XMonad
A Tiling Window Manager

Don Stewart

Computer Science and Engineering
University of New South Wales

dons@cse.unsw.edu.au

Abstract

xmonad is a tiling window manager for the X Window system,
implemented, configured and dynamically extensible in Haskell.
This demonstration presents the case that software dominated by
side effects can be developed with the precision and efficiency we
expect from Haskell by utilising purely functional data structures,
an expressive type system, extended static checking and property-
based testing. In addition, we describe the use of Haskell as an
application configuration and extension language.

Categories and Subject Descriptors D.4.9 [Systems Programs
and Utilities]: Window managers

General Terms Design, Languages, Reliability

Keywords Haskell, functional programming

1. Overview

System software is all about effects: manipulation of the file sys-
tem, the network or graphics devices. Such tasks are often complex,
error-prone and ill-specified, yet the software needs to be robust to
ensure system stability. Incongruously, the system software domain
is still dominated by programs written in legacy unsafe languages,
despite the difficulty developing correct software with these tools.
In this demonstration we will present the xmonad window manager,
and describe approaches to producing robust system software in
Haskell, using purely functional data structures, type system safety,
extended static checking and property-based testing. We argue that
Haskell is ideally suited for the production of concise, efficient and
safe system software, using tools available now!

xmonad is a window manager for the X Window System. It acts
as the brain of the X server, receiving events and using them to in-
struct the server to arrange windows on the desktop. Unlike most
window managers, which require manual organisation of the desk-
top by the user (typically by dragging windows around), xmonad
tiles windows automatically, ensuring maximum use of screen real
estate. Tiling algorithms may be specified by the user, in Haskell,
in their configuration files. Clearly, receiving external events and
driving an X server requires a lot of IO — so how do we ensure we
build a well-specified, checked and tested window manager, with-
out giving up on purely functional programming?

Copyright is held by the author/owner(s).

Haskell’07, September 30, 2007, Freiburg, Germany.
ACM 978-1-59593-674-5/07/0009.

Spencer Janssen

Computer Science and Engineering
University of Nebraska-Lincoln

sjanssen@cse.unl.edu

The key decision to tackle the “IO problem” is to break the
application into a model-view-controller design, where a com-
plete window manager model is encoded in a purely functional
data structure: a Stack type modeling a multiple screen, multi-
ple workspace set of windows. Window manager state, including
window and screen focus, geometry and layout is encoded directly
in this data structure, which can then be rigorously specified and
tested with QuickCheck and Catch. The event handler becomes
a controller which traverses and manipulates the model structure.
Actually interacting with the X server (the view) is simply a thin
IO skin which renders the Stack structure with a sequence of calls
to the server.

A benefit of this approach has been the use of semi-formal
specification to guide the development of a clean window manager
APIL. We have found that window manager operations that are hard
to specify in QuickCheck tend to be hard for users to understand too
— QuickCheck has a fine nose for “code smell”. By using feedback
from property specification to guide design the result is a simpler,
more robust system with cleaner semantics than would otherwise
have been developed. In effect, QuickCheck and Catch can be used
to provide mechanical support for developing a clean, orthogonal
API for a complex system.

In addition, wherever feasible we encode system invariants in
the type system (for example, functions that require a non-empty
workspace will reflect that in their type). The use of the type system
in this way again limits the fallout from refactoring and extension
of the system, by disallowing entire classes of bugs.

The other critical design taken is to allow extension of xmonad
directly in Haskell. No ad-hoc extension language is developed,
instead the xmonad configuration file is just a Haskell module. This
has enabled a diverse range of extensions to be built up rapidly by
users who take advantage of an extension language with a wide
array of libraries and development tools. We argue that when the
core application is written in a high level language, the system itself
should be extended in that language.

The use of a high level language like Haskell, for implemen-
tation and extension, that takes safety and correctness seriously,
along with static analysis and strong testing, makes it possible to
produce robust system software that is efficient, correct and a joy
to develop.



