

© 1994-2005 Oberon microsystems, Inc.
Page 1/13

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

What's New in Component Pascal?

Author: Cuno Pfister
 Oberon microsystems, Inc.
 March 2001

Copyright © 1994-2005 by Oberon microsystems, Inc., Switzerland.

All rights reserved. No part of this publication may be reproduced in any form or by any means,
without prior written permission by Oberon microsystems except for the free electronic distribution of
the unmodified document.

Oberon microsystems, Inc.
Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon is a trademark of Prof. Niklaus Wirth.
Component Pascal is a trademark of Oberon microsystems, Inc.
All other trademarks and registered trademarks belong to their respective owners.

© 1994-2005 Oberon microsystems, Inc.
Page 2/13

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

0. Contents

0. Contents..2
1. Introduction ...3
2. More expressive type system..3
3. String support..10
4. Specified domains of types ...11
5. Miscellaneous ...11
6. Acknowledgements ...13

© 1994-2005 Oberon microsystems, Inc.
Page 3/13

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

1. Introduction

Except for some minor points, Component Pascal is a superset of Oberon-2. Compared to Oberon-2,
it provides several clarifications and improvements. This text summarizes the differences. Some of
the changes had already been realized in earlier releases of the BlackBox Component Builder, all of
them are implemented for Release 1.3 and higher.
The language revision was driven by the experience with the BlackBox Component Framework, and
the desire to further improve support for the specification, documentation, development, maintenance,
and refactoring of component frameworks. The goal was to give a framework architect the means to
better control the overall integrity of large component-based software systems. Control over a
system's integrity is key to increased reliability, reduced maintenance costs, and to higher confidence
in the system's correctness when it evolves over time.
Care was taken that the language remains small, easy to use, and easy to learn. The new features
are most visible to framework designers, less visible to framework extenders, and least visible to
mere framework clients. This ensures that these different categories of developers are burdened with
the minimal amounts of complexity that their respective tasks require.

2. More expressive type system

Covariant pointer function results
A type-bound function which returns a pointer may be redefined, such that it returns an extended
type. For example, the function

 PROCEDURE (v: View) ThisModel (): Model

could be extended in a subtype MyView, which is assumed to be a subtype of View, to the following
function signature

 PROCEDURE (v: MyView) ThisModel (): MyModel

where MyModel is assumed to be a subtype of Model. Note that covariant function results are type
safe; they simply strengthen the postcondition of a function, which is always legal. They allow to
make interface declarations more precise.

Pointer compatibility
The compatibility rules for pointers have been relaxed and simplified. Pointers are now compatible by
structure; i.e., two pointer types that have the same base type are compatible. This can be useful
mostly in procedure signatures, where it previously wasn't possible to use a function like the following:

 PROCEDURE P (p: POINTER TO ARRAY OF INTEGER)

Pointer function results
A function's return type is now Type not Ident; e.g.,

 PROCEDURE Bla (): POINTER TO Rec

© 1994-2005 Oberon microsystems, Inc.
Page 4/13

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

is now legal, and due to simplified compatibility rules (see previous point) their use can actually make
sense.

IN and OUT
These parameter modes are like the VAR mode, except that some restrictions apply. IN parameters
cannot directly be modified inside a procedure, OUT parameters are considered undefined upon
procedure entry (except for pointers and procedure variables, which are set to NIL upon procedure
entry). OUT record parameters must have identical actual and formal parameter types.
These parameter modes are important for procedure signatures of distributed objects, and they can
increase convenience and efficiency. Most importantly, they allow to make interface declarations
more precise and more self-documenting. In particular, where formerly VAR parameters have been
used for efficiency reasons only, it is now possible to use IN parameters. IN parameters are only
allowed for record and array types.
 Example:

 PROCEDURE ShowModes (value: INTEGER; VAR inout: INTEGER;
 (* value and VAR parameters *)
 IN in: ARRAY OF SET;
 (* IN for efficiency *)
 OUT res: INTEGER): INTEGER;
 (* OUT parameter and function result *)

Since IN and OUT are specializations of VAR, it is not possible to pass constants to IN parameters.
There is one convenient exception: string constants may be passed to open-array IN parameters,
since they are implemented by the compiler as a kind of "read-only variable" anyway.

NEW methods
Component Pascal requires that the introduction of a new method is indicated explicitly. This is done
by appending the identifier NEW to the method's signature. NEW may not be used for extending
methods.
In the following example, method SomeMethod is newly introduced in T and inherited in T1, which is
assumed to be an extension of T:

 PROCEDURE (t: T) SomeMethod (x, y: INTEGER), NEW;
 BEGIN
 ...
 END SomeMethod;

 PROCEDURE (t: T1) SomeMethod (x, y: INTEGER);
 BEGIN
 ...
 END SomeMethod;

NEW indicates that a method is new, not extending. The need to declare this fact explicitly is useful
whenever changes to a framework are made, which often happens during the initial design iterations,
and later when the software architecture undergoes refactoring. NEW makes it possible for the
compiler to detect for example if a base method's name has been changed, but extending methods
have not been renamed accordingly. Also, the compiler detects if a method is newly introduced,
although it already exists in a base type or in a subtype. These checks make it easier to achieve
consistency again after a change to a framework's interfaces.

© 1994-2005 Oberon microsystems, Inc.
Page 5/13

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Default, EXTENSIBLE, ABSTRACT, and LIMITED record types
Component Pascal uses a single construct to denote both interfaces of objects and their
implementations: record types. This unification allows to freeze some implementation aspects of an
interface while leaving others open. This flexibility is often desirable in complex frameworks. But it is
important to communicate such architectural decisions as precisely as possible, since they may affect
a large number of clients.
For this reason, a Component Pascal record type can be attributed to allow an interface designer to
formulate several fundamental architectural decisions explicitly. This has the advantage that the
compiler can help to verify compliance with these decisions. The carefully chosen attributes are
EXTENSIBLE, ABSTRACT, and LIMITED. They allow to distinguish four different combinations of
extension and allocation possibilities:

modifier extension allocation record assignment
none ("final") no yes yes
EXTENSIBLE yes yes no
ABSTRACT yes no no
LIMITED no* no* no

*except in the defining module

Record types may either be extensible or non-extensible ("final"). By default, a record type is final.
Final types allow to "close" a type, such that an implementor can perform a complete analysis of the
type's implementation, e.g., to find out how it could be improved without breaking clients.
Record types may either be allocatable (as static or dynamic variables), or allocation may be
prevented (ABSTRACT) or limited to the defining module (LIMITED). With limited types, allocation
and extension is possible in the defining module only, never by an importing module.

Final types typically are simple auxiliary data types, e.g.:

 Point = RECORD
 x, y: INTEGER
 END

Variables of such types can be copied using the assignment operator, e.g. pt := pt2. The compiler
never needs to generate the hidden type guard that is sometimes necessary for such an assignment
in Oberon.
On the other hand, extensible records can neither be copied, nor passed as value parameters (since
value parameters imply a record assignment).
Final types, like extensible types, may be extensions of other record types and they may have
methods.
Extensible types are declared in the following way:

 Frame = EXTENSIBLE RECORD
 l-, t-, r-, b-: INTEGER
 END

Plain EXTENSIBLE types are rare, it is more typical to use ABSTRACT types instead, which are a
special case of extensible types that cannot be instantiated. The following paragraph gives a more
precise description of what this restriction means:

© 1994-2005 Oberon microsystems, Inc.
Page 6/13

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Types of values can never be abstract, but types of variables may be abstract. The type of a value
can be different from the type of its holding variable only if the variable is referential; i.e., a pointer; or
a VAR, IN, or OUT parameter. Thus, only those variables may be declared to be of an abstract type.
In all other cases; i.e., static variables, record fields, array base types, and value parameters, non-
abstract types or pointers (possibly to abstract types) must be used. Since the allocation operation
NEW produces a value of the argument's type, NEW can only be used with variables of non-abstract
type.
Example of an abstract type:

 TextView = POINTER TO ABSTRACT RECORD (Views.View) END

Abstract types are design tools, they denote interfaces of objects. They are the primary means of
Component Pascal to model component interfaces. Denoting records as abstract allows to indicate
more precisely the use of a record: as an interfacing construct rather than an implementation
construct.

Nevertheless, an abstract type may have all types of methods (see below), i.e., it is not forced to be
fully abstract.

LIMITED types are a special case of final types. They are special in that they can be instantiated only
within the defining module, and they cannot be copied. For example, a client may not perform a NEW
on variables of limited types. Since allocation is under complete control of the defining module, the
programmer of this module can guarantee that all newly allocated variables are correctly initialized
before they are made accessible to client modules. This means that clients can only see variables
that respect the type's invariants (which are established during initialization). An implementor is free
to change the type's internal representation with less risk of breaking client code; there is no need for
lazy initialization schemes; there cannot be delayed run-time errors due to missing initializations; and
invariants (e.g., invariants over hidden record fields) cannot be violated through copying.
Typically, factory functions or factory objects are provided to create new instances of dynamic
LIMITED types.
Example:

 Semaphore = POINTER TO LIMITED RECORD END;

 PROCEDURE New (level: INTEGER): Semaphore;

In the BlackBox Component Framework, most abstractions are represented as abstract types, which
are implemented by (non-exported) final types. This is another approach that allows to guarantee
correct initialization, but it is too inconvenient for simple non-extensible abstractions. Moreover,
LIMITED types cannot be substituted by client-side extensions. This is important, because it allows to
protect non-extensible services, such as a real-time kernel, from being used with illegal types.

Record syntax
The record syntax looks as follows:

 RecordType = [EXTENSIBLE | ABSTRACT | LIMITED] RECORD ["(" QualIdent ")"] FieldList {";"
FieldList} END.

© 1994-2005 Oberon microsystems, Inc.
Page 7/13

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Note that a pure client programmer never needs to write any of the above attributes. The same is true
for an implementor of a framework extension. Even the framework designer may save some time
using these attributes, because they are an important part of the documentation that can be extracted
automatically from the source code.

The goal for the introduction of these attributes was to increase the static expressiveness of
interfaces, such that important architectural decisions can be written down explicitly, in a way that a
compiler can check conformance of an implementation or a client with the interface contract. A pure
implementation language wouldn't need the new attributes, only a component-oriented
implementation and design language needs to be able to express such design constraints. Control
over such constraints enables a framework designer to establish important invariants over a whole
software system (= system architecture), thus improving safety, maintainability, and evolvability.
Some of the new attributes also add convenience; e.g., abstract methods need no procedure body
anymore. Such additional convenience is a welcome benefit, but it was by no means the reason for
the introduction of the attributes.

Default and EXTENSIBLE methods
Like record types, methods of a record type can also be attributed. The attributes available are the
default (no attribute), EXTENSIBLE, ABSTRACT and EMPTY.

Like record types, methods are final by default:

 PROCEDURE (t: T) StaticProcedure (x, y: INTEGER), NEW;
 BEGIN
 ...
 END StaticProcedure;

Methods that are both new and final can be treated by a compiler like normal procedures, since they
don't require late binding. Nevertheless, their use can be appropriate if they clearly belong to a
particular type.

Extensible methods on the other hand are marked as such, e.g.:

 PROCEDURE (t: T) Method (x, y: INTEGER), NEW, EXTENSIBLE;
 BEGIN
 ...
 END Method;

It is much more common to use abstract or empty methods, which are special cases of extensible
methods (see below).
Declaring a method as final is achieved by simply leaving away the EXTENSIBLE attribute:

 PROCEDURE (t: T) FinalInheritedMethod (x, y: INTEGER);
 BEGIN
 ...
 END FinalInheritedMethod;

If a black-box design style is used, most methods that need to be implemented for a framework
extension are of the above kind, which requires no special attributes in the method signature. This is

© 1994-2005 Oberon microsystems, Inc.
Page 8/13

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

reasonable, because there are more framework extension programmers than there are framework
designers, thus extensions should be as convenient as possible to write down.
Final methods may be bound to any record types. Extensible methods may only be bound to
extensible types (i.e., EXTENSIBLE or ABSTRACT).

Since final methods cannot be "overridden", the invariants that they guarantee and the postconditions
that they establish cannot be violated. Note that correct "extension" of a method means that the
extending method implements a refinement of the extended method. Semantically, this means that
the extending method accepts a weaker precondition or establishes a stronger postcondition
compared to the extended method.

ABSTRACT methods
An abstract method is declared in the following way:

 PROCEDURE (t: T) SomeMethod (s: SET), NEW, ABSTRACT;

 PROCEDURE (t: T) CovariantMethod2 (): NarrowedType, ABSTRACT;

Abstract methods are extensible. The compiler checks that a concrete type implements all abstract
methods that it inherits. A concrete extension of an abstract method (or type) can be regarded as its
implementation. Abstract methods may only be bound to abstract types, and they may not be called
via super calls.
An abstract method has no corresponding procedure body, it only exists as a signature. There is no
need anymore to write a procedure body with a HALT statement.

EMPTY methods
A method can be declared as empty. Empty methods are extensible. An empty method is very similar
to an abstract method, in that it is a hook for functionality that can be provided in later extensions.
However, empty methods are concrete and can be called. If they have not been extended (i.e.,
implemented), calling them has no effect.
Empty methods represent optional interfaces. For example, a BlackBox Component Framework View
provides an empty method for handling user events (HandleCtrlMsg). This method is implemented in
interactive views, passive views ignore it.
It is not possible to introduce code in an empty procedure. For this reason, an empty method has no
corresponding procedure body, and may not be called via super calls.
Empty procedures may not return function results and may not have OUT parameters.
Example:

 PROCEDURE (t: T) Broadcast (msg: Message), NEW, EMPTY;

Method syntax
The method syntax looks as follows:

 TBProc = PROCEDURE Receiver IdentDef [FormalPars] [Attribution].

 Attribution = ["," NEW] ["," (EXTENSIBLE | ABSTRACT | EMPTY)].

Note that a pure client programmer never needs to write any of these attributes. The same is true for
an implementor of a framework extension. Even the framework designer may save some time using

© 1994-2005 Oberon microsystems, Inc.
Page 9/13

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

these attributes, because they are an important part of the documentation that can be extracted
automatically from the source code.

Implement-only export of methods
A method may now also be exported as implement-only, using the "-" export mark instead of the "*".
Implement-only export means that the method may be implemented outside the defining module, but
may not be called from there.
Whether a method is exported normally or implement-only is decided when the method is first
introduced (NEW method). Later extensions must use the same export mode if exported.
Implement-only exported methods are called from within the module where a method is newly
introduced; they go "upwards" in the module hierarchy (upcalls). For frameworks, the existence of
such upcalls is typical. Implement-only export allows to prevent framework clients from violating the
framework's invariants, while still making it possible to provide new implementations of the
framework's types.
Every framework has two "faces": an interface for clients, and an interface for implementors, the so-
called specialization interface. These two interfaces may overlap. Implement-only export allows to
clearly label those parts of an interface that belong to the specialization interface only.

Super calls
Because of the so-called semantic fragile base class problem, it is recommended to avoid super calls
whenever possible. It is possible to design new software such that they are not needed, by relying on
composition rather than on implementation inheritance. Super calls are considered to be an obsolete
feature. For the time being, they are retained for backward compatibility. In the long run, support for
super calls may be reduced.

Procedure types
Procedure types are less flexible than objects with methods. Even standard examples for procedure
types in numerical software can benefit from modeling them as objects. Objects are extensible,
procedure types are not. Procedure types can pose considerable implementation difficulties
concerning the safe unloading of code. For these reasons, procedure types are considered as
obsolete. For the time being, they are retained for backward compatibility and for implementation low-
level interfacing code (callbacks). In the long run, support for super calls may be reduced.

ANYREC and ANYPTR
Each base record is implicitly regarded as an extension of the new abstract standard type ANYREC,
even if it is declared without explicit base type. ANYREC is an empty record that forms the root of all
record type hierarchies. ANYPTR is a new standard type that corresponds to a POINTER TO
ANYREC.
These new types make it easier to achieve interoperability between independently developed
frameworks, by allowing completely generic parameters.
The following pseudo definitions can be assumed:

 ANYREC = ABSTRACT RECORD END;

 ANYPTR = POINTER TO ANYREC;

 PROCEDURE (a: ANYPTR) FINALIZE-, NEW, EMPTY;

The FINALIZE procedure is empty. It can be implemented for a pointer type extension. The procedure
is called at some unspecified time after the object has become unreachable via other pointers (not

© 1994-2005 Oberon microsystems, Inc.
Page 10/13

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

globally anchored anymore) and before the object is deallocated. Finalizers are needed to release
resources that are not directly Component Pascal objects; e.g., file sectors, font handles, window
pointers of the operating system, and so on.
The finalization order is not defined. An object is only finalized once.

3. String support

Explicit string types
We can distinguish a string value (the actual character values) from the variable in which it is
contained (an array of character). Some operations in Component Pascal operate on the string value
(e.g., comparison for equality), others operate on the container variable (e.g., assignment). A
compiler can automatically derive which interpretation is needed in a given situation. Unfortunately,
there are situations where both interpretations make sense. For example, passing an array of
character to a value parameter (which is also an array of character) should be interpreted as an
assignment. But often it is more efficient only to copy the string value in the actual parameter, rather
than the whole array. Consider passing a Unix path name, declared as an array of character with
2048 elements, when it usually contains only a few dozen characters.
In Component Pascal, it can be made explicit that the programmer wants to work with the string
value, rather than the character array variable. Selecting the string value in a variable is denoted with
the $ operator; for example

 OpenFile(pathname$)

where OpenFile is declared as

 PROCEDURE OpenFile (name: ARRAY 2048 CHAR)

Note an additional benefit: it is now more attractive to declare character array parameters with a fixed
number of elements, like in the above example. In Oberon, this is inconvenient since often the type of
the actual parameter is not compatible with the formal parameter. Since string values are always
compatible with character arrays, this problem vanishes in Component Pascal. This is important
because it is more precise to specify a fixed size array when the array is known to be limited. Note
that declaring an open array would be a contract to accept arrays of any length whatsoever (without
ever leading to an out-of-range error at run-time!).

String concatenation
The + operator now allows to concatenate strings. The target variable must be of sufficient length to
hold the resulting string.

Elimination of COPY
The auxiliary procedure COPY is not necessary anymore, since the $ operator makes it superfluous.
For example,

 COPY(a, varpar) is replaced by varpar := a$

© 1994-2005 Oberon microsystems, Inc.
Page 11/13

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

4. Specified domains of types

To achieve fully portable code, it is necessary to fully specify the domains of all base types. The
Component Pascal base types are a superset of the Java base types.

Type Size Domain
SHORTCHAR 1 byte Latin-1 character set
 (first Unicode page and a superset of ASCII)
CHAR 2 byte Unicode character set
BYTE 1 byte signed integer
SHORTINT 2 byte signed integer
INTEGER 4 byte signed integer
LONGINT 8 byte signed integer
SHORTREAL 32 bit IEEE
REAL 64 bit IEEE
SET 4 byte bitset
BOOLEAN 1 byte FALSE or TRUE

Type LONGREAL has been eliminated. Longreal literals have been eliminated; i.e., use 1.0E2
instead of 1.0D2. The identifier LONGREAL is reserved for possible future use. Real constants are
always REAL (64 bit) values.

Hexadecimal integer constants now can be specified either as 4 byte (e.g., 0FFFFFFFFH) or 8 byte
constants (e.g., 0FFFFFFFFFFFFFFFFL). This allows to distinguish negative INTEGER hex
constants from positive LONGINT hex constants. For example, 0FFFFFFFF denotes -1 when
interpreted as INTEGER, but 4294967295 when interpreted as a LONGINT.
Integer constants are always INTEGER (4 byte) values. Assignment of an integer constant to a
smaller type (e.g., BYTE) is legal if the constant lies within the range of the target type. Integer
constants of other types can only be constructed using SHORT or LONG, except that sufficiently
large constants automatically have type LONGINT.

Integer arithmetic is now always performed with 32-bit precision, except for expressions that contain
LONGINT values. In the latter case, 64-bit precision is used. This rule makes it less likely to produce
hard-to-find overflows of intermediate results that are calculated at insufficient precision.
Floating-point arithmetic is always perfomed at 64-bit precision.

5. Miscellaneous

The semantics of DIV is strengthened, by specifying the result of divisions by negative numbers.

The new real value INF for infinity has been introduced. This value may be generated e.g. through
floating-point division by zero. The meaning of infinity for floating-point numbers is defined by the
IEEE standard for floating-point numbers.

It has been specified more comprehensively where pointer dereferencing is implicit. For example, it is
now also available when passing a pointer variable to a record type formal parameter.

© 1994-2005 Oberon microsystems, Inc.
Page 12/13

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Record types can be declared as extensions of other record types by mentioning a pointer type as
base type (instead of a record type). This makes the explicit naming of a record type superfluous, if
the record variables are used via pointers only.

Within a scope, type names can be considered as forward-declared. This means that any type name
can be used before it is declared. Old-style pointer forward declarations like T = POINTER TO TDesc
are still allowed, since they are simply a special case of the new rule, but they are not necessary
anymore.

BITS is a new standard function that converts an INTEGER value to a SET value, such that BITS(1)
yields {0}. For example, this allows to write more portable device drivers, since it doesn't depend on
the processor's bit ordering (which differs for 68k and PowerPC, for example).

ORD can now also be applied to SET values (inverse operation of BITS).

MIN and MAX now also accept two parameters; e.g. real0 := MAX(someInt, real1). They select the
minimal/maximal values of the two inputs, which must be number types.

LEN can also be used on string values. LEN(chararray) returns the length of the chararray variable,
while LEN(chararray$) returns the length of the string value. Note that a character array must have at
least one more element than the string value contains characters, to hold the terminating 0X
character.

Designators are generalized to allow dereferencing etc. on a function result. For example, the
following is now legal:

 length := view.ThisModel()(TextModels.Model).Length() or
 view.Context().GetSize(w, h)

The relaxation of the designator syntax makes it easier to use methods instead of record fields.
Methods are more flexible and make it simpler to implement wrappers (forwarding of method calls)
than record fields do.

Global variables, including heap variables allocated with NEW, now have a defined initial value
(FALSE, 0X, 0, 0.0, {}, NIL, ""). Local (i.e., stack) variables are not initialized, except for pointers and
procedure variables which are set to NIL for safety reasons.

An appendix of the language report specifies the minimal environment requirements that any
Component Pascal implementation must fulfill. In particular, commands, dynamic loading, and
garbage collection are fundamental requirements for component-oriented systems. Like for all
dynamic languages, this appendix acknowledges that the language cannot be regarded completely
independently from its environment. The object model, whether assumed in the language definition or
accessed as an external service, is always part of the environment.

To simplify interfacing of existing C libraries, underscores in identifiers are allowed.

The rules for export marks have been simplified compared to Oberon: An extending method must
have exactly the same export mark as the method that it extends. The only exception occurs if the
method is part of a non-exported record; in this case it may not be exported.

© 1994-2005 Oberon microsystems, Inc.
Page 13/13

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

A module now has an optional CLOSE section, after the BEGIN section. The close section is called
before a module is unloaded. A module's BEGIN section is called after all the imported modules'
BEGIN sections have been called. A module's CLOSE section may only be called after all the
importing modules' CLOSE sections have been called.

In summary, you'll note that this revised language definition contains one major extension: a more
expressive interface definition language (IDL) subset (NEW; EXTENSIBLE; ABSTRACT; LIMITED;
EMPTY; implement-only export of methods) that makes it easier to specify architectural properties of
a component framework.
The other points are mostly detail improvements based on a decade of experience in using the
language. Particularly noteworthy are the more general and systematic treatment of strings and the
new specification of the base type sizes.

6. Acknowledgements

I would like to thank Beat Heeb, Dominik Gruntz, Matthias Hausner, and Daniel Diez of Oberon
microsystems for their valuable input. In particular, without Beat's work this endeavour would have
been impossible. The most important external contributions came from Clemens Szyperski
(Queensland University of Technology, Australia) and Wolfgang Weck (Åbo Akademi, Finland). Last
but not least, I would like to thank Prof. Niklaus Wirth for commenting an early revision of the
Component Pascal language report, and for having created such a great foundation.

