
  

Porting Plan 9 to the IBM BG/L 
Supercomputer
LA-UR-06-7369

Ron Minnich
LANL

● LANL:
● Ron Minnich
● Vita Nuova: 
● Charles Forsyth

● Bell Labs:
● Jim McKie
● IBM: 
● Eric Van 

Hensbergen
● Volker Strumpen



  



  

Overview

● What BG/L is
● BG/L software

– And its Limitations

● Why not just run Linux?
● What Plan 9 is
● How we are porting it to BG/L
● Conclusions



  

What BG/L is

● Highly integrated system: chip parts + wires
● Built from standard IBM embedded PPC 

macros with additional parts
– Embedded DDR-2

– Torus, Tree, barrier network

– JTAG

– EMAC4 ethernet

● Careful design at every level for reliability



  

● 128K 
processors

● But 64x32x32 is 
65536!

● Original plan: 
self-check mode

http://www.research.ibm.com/journal/rd/492/gara.html



  

 The hardware
● CPU ea. with 2 FP pipelines 

– “Double Hummer”

● Embedded DRAM
● Shared resources between the 2 cpus

– Lock Box

– SRAM

– Most importantly, the network: simple and 
complex

● No DMA on any of them
● Torus: over 3000 control and status bits



  

The CPUs
● Power PC 440/450
● Essentially the embedded part
● One distinguishing feature is the software-

loaded TLB
● No big hardware-walked page tables to 

maintain
● Nice improvement over the earlier 405: 

there is no “real mode”
– Always in virtual mode

– Hardware turn-on loads “shadow TLBs” for 
startup



  

Memory

● Embedded DRAM and standard DDR2 
controller

● These registers programmed via JTAG on 
startup as far as we can tell

● DRAM programming never changes, since 
it's built-in DRAM

● No OS involvement in the setup as far as 
we know



  

The networks

● Ethernet – standard EMAC4
● JTAG – control chain from control node

– Configure on-chip resources for software

– Load “IPL”

● Global Interrupt (or Barrier)
● Torus 

– Loads the actual kernel

● Tree



  

Barrier (or Global interrupt)
● Allows global “and” and “or”

– Same operation, really; “and” is low-true

● Can set and sample input/output bits
● Can set conditions for arming interrupts
● Has an interesting “sticky” mode
● Four individual parallel networks – it literally 

looks like the old parallel-port hardware 
from PaPers

● All on a single page
● Mapped by a 256 MB TLB :-)



  

3D Torus (X, Y, Z)
● 6 FIFOs which can go anywhere

– Control for same

– + 4 virtual channels – adaptive and deterministic

● Enables for subsystems
● Complete “back door” access – to SRAM, etc.
● The enums and defines alone for this driver 

constitute several hundred lines
● Controlled by 108 32-bit DCRs
● And 64k of memory-mapped I/O
● Which, for  convenience, is mapped into a 256 

MB segment (TLB)



  

Torus FIFOs
● Distinguished by function and priority

– 6 normal inject

– 2 priority inject

– 6 receive

– 1 “HP receive”

● Shared between 2 CPUs
● With no interlock – if both write to a fifo, “it is 

an error” 
– But not detected (how could you?)

● All intended to be driven from user-controlled 
software!



  

Torus XMIT packet
● At the front: some fancy control bits, 

including a way to implement broadcast and 
priority – and support checkpoint/restart

● Hints for routing (can leave at 0)
● x,y,z coords
● Size
● Total size is <= 256 bytes
● Data fits in 256 – header size of 8 bytes
● Send data via programmed I/O (a memcpy 

with  non-incrementing destination)



  

Torus receive FIFOs
● Receive FIFOs for each of the x+,x-,y+,y-,z+,z- 

directions plus HP (7 total)
● Times 2 for each CPU
● So note, injection is almost-shared, receive is 

not intended to be
● Pull data out via memcpy
● What's a receive packet look like? This is not yet 

clear – we assume mostly like a send packet
● BUT: we assume that receive data is perfect
● “HIPPI-like flow control”



  

Torus bringup

● Bring up subsystems in order defined by 
document

● Clear out SRAM, etc. via “back door”
● Enable state machines for transmit (and 

bring them out of hardware reset)
● Use the barrier network to wait for everyone 

to reach this point – i.e. All XMIT hardware 
is clean

● Then enable receive side hardware



  

Tree network
(Class Routed Network)

● This was confusing at first
● It has several different names – it seems the 

correct one is “Class Routed Network”
● Packets mostly don't have a destination
● Up to 15 different classes, with different 

“up/down” rules
● Simple rules for propagating packets up/down 

the tree – actually quite elegant
● Different routing information at each board due 

to differences in topology and possibly usage



  

Class Routing Example
16 routes, one byte per route

L R U ME L R U ME1

# SOURCE TARGET

● Root of a tree
● IF: SOURCE, use TARGET rule
● Anything else, use SOURCE rule
● So, at top, it comes in, we propagate to left, 

right, self
● I am pretty sure the source rule here is a 

no-op

1 1 0 1 1 1 0 1 ME

L R

U



  

Class routing example: 
intermediate node

● If SOURCE, route (U)
● If NOT SOURCE, route (L,R,ME) (i.e. 

“down”)
● For different types/layouts of the tree, the 

SOURCE rules will change at different 
nodes (e.g. Leaf only has (ME), not 
(L,R,ME)

● The target rules won't

1 1 0 1 1 1 0 11

# SOURCE TARGET

L R U ME L R U ME1

# SOURCE TARGET

1 1 0 1 0 0 1 0 ME

L R

U



  

LOCK box

● 256 1-bit locks
● Read (TAS)
● Write (Set)
● Test
● Group sync
● All on one page
● 256MB address space



  

BG/L software

● BG/L looks like 1024-node cluster with 64 
attached nodes per node (where'd that 
other processor go?)

● I/O nodes – run Linux kernel 
● Compute nodes – run Compute Node 

Kernel
– CNK

– Runs one process at a time (on one CPU)

– I/O and function forwarding 

● A few bits missing: e.g. Sockets, mmap, ...



  

Why the CNK?
To avoid noisy OS

The “zero noise floor”

The noise floor
apps claim to

need The fabled 
“gap”
(does it exist?)

Your laptop
Heavy Linux
Cluster node

Bproc or 
XCPU node

Plan 9 node

CNK

What OS's
can do

“Lots of noise” line

Capabilities
apps want



  

Linux has costs



  

Problem 1

● The good news is, CNK is not Linux
● The bad news is, CNK is not Linux
● “What do you mean, no sockets?”
● “How do I run Python”
● “I want a REAL OS!”
● So, one might consider running Linux
● Which brings us to:



  

Problem 2
● The design assumption going in was that a 

system such as Linux would not be used
● The common way to use these resources is to 

let the process “have at it”
● But access to one instance (e.g. One lock) 

grants access to all locks
● This makes the consequences of pointer 

computation errors much more exciting
● Access is not fine-grained – it's no-grained
● How to allow multiple processes on such a 

system?



  

How do we keep processes 
separate?

● Can not separate via virtual mapping 
mechanisms – they're all on one page!

● It's not possible with this hardware to run 
more than one process in a safe manner

● Or just take your chances ... what could go 
wrong?



  

So how do we handle this?

● The single-process design of BG/L directly 
impacts the software

● Which is a problem for multiple processes
● We can't just let the processes directly at 

the networks
● After all, the destination Torus address is 

written to the FIFO as part of the packet
● Conclusion: on BG/L, we're going to have to 

go through the OS
● So are we going through Linux?



  

What's the Linux device path look 
like?

Process

UFS

Char Device

Block Device

Block 
Interface

Char 
Interface

VFS 
Interface

VFS

Other file system

sysfs

Kernel

I know!
Let's put
devices
in the 
file 
system!

Sockets

Sysctl

Lotsa stuff!



  

That's a long, slow path!

● The Linux I/O path has grown up over time
● It drank too many sugary drinks, ate too 

many donuts
● It's a very long path to the device
● Which is why people did OS bypass in the 

first place (on Unix as well)
● We can use Linux, but it's going to hurt
● We need a grown-up operating system, but 

a slim one



  

Plan 9 architecture

Name
Space

Kernel
Memory, NIC,
Protocols,etc.

Process
File System

/net
Process

Process

Name Space

● Processes attach servers 
as needed

● Attaches are inherited
● Not visible outside the 

group
● In this example one group 

has attached remote files
● Other group only needs 

IPC so it has no other 
services

● Servers can be anywhere – 
no need to kludge in syscall 
forwarding



  

Why this is a good match to BG/L

● BG/L features fixed-
configuration CPU/nodes
– I.e. NO “hot plug”

● All variability is in software 
services used by apps

● Plan 9 fits this model 
perfectly

● Fixed kernel & hardware
● Customized services

Fixed-configuration 
hardware

Fixed-configuration
Kernel

App1 App2

Services Services



  

Comparative noise



  

 Why is Plan 9 so much quieter?

● It does a lot less
● The path from a user program to a device 

I/O is very short
● There are a lot less pointless tasks

– Such as the 1-second timer for cursor blinking

● File systems are outside the kernel
– And can be located anywhere



  

The actual port

● Start from Plan 9 port to PPC
● Forward-port to a more modern CPU: the 

ppc405



  

Port to 405

● Modify the assembly for the 405 TLB and 
different interrupts

● Verify on the IBM systemsim simulator
● Once that is going, boot on actual hardware
● Basically worked exactly – systemsim 

proved to be quite accurate – even mirrored 
failure modes

● But 405 is not the BG/L CPU



  

The PPC 440

● The actual CPU used in the BG/L machine
● Had a few differences from the 405

– Different soft TLB layout

– Slightly different interrupts

● Brought up again on SystemSim
● Used a commercial board for validation
● Again, SystemSim matched the hardware 

so well that port to SystemSim sufficed for 
port to hardware



  

BG/L and the 440

● Oops! 
● No networks in the BG/L sim!
● Requires that we move forward to the BG/P 

sim
● And a new CPU – the PPC 450



  

ppc450 is in progress

● But the real important part is the network 
drivers

● How do we present these to the 
applications?

● Simply mapping them into the application is 
not going to work

● Instead, the OS will make them available as 
devices

● Which brings us back to Plan 9 and its short 
I/O paths



  

What the driver presents

cpu% lc /dev/bglgi

. bglgidata bglgiint0

0 bglgidata0 bglgiint1

bglgiarm0 bglgidata1 bglgiint2

bglgiarm1 bglgidata2 bglgiint3

bglgiarm2 bglgidata3 bglgireadmode

bglgiarm3 bglgien bglgires

bglgiarmtype0 bglgien0 bglgires0

bglgiarmtype1 bglgien1 bglgires1

bglgiarmtype2 bglgien2 bglgires2

bglgiarmtype3 bglgien3 bglgires3

bglgiclone bglgiint bglgistate

● And in 0 we have
● 0/ctl
● 0/data
● Right now, all 

that happens is a 
write of & to 
0/data does a 
global sync



  

Conclusion

● Work in progress
● Ports to CPUs done
● Barrier driver done
● Torus in progress
● Tree is next
● Then work on SystemSim BG/P to verify the 

drivers
● Simple SystemSim demo by SC 2006 (we 

hope)


