Distributed Application
Architecture

Each thing is, as it were, in a space of possible
states of affair. This space | can imagine as empty,
but | cannot imagine the thing without the space.

—Ludwig Wittgenstein
Tractatus Logico Philosophicus

In isolation, your Java objects have no meaning, i.e., they do nothing. Java objects
represent things outside the application: a customer, a savings account, and so on.
Before getting into the details of individual objects, you truly need to understand
the space in which you expect them to operate. Architecture is the space in which
software objects operate.

In this chapter, | will lay the foundations for database development in the object-
oriented world of Java by examining the architecture of an application you will be
building over the rest of this book. You may find that these foundations span a
broad spectrum of issues. | will not touch JDBC, EJB, or any of the other details
required for the creation of individual objects. Instead, my goal is to help you cut
down on the work you will need do over and over again each time you build a
database application and to maximize the relevance of what you build to future
needs. Many of the classes | show you in this chapter are common and generic,
perhaps something that you could use to create a standard package for use in all
kinds of applications.

One thing you may have noticed about Java or similar object-oriented languages
such as Smalltalk or Python is that there are so many classes. You want to try to
understand what class X does, but you find that it in turn extends class Z, which
contains classes A and B. If you are totally comfortable with the object-oriented par-
adigm, this interweaving of classes may not faze you. On the other hand, it may
easily seem confusing to people used to dealing with languages such as C. Unlike C,

126

ARCHITECTURE 127

for which you may have a library function and perhaps an associated data struc-
ture, Java bundles up data and functions inside classes for manipulating that data.
Java data never gets directly manipulated except by the class that owns the data.

I will, of course, continue operating in Java’s object-oriented framework. Among
other things, this means that whenever you need to represent a new concept, you
will use new classes. You should approach each new class trying to understand
what class it extends, which interfaces it implements, and what others it relates to
in other ways. | will help you along graphically wherever possible by providing
UML-standard™ diagrams that illustrate the class relationships.

Architecture

The value of system architecture is only recently being recognized in the software
industry. As | stated before, paraphrasing Wittgenstein, architecture is the space in
which objects operate. It defines the contracts through which they interact with
external system components and each other. The primary duty of a system archi-
tect is to ask the question, “What if . . . ?”.

Strategic \ersus Tactical

During most software development processes, each role in the process is responsi-
ble for some level of tactical thought and some level of strategic thought. By tactical
thought, I mean thinking about the problem at hand and ignoring hypothetical
issues. Strategic thought, on the other hand, means thinking about all possible
worlds and weighing their probability. An example of a strategic decision might be
to have your application design abstract to a generic concept of “product” when the
only product your company sells is fuzzy dice. That strategic decision will let your
company move into selling seat covers in the future without rewriting the system.
Tactically speaking, however, the system only requires that you support fuzzy dice.

A good system architect is a heavily strategic thinker. The architect needs to
understand these tactical issues and determine the best high-level solution that
minimally addresses the tactical issues, while doing no harm to the ability to
address strategic issues without good cause. In the previous example, it is certainly
easier for everyone to think about the system in terms of fuzzy dice. The path of
least resistance therefore would be to code a system made up of fuzzy dice objects.
Everyone could agree that the business is about selling fuzzy dice, and everyone
clearly understands what fuzzy dice are. Taking that path of least resistance, how-
ever, harms one important strategic question: What if the company decides to sell

* UML stands for Unified Modeling Language. It is a new standard for documenting object-oriented
analysis and design.

128 CHAPTER 7: DISTRIBUTED APPLICATION ARCHITECTURE

other products? Furthermore, building the system as a system of fuzzy dice instead
of a system of products provides absolutely no advantage to mitigate the harm
done to the strategic question.

Architectural Questions

As odd as it may sound, development teams often unwittingly plan for failure
instead of success. How often have you heard someone say, “I know that is the
right way to do this, but you just need to be able to support. .. ” or some variation
thereof? That statement represents planning for failure. Any successful software
project will see its software used in realms well beyond its original intentions. A
poor piece of software, however, may minimally serve some short-term goals
before it is eventually replaced. The job of an architect is to make sure no tactical
decisions fall into the “planning for failure category.” The architect assumes suc-
cess and structures the system accordingly. Typical architectural questions are:

e How do I partition my system?

e Should I support diverse user bases?

e How do I enable the system to integrate with third-party applications?
e What standards should the design and development teams adhere to?
e What tools best meet these needs?

The first question is listed first for a reason: it is the first question any architect
should address for a system. | will now present a high-level view of two distinct
architectures and then introduce a very specific architecture that you will follow
for the banking application you build in this book.

Common Architectures

There are basically two major kinds of modern architectures: two-tier client/server
and three-tier—also commonly called n-tier. Each one has many variations. At a
high level, these architectures focus on the partitioning system processing. They
decide on what machine and in what process space a given bit of code executes.

Client/server is often a generic umbrella term for any application architecture that
divides processing among two or more processes, often on two or more machines.
Any database application is a client/server application if it handles data storage and
retrieval in the database process and data manipulation and presentation some-
where else. The server is the database engine that stores the data, and the client is
the process that gets or creates the data. The idea behind the client/server
architecture in a database application is to provide multiple users with access to the
same data.

ARCHITECTURE 129

Two-tier client/server

The simplest shape a client/server architecture takes is called a two-tier architec-
ture. In fact, most client/server architectures are two-tier. The term “two-tier”
describes the way in which application processing can be divided in a client/server
application. A two-tier application ideally provides multiple workstations with a
uniform presentation layer that communicates with a centralized data storage
layer. The presentation layer is generally the client, and the data storage layer is
the server. Some exceptional environments, such as the X Window System, shuffle
the roles of client and server.

Most Internet applications—email, Telnet, FTP, gopher, and even the Web—are
simple two-tier applications. Without providing a lot of data interpretation or pro-
cessing, these applications provide a simple interface to access information across
the Internet. When most application programmers write their own client/server
applications, they tend to follow this two-tier structure.

Figure 7-1 shows how two-tier systems give clients access to centralized data. If you
use the Web as an example, the web browser on the client side retrieves data
stored at a web server.

Client System

DATA STORE

Client System

Figure 7-1. The two-tier client/server architecture

The architecture of a system depends on the application. For situations such as the
display of simple web pages, you do not need anything more than a two-tier design
has to offer. This is because the display of static HTML pages requires very little
data manipulation, and thus there is very little to fight over. The server sends the
page as a stream of text, and the client formats it based on the HTML tags. There
are none of the complicating factors you will see in upcoming applications:
choices between different tasks, redirecting of tasks to subordinate methods,
searches through distributed databases, and so on.

130 CHAPTER 7: DISTRIBUTED APPLICATION ARCHITECTURE

Even when your application gets slightly more complex-—such as a simple data-
entry application like the many web-based contests that appeared in the early days
of the Web—a two-tier architecture still makes sense. Let’s look at how you might
build such an application to see why additional complexity is unnecessary.
Figure 7-2 shows this application in the context of a two-tier architecture that you
saw in Figure 7-1.

B httpifeww webcontest.com 3

—r

Web Browser Form Form Datg ——— |

HTML Documents —

Web Server

Figure 7-2. A contest registration application using a two-tier architecture

In addition to displaying the HTML forms you receive from the server, your client
also accepts user input and sends it back to the server for storage. You might even
build in some batch processing on the server to validate a contest entry and reject
any ineligible ones. The application requires no additional processing in order to
do its job.

The application can easily handle all its processing between the client and server;
nothing calls for an additional layer. But what if the application were even more
complex? Let’s say that instead of waiting for ineligible entries to be submitted
before rejecting them, you filter out ineligible entries on the client so people are
not forced to fill out a form, only to be rejected. In place of handling entry pro-
cessing in a separate application, you now need to write logic somewhere that
rejects these rogue entries. Where are you going to do it?

Without Java, a client-side scripting language like JavaScript, or a peculiar browser
plug-in, you can forget handling this processing on the client side. Processing in a
web browser can happen using only one of those three solutions. The browser
plug-in solution is unlikely since it requires the user to download and install a
foreign application to simply fill out a one-time entry into a contest. Browser script-
ing languages, on the other hand, lack Java’s portability and its ability to cleanly
interface with server systems. The enterprise solution is Java.

ARCHITECTURE 131

Two-tier limitations

Using Java on the client, you can preserve the simple two-tier architecture. This
solution is great if your processing is limited to simple data validation (Is your
birthday a real date? Did you enter all the required fields?). But what if you add
even more complexity? Now you require the application to be a generic contest
entry application that you can sell to multiple companies running Internet con-
tests. One of the implications of this generic design is that your application must
be able to adapt to contests having different entry eligibility rules. If your eligibil-
ity rules are located in a Java applet on the client that is talking directly to the data-
base, then changing eligibility rules essentially means rewriting the application! In
addition, your direct database access ties your application to the same data model
without regard for the individuality of the different contests the application is sup-
posed to serve. Your needs have now outstripped the abilities of your two-tier
architecture.

Fat clients. Perhaps you have seen the sort of scope-creep in a single application
in the way | introduced new functions into the contest application. Ideally, the
client/server architecture is supposed to let each machine do only the processing
relevant to its specialization. Workstations are designed to provide users with a
graphical interface, so they do data presentation. Servers are designed to handle
complex data and networking management, so they serve as the data stores. But as
systems get more complex, more needs appear that have no clear place in the two-
tier model.

This evolution of application complexity has been paralleled by opposing trends
in hardware. Client machines have grown larger and more powerful and server
machines have scaled down and become less expensive. While client machines
have been able to keep up with more complex user interface needs, servers have
become less capable of handling more complex data storage needs. Whereas a sin-
gle mainframe once handled a company’s most complex databases, you might find
today the same databases distributed across dozens of smaller servers. As odd as
this sounds, companies do this because it is immensely cheaper to buy a dozen
small workstations than one mainframe. Financial pressures have thus pushed new
processing needs onto the client, leading to what is commonly called the problem
of the “fat client.”

Two-tier, fat-client systems are notorious for their inability to adapt to changing
environments and scale with growing user and data volume. Even though a cli-
ent’s primary task is the presentation of data, a fat client is loaded with knowledge
completely unrelated to that task. What happens if you need to distribute your
data across multiple databases or multiple servers? What happens if some small bit

132 CHAPTER 7: DISTRIBUTED APPLICATION ARCHITECTURE

of business logic changes? You have to modify, test, and redistribute a client pro-
gram whose core functionality has nothing to do with the changes you made.

Object reuse. Object reuse is a very vague but central concept in object-oriented
development.” You know it is a good thing, but you may have very different things
in mind when you speak of it. In one common sense, object reuse is simply code
reuse. You used the same code to build application X and application Y. But in
another sense, object reuse means using exactly the same object instances in one
application that you are using in another application. For instance, the customer
account objects you likely built for an ATM system could be used by a new web
interface you are building. While a two-tier system can contort to achieve the
former sense of object reuse, it can almost never achieve the latter.

In the simplest form of object reuse, you would like to take code developed for
one application, rewrite small bits of it, and have it run with minimal work. Two-
tier solutions have had a nasty time doing this because they are so closely tied to
the database. In PowerBuilder, for example, your GUI objects map directly to
tables in a database! You need to throw away a large chunk of your GUI when mov-
ing from one environment to the next. Some very clever people-—including a few
I have worked with-—have built complex class libraries to work around this prob-
lem. But my experience has been that such systems lack the flexibility you want in
a toolkit of reusable objects.

Source code reuse is not the real object reuse you are looking for. You want to
reuse actual object instances. If you look at building a system for viewing bank
accounts both from the Web and an ATM, you really want the user’s web browser
and the ATM to look at the exact same data, especially if they are looking at that
data at the same instant. Doing this with a two-tier system is nearly impossible since
each client ends up with its own copy of the data. When one client changes some
data, other clients end up with old data, resulting in a problem called dirty writes. A
dirty write is a situation in which someone tries to modify data based on an old,
out-of-date copy of the database. If my spouse makes a withdrawal at an ATM while
I am paying bills at home, | want to see that change happen. If we each look at
copies of the original data, however, | will end up paying a bill with money that my
spouse just withdrew!

If a client, on the other hand, simply observes objects located in some centralized
location, it always deals with the most recent information. When my spouse with-
draws that last $100, my web browser is immediately notified so that | do not act on
stale information.

* | am talking specifically about reuse in the development workflows of a project. The most effective
reuse occurs in the analysis and design workflows of a project.

ARCHITECTURE 133

When to use a two-tier design

Two-tier solutions do have a place in application development. Simple applica-
tions with immediate deadlines that do not require a lot of maintenance are
perfect for a two-tier architecture. The following checklist provides important
guestions to ask before committing yourself to a two-tier design. If you can answer
“yes” to each of the questions in the checklist, then a two-tier architecture is likely
your best solution. Otherwise you might consider a three-tier design.

e Does your application emphasize time-to-market over architecture?

e Does your application use a single database?

e Isyour database engine located on a single host?

e Isyour database likely to stay approximately the same size over time?

e Isyour user base likely to stay approximately the same size over time?
e Are your requirements fixed with little or no possibility of change?

« Do you expect minimal maintenance after you deliver the application?

Three-tier

You can avoid the problems of two-tier client/server by extending the two tiers to
three. A three-tier architecture adds to the two-tier model a new layer that isolates
data processing in a central location and maximizes object reuse. Figure 7-3 shows
how this new third layer might fit into an application architecture.

= Tl
N

Client System

-
m Application Server
==\

Client System

——li DATA STORE

Figure 7-3. A three-tier architecture

Isolated database connectivity. I've already mentioned that JDBC frees you from
concerns related to portability among proprietary database APIls. Unfortunately, it
does not—it could not—provide us with a means to liberate your applications from
your data model. If your application uses JDBC in a two-tier environment, it is still

134 CHAPTER 7: DISTRIBUTED APPLICATION ARCHITECTURE

talking directly to the database. Any change in the database ends up costing you a
change in the presentation layer.

To avoid this extra cost, you should isolate your database connection so that your
presentation does not care anything about the way you store your data. You can
take advantage of Java’s object-oriented nature and create a system in which your
clients talk only to objects on the server. Database connectivity becomes an issue
hidden within each server object. Suddenly, the presentation layer stops caring
about where the database is, or if you are even using a database at all. The client
sees only middle-tier objects.

Centralized business processing. The middle tier of a three-tier architecture—
the application server—handles the data-processing issues you have found out of
place in either of the other tiers. The application server is populated by problem-
specific objects commonly called business objects. Returning to the banking
application, your business objects are such things as accounts, customers, and
transactions that exist independently of how a user might see them. An account,
for example, is concerned with processing new banking transactions. It does not
care whether an ATM is viewing it, a teller is viewing it at his or her console, or the
bank is planning to allow users to access it from the Web. An application server
layer will generally consist of a data store interface and a public API.

The data store interface is hidden from external objects. Internally, a business
object has methods to save it to and restore it from a database. Information about
how this happens is not available outside the object, and thus does not affect other
objects. On the other hand, the business object does provide a limited, public
interface to allow external objects access to it. In a two-tier application, your GUI
would have displayed account information directly from the database. In a three-
tier system, however, the GUI learns everything about an account from an account
business object instead of from the database. If the GUI wants to know something
it should not be allowed to know, the business object can prevent it. Similarly, if
the GUI wants to make a change to that object, it submits that change to the
object instead of the database.

These centralized rules for processing data inside business objects are called busi-
ness rules. No matter what your problem domain is, the rules for how data should
be processed rarely change. For example, no matter what application talks to your
account objects, that application should not (unfortunately) allow you to write
checks for money you do not have. It is a rule that governs the way the bank does
business. A three-tier architecture allows you to use the same business rules across
all applications that operate on your business objects.

ARCHITECTURE 135

Business object presentation. User interfaces are very ephemeral things. They
change constantly in the development process as users experiment with them;
their final appearance depends heavily on the hardware being used, the applica-
tion’s user base, and the purpose of the application in question. The presentation
layer of a three-tier application should therefore contain only user interface code
that can be modified easily on a whim.

Your banking application could use any of these different presentation layers:

e The teller window’s console at the bank
e The ATM machine
e The web applet

Figure 7-4 shows how you intend to present an account from a teller PC.

Figure 7-4. An account as viewed from the teller console

Database vendors know that data presentation is a central requirement, and they
have developed some fancy solutions for creating GUIs. The good ones are easy to
use and produce nice-looking results, but since they are based on a two-tiered
vision, they allow rules and decision making to leak into the presentation layer.
For instance, take PowerBuilder, which has been on the leading edge of designing
a rapid application development environment for building database frontends. It
uses GUI objects called DataWindows to map relational data to a graphical user
interface display. With a Datawindow, you can use simple drag-and-drop to associ-
ate a database column with a particular GUI widget.

Because a DataWindow maps the user interface directly to the database, it does not
work well in a three-tier system where you map the user interface to intermediary
business objects. You will, however, create a user interface library in Chapter 10,
The User Interface, that captures the DataWindow level of abstraction in a way that
better suits a three-tier distributed architecture. Instead of mapping rows from a
database to a display area on a user interface, you will create a one-to-one map-
ping of business objects to specific GUI views of them.

136 CHAPTER 7: DISTRIBUTED APPLICATION ARCHITECTURE

Drawbacks to the three-tier architecture

While the three-tier architecture provides some important advantages, it is not
without its downside. Chief among its drawbacks is the level of complexity it adds
to a system. You have more distinct components in your system, and therefore
more to manage. It is also harder to find software engineers who are competent in
three-tier programming skills such as transaction management and security. While
tools like the EJB component model aim to minimize this complexity, they cannot
elimintate it.

The Network Application Architecture

The term Network Application Architecture (NAA) is one | coined to describe a
specific kind of three-tier architecture I found works best for enterprise Java sys-
tems. Variations on it are certain to work, but its essential characteristic is that it is
a distributed three-tier application architecture. Distributed three-tier architec-
tures enable the three logical tiers of a three-tier architecture to be distributed
across many different process spaces. Under a distributed three-tier architecture,
for example, my database could be split into an Oracle database on the server
named athens for my business data and an Informix database on the server named
carthage for my digital assets. Furthermore, my product and inventory business
objects could be located on a third server, and the marketing and finance busi-
ness objects on a fourth.

Figure 7-5 illustrates the NAA. It treats the mid-tier business objects as a logical
mid-tier that can be split into many different partitions. This split is entirely trans-
parent to the other tiers in the architecture. The result is that you can move
objects around at runtime to enhance system performance without worrying that a
client is looking for a particular object on a particular machine.

This principal also applies to the database layer. The business objects do not know
or care whether the underlying database is a single or a distributed database.

The NAA makes a joke of the concept “web-enabled.” Because the NAA is not spe-
cific to any kind of presentation layer, it can support ultra-thin web clients or just
moderately thin Java clients. If access to your business systems via interactive televi-
sion is the next great wave, your system is already enabled to support it.

The NAA addresses issues other than simple application partitioning. It is also
based on the principles of enterprise systems | enumerated in Chapter 1, Java in the
Enterprise. The NAA is not only a distributed three-tier architecture, it is a distrib-
uted three-tier architecture based on the EJB component model and RMI/Z11OP for
distributed computing support. It mandates full support for internationalization
and localization and assumes a hostile security environment by requiring encrypted
communications.

DESIGN PATTERNS 137

Internet Explorer Netscape

Ultra-thin, HTML-based clients. ‘
HTTP/HTTPS HTTP/HTTPS

Firewall/Load Balancing
Afirewall to make sure only valid -

traffic gets to the web services.

Ultra-thin and
thin clients

WWeb Server
————— HITP/HTTPS—| D

WWeb Server

|IIIIIIIW
||||||||—J

Web servers to support HTTP
requests, including support for
JSP and servlets.

G

Web Application Services

Content management provides
personalized content to the weh
services layer.

|
!

Enterprise Application Services

Enterprise Java components export —
their business logic to all kinds
of clients.
f—’ JDBC
|
5. WAS 5. EAS
DATABASE DATABASE

A variety of data storage technologies
support content management,
business object persistence, and

other data storage needs.

Figure 7-5. The Network Application Architecture

Design Patterns

Design patterns have been popularized by the book Design Patterns by Erich
Gamma, Richard Helm, Ralph Johnson, John Vlissides, and Grady Booch (Addison-
Wesley). They are recurring forms in software development that you can capture at
a low level and reuse across dissimilar applications. Within any application scope
are problems you have encountered; patterns are the result of your recognizing
those common problems and creating a common solution.

138 CHAPTER 7: DISTRIBUTED APPLICATION ARCHITECTURE

The first step to identifying the design patterns is identifying problems in generic
terms. You already know that you need to relate GUI widgets on the client to busi-
ness objects in the application server; you should create GUI widgets that observe
changes in centralized business objects. You also know that you need to make
those business objects persistent by saving them to a database. You should there-
fore look at a few common patterns that will help accomplish these goals.

Client Patterns

The user interface provides a view of the business specific to the role of the user in
question. In the Network Application Architecture, it provides this view by display-
ing the business components housed on a shared server. Good client design
patterns will help keep the user interface decoupled from the server.

The model-view-controller pattern

Java Swing is based entirely on a very important user-interface pattern, the model-
view-controller pattern (MVC). In fact, this key design pattern is part of what makes
Java so perfect for distributed enterprise development. The MVC pattern sepa-
rates a GUI component’s visual display (the view) from the thing it is a view of (the
model) and the way the user interacts with the component (the controller).

Imagine, for example, a simple two-tier application that displays the rows from a
database table in a GUI table display. The columns of the GUI table match the
columns of the database table, and the rows in the GUI table match those in the
database table. The model is the database. The view is the GUI table. The control-
ler is a less obvious object that handles the user mouse clicks and keypresses and
determines what the model or view should do in response to those user actions.

Swing actually uses a variant of this pattern called the model-delegate pattern. The
model-delegate pattern combines the view and the controller into a single object
that delegates to its model. Applied to the Network Application Architecture, a sin-
gle model can model the business objects on the server to provide a common look
for multiple GUI components. As a result, you could have a user interface with a
tree and table showing two different views of the same objects for which deleting
an object in the table is immediately reflected in the tree on the left without any
programming effort.

The listener pattern

Perhaps saying that the tree knows about the change “without any programming
effort” is a bit of an overstatement. The tree and the table may be sharing the same
model, but the tree will not know to repaint itself unless it somehow knows that
the model has been changed. Swing uses another key design pattern to make sure
the tree knows about the change: the listener pattern.

DESIGN PATTERNS 139

The listener pattern enables one object to listen to specific events that occur to
another object. A common listener in the JavaBeans component architecture is
something called a PropertyChangelListener. One object can declare itself a
PropertyChangeListener by implementing the PropertyChangelistener
interface. It then tells other objects that it is interested in property changes by call-
ing the addPropertyChangeListener () method in any objects it cares about.
The import part of this pattern is that the object being listened to needs to know
nothing about its listeners except that those objects want to know when a property
has changed. As a result, you can design objects that live well beyond the uses orig-
inally intended for them.

The distributed listener pattern

A variation of the listener pattern is the distributed listener pattern. It captures situa-
tions in which one object is interested in changes that occur in an object on
another machine. Returning to the banking application, my spouse at the ATM
can withdraw money from a checking account that | am looking at on the Web. If
the GUI widgets in my applet are not actively observing those accounts, they will
not know that my account has less money than it did a minute ago. If the applica-
tion uses the distributed listener pattern, however, anytime a change occurs in the
checking account, both the ATM and the web browser get notified.

Distributed computing adds unique challenges to the distributed listener pattern.
First of all, Java RMI’s JRMP protocol cannot support the server calling a method
in a user interface object for which that user interface is hidden behind a firewall.
You can get around this problem by creating a special smart proxy object that acts
like an RMI stub but is in fact a local user interface object. This stub polls the
actual RMI stub for changes in the remote object. If it detects a change, it fires an
event that local user interface objects can listen for. Figure 7-6 shows a class dia-
gram detailing the object relationships. Figure 7-7 provides a sequence diagram to
show what happens when a change occurs.

<<interface>> +listeners
PropertyChangeListener
0"*
b
Listener RemoteObjectProxy | _ RemoteObject
polls

Figure 7-6. A UML class diagram of the distributed listener pattern

140 CHAPTER 7: DISTRIBUTED APPLICATION ARCHITECTURE

:Listener :RemoteQbjectPropXY :RemoteObject
! addPropertyChangeListener() __ ! :
U U |
|
| : poll :
|
| 1 i
: : firePro?ertyChange() :
| |
| |
| | |
I propertyChanged() I I
|
! I '
|
| |
| |
| |

Figure 7-7. A sequence diagram describing sequences of events in the distributed listener pattern

Business Patterns

As a general rule, the mid-tier business logic is likely to use just about every design
pattern in the Design Pattern book. The two most common general patterns | have
encountered are the composite and factory patterns. | will provide a brief descrip-
tion of those two patterns here, but | strongly recommend the purchase of Design
Patterns for greater insight into these and a wealth of other useful general patterns.

The composite pattern

The composite pattern appears everywhere in the real world. It represents a
hierarchy in which some type of object may be both contained by similar objects
and contain similar objects. Figure 7-8 shows a UML diagram describing the com-
posite pattern.

Component +children

i
| |

Leaf Composite

0”*

Figure 7-8. A class diagram of the composite pattern

DESIGN PATTERNS 141

To put a more concrete face on the composite pattern, think of a virtual reality
game that attempts to model your movements through a maze. In your game, you
might have a Room class that can contain Tangible objects, some of which can
contain other Tangible objects (e.g., a bag). Your room is a container, and bags
are containers. Things like stones and money, however, are unable to contain
anything. The room, on the other hand, cannot be contained by anything greater
than it. The result is the class diagram contained in Figure 7-9.

*
Tangible 0.
‘f +contents
I |
Rock Container
I |
Bag Room

Figure 7-9. The composite pattern in practice

The factory pattern

Another common pattern found in the core Java libraries is the factory pattern.
The AppServerImpl class from the previous chapter is an example of this pattern
in use. The pattern encapsulates the creation of objects inside a single interface.
The Java 1.1 internationalization support is peppered with factory classes. The
java.util.ResourceBundle class, for example, contains logic that allows you to
find a bundle of resources for a specific locale without having to know which sub-
class of ResourceBundle is the right one to instantiate. A ResourceBundle is an
object that might contain translations of error messages, menu item labels, and
text labels for your application. By using a ResourceBundle, you can create an
application that will appear in French to French users, German to German users,
and English to English users.

Because of the factory pattern, using a ResourceBundle is quite easy. To create a
save button, for example, you might have the following code:

ResourceBundle bundle =
ResourceBundle.getBundle ("labels",Locale.getDefault()) ;
Button button = new Button(bundle.getString("SAVE"));

This code actually uses two factory methods: Locale.getDefault() and
ResourceBundle.getBundle (). Locale.getDefault() constructs a Locale
instance representing the locale in which your application is being run. For a

142 CHAPTER 7: DISTRIBUTED APPLICATION ARCHITECTURE

French user, this Locale instance would represent France and the French lan-
guage. For a German, it would represent Germany and the German language. The
ResourceBundle.getBundle() method in turn finds a ResourceBundle
instance that supports the language and customs for that locale. The French
ResourceBundle will thus return “Enregistrer” for the getString() call and the
English one would return “Save.”

The goal of the factory pattern is to capture the creation logic of certain objects in
one method. The benefit of providing a single location for the creation of certain
objects is that you can handle any rules regarding the creation of those objects
once. If you use new everywhere, however, a change in business rules will require a
change and retest of every single new in your code.

Data Access Patterns

One key to smooth three-tier development is providing a clear division between
data storage code and business logic code. At some point, a business object needs
to save itself to a data store. You will use some key data access patterns to make
sure that the business object knows nothing about how it stores itself to a data-
base. It only knows that it is saving itself.

The persistence delegate pattern

To some degree, most applications are concerned about some sort of persistence.
Persistence is simply the ability to have information from an application instance
exist for later instances of the application (or even other applications) to use. An
object-oriented database application uses a database to enable its business objects
to exist beyond the traditional object lifecycle. You want your customer object to
exist at least as long as the customer. You want the accounts to exist at least as long
as they are open. The persistence pattern solves this problem by creating a single
interface for any potential method of extending an object’s life.

The simplest implementation of object persistence is the creation of flat files. Each
time an object changes, it saves itself to a file. When your application recreates the
object later on, it goes back to that file and restores itself. While this sort of persis-
tence is useful for small systems, it is extremely inefficient and does not scale at all
for big systems.

Another backend tool for object persistence is the relational database. Here you
have arrived at your goal. Instead of saving to a file with each change in an object,
your objects update the database. Although saving to a database is a lot different
from saving to a file, the same basic concepts of saving, restoring, committing, and
aborting apply to both. What differs is the system-dependent specifics; for
instance, you execute a simple file write for a file save, but a SQL UPDATE for a

THE BANKING APPLICATION 143

database save. You can therefore write a generic persistence interface that provides
a single set of methods for persistence, regardless of whether you use a database or
flat files. Your business objects never care how they are being saved, so the busi-
ness logic just calls a store () method and allows a persistence-specific class to
handle how that saving is implemented.

The persistence pattern defines an interface that prescribes these four behaviors:

create()
Creates a primary key for the object and inserts it into the data store

load()
Tells the object to load its data from the data store

remove ()
Removes the object from the database

store ()
Attempts to save any changes made to the object to the data store

The memento pattern

In the persistence delegate pattern, how does the persistence delegate know about
the state of the object it is persisting? You could pass the object to the persistence
methods, but that action requires your delegate to know a lot more about the
objects it supports than you would likely want. Another design pattern from the
Design Patterns book comes to the rescue here, the memento pattern.

A memento is a tool for capturing an object’s state and safely passing it around.
The advantage of the memento pattern is that it enables you to modify the beans
and the persistence handlers independent of one another. A change to the bean
does not affect any code in the persistence handler. The memento knows how to
capture that change. The persistence handler knows how to get data from the
memento. Similarly, any change in the way data is retrieved or saved to the data
store is irrelevant to the bean. It always just passes its state to the delegate and lets
the delegate worry about all persistence issues. | provide a concrete implementa-
tion of the memento pattern later in the book when | discuss address persistence.

The Banking Application

It is time to put everything together into a concrete banking application. This
application is naturally not something your local bank would want to implement to
support its business, but it does illustrate all of the key concepts | have covered in
this book. The application is specifically a simple user interface that enables you to
view your accounts and transfer money between any of them. It is a three-tier
application that takes advantage of the Network Application Architecture, but it is

144 CHAPTER 7: DISTRIBUTED APPLICATION ARCHITECTURE

not EJB-based. You will therefore have to construct tools along the way that you get
for free with EJB. As a result, you will get a very practical feel for all the issues
involved in distributed software development that you can apply to both EJB and
nonEJB development.

The Business Objects

With a distributed enterprise application, your starting point is the middle tier.
The business classes that make up the middle tier are the key to a successful
design. It is therefore the starting point for your development efforts.” Figure 7-10
is a UML class diagram describing the mid-tier business objects for the banking
application. You will build these objects in Chapter 8, Distributed Component Models.

Customer AccountType

& firstName: String ~IYPE | 5CHECKING: AccountType
& lastName: String ESAVINGS: AccountType

&% taxID: String 1 &k code: short
—customer | 1
—accounts | 0.* Currency
Account —balance Money —currency | & code: String
& interestRate: double 1~ | Samount: double 1 &5 name: String
8 symbol: String

Figure 7-10. The middle tier of the banking application

Persistence

Persistence is a huge topic. A distributed application that persists its objects against
a relational database has so many complex issues, such as security, locking, transac-
tion management, object/database consistency, and performance to deal with.
Enterprise JavaBeans worries about a lot of these issues for you. A book on data-
base programming with JDBC and Java, however, would certainly be negligent if it
did not address these problems. For the banking application, you will put together
a library of objects that take care of these issues for you and apply it to the busi-
ness objects in the banking application. Chapter 9, Persistence, covers the details of
persistence in a distributed application.

* This fact is often in opposition to political considerations, namely that people want to see something.
This urge is similar to asking a home builder to put up the siding on a house before building the frame,
but it is a reality in software development today. My suggestion is to build time into your budget for a
separate prototyping effort that involves a completely separate development team. That team can use
rapid prototyping techniques both to provide some “feel good” enthusiasm and gather useful user
interface (UI) design feedback for later stages of the system’s design.

THE BANKING APPLICATION 145

The User Interface

A good book on Swing, such as Java Swing by Robert Eckstein, Marc Loy, and Dave
Wood, will tell you 99 percent of what you need to know about user interface pro-
gramming in Java in a distributed environment. In Chapter 10 | focus on that
extra one percent and the issues you need to deal with in Swing programming
using the Network Application Architecture. The result will be the window in
Figure 7-4 that enables users to view their accounts and make transfers.

