
but not among those who played the game with the circular board.
On the arithmetic task, both percentage correct and quality of
errors were higher following exposure to arithmetic problems and
their sums for those who earlier had played the game with the
linear board but not for those who had not. Also as predicted,
numeral identification improved similarly from pretest to posttest
for those who played either the linear or the circular board game.

This evidence does not imply that people cannot form circular
representations of numerical magnitudes. When instructed to
imagine numbers arranged clockwise around an analog clock face,
adults appear to generate and rely on the requested circular repre-
sentation (Bichtold et al., 1998). After such instructions, adults
responded more quickly to small numbers with their right hand and
more quickly to large numbers with their left hand, a pattern
consistent with the requested clock face representation (and the
opposite of the pattern seen in the absence of such instructions).
Clearly, adults can form circular representations of numerical
magnitudes if requested to do so; it seems likely that the same is
true of children at some age.

Nonetheless, the present data suggest that not all representations
of numerical magnitude are equally easy to learn. Nothing about
the pretest data indicated that the preschoolers in this study had
formed either a linear or a circular representation of numerical
magnitudes prior to the experimental session. However, a single
hour of experience playing the linear number board game appeared
sufficient for children to form a linear representation and to use it
to improve performance on numerical magnitude comparison,
number line estimation, and arithmetic tasks. The same amount of

experience playing the circular board game had much less effect
on performance on these tasks.

These data indicate that just as research on mental representa-
tions can lead to predictions of the effects of physical materials on
learning, data on learning can provide useful information about the
relative difficulty of forming alternative mental representations. It
does not appear to be happenstance that people form linear rather
than circular representations of numerical magnitudes; linear rep-
resentations are easier to learn.

The approach used in the present study may also prove useful in
answering many other questions about mental representations.
Consider three such questions regarding numerical representations.
Are horizontally oriented representations of numerical magnitudes
easier to learn than vertically oriented ones? Do children in our
culture who cannot yet read find it easier to learn left-to-right
representations than right-to-left ones? Is learning a logarithmic
representation from playing a logarithmically spaced number
board game easier than learning a linear representation from play-
ing a linearly spaced number board game? Examining ease of
learning is likely to prove useful in answering a wide range of
questions about mental representations in other content domains as
well.

The Wisdom of Culture—and Experimental Evidence

Linear number board games akin to Chutes and Ladders have a
surprisingly long history. Similar games appear to have been
played in India as early as the 2nd Century B.C. and in Southeast
Asia from at least the 13th Century A.D. The South Asian version
of the game, known as Snakes and Ladders, remains a popular
activity in contemporary India, Pakistan, and Nepal (Parlett, 1999).
A related game by the same name was introduced to England in
1892, and a variant of the British game was introduced to the
United States in 1943. Entertainment and, in the case of the Asian
version, spiritual enlightenment are the ostensive purposes of such
games. However, if we can generalize from the present findings,
playing them also improves young children’s numerical cognition.

Many venerable cultural practices that involve children seem to
fit this profile: Their ostensive purpose is not to convey cognitive
skills, but they do. One example is nursery rhymes, including
modern variants such as Dr. Seuss stories. The apparent purpose of
these rhymes is to entertain children, to provide a setting for
pleasant parent—child interactions, and to help children go to sleep.
However, nursery rhymes also appear to promote phonemic aware-
ness, which, in turn, promotes reading skill (National Reading
Panel, 2000). Children’s knowledge of nursery rhymes at age 3
predicts their later phonemic awareness and reading readiness,
even when the mother’s educational level and the child’s IQ are
statistically controlled (Maclean, Bryant, & Bradley, 1987). The
minimal contrasts that often occur between words at the ends of
lines of nursery rhymes (horn and corn, muffet and tuffet, ham and
am) may help children to recognize that words are composed from
separable sounds and to separate the individual sounds that are
present within each syllable. These are useful skills for learning to
read.

The relation between folk tales and problem solving provides
another example. Chen, Mo, and Honomichl (2004) presented
Chinese and U.S. college students with two problem-solving tasks.
One problem could be solved in a way that paralleled a strategy
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used in a folktale well known in China but not in the United States.
The other problem could be solved via a strategy like that used in
Hansel and Gretel, a story well known in the United States but not
in China, in which Gretel lays down shiny pebbles so that she and
her brother can find their way home. Childhood exposure to these
stories greatly influenced the college students’ problem solving
many years later. The problem whose solution paralleled that in the
Chinese folktale was solved by 69% of the Chinese students but
only by 8% of the American students. The story whose solution
paralleled that in Hansel and Gretel was solved by 75% of Amer-
ican students but only by 25% of Chinese students. Students in
each culture who explicitly recalled the relevant folktale were
more likely to solve the problem than those who did not.

Cultural activities may promote cognitively useful values as
well as specific skills and knowledge. One example involves Girl
Scout cookie drives (Rogoff, 1995). Although the ostensive goal of
such drives is to raise money for the troop, the activity also
promotes a variety of values that seem useful for learning: realistic
planning, accurate record keeping, precise calculation, and so
forth. The Girl Scouts’ record sheets—which include customers’
names; the types, quantities, and prices of cookies ordered by each
customer; advance payments; and sales and delivery dates—also
convey how to display data in tabular form.

Although these examples suggest that common cultural prac-
tices are a useful source of hypotheses regarding means for helping
children learn, rigorous experimental tests are essential for going
beyond this stage. Many cultural practices that might plausibly be
helpful for promoting learning prove not to be when carefully
tested. For example, in the present study, the numerical activities
condition included several common practices in homes, pre-
schools, and childcare centers: counting from 1-10, counting ob-
jects, and naming numerals. These practices are probably useful
over longer periods, but they did not promote understanding of
numerical magnitudes as effectively as playing the linear board
game. Similarly, our previous studies (Ramani & Siegler, 2008;
Siegler & Ramani, 2008) used as a control condition a game
modeled after Candy Land, a popular activity among U.S. pre-
schoolers. This game includes features that could promote one to
one correspondence, a skill hypothesized within Piagetian theory
to be central to numerical understanding (e.g., Piaget, 1952).
Nonetheless, it did not lead to learning of any of the numerical
skills that were tested. Thus, although common cultural practices
are a useful source of hypotheses about activities that might
promote learning, rigorous experimental testing is necessary to
establish whether they do in fact have the desired effect.

Practical Implications

The present findings add to an increasing body of literature
indicating that efforts to improve the numerical understanding of
preschoolers from low-income backgrounds can yield large, broad,
and rapid improvements. The benefits of playing the linear number
board game extend to a variety of aspects of early numerical
understanding: knowledge of numerical magnitudes, counting, nu-
meral identification, and arithmetic. All of these are foundational
skills that contribute to later mathematics learning. It is especially
encouraging that children whose pretest performance was in the
lower half of the present sample learned more and thus caught up

partially or completely to children whose performance was ini-
tially more advanced.

These findings converge with data on children’s game playing
outside of preschool. The greater the amount of experience that
children have playing board games at their homes and at the homes
of friends and relatives, the more proficient the children are at
number line estimation, numerical magnitude comparison, count-
ing, and numeral recognition (Ramani & Siegler, 2008). The same
children’s experience with card games and video games did not
show similar correlations with their numerical capabilities. The
linear numerical board game Chutes and Ladders was the second
most commonly cited board game, and whether children had
played it was significantly correlated with performance on all four
numerical competencies. Consistent with the hypothesis that play-
ing board games contributes to differences in numerical knowl-
edge among children from different backgrounds, children from
middle-income families reported playing far more board games
(though fewer video games) than their low-income peers. These
findings about game playing in the everyday environment, together
with the present and previous lab-based findings, indicate that part
of the gap between low-income and middle-income children’s
mathematical knowledge when they enter school is due to differing
experiences playing board games, particularly linear number board
games.

The linear number board game used in the present study has
several advantages that recommend it for widespread use. It in-
volves little, if any, expense; a board could easily be drawn on a
piece of paper or cardboard, small household objects could be used
as tokens, and a spinner or even a coin could be used to determine
the number of spaces on each move. The game also requires little,
if any, instruction for parents or preschool teachers who might
want to use it. Even overworked parents could fit in a game or two
before bedtime, given that each game takes about 3 min. Further,
the game does not require much total investment of time to
produce large gains; it produced its effects in the present and
previous studies after roughly 1 hr of play.

This number board game is not the only approach that has been
shown to be effective in improving young children’s numerical
understanding. Wilson, Revkin, Cohen, Cohen, and Dehaene
(2006; Wilson, Dehaene, Dubois, & Fayol, 2008) have reported
promising results with an adaptive software program designed to
improve young children’s number sense. Their program has shown
promising results with 7- to 9-year-olds with mathematical diffi-
culties (Wilson et al., 2006) and with kindergartners from low-
income backgrounds (Wilson et al., 2008). Other experimental
interventions have also produced improvements in young chil-
dren’s numerical knowledge (e.g., Malofeeva, Day, Saco, Young,
& Ciancio, 2004).

More comprehensive curricula for improving low-income pre-
schoolers’ and kindergartners’ mathematical knowledge have also
shown large positive effects. Following participation in the Num-
ber Worlds curriculum in kindergarten, low-income children from
the United States performed as well as the mean of age—grade
peers from China and Japan on a test of computational skill that
was administered at the end of first grade (Griffin & Case, 1999).
Another curriculum, Pre-K Mathematics, led to kindergartners
from low-income backgrounds having mathematical knowledge at
the end of the program equivalent to that of middle-income peers
who did not participate in it (Starkey et al., 2004). Similarly, the
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Building Blocks curriculum (Clements & Sarama, 2007) led to
preschoolers from low-income backgrounds making much greater
progress than a control group in number, geometry, measurement,
and recognition of patterns. These curricula include many specific
activities, and it is impossible to know which activities had the
greatest impact on particular types of knowledge. However, all
three curricula demonstrate that a relatively modest amount of
input goes a long way in improving low-income preschoolers’
mathematical understanding.

These findings raise the question of why both laboratory and
field-based interventions can produce such large and rapid positive
effects on low-income preschoolers’ mathematical knowledge.
One explanation is that prior to the intervention, such children may
have had few experiences where their attention was focused on
mathematics. Observations of homes and preschools, as well as the
self-reports of teachers and parents, suggest that the home and
preschool environments provide children with relatively little ex-
perience where their attention is focused on mathematics, far less
than literacy-oriented experience (Plewis, Mooney, & Creeser,
1990; Starkey & Klein, 2000; Tizard & Hughes, 1984; Tudge &
Doucet, 2004; Tudge, Li, & Stanley, 2008). For example, in a
carefully conducted observational study of children’s exposure to
explicitly mathematical activities in their own homes, other peo-
ple’s homes, and child care centers, a majority of children from
working class backgrounds were observed engaging in mathemat-
ical play or mathematical lessons in 0 of 180 observations (Tudge
& Doucet, 2004). Experiences that required a focus on numerical
magnitudes appeared to be especially infrequent.

Interviews with parents in low-income families indicate that
many believe that the primary responsibility for providing instruc-
tion in math belongs to preschool teachers (Holloway, Rambaud,
Fuller, & Eggers-Pierola, 1995; Tudge & Doucet, 2004). However,
as Tudge and Doucet (2004, p. 36) commented,

If it is indeed correct that working-class parents look to preschool
settings to provide children with mathematics experiences . . . our data
suggest that they are mistaken—we found no evidence that children
are more likely to be engaged in mathematical activities . . . in formal
childcare centers than at home.

For this reason, and because of the large, varied, and rapid effects
of early mathematical activity documented in this and other stud-
ies, multiplying the number of preschoolers who receive interven-
tions of demonstrated effectiveness in promoting mathematics
learning seems a goal worth pursuing.
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