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Abstract

A random graph order, also known as a transitive percolation process, is defined by
taking a random graph on the vertex set {0, . . . , n− 1}, and putting i below j if there is
a path i = i1 · · · ik = j in the graph with i1 < · · · < ik.

In [15], Rideout and Sorkin provide computational evidence that suitably normalised
sequences of random graph orders have a “continuum limit”. We confirm that this is the
case, and show that the continuum limit is always a semiorder.

Transitive percolation processes are a special case of a more general class called classical
sequential growth models. We give a number of results describing the large-scale structure
of a general classical sequential growth model. We show that for any sufficiently large n,
and any classical sequential growth model, there is a semiorder S on {0, . . . , n− 1} such
that the random partial order on {0, . . . , n− 1} generated according to the model differs
from S on an arbitrarily small proportion of pairs. We also show that, if any sequence of
classical sequential growth models has a continuum limit, then this limit is (essentially)
a semiorder. We give some examples of continuum limits that can occur.

Classical sequential growth models were introduced as the only models satisfying cer-
tain properties making them suitable as discrete models for space-time. Our results in-
dicate that this class of models does not contain any that are good approximations to
Minkowski space in any dimension ≥ 2.

1 Introduction

In [15], Rideout and Sorkin provide evidence for a “continuum limit of transitive percolation”.
A transitive percolation process, a model of random partial orders, is specified by one parameter
p, and produces partial orders sequentially, as follows. We start with a single element, labelled
0. At stage n = 1, 2, . . . , the element n is added to the partial order and placed above each
existing element independently with probability p, and incomparable to it with probability
1 − p. The transitive closure of the added relations gives the partial order Pn+1,p at stage n.
In the mathematics literature, Pn,p is called a random graph order. These were introduced
by Albert and Frieze [1] and have been studied further by Alon, Bollobás, Brightwell and
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Janson [2], Bollobás and Brightwell [5, 6, 7], Kim and Pittel [11], Pittel and Tungol [13], and
Simon, Crippa and Collenberg [16].

In this paper, we confirm the observation of Rideout and Sorkin, that certain sequences of
random graph orders do have “continuum limits”. We also show that, even in a broader class
of models, these continuum limits are essentially the only ones that arise.

We start by defining what it means for a sequence (Pn)∞n=1 of probability spaces, whose
elements are finite partial orders, to have an atomless partially ordered measure space as a
continuum limit. Usually, the partial orders in Pn will have ground sets of size n.

We use a definition of a partially ordered measure space similar to that in Bollobás and
Brightwell [4].

Definition 1.1. A partially ordered measure space is a quadruple (X,F , µ,<) such that
(X,F , µ) is a measure space, (X, <) is a partially ordered set, and U [x] ≡ {y ∈ X : y ≥ x} ∈ F ,
and D[x] ≡ {y ∈ X : y ≤ x} ∈ F for every x ∈ X.

A partially ordered measure space (X,F , µ,<) is atomless if µ({x}) = 0 for all x ∈ X.

We now give formal definitions of the sampling from partially ordered measure spaces, and
the probability of forming a particular labelled partial order Q. (In this context, the elements
of Q will be labelled x1, . . . , xk.)

Definition 1.2. For P a partially ordered measure space with probability measure µ, and k a
natural number, define a random sample of k elements from P to be a sequence x1, . . . , xk of
elements of P , obtained by selecting k elements x1, . . . , xk independently from P according to
µ, and conditioning on the event that x1, . . . , xk are distinct. A random sample can be thought
of as a (random) finite partial order on the fixed ground-set {x1, . . . , xk}, inheriting the partial
order from P .

For Q a finite partial order with ground-set labelled as {x1, . . . , xk}, and P a partially
ordered measure space with measure µ, let λ(Q; P ) be the probability that the partial order
inherited from P on a random sample x1, . . . , xk of k elements is equal to Q.

Note that, for P an atomless partially ordered measure space, the probability that the same
element from P is selected twice is zero, and so conditioning on the elements of a random
sample being distinct makes no difference.

When we apply the above definitions to a finite partial order P = (X, <), we always take
the probability measure µ to be uniform on X. With this convention, sampling |Q| elements
from P , conditioned on the elements being different, is equivalent to selecting |Q| elements from
P without replacement. Therefore λ(Q; P ) is the proportion of labelled |Q|-element subsets of
P that are equal to Q. To be precise, for Q, P finite labelled partial orders, if we select |Q|
elements without replacement from P , label them with x1, . . . , x|Q| according to the order of
selection, and take the induced order from P , then λ(Q; P ) is the probability that this random
partial order is equal to Q.

Note that for fixed P , we have λ(Q; P ) = λ(Q′; P ) if the labelled posets Q and Q′ are
isomorphic.

We are now in a position to define a continuum limit. Here, and in what follows, Pn denotes
a random partial order from Pn.
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Definition 1.3. A continuum limit of a sequence (Pn)∞n=1 of probability spaces, whose elements
are finite posets, is an atomless partially ordered measure space P∞ such that, for all finite
labelled partial orders Q,

Eλ(Q; Pn) → λ(Q; P∞).

This notion of continuum limit is analogous to the notion of “graph limit” introduced by
Lovász and Szegedy [12], and the subject of much subsequent interest.

In [15], Rideout and Sorkin estimate λ(Q; Pn,p) for small partial orders Q, and present evi-
dence suggesting that, for suitable sequences p = p(n), all the expectations Eλ(Q; Pn,p) converge
to limits. To be more precise, they choose sequences p(n) so that Eλ(C2; Pn,p) converges, where
C2 is the 2-element chain, and observe that, for such sequences p(n), expectations Eλ(Q; Pn,p),
for other small Q, appear to converge also. They offer this as evidence for the existence of a
continuum limit.

We define a sequence (Pn)∞n=1 of discrete probability spaces to be compatible if the sequence(
Eλ(Q; Pn)

)∞
n=1

is convergent for all finite labelled partial orders Q. From the definitions, we
have that if (Pn)∞n=1 has a continuum limit, then (Pn)∞n=1 is compatible. An interesting question
(not answered here) is whether a compatible sequence necessarily has a continuum limit. In
Section 4, we show not only that suitable sequences of random graph orders are compatible but
also that they have continuum limits, confirming the conjecture of Rideout and Sorkin.

Theorem 1.4. The sequence of models (Pn,p(n))
∞
n=1 of random graph orders has a continuum

limit if and only if one of the following holds:

(i) limn→∞ (p−1 log p−1/n) = 0,

(ii) limn→∞ (p−1 log p−1/n) = c for some 0 < c < 1, or

(iii) lim infn→∞ (p−1 log p−1/n) ≥ 1.

In the first and third of the cases above, the continuum limit is very trivial, being a chain
and an antichain respectively. In the second case, the continuum limit Sc consists of the set
[0, 1], with the uniform measure on Borel sets, and the order ≺ given by x ≺ y if and only if
y − x > c, which is a semiorder.

A semiorder is a partial order that can be represented by a collection of equal-length intervals
on the real line, ordered by putting x < y if the interval representing x lies entirely to the left
of the interval representing y. Semiorders have a very special and well-understood structure;
an alternative definition is that a semiorder is a partial order not containing either of the two
four-element partial orders H and L shown in Figure 1 as an induced suborder. See Fishburn [8]
for a proof of this and much more information about semiorders.

Transitive percolation processes form a one-parameter family of models from a larger family,
called classical sequential growth models. These models, introduced by Rideout and Sorkin in
[14], produce random partial orders sequentially. A particular classical sequential growth model
P(t) is specified by a sequence t = (t0, t1, . . . ) of non-negative constants, with either t0 or t1
non-zero. We start with the partial order P0 with one element labelled 0. At stage n = 1, 2, . . . ,
the element n is added to Pn−1 and placed above all elements in Dn, where Dn is a random
subset of {0, 1, . . . , n − 1}, the probability that Dn is equal to a set D being proportional to
t|D|. The transitive closure is taken to form the partial order Pn = Pn(t). Often, we will be
interested in a sequence of classical sequential growth models Pn—more properly P(t(n))—and
an associated random sequence Pn(t(n)) of partial orders.
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Figure 1: Forbidden induced suborders

Classical sequential growth models are of particular interest as they are the only ones sat-
isfying some natural-looking conditions for discrete models of space-time—for further details,
see [14].

A transitive percolation process with parameter p is a classical sequential growth model P(t),
given by the sequence t with ti = ti for all i, where t = p/(1− p). Other examples of classical
sequential growth models, where almost all the ti are zero, include the “dust universe” (ti = 0
for all i ≥ 1), “forest universe” (ti = 0 for all i ≥ 2) and random binary growth model (ti = 0
for all i ≥ 3). The “dust” and “forest” universes are fairly trivial models; they produce an
infinite antichain almost surely, and a infinite forest of infinite trees almost surely, respectively.
The “dust” and “forest” universes are described in [14] and the random binary growth model
has been studied by Georgiou [9].

It is natural to ask whether continuum limits exist for sequences of classical sequential
growth models other than a sequence of transitive percolation processes, and in particular
whether one can obtain continuum limits that are radically different from semiorders. In Sec-
tion 5, we show that this is not possible.

Given two partial orders P, Q on the same finite ground set X, we define ∆(P, Q) to be the
number of pairs of elements on which P and Q differ, i.e.,

∆(P, Q) = #{(x, y) ∈ X(2) : P induces a different partial order from Q on {x, y}}.

Theorem 1.5. For any ε > 0 there exists an n0 such that for any classical sequential growth
model P(t) and for all n ≥ n0, there exists a semiorder S on {0, . . . , n− 1} such that

E∆(Pn(t), S) < εn2,

where Pn(t) is the random order on {0, . . . , n− 1} generated according to P(t).

This means that partial orders generated from classical sequential growth models resemble
semiorders.

Note the independence of n0 on t in the above result; this makes Theorem 1.5 applicable
to a sequence of classical sequential growth models. Indeed, it follows from a rephrasing of the
theorem in terms of random sampling that any sequence of classical sequential growth models
(Pn)∞n=1 has Eλ(H; Pn) → 0 and Eλ(L; Pn) → 0 as n → ∞ (where, as before, Pn is a random
partial order produced by the model Pn) and this motivates the following definition.
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We say that a partially ordered measure space P is an almost-semiorder if the probability
that a random sample of four elements from P is isomorphic to either H or L is zero, i.e., if
λ(H; P ) = λ(L; P ) = 0. Following the above exposition we are able to classify the continuum
limit of a sequence of classical sequential growth models, when it exists.

Theorem 1.6. If a sequence of classical sequential growth models (Pn)∞n=1 has a continuum
limit, then this limit is an almost-semiorder.

This still leaves the question of whether continuum limits exist for sequences other than
a sequence of transitive percolation processes. In Section 6, we show that they do and, in
accordance with Theorem 1.6, their structure is a more general version of the continuum limit
Sc described in Section 4.

Definition 1.7. For a Borel-measurable function r : [0, 1] → [0,∞], let Tr be the partially
ordered measure space ([0, 1],B, µL,≺) where B is the family of Borel sets on [0, 1], the measure
µL is the Lebesgue measure on [0, 1], and ≺ is defined by x ≺ y if and only if

∫ y

x
r(t)dt > 1.

In particular, if r is constant, then Tr = Smin{1/r,1}. Note that the Tr are all semiorders.

Consider a classical sequential growth model P(t) with ground set {0, . . . , n − 1}. A key

quantity is the sequence E|Dy |
y

(y = 1, . . . , n − 1): for given y, this is the probability that each
element x earlier than y is selected for Dy, and is thus the analogue of the constant p in transitive
percolation. It turns out that the behaviour of this sequence is enough to determine the large-
scale structure of Pn(t), for large n. If we are interested in the structure of the partial order
restricted to [εn, n− 1], then Theorem 1.4 suggests that we should compare y

E|Dy | log (y/E|Dy|)
with n. That is, for εn ≤ y ≤ n, we should consider

rn(y/n) =
E|Dy|

(y/n) log y
.

Extending this function to all real values x ∈ [ε, 1] we set

rn(x) =
nE|Ddxne|

dxne log dxne
∼

E|Ddxne|
x log n

.

The next theorem can be interpreted as saying that Pn(t) is close to Trn , in the sense of
Theorem 1.5.

Theorem 1.8. Suppose (Pn)∞n=1 is a sequence of classical sequential growth models with asso-
ciated functions rn as defined above. Suppose that r(x) = limn→∞ rn(x) ∈ [0,∞] exists almost
everywhere on [0, 1]. Then (Pn)∞n=1 has a continuum limit, namely Tr.

We shall give an example of a sequence of classical sequential growth models that satisfies
the conditions of Theorem 1.8 and has a non-trivial continuum limit.

To a large extent, we describe the large-scale structure of an arbitrary classical sequential
growth model, enabling us to answer questions about them arising in physics. Specifically,
it has been asked [14, 15] whether classical sequential growth models can be constructed to
resemble a “sprinkling” from Minkowski space Md, for any dimension d ≥ 2, i.e., a partial
order obtained from Md by taking points according to a Poisson process with fixed density λ.
Alternatively, can a classical sequential growth model have a continuum limit resembling Md?
The results here demonstrate that this is not possible. Indeed, an interval [a, b] of Md is a long
way from being a semiorder, so no classical sequential growth model can have a region of Md

as a continuum limit.
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2 Preliminaries

We begin with a few preliminary observations about the probabilities λ(Q; P ).

Lemma 2.1. For Q, P finite labelled partial orders with |Q| = j, and for k with j ≤ k ≤ |P |,∑
|Q′|=k

Q′|{x1,...,xj}=Q

λ(Q′; P ) = λ(Q,P ).

Proof. Fix Q with |Q| = j. For any k with j ≤ k ≤ |P |, construct a random labelled partial
order by taking a random sample x1 . . . , xk of k elements from P . The probability that the
labelled subposet on x1, . . . , xj is equal to Q is the sum of λ(Q′, P ) over all labelled partial
orders Q′ that, when restricted to {x1, . . . , xj}, are equal to Q. But this probability must be
equal to λ(Q; P ), as we are only looking at the structure of the first j elements sampled.

Corollary 2.2. If Q is a (labelled) subposet of Q′ then λ(Q′; P ) ≤ λ(Q; P ), for all P with
|P | ≥ |Q′|.

Proof. This follows immediately from Lemma 2.1.

Write Ak for the k-element labelled antichain and Ck for the k-element labelled chain,
{x1 < x2 < · · · < xk}. We have the following simple result, applying to cases where the partial
order is either very dense or very sparse.

Proposition 2.3.

(i) If Eλ(A2; Pn) → 0 as n →∞, then Eλ(Q; Pn) → 0 as n →∞ for all finite labelled partial
orders Q that are not a chain, and Eλ(Ck; Pn) → 1/k! as n →∞ for all k ≥ 2.

(ii) If Eλ(C2; Pn) → 0 as n →∞, then Eλ(Q; Pn) → 0 as n →∞ for all finite labelled partial
orders Q that are not an antichain, and Eλ(Ak; Pn) → 1 as n →∞ for all k ≥ 2.

Proof. We show part (i). Part (ii) can be proved in a similar way.

Assume Eλ(A2; Pn) → 0 as n → ∞. Fix k ≥ 2, and let Q be any labelled partial order of
size k, but not isomorphic to Ck. Define Q′ as a relabelled copy of Q with the elements x1, x2

incomparable, which is possible since Q 6∼= Ck. Note that λ(Q′; Pn) = λ(Q; Pn). Since A2 is a
subposet of Q′, we can apply Corollary 2.2 giving λ(Q; Pn) ≤ λ(A2; Pn). So, Eλ(A2; Pn) → 0
as n → ∞ implies that Eλ(Q; Pn) → 0 as n → ∞ for all Q of size k not isomorphic to
Ck. But

∑
|Q|=k λ(Q; Pn) = 1, and there are k! labellings of the k-element chain, so we have

Eλ(Ck; Pn) → 1/k! as n →∞.

3 Random graph orders

We recall the definition of a random graph order.

Definition 3.1. Let Pn,p be a random partial order on [n − 1] ≡ {0, 1, . . . , n − 1}, formed by
introducing the relation (i, j) with probability p, independently for each pair of elements i < j,
and then taking the transitive closure. The partial order Pn,p is called a random graph order.
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Note that the description of Pn,p above is equivalent to that given earlier: indeed, in the
description above, we can think of the element n as being placed above a subset D with
probability p|D|(1− p)n−|D|, which is proportional to t|D|, where t = p/(1− p), as in the earlier
definition. In future, we will use the term random graph order, rather than transitive percolation
process, but the terms are essentially interchangeable.

We include some results of Pittel and Tungol, from [13], which we will need in order to
prove the existence of a continuum limit. Versions of this result can be found in earlier work of
Simon, Crippa and Collenberg [16], and Bollobás and Brightwell [6]. We change the notation
slightly, for ease of use in this paper. The following results apply to a random graph order PN,π,
and we will apply them with particular values for N and π. Very crudely, these results can be
interpreted as saying that, if i and j are elements of [N − 1], then

(i) for α > 1, most pairs (i, j) with j − i ≥ απ−1 log π−1 are comparable in PN,π,

(ii) for α < 1, few pairs (i, j) with 0 < j − i ≤ απ−1 log π−1 are comparable in PN,π.

Theorem 3.2 (Pittel and Tungol, [13, Theorem 4.1(3)]). Let X be the number of comparable
pairs i < j in PN,π. Let π = α log N/N with α > 1. Then

EX = (1 + o(1))
1

2

(
N

(
1− 1

α

))2

.

Define γ∗N(0) to be the size of the up-set of 0 in PN,π.

Theorem 3.3 (Pittel and Tungol, [13, Theorem 2.3(1)]). Let π = α log N/N . Suppose that
α ≥ 1. If M is such that

f(M) ≡
(

M −N

(
1− 1

α

))
α log N

N
− log log N = O(log log N),

then

P(γ∗N(0) > M) = (1 + o(1)) exp

(
− 1

α
ef(M)

)
.

Theorem 3.4 (Pittel and Tungol, [13, Corollary 2.4(3)]). Let π = α log N/N . If α = α(N) < 1
and

(1− α) log N − log log N ≥ −2 log log log N,

then
E(γ∗N(0)) = (1 + o(1))Nα.

4 The continuum limits of Pn,p

We show that, for suitable functions p(n), the continuum limit of the sequence Pn,p(n) of random
graph orders is the partially ordered measure space defined below, the order structure of which
is a semiorder.

Definition 4.1. For 0 ≤ c ≤ 1, let Sc be the partially ordered measure space ([0, 1],B, µL,≺),
where B is the family of Borel sets on [0, 1], the measure µL is the Lebesgue measure on [0, 1],
and ≺ is defined by x ≺ y if and only if y − x > c.
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In particular, S0 is the partially ordered measure space ([0, 1],B, µL,≺) with x ≺ y for all
x < y, so that ([0, 1],≺) is a chain, and S1 is the partially ordered measure space ([0, 1],B, µL,≺)
with x 6≺ y for all x, y, so that ([0, 1],≺) is an antichain.

By associating the number y with an interval of length c with left-endpoint y, we see
immediately that Sc is a semiorder. We now prove that, for certain p(n), the semiorder Sc is
the continuum limit of our sequence of random graph orders.

Theorem 4.2. The sequence of models (Pn,p)
∞
n=1 of random graph orders has a continuum limit

for p = p(n) when either

(i) limn→∞ (p−1 log p−1/n) = 0,

(ii) limn→∞ (p−1 log p−1/n) = c for some 0 < c < 1, or

(iii) lim infn→∞ (p−1 log p−1/n) ≥ 1.

The continuum limit in each case is

(i) S0, i.e., a chain,

(ii) Sc,

(iii) S1, i.e., an antichain.

Proof. Suppose that limn→∞ (p−1 log p−1/n) = 0. We will show that the continuum limit is
S0 = ([0, 1],B, µL,≺) with x ≺ y for all x < y. Since λ(Q; S0) = 0 for all Q not a chain, and
λ(Ck; S0) = 1/k! for all k, Proposition 2.3 implies that it is enough to show that Eλ(A2; Pn) → 0
as n → ∞. Fix ε with 0 < ε < 0.01, and let n0 be such that p ≥ (1/ε) log n/n for all n ≥ n0.
We can apply Theorem 3.2 with N = n, π = (1/ε) log N/N , so that α = 1/ε. We have
Eλ(A2; PN,π) = 1− EX/

(
N
2

)
which by Theorem 3.2 gives

Eλ(A2; Pn,p) ≤ Eλ(A2; Pn,(1/ε) log n/n) = 1−
(1 + o(1))1

2
(n(1− ε))2(

n
2

) ≤ 2ε + o(1).

So, Eλ(A2; Pn,p) → 0 as required.

Now, suppose that lim infn→∞ (p−1 log p−1/n) ≥ 1. We will show that the continuum limit is
S1 = ([0, 1],B, µL,≺) with x 6≺ y for all x, y. Since λ(Q; S1) = 0 for all Q not an antichain, and
λ(Ak; S1) = 1 for all k, Proposition 2.3 implies that it is enough to show that Eλ(C2; Pn) → 0
as n → ∞. Fix ε with 0 < ε < 0.01. Choose n0 such that p ≤ (1 + ε) log n/n for n ≥ n0.
We can apply Theorem 3.2 with N = n, π = (1 + ε) log N/N , so that α = 1 + ε. We have
Eλ(C2; PN,π) = EX/

(
N
2

)
which by Theorem 3.2 gives

Eλ(C2; Pn,p) ≤ Eλ(C2; Pn,(1+ε) log n/n) =
(1 + o(1))1

2
(n(1− 1/(1 + ε)))2(

n
2

) ≤ ε2 + o(1).

So, Eλ(C2; Pn,p) → 0 as required.

Finally, suppose that limn→∞ (p−1 log p−1/n) = c for some 0 < c < 1. We will show that the
continuum limit is Sc = ([0, 1],B, µL,≺) with x ≺ y if and only if y − x > c. Fix ε with 0 <
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ε < min{c, 1 − c}. Since limn→∞ p−1 log p−1/n = c we must also have limn→∞ p−1 log n/n = c,
and since c < 1, we have p > log n/n, for sufficiently large n. Furthermore, since

(1 + ε/2c)
log (c + ε)n

(c + ε)n
=

(
c + ε/2

c + ε

)
log(c + ε)n

cn
< (1− δ)

log n

cn
,

for some δ > 0, we have p > (1+ε/2c) log (c + ε)n/(c+ε)n for sufficiently large n. Similarly, we
have p < (1−ε/2c) log (c− ε)n/(c−ε)n for sufficiently large n. Let n0 be such that p > log n/n,
(1+ε/2c) log (c + ε)n/(c+ε)n < p < (1−ε/2c) log (c− ε)n/(c−ε)n, and n > 1/ε for all n ≥ n0.

We proceed as follows. For each n ≥ n0, take a random order Pn,p according to Pn,p. Define
an order ≺n on [0, 1], by dividing [0, 1] into n intervals of length 1/n, identifying [i/n, (i+1)/n)
with i ∈ [n− 1], and putting [i/n, (i + 1)/n) below [j/n, (j + 1)/n) if and only if i < j in Pn,p.
Now for any sample of elements from [0, 1] of fixed size k, we need that

P(≺n induces different partial order from ≺) → 0

as n →∞. This is enough to prove that Eλ(Q; Pn,p) → λ(Q; Sc) as n →∞ for all finite partial
orders Q, as follows. Let P̄n be the atomless partially ordered measure space ([0, 1],B, µL,≺n),
and suppose Q is any finite partial order with |Q| = k. By the definitions of λ(Q; Pn,p)
and λ(Q; P̄n), the difference Eλ(Q; Pn,p) − Eλ(Q; P̄n) is non-zero only because of the positive
probability that in a random sample of k elements from P̄n some of the elements are in the
same interval [i/n, (i + 1)/n), for some i. Since the measure of these intervals tends to zero
as n → ∞, we have that Eλ(Q; Pn,p) − Eλ(Q; P̄n) → 0 as n → ∞. So, it is enough to show
that Eλ(Q; P̄n) → λ(Q; Sc), which follows if P(≺n induces different partial order from ≺) → 0
as n →∞. Indeed, it is enough to consider two elements x, y chosen uniformly at random from
[0, 1] and show that

P(≺n induces different partial order from ≺ on {x, y}) → 0 (1)

as n →∞, since for any sample S of k elements from [0, 1],

P(≺n induces different partial order from ≺ on S) ≤
(

k
2

)
q,

where q = P(≺n induces different partial order from ≺ on {x, y}).

Call a pair of intervals [i/n, (i + 1)/n) and [j/n, (j + 1)/n) good if either

(i)
|i− j| − 1

n
> c and i, j are comparable in Pn,p, or

(ii)
|i− j|+ 1

n
< c and i, j are incomparable in Pn,p,

and call a pair of intervals bad otherwise.

We will show that the expected number of bad pairs of intervals is a small fraction of n2.
This will prove (1), since ≺n and ≺ will only induce different partial orders on {x, y} if the
intervals that contain x and y are a bad pair of intervals.

We can be rather crude with our calculations, and can afford to assume that pairs of
intervals that are “too close to call” are all bad. That is, we assume that all pairs (i, j) with
c − ε ≤ |i − j|/n ≤ c + ε are bad. There are at most 2εn2 of these. For all other pairs of
intervals, either |i − j|/n > c + ε or |i − j|/n < c − ε, and we will show that almost all such
pairs are good pairs.

9



First consider i < j with (j−i)/n > c+ε. Such a pair (i, j) is bad if i and j are incomparable
in Pn,p. So the number of bad pairs of this type is equal to the number of bad pairs of elements
in Pn,p:

|{(x, y) ∈ Pn,p : x, y incomparable, y − x > (c + ε)n}|.

Define an element x < (1− c− ε)n in Pn,p to be an ε-bad element if |U [x]∩ [x+(c+ ε)n]| <
εn/2, and an ε-good element otherwise. We will show that the number of ε-bad elements is
small, and the number of bad pairs (x, y) with x an ε-good element and y−x > (c+ ε)n is also
small.

We can calculate the expected number of ε-bad elements as follows. Let
π = (1 + ε/2c) log (c + ε)n/(c + ε)n. Since p > π, the expected number of ε-good elements in
Pn,p is greater than the expected number of ε-good elements in Pn,π. So, working with Pn,π,
note also that the size |U [x] ∩ [x + (c + ε)n]| is equivalent to γ∗(c+ε)n(0), i.e., the size of the

up-set of 0 in PN,π where N = (c + ε)n. We want to apply Theorem 3.3 with N = (c + ε)n,
π = (1 + ε/2c) log (c + ε)n/(c + ε)n, so α = 1 + ε/2c. We set M = N(1 − 1/α), so that
f(M) = − log log N is O(log log N) as required and the theorem implies that

P(γ∗(c+ε)n(0) > M) = (1 + o(1)) exp

(
− 1

1 + ε/2c
e− log log (c+ε)n

)
≥ (1 + o(1))

(
1− c

c + ε/2

1

log (c + ε)n

)
.

Since

M = N(1− 1/α) = (c + ε)n

(
1− 1

1 + ε/2c

)
=

c + ε

c + ε/2

εn

2
> εn/2,

we have P(x is ε-bad in Pn,π) ≤ P(γ∗(c+ε)n(0) ≤ M). Therefore, the probability that x is an

ε-bad element in Pn,p is O(1/ log n) + o(1). So, the expected number of ε-bad elements is o(n)
and assuming the worst case, that every pair of elements (x, y) with y − x > (c + ε)n, where x
is ε-bad, is a bad pair, this gives o(n2) bad pairs.

We now need to count the number of bad pairs (x, y) with y − x > (c + ε)n where x
is ε-good. So |U [x] ∩ [x + (c + ε)n]| ≥ εn/2, and the probability that (x, y) is a bad pair
is the probability that there are no edges between y and the elements in U [x] ∩ [y]. But
|U [x] ∩ [y]| ≥ |U [x] ∩ [x + (c + ε)n]| ≥ εn/2. Therefore, for y − x > (c + ε)n,

P((x, y) is bad|x is ε-good) ≤ (1− p)εn/2 ≤ e−pεn/2 ≤ n−ε/2

Therefore the number of bad pairs (x, y) with y − x > (c + ε)n where x is ε-good is o(n2).

Finally we need to count the number of pairs i < j with (j−i)/n < c−ε and i, j comparable
in Pn,p. Let π = (1−ε/2c) log(c−ε)n/(c−ε)n. Since p < π the expected size |U [x]∩[x+(c−ε)n]|
in Pn,p is less than the expected size |U [x]∩ [x + (c− ε)n]| in Pn,π. So, working with Pn,π, note
that |U [x] ∩ [x + (c − ε)n]| is equivalent to γ∗(c−ε)n(0), i.e., the size of the up-set of 0 in PN,π,

where N = (c− ε)n. So, the expected number of pairs (x, y) in Pn,p with 0 < y − x < (c− ε)n
is at most nEγ∗(c−ε)n(0) which by Theorem 3.4 is n(1 + o(1))((c− ε)n)1−ε/2c = o(n2).

Therefore the total number of bad pairs of intervals is at most 2εn2 + o(n2). Therefore,
there exists n1 ≥ n0 such that

P(≺n induces different partial order from ≺ on {x, y}) ≤ 5ε

for all n ≥ n1. Since ε is arbitrary we have the result.
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To complete the proof of Theorem 1.4, we now show that, for all other p(n), the sequence
(Pn,p)

∞
n=1 does not have a continuum limit. We first make the following observations.

The probability that two elements selected at random from Sc are incomparable is

λ(A2; Sc) = 1− (1− c)2 = 2c− c2

which is monotonic in c for 0 ≤ c ≤ 1. So, we have

Lemma 4.3. For 0 ≤ c1 6= c2 ≤ 1, λ(A2; Sc1) 6= λ(A2; Sc2).

The following lemma is an obvious extension to Theorem 4.2 and is stated without proof.

Lemma 4.4. If we have a subsequence (Pan,p)
∞
n=1 of random graph orders, with p = p(an) sat-

isfying one of conditions (i),(ii) or (iii) of Theorem 4.2, then the subsequence has a continuum
limit as described in Theorem 4.2.

Theorem 4.5. If a sequence (Pn)∞n=1 of models of random graph orders has a continuum limit,
then p = p(n) satisfies one of conditions (i), (ii) or (iii) of Theorem 4.2.

Proof. Suppose (Pn,p)
∞
n=1 is a sequence of models of random graph orders with p = p(n) not

satisfying any of (i), (ii) or (iii). This means that

lim inf
n→∞

p−1 log p−1/n < 1, and lim inf
n→∞

p−1 log p−1/n < lim sup
n→∞

p−1 log p−1/n.

So, there exist subsequences (an), (bn) with limn→∞ p−1 log p−1/an = c1 < 1, where p = p(an),
and limn→∞ p−1 log p−1/bn = c2 > c1, where p = p(bn).

So, by Lemma 4.4 the subsequence (Pan,p)
∞
n=1 has continuum limit Sc1 and the subsequence

(Pbn,p)
∞
n=1 either has continuum limit Sc2 or S1 depending on whether c2 < 1 or c2 ≥ 1. In

either case, by Lemma 4.3 we have limn→∞ Eλ(A2; Pan,p) 6= limn→∞ Eλ(A2; Pbn,p). This implies
that (Eλ(A2; Pn,p))

∞
n=1 does not converge, and therefore (Pn,p)

∞
n=1 is not compatible and so has

no continuum limit.

This establishes Theorem 1.4.

5 Continuum limits are almost-semiorders

In Section 4 we showed that the random graph order Pn,p has a continuum limit for suitable
functions p = p(n) and, when it exists, the continuum limit must be the semiorder Sc, where
0 ≤ c ≤ 1 depends on p. As explained earlier, random graph orders are a particular class of
models from the larger family of classical sequential growth models. In this section, we show
that for any sequence of classical sequential growth models, if the sequence has a continuum
limit, then this limit must be an almost-semiorder, as defined earlier.

The results we give apply to all sequences t, but they are most interesting when the ti tend
to zero at least exponentially quickly but, in some sense, not much more quickly. By this we
mean that the general case should mirror the situation in the case of random graph orders,
so that the “interesting” continuum limits occur for sequences t that are delicately balanced.
We do not wish to spend time here making these statements rigorous, but to help the reader
understand this point, we give the following rather loose argument. In the case where a classical
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sequential growth model is specified by a sequence where the ti do not tend to zero quickly
enough, the growth model will produce a partial order typically denser than that produced by
some random graph order, Pn,p, satisfying condition (i) of Theorem 4.2. Therefore, we would
expect the continuum limit of the growth model to be denser than the continuum limit of
Pn,p, which, by Theorem 4.2, is a chain. Hence, we expect the continuum limit of the growth
model to be a chain. On the other hand, if a classical sequential growth model is specified by a
sequence where the ti tend to zero too quickly, the growth model will produce a partial order
typically sparser than that produced by some random graph order satisfying condition (iii) of
Theorem 4.2, and therefore we would expect the continuum limit of the growth model to be
sparser than that of the random graph order, and hence be an antichain. See Section 6 for
more details and an extension of Theorem 4.2.

Our task is to show that, for any continuum limit P∞ of a sequence of classical sequential
growth models, λ(H; P∞) = λ(L; P∞) = 0. Informally, we need to show that, for any classical
sequential growth model P(t), the number of copies of H and L as subposets of Pn(t) is small, for
large enough n. To do this we study the large scale structure of Pn(t). We prove Theorem 1.5,
by showing that, according to some metric assigned to Pn(t), elements that are more than
distance 1 apart are likely to be comparable, and elements that are less than distance 1 apart
are likely to be incomparable. This is a generalisation of the result for random graph orders,
where the metric can be taken to be constant.

We begin with some lemmas describing some properties of classical sequential growth mod-
els. For now, we consider a fixed classical sequential growth model P(t), with terms ti. Recall
that Dx is the set of elements selected by element x, and U [x] is the up-set of x. Note that
Dx is not the same as D[x], the down-set of x. We begin with the following observation on the
expected size of Dx.

Lemma 5.1. For any classical sequential growth model, E(|Dx|) is increasing in x.

Proof. We show that for any x, we have the inequality E(|Dx|) ≤ E(|Dx+1|).

Suppose the classical sequential growth model is defined by the sequence t = (t0, t1, . . . ).
Note that

E(|Dx|) =
x∑

j=0

jP(|Dx| = j) =

∑x
j=0 j

(
x
j

)
tj∑x

j=0

(
x
j

)
tj

depends only on t0, t1, . . . , tx, and similarly

E(|Dx+1|) =

∑x+1
j=0 j

(
x+1

j

)
tj∑x+1

j=0

(
x+1

j

)
tj

depends on t0, t1, . . . , tx+1.

Note that, for fixed t0, t1, . . . , tx the probability P(|Dx+1| = x + 1) is increasing in tx+1

and all other probabilities P(|Dx+1| = j) are decreasing in tx+1. This means that E(|Dx+1|) is
increasing in tx+1 and we have

E(|Dx+1|) ≥
∑x

j=0 j
(

x+1
j

)
tj∑x

j=0

(
x+1

j

)
tj

. (2)

Now, note that
(

x+1
j

)
= x+1

x+1−j

(
x
j

)
so the inequality (2) becomes

E(|Dx+1|) ≥
∑x

j=0
j

x+1−j

(
x
j

)
tj∑x

j=0
1

x+1−j

(
x
j

)
tj
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and it remains to prove that ∑x
j=0

j
x+1−j

(
x
j

)
tj∑x

j=0
1

x+1−j

(
x
j

)
tj
≥
∑x

j=0 j
(

x
j

)
tj∑x

j=0

(
x
j

)
tj

which follows from Chebyshev’s Sum Inequality (see, e.g., [10, Theorem 43]), since both j and
1/(x + 1− j) are increasing on {0, 1, . . . , x}.

Our aim in the lemmas that follow is essentially to establish E|Dy|, for y running from εn to
n, as the key parameter determining how the model P(t) develops. Note that, in a transitive
percolation process with parameter p, E|Dy|/y is constant throughout the process, and the size
of Dy is concentrated around its mean. Of course, these properties do not hold for our general
classical sequential growth model, so we will establish weaker results instead, that suffice for
our purposes.

One possibility to bear in mind is that |Dy| is, with very high probability, close to one value
k, but the expectation of |Dy| is much higher than k, because of the contribution of one term
m
(

y
m

)
tm, where m is much larger than k. So, at ‘level’ y, E|Dy| does not capture the behaviour

of the process well. However, in this scenario, if we look instead at some value z only a little
higher than y, we will discover that E|Dz| is already close to m, and indeed that it is very
unlikely that |Dz| is much smaller than m. As we are looking at the partial order on very
coarse scales, the “transition phase” between y and z is immaterial.

The following lemma is the first step along this path. We show that, if the contribution to
the expectation E|Dy| from terms greater than m is significant, then at some point z, not much
bigger than y, the expectation E|Dz| is a constant fraction of m.

Lemma 5.2. For m, y ∈ N, γ > 0 and 0 < η < 1/2, if

y∑
k=m

(
y
k

)
ktk ≥ γ

y∑
k=0

(
y
k

)
tk,

then
E|Dz| ≥ m(1− 2η)

for z ∈ N satisfying

y ≤ z

(
1− 2 log (m/γη)

mη

)
.

Proof. Assume that y ≤ z (1− 2 log (m/γη)/mη). Working with
(
E|Dz|

)−1
, we have

(
E|Dz|

)−1
=

∑z
k=0

(
z
k

)
tk∑z

k=0

(
z
k

)
ktk

≤
∑m(1−η)

k=0

(
z
k

)
tk +

∑z
k=m(1−η)

(
z
k

)
tk∑z

k=m(1−η)

(
z
k

)
ktk

≤
∑m(1−η)

k=0

(
z
k

)
tk∑z

k=m(1−η)

(
z
k

)
ktk

+
1

m(1− η)
.

Note that
(

z
l

)
/
(

y
l

)
is increasing in l, so that∑m(1−η)

k=0

(
z
k

)
tk∑m(1−η)

k=0

(
y
k

)
tk
≤

(
z

m(1−η)

)(
y

m(1−η)

) and

∑y
k=m

(
z
k

)
ktk∑y

k=m

(
y
k

)
ktk

≥
(

z
m

)(
y
m

) .
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But (
z

m(1−η)

)(
y

m(1−η)

) ( y
m

)(
z
m

) =
(y −m(1− η))!(z −m)!

(z −m(1− η))!(y −m)!

=
(y −m + 1) · · · (z −m)

(y −m(1− η) + 1) · · · (z −m(1− η))

≤
(

z −m

z −m(1− η)

)z−y

=

(
1 +

mη

z −m

)y−z

,

and since 1 + mη/z ≥ exp (mη/2z) and z − y ≥ (2z/mη) log(m/γη), we have(
z

m(1−η)

)(
y

m(1−η)

) ( y
m

)(
z
m

) ≤ γη

m
.

Therefore (
E|Dz|

)−1 ≤ 1

m(1− η)
+

∑m(1−η)
k=0

(
z
k

)
tk∑m(1−η)

k=0

(
y
k

)
tk

∑y
k=0

(
y
k

)
tk∑y

k=m

(
y
k

)
ktk

∑y
k=m

(
y
k

)
ktk∑z

k=m

(
z
k

)
ktk

≤ 1

m(1− η)
+

(
z

m(1−η)

)(
y

m(1−η)

) 1

γ

(
y
m

)(
z
m

)
≤ 1

m(1− η)
+

1

γ

γη

m
≤ 1

m(1− 2η)
.

We say an element w ∈ N hits a set K ⊆ [w − 1] if w selects an element in K, and we say
w misses a set K ⊆ [w − 1] if w does not select any element in K.

Lemma 5.3. Let w, z be positive integers, and 0 < δ < 1 a constant, satisfying

w ≤ z

(
1− 6 log (24E|Dz|/δE|Dw|)

E|Dz|

)
.

Then, for any subset K of [w − 1] with |K| = k, where k ≤ δw/2E|Dz|, we have

P(w misses K) ≤ 1− k

w
(1− δ)E|Dw|.

Note the rather curious role of z in the statement of this lemma. The point is that, under
‘normal’ circumstances, the probability that w hits K should be about kE|Dw|/w, provided
this quantity is not too large. However, this may fail if |Dw| is typically far from its mean: if
this happens, then any z satisfying the given bound will have E|Dz| rather larger than E|Dw|,
so the bound on k will be correspondingly more demanding.

Proof. Firstly we apply Lemma 5.2 with m = 2E|Dz|, η = 1/6, and γ = δE|Dw|/2. We have
E|Dz| < m(1− 2η) and we also have

w ≤ z

(
1− 6 log (24E|Dz|/δE|Dw|)

E|Dz|

)
= z

(
1− 2 log (m/γη)

mη

)
.

So, to avoid a contradiction, we must have

w∑
l=m

(
w
l

)
ltl < γ

w∑
l=0

(
w
l

)
tl.
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Since k ≤ δw/m, we have that, for all l < m,(
1− k

w

)l

≤ 1− kl

w
+

(kl)2

2w2
≤ 1− kl

w
(1− δ/2).

Therefore, since P(w misses K | |Dw| = l) ≤ (1− k/w)l, we have

P(w misses K) ≤
w∑

l=0

(
1− k

w

)l

P(|Dw| = l)

≤
m−1∑
l=0

(
1− k

w

)l

P(|Dw| = l) + P(|Dw| ≥ m)

≤
m−1∑
l=0

(
1− kl

w
(1− δ/2)

)
P(|Dw| = l) + P(|Dw| ≥ m)

= 1− k

w
(1− δ/2)

∑m−1
l=0

(
w
l

)
ltl∑w

l=0

(
w
l

)
tl

= 1− k

w
(1− δ/2)

(
E|Dw| −

∑w
l=m

(
w
l

)
ltl∑w

l=0

(
w
l

)
tl

)
≤ 1− k

w
(1− δ/2)(E|Dw| − γ)

≤ 1− k

w
(1− δ)E|Dw|.

where the final inequality follows from the choice of γ.

The following results give descriptions of the large-scale structure of classical sequential
growth models and the random partial orders they produce. They follow the same template:
for any constant ε > 0, if we look on a large enough scale (take n sufficiently large) then, barring
perhaps the first εn elements, the model P(t) up to stage n, (or the random partial order Pn(t)
produced by this model) has a particular structure. Importantly, the scale at which we look
at depends only on the fraction ε of points we choose to ignore, and not on the particular
model P(t).

Lemma 5.4. For ε > 0 there exists n0 = n0(ε) such that for all n ≥ n0, and any P(t),
if E|Dy| ≥ M for some y ∈ [εn, n − 1 − n(log n)1/4/M ] and (log n)1/2 < M < n1/2, then
P(|Dy+n(log n)1/4/M | ≤ M/(log n)1/4) < ε/8.

Proof. Fix ε > 0. Suppose that E|Dy| ≥ M , with (log n)1/2 < M < n1/2. Since

E|Dy| =
∑y

i=0 i
(

y
i

)
ti∑y

i=0

(
y
i

)
ti

,

we have
y∑

i=0

i

(
y

i

)
ti ≥ M

y∑
i=0

(
y

i

)
ti. (3)

Let α = (log n)1/4 and j = nα/M . We need to bound from above the probability

P(|Dy+j| ≤ M/α) =

∑M/α
i=0

(
y+j

i

)
ti∑y+j

i=0

(
y+j

i

)
ti

. (4)
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We use the following upper and lower bounds for
(

y+j
i

)
/
(

y
i

)
. We have,(

y+j
i

)(
y
i

) =
(y + j)(y + j − 1) · · · (y + j − i + 1)

y(y − 1) · · · (y − i + 1)
≥
(

y + j

y

)i

=

(
1 +

j

y

)i

But j = nα/M and y ≥ εn, so j/y ≤ α/εM ≤ 1/ε(log n)1/4 so for any η > 0 we have(
y+j

i

)(
y
i

) ≥ (1− η)eij/y (5)

for all i, for sufficiently large n.

Also,(
y+j

i

)(
y
i

) =
(y + j)(y + j − 1) · · · (y + j − i + 1)

y(y − 1) · · · (y − i + 1)
≤
(

y + j − i + 1

y − i + 1

)i

≤ eij/(y−i+1)

So, for i ≤ M/α < n1/2/(log n)1/4 we have(
y+j

i

)(
y
i

) ≤ e2Mj/yα (6)

for sufficiently large n.

So, using the upper bound for
(

y+j
i

)
/
(

y
i

)
in the numerator in (4) and the lower bound in the

denominator, we have

P(|Dy+j| ≤ M/α) ≤
e2Mj/yα

∑M/α
i=0

(
y
i

)
ti

(1− η)
∑y+j

i=0 eij/y
(

y
i

)
ti
≤

e2Mj/yα
∑y

i=0

(
y
i

)
ti

(1− η)
∑y

i=0 eij/y
(

y
i

)
ti

and using (3) we have

P(|Dy+j| ≤ M/α) ≤ e2Mj/yα

(1− η)M

∑y
i=0 i

(
y
i

)
ti∑y

i=0 eij/y
(

y
i

)
ti

.

Finally, we use the fact that i/eij/y is maximised when i = y/j so that i/eij/y ≤ e−1y/j.

So, we have

P(|Dy+j| ≤ M/α) ≤ e2Mj/yαe−1y/j

(1− η)M

which, after substituting j = nα/M , εn ≤ y ≤ n and α = (log n)1/4, gives

P(|Dy+n(log n)1/4/M | ≤ M/(log n)1/4) ≤ e2/ε−1

(1− η)(log n)1/4

for sufficiently large n. Therefore

P(|Dy+n(log n)1/4/M | ≤ M/(log n)1/4) < ε/8

for sufficiently large n, as required.

For w ∈ N, w 6= 0, 1, define ρw = E|Dw|/w log w and define the distance between y, z ∈ N,
for 0 < y < z, to be

d(y, z) =
z∑

w=y+1

ρw. (7)

We now state our main result, which says that the distance function reliably predicts compa-
rability of elements in Pn(t).
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Theorem 5.5. For ε > 0, there exists n0 = n0(ε) such that for all n ≥ n0, and any P(t), the
following holds. For y, z ∈ [εn, n− 1] with y < z, provided that E|Dz| < (log n)5/4, we have:

(i) if d(y, z) < 1− ε, then P(y < z in Pn(t)) < ε,

(ii) if d(y, z) > 1 + ε, then P(y < z in Pn(t)) > 1− ε.

Proof. We prove (i) by a path-counting argument, similar to several arguments used by
Georgiou [9].

We write E(y, z) for the expected number of sequences y = r0, r1, . . . , rk = z, such that ri

selects ri−1 (i.e., ri−1 ∈ Dri
) for each i = 1, . . . , k. Note that y < z in Pn(t) if and only if there

is such a sequence, for some k ≥ 1. Next, we note that, for elements r > s, the probability that
r selects s, is exactly E|Dr|/r, so in particular is independent of s. This yields a formula for
E(y, z):

E(y, z) =

[
z−1∏

r=y+1

(
1 + P(r selects s)

)]
P(z selects s) =

[
z−1∏

r=y+1

(
1 +

E|Dr|
r

)]
E|Dz|

z

≤ E|Dz|
z

exp

{
z−1∑

r=y+1

E|Dr|
r

}

=
E|Dz|

z
exp

{
z−1∑

r=y+1

ρr log r

}

≤ E|Dz|
z

exp {log z d(y, z − 1)}

≤ E|Dz|
z

z1−ε =
E|Dz|

zε
< ε,

for sufficiently large n. So, by Markov’s inequality, we have P(y < z in Pn(t)) < E(y, z) < ε as
required.

To prove (ii), we show that with high probability, when we reach a distance 1 + ε/2 from
y, the up-set of y has grown to a reasonable size. We then show that this size increases in a
predictable manner so that almost all elements at distance greater than 1 + ε from y are in the
up-set of y.

For now, we assume that E|Dy| > 2(log n)3/4; however, we will show later that (ii) also
holds when this condition is not satisfied.

For i = 0, . . . , 3, let wi = min{w : d(y, w) > 1 + i+4
8

ε}. Note that d(y, w0) ≈ 1 + ε/2,
d(wi, wi+1) ≈ ε/8, for i = 0, . . . , 2 and d(w3, z) > ε/8. Let σ = E|Dw3|/y log y. So, ρw =
E|Dw|/w log w ≤ E|Dw3|/y log y = σ for all w ∈ [y, w3]. Set k0 = y/2E|Dw3| log y.

We want to apply Lemma 5.3, for w ∈ [y, w2 − 1], with z = w3, δ = (log y)−1, to a set K of
size k ≤ k0. Since k ≤ k0 ≤ δw/2E|Dw3| for all w ∈ [y, w2 − 1], it remains to show that

w ≤ w3

(
1− 6 log(24E|Dw3|/δE|Dw|)

E|Dw3|

)
.

We use the fact that d(w,w3) > ε/8 for all w ∈ [y, w2 − 1]. Since

d(w,w3) =

w3∑
u=w+1

ρw <
E|Dw3|
w log w

(w3 − w)
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we have w3 − w > εw log w/8E|Dw3|, so it is enough to show that

εw log w

8E|Dw3|
>

6w3 log(24E|Dw3|/δE|Dw|)
E|Dw3|

. (8)

Now note that w,w3 ∈ [εn, n], and that E|Dw3| < (log n)5/4, E|Dw| > 2(log n)3/4. Therefore

εw log w

8
>

ε2n log(εn)

8

and
6w3 log(24E|Dw3|/δE|Dw|) < 6n log(12(log n)1/2 log y) < 6n log(12(log n)3/2).

Since
ε2n log(εn)

8
> 6n log(12(log n)3/2)

holds for sufficiently large n, we have inequality (8) as required, for sufficiently large n. There-
fore, using Lemma 5.3,

P(w misses a set K of size k) ≤ 1− k

w
E|Dw|(1− (log y)−1)

= 1− kρw log w(1− (log y)−1),

for all w ∈ [y, w2 − 1] and k ≤ k0.

Set Ak = k(log y − 1), so that for all w ∈ [y, w2 − 1] and k ≤ k0,

P(w misses a set K of size k) ≤ 1− ρwAk.

Set uk = min{u : |U [y] ∩ [u]| ≥ k}. Note that u1 = y. Define the waiting distance, Wk+1 =
d(uk, uk+1). Then, for u > uk,

P(Wk+1 > ρuk+1 + . . . + ρu) =
u∏

j=uk+1

P(j misses U [y] ∩ [uk])

≤
u∏

j=uk+1

(1− ρjAk)

≤ exp

(
−Ak

u∑
j=uk+1

ρj

)
.

For any x ∈ R+, set u∗ to be the maximum u such that ρuk+1 + . . . + ρu∗ ≤ x + σ. We have

P(Wk+1 − σ > x) = P(Wk+1 > x + σ) ≤ P(Wk+1 > ρuk+1 + . . . + ρu∗)

≤ exp

(
−Ak

u∗∑
j=uk+1

ρj

)
≤ exp (−Akx),

since ρuk+1 + . . . + ρu∗ + ρu∗+1 > x + σ and ρu∗+1 ≤ σ, so ρuk+1 + . . . + ρu∗ > x. So, for all
k ≤ k0, and all x ∈ R+,

P(Wk+1 − σ > x) ≤ e−Akx,

independent of the history up to uk (provided we never get past w2).

Now define (Xk+1)
k0
k=1 to be independent random variables, with

P(Xk+1 > x) = e−Akx

18



for all x. So,

P

(
k0∑

k=1

(Wk+1 − σ) > M

)
≤ P

(
k0∑

k=1

Xk+1 > M

)
.

But each Xk+1 is an exponential random variable with mean 1/Ak and variance 1/A2
k, so∑k0

k=1 Xk+1 has mean

k0∑
k=1

1

Ak

=
1

log y − 1

k0∑
k=1

1

k
≤ log y − log(m log y)

log y − 1
≤ 1,

and variance
k0∑

k=1

1

A2
k

=
1

(log y − 1)2

k0∑
k=1

1

k2
≤ 2

log2 y

So, by Chebyshev’s inequality,

P

(
k0∑

k=1

Xk+1 ≥ 1 +
2

ε log y

)
< ε2/2 < ε/2,

for ε < 1. So,

P

(
k0∑

k=1

Wk+1 ≥ σk0 + 1 +
2

ε log y

)
< ε/2,

and since σk0 = 1/2 log2 y, we have that with probability at least 1 − ε/2, the total waiting
distance

∑k0

k=1 Wk+1 is less than 1 + O(1/ log y) < 1 + ε/2. This means that for w0 with
d(y, w0) > 1 + ε/2, the size of the up-set |U [y]∩ [w0]| is greater than k0 = y/2E|Dw3| log y with
probability at least 1− ε/2.

We now show that the size of the up-set U [y] ∩ [w] increases in a predictable manner as w
increases from w0 to w2, by repeated application of the following claim.

Claim. For i = 0, 1, if Ki ⊂ U [y] ∩ [wi] with |Ki| < y/2E|Dw3| log log y, then

P(|U [y] ∩ [wi+1]| < |Ki|(log y)3/4) < ε/8.

Proof of Claim. We apply Lemma 5.3 for w ∈ [wi, wi+1 − 1], z = w3 with δ = 1/ log log y.
Since Ki < y/2E|Dw3| log log y < δw/2E|Dw3| for all w ∈ [wi, wi+1], and as before

w ≤ w3

(
1− 6 log(24E|Dw3|/δE|Dw|)

E|Dw3|

)
,

we have

P(w misses Ki) ≤ 1− |Ki|
w

(1− δ)E|Dw|.

So, for each w ∈ [wi, wi+1],

P(w hits Ki) ≥
|Ki|
w

(1− δ)E|Dw| ≥ |Ki|(1− δ)ρw log y.

and therefore

E(number of hits) ≥ |Ki|(1− δ) log y

wi+1∑
w=wi

ρw = (ε/8)|Ki|(1− δ) log y.
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Since the number of hits is a sum of independent 0-1 Bernoulli trials we have

Var(number of hits) =
∑

w

P(w hits Ki)P(w misses Ki) ≤ E(number of hits),

so, for sufficiently large n, with probability greater than 1− ε/8 the number of hits is at least
|Ki|(log y)3/4. Since each of these hits is an element placed above Ki ⊂ U [y] ∩ [wi], we have a
set of at least |Ki|(log y)3/4 elements in U [y] ∩ [wi+1], with probability at least 1− ε/8.

We apply the claim twice: let K0 be a subset of U [y] ∩ [w0] of size y/2E|Dw3| log y, so
U [y] ∩ [w1] is of size at least y/2E|Dw3|(log y)1/4; let K1 be a subset of U [y] ∩ [w1] of size
y/2E|Dw3|(log y)1/4, so U [y] ∩ [w2] is of size at least y(log y)1/2/2E|Dw3|.

Finally, we use Lemma 5.4, to show that |Dz| is sufficiently large so that the probability
that z misses U [y]∩ [w2] is small. We need to apply the lemma to y = w3. We have (log n)1/2 <
E|Dw3| < n1/2 so it remains to check that w3 + n(log n)1/4/E|Dw3| < z. We use the fact that
d(w3, z) > ε/8:

d(w3, z) ≤ E|Dz|
w3 log w3

(z − w3) <
(log n)5/4

εn log(εn)
(z − w3),

so z − w3 ≥ ε2n log(εn)/8(log n)5/4. Since E|Dw3| > 2(log n)3/4 we have

z − w3 > ε2n log(εn)/4E|Dw3|(log n)1/2 > n(log n)1/4/E|Dw3|,

as required.

So, by Lemma 5.4, we have P(|Dz| ≤ E|Dw3|/(log n)1/4) < ε/8. Provided that |Dz| is at
least E|Dw3|/(log n)1/4, then

P(z misses U [y] ∩ [w2]) ≤
(

1− y(log y)1/2

2E|Dw3|z

)E|Dw3 |/(log n)1/4

≤ exp

(
− y(log y)1/2

2z(log n)1/4

)
≤ exp

(
−ε(log(εn))1/2

2(log n)1/4

)
≤ ε/8

for sufficiently large n.

Combining these results, we have that P(y < z in Pn(t)) > 1− ε, as required.

Recall that we assumed that E|Dy| > 2(log n)3/4. To complete the proof, we now show
that (ii) also holds when E|Dy| ≤ 2(log n)3/4. Since d(y, z) > 1 + ε, and

d(y, z) <
E|Dz|
y log y

(z − y) <
E|Dz|

ε log(εn)

we have E|Dz| > ε log(εn) > 2(log n)3/4 for sufficiently large n. Since E|Dw| is increasing,
there exists y′ with y < y′ < z such that E|Dy′| > 2(log n)3/4 and E|Dw| ≤ 2(log n)3/4 for all
w ∈ [y, y′ − 1].

So,

d(y, y′ − 1) <
E|Dy′−1|
y log y

(y′ − y) <
(log n)3/4

ε log(εn)
< ε/4
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for sufficiently large n. Moreover, since E|Dz| < (log n)5/4,

d(y′ − 1, y′ + n/
√

log n) <
(log n)5/4

y′ log y′
(n/
√

log n + 1) <
2(log n)3/4

ε log(εn)
< ε/4

for sufficiently large n. Therefore, for all w ∈ [y′, y′ + n/
√

log n], we have d(w, z) > 1 + ε/2,
and E|Dw| ≥ 2(log n)3/4. So, we can apply the above argument (rather, a minor modification,
replacing ε by ε/2), which shows that

P(w < z in Pn(t)) > 1− ε/2,

for all w ∈ [y′, y′ + n/
√

log n]. Note that these events are not independent.

Since E|Dw| > 2(log n)3/4,

P(w selects y) =
E|Dw|

w
>

(log n)3/4

n
,

for all w ∈ [y′, y′ + n/
√

log n], so the expected number of elements w that select y is at least
(log n)1/4. Since the variance is bounded by the expectation, we have that, with probability at
least 1−ε/2, there exists at least one element in [y′, y′+n/

√
log n] that selects y, for sufficiently

large n.

So, let u be the first element in [y′, y′+n/
√

log n] to select y, with probability at least 1−ε/2
there is such an element. Then, with probability at least 1 − ε/2 the element z is above u in
Pn(t). Since u is above y, we have that z is also above y in Pn(t) as required.

We have shown that for any P(t) we can define a distance function that, for any ε > 0 and
sufficiently large n, reliably predicts the comparability of elements in the set [εn, n − 1]. We
have relied on the condition E|Dz| < (log n)5/4, which at first sight appears rather arbitrary.
However, an upper bound is necessary: when ρw can suddenly increase, the distance d(y, z)
may become artificially large so that the function wrongly predicts y, z to be comparable. It is
interesting to note that a similar lower bound on E|Dw| is not needed to guarantee the correct
prediction of incomparability: note in the proof of Theorem 5.5, that the temporary condition
E|Dy| > 2(log n)3/4 could be removed, essentially because d(y, z) is always less than 1 when
E|Dz| = o(log n).

We now show that for E|Dw| > (log n)5/4 almost all pairs in [w, n− 1] are comparable.

Theorem 5.6. For ε > 0 there exists n0 = n0(ε) such that for all n ≥ n0 and any P(t),
the following is true. If there exists zC ∈ [εn, (1 − ε)n] with E|DzC

| ≥ (log n)5/4, then, for
y ∈ [εn, n], z ∈ [zC + εn, n− 1] with z − y > εn,

P(y < z in Pn(t)) > 1− ε.

We omit the proof as it is very similar to that of part (ii) of Theorem 5.5.

To summarise, we have the following large-scale description of P (t). For ε > 0 and large n,
we can partition the set [n− 1] into three regions. There is a small ‘unknown’ set [0, εn] which
we do not describe. The remainder is partitioned at the point zC , where E|DzC

| = (log n)5/4.
The set [εn, zC ] looks very similar to a random graph order, in that near elements are likely to
be incomparable and far apart elements likely to be comparable, as predicted by the distance
function d(y, z). Unlike the random graph order, this critical distance can vary over the length
of the set, depending on how E|Dw| increases. The set [zC , n − 1] is typically very dense, so
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that all pairs of elements are likely to be comparable. Note that either region could be empty,
and any pair of elements with y ∈ [εn, zC ] and z ∈ [zC , n− 1] is likely to be comparable.

As an example, consider a random graph order Pn,p with limn→∞ p−1 log p−1/n = c for some
0 < c < 1. For ε > 0, since p ∼ log n/(cn), and E|Dy| = py, we have E|Dy| ∼ y log n/(cn) ≤
c−1 log n for all y ∈ [εn, n − 1]. This means that we take zC = n − 1 and for any two points
y < z ∈ [εn, n− 1], whether they are comparable depends on the value of

d(y, z) =
z∑

w=y+1

E|Dw|
w log w

=
z∑

w=y+1

p

log w
∼ z − y

cn
.

So for large enough n, if z−y > (1+ε)cn then z is likely to be ordered above y in Pn,p, whereas
if |z − y| < (1− ε)cn then y and z are likely to be incomparable in Pn,p. Note that this agrees
with the continuum limit as given by Theorem 4.2.

We can now prove Theorem 1.5.

Proof of Theorem 1.5. In fact, we prove the equivalent statement that for all ε with
0 < ε < 1/4 there exists an n1 such that for any classical sequential growth model P(t) and
for all n ≥ n1, there exists a semiorder S on {0, . . . , n − 1} such that E∆(Pn(t), S) < 6

√
εn2.

So, fix ε with 0 < ε < 1/4, and let n be sufficiently large that both Theorems 5.5 and 5.6 hold.
For any P(t) we define the following order ≺S on [n − 1]. If there exists a z ∈ [εn, (1 − ε)n]
with E|Dz| ≥ (log n)5/4, then define zC as the minimum such z; otherwise set zC = (1 − ε)n.
For all y < z with z ≥ zC set y ≺S z. For all y < z with z < zC , set y ≺S z if and only if
d(y, z) > 1. Let Pn(t) be a random partial order on [n − 1] produced according to P(t). We
will show that the expected number of pairs (y, z) ∈ [n − 1](2) on which Pn(t) and ≺S differ
is less than 6

√
εn2. We can assume that all pairs y < z with y < εn, or zC < z < zC + εn

contribute to this difference, a total of no more than 2εn2 pairs. For all other pairs, either (a)
εn ≤ z < zC , or (b) z ≥ zC +εn. For pairs satisfying (a), the orders agree with probability 1−ε
when |d(y, z) − 1| > ε (using Theorem 5.5), and so we need to show that the number of pairs
with |d(y, z)−1| ≤ ε is small. For y ∈ [εn, zC ] let z0 be the smallest z such that d(y, z) ≥ 1− ε,
and define z1 as the largest z such that d(y, z) ≤ 1 + ε. So,

z0∑
w=y+1

E|Dw|
w log w

≥ 1− ε, and

z1∑
w=z0+1

E|Dw|
w log w

≤ 2ε.

Taking the first inequality and bounding the sum from above gives 1− ε ≤ E|Dz0|n/(y log εn),
and bounding the sum in the second inequality from below gives 2ε ≥ (z1−z0)E|Dz0|/(z1 log n).
Combining these gives

z1 − z0 ≤
2εnz1 log n

(1− ε)y log εn
≤ 4ε

n2

y

for sufficiently large n. So, for each y ∈ [εn, n − 1] there are at most 4εn2/y pairs with
|d(y, z)− 1| ≤ ε. Therefore the total number of such pairs is at most

n∑
y=εn

4εn2

y
≤ 4εn2

∫ n

εn−1

dx

x
≤ 4εn2 log(1/ε) ≤ 4

√
εn2.

Finally, for pairs satisfying (b), we know that if z − y > εn then Theorem 5.6 implies that the
orders agree with probability 1− ε, and there are at most εn2 pairs with z − y ≤ εn.

Therefore the total expected number of pairs on which the orders disagree is at most 2εn2 +
4
√

εn2 + εn2 + εn2 = 4
√

εn2 + 4εn2 < 6
√

εn2, since ε < 1/4.
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As mentioned earlier, the order of the quantifiers in Theorem 1.5 is significant: the random
poset on [n− 1] produced by any classical sequential growth model is arbitrarily close to being
a semiorder, for large enough n. This means we are able to prove that any continuum limit of
a sequence of classical sequential growth models is also arbitrarily close to being a semiorder,
hence it is an almost-semiorder, as claimed by Theorem 1.6.

Proof of Theorem 1.6. Suppose P∞ is the continuum limit of (Pn)∞n=1. Recall that H and
L are the four-element partial orders in Figure 1. We will show that both Eλ(H; Pn) → 0 and
Eλ(L; Pn) → 0 as n → ∞, where Pn is a random partial order taken from Pn, which implies
that both λ(H; P∞) = 0 and λ(L; P∞) = 0.

For P and Q finite partial orders on the same ground set X, and k ≥ 2, define ∆k(P, Q) to
be the number of subsets of X of size k on which P and Q differ. That is,

∆k(P, Q) = #{A ∈ X(k) : P induces a different partial order from Q on A}

Note that ∆2 is identical to ∆ as defined in Section 1. For fixed P, Q, X and all k ≤ l, we have
that every subset of X of size k is contained in less than

( |X|
l−k

)
≤ |X|l−k/(l − k)! subsets of X

of size l, and therefore

∆l(P, Q) ≤ |X|l−k

(l − k)!
∆k(P, Q) (9)

for 2 ≤ k ≤ l.

Now, fix ε > 0 and apply Theorem 1.5. So, for each n greater than the n0 given by
Theorem 1.5, there exists a semiorder S, such that E∆2(Pn, S) ≤ εn2, where Pn is the random
partial order produced according to Pn. Therefore, using equation (9), we have E∆4(Pn, S) ≤
εn4/2. Consider a sample of four points {x1, x2, x3, x4} from Pn. Unless the sample is equal to
one of the at most εn4/2 sets on which Pn and S differ then the order on {x1, x2, x3, x4} is not
equal to H or L. (This is because of the definition of S as a semiorder.) Therefore, we have
that both Eλ(H; Pn) and Eλ(L; Pn) are less than 12ε.

6 Existence of continuum limits

Theorem 1.5 tells us about the global structure of a particular classical sequential growth model
in the same way that Theorems 3.2–3.4 of Pittel and Tungol tell us about the structure of a
particular random graph order. Indeed, as the results of Pittel and Tungol could be applied
to prove results about continuum limits of sequences of random graph orders, we now apply
Theorem 1.5 to prove a result about sequences of classical sequential growth models, which
extends Theorem 4.2.

Let us embellish our current notation: we will be considering sequences (Pn)∞n=1 of classical
sequential growth models, so for each n, the model Pn is described by a sequence t(n), and we
define

ρ(n)
w =

E|Dw|
w log w

, d(n)(y, z) =
z∑

w=y+1

ρ(n)
w ,

where the expectation E|Dw| is defined on the model Pn, and depends only on t(n).

For each n, we define a step function rn from [0, 1] to R by

rn(x) =

{
nρ

(n)
dxne for x > 1/n,

0 otherwise.
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We make some simple observations about the functions rn.

Lemma 6.1. For ε > 0, there exists n0 such that for any x, y ∈ [ε, 1] with x < y,

x rn(x) ≤ (1 + ε)y rn(y)

for all n ≥ n0.

Proof. This follows simply from the definition of rn. Fix ε > 0. Then for any x, y ∈ [ε, 1] with
x < y, since E|Dw| is increasing in w, we have

rn(x) =
nE|Ddxne|

dxne log dxne
≤

nE|Ddyne|
dyne log dyne

dyne log dyne
dxne log dxne

≤ rn(y)(1 + ε)
y

x

for sufficiently large n.

Lemma 6.2. For ε > 0, there exists n0 such that for any x, y ∈ [ε, 1] with x < y,

− 1

n
rn(x) ≤ d(n)(dxne, dyne)−

∫ y

x

rn(t)dt ≤ 1

n
rn(y)

for all n ≥ n0.

Proof. We integrate rn(x) using the fact that it is a step function: for all integers k, l, with
1 ≤ k < l ≤ n, ∫ l/n

k/n

rn(t)dt =
1

n

l∑
w=k+1

rn(w/n) =
l∑

w=k+1

ρ(n)
w = d(n)(k, l).

Now, fix ε > 0 and take n0 > 1/ε. Then, for any x, y ∈ [ε, 1] with x < y,and n ≥ n0,∫ y

x

rn(t)dt ≤
∫ dyne/n

(dxne−1)/n

rn(t)dt = d(n)(dxne − 1, dyne) = ρ
(n)
dxne + d(n)(dxne, dyne)

and ∫ y

x

rn(t)dt ≥
∫ (dyne−1)/n

dxne/n

rn(t)dt = d(n)(dxne, dyne − 1) = d(n)(dxne, dyne)− ρ
(n)
dyne,

which yields the required inequality after rearrangement and the substitution rn(x) = nρ
(n)
dxne.

Lemma 6.3. For ε > 0, and any interval I = [α, β] ⊆ [ε, 1], if lim supn→∞ rn(β) is finite then
lim supn→∞ rn(x) is integrable on I and

lim sup
n→∞

∫
I

rn(t)dt ≤
∫

I

lim sup
n→∞

rn(t)dt. (10)

Furthermore, if limn→∞ rn(x) exists for almost every x ∈ I then

lim
n→∞

∫
I

rn(t)dt =

∫
I

lim
n→∞

rn(t)dt. (11)
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Proof. The fact the the limits pass through the integrals as claimed above follows from a
simple application of the Dominated Convergence Theorem/Fatou’s Lemma. We need to show
that rn is dominated by an integrable function on I. We show this using Lemma 6.1.

Fix ε > 0 and I = [α, β] ⊆ [ε, 1]. By Lemma 6.1, there exists an n0 such that

x rn(x) ≤ (1 + ε)β rn(β)

for all x ∈ I, all n ≥ n0. But lim supn→∞ rn(β) is finite, therefore there exists some constant K
and n1 such that rn(β) ≤ K for all n ≥ n1. Therefore, defining Φ(x) = (1 + ε)βK/x, we have
rn(x) ≤ Φ(x) for all x ∈ I, all n ≥ max {n0, n1}. Clearly Φ(x) is integrable on I, and therefore
Fatou’s Lemma implies that lim supn→∞ rn(x) is integrable on I and

lim sup
n→∞

∫
I

rn(t)dt ≤
∫

I

lim sup
n→∞

rn(t)dt

as required.

Furthermore, since rn(x) is non-negative on I, for all n, Fatou’s Lemma also implies that∫
I

lim inf
n→∞

rn(t)dt ≤ lim inf
n→∞

∫
I

rn(t)dt

and therefore∫
I

lim inf
n→∞

rn(t)dt ≤ lim inf
n→∞

∫
I

rn(t)dt ≤ lim sup
n→∞

∫
I

rn(t)dt ≤
∫

I

lim sup
n→∞

rn(t)dt.

Now, if limn→∞ rn(x) exists for almost every x ∈ I, then the left- and right-most terms in the
above inequality are equal, and the inequality collapses to equation (11) as required.

We are now in a position to prove Theorem 1.8. In fact we will show the following stronger
result: part (i) is exactly Theorem 1.8 as stated earlier.

Theorem 6.4. A sequence (Pn)∞n=1 of classical sequential growth models with associated func-
tions rn as defined above has a continuum limit when either

(i) r(x) = limn→∞ rn(x) ∈ [0,∞] exists for almost every x in [0, 1], or

(ii) there exists yC ∈ [0, 1] such that

a) limn→∞ rn(x) = ∞ for all x ∈ (yC , 1] ,

b) rn(x) is bounded for all x ∈ [0, yC), and

c)

∫ yC−ε

ε

R(t)dt ≤ 1, for all ε > 0, where R(x) = lim supn→∞ rn(x).

The continuum limit in each case is

(i) Tr,

(ii) TR̃, where R̃(x) = 0 for x ∈ [0, yC), and R̃(x) = ∞ for x ∈ (yC , 1].
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Proof. Note the similarity in style to Theorem 4.2; the proof will also follow a similar style.
Let us quickly recall the proof of Theorem 4.2, where there were three different cases. For
the trivial case where the continuum limit was an antichain, it was enough to show that the
probability of a sample of two elements from the finite partial order Pn being a chain tended
to zero as n tended to infinity. Similarly, at the other extreme, for the case of the continuum
limit being a chain, we showed that the probability of a sample being a 2-element antichain
tended to zero. For the non-trivial case, we defined an intermediate partially ordered measure
space P̄n on [0, 1], for each n, in such a way that limn→∞ λ(Q; Pn) = limn→∞ λ(Q; P̄n) for all
finite partial orders Q. We then showed that for any sample S from [0, 1], the probability of the
order on S induced by P̄n differing from that induced by the claimed continuum limit tended
to zero as n tended to infinity.

Here, we first prove case (ii), which roughly corresponds to a combination of the trivial cases
(i) and (iii) of Theorem 4.2.

We need to show that the continuum limit is TR̃ = ([0, 1],B, µL,≺). The definition of R̃
implies that x ≺ y if and only if y > yC and x < y, i.e., the limit is a chain on [yC , 1] placed
above an antichain on [0, yC ].

Denote by Bn the partial order induced by Pn on the set [0, byCnc] and denote by En the
partial order induced by Pn on the set [byCnc+ 1, n− 1]. Since a sample of points from Pn can
be thought of as a pair of samples, one from Bn and one from En, and since we are trying to
show that the continuum limit is a chain above an antichain, it is enough to show that

(1) λ(R; Bn) → λ(R; P ) as n →∞ for all finite partial orders R;

(2) λ(R; En) → λ(R; Q) as n →∞ for all finite partial orders R; and

(3) E#{i, j ∈ Pn : i ≤ yCn < j and i, j incomparable}/n2 → 0 as n →∞;

where P is the antichain on [0, yC ] and Q is the chain on [yC , 1]. In fact, since Q is a chain, so that
λ(R; Q) = 0 unless R is a chain, by Proposition 2.3 it is enough to show that λ(A2; En) → 0
as n → ∞ and so we can show both (2) and (3) by showing that E#{i < j ∈ Pn : j >
yCn and i, j incomparable}/n2 → 0 as n →∞. Likewise, since P is an antichain, we only need
to show that λ(C2; Bn) → 0 as n →∞. That is, it is enough to show

(a) E#{i < j ∈ Pn : j > yCn and i, j incomparable}/n2 → 0 as n →∞, and

(b) E#{i < j ∈ Pn : j ≤ yCn and i, j comparable}/n2 → 0 as n →∞.

Fix ε > 0 with ε < yC/3. To prove (a), we show that for sufficiently large n, the expected
number of incomparable pairs of elements i < j ∈ Pn with j > yCn is less than 5εn2. By
Lemma 6.1 we have

rn(z) ≥ yCrn(yC)/(1 + ε)z ≥ (1− ε)yCrn(yC)

for all z ∈ (yC , 1] for sufficiently large n. Since rn(yC) →∞ as n →∞ we have that rn(yC) >
2/εyC for sufficiently large n. Therefore, rn(z) > 2(1 − ε)/ε for sufficiently large n, for all
z > yC .

So, for j ≥ (yC + ε)n and j − i > εn we have

d(n)(i, j) ≥ d(n)(j − dεne, j) =

j∑
w=j−dεne+1

ρ(n)
w =

1

n

j∑
w=j−dεne+1

rn(w/n), (12)
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and since j − dεne+ 1 > yCn, so that w/n > yC for all w = j − dεne+ 1, . . . , j, inequality (12)
becomes

d(n)(i, j) ≥ 1

n

j∑
w=j−dεne+1

2(1− ε)/ε > 2(1− ε) > 1 + ε.

Now, suppose that n is sufficiently large for both the above to hold and so that we can apply
Theorems 5.5 and 5.6. We will apply either Theorem 5.5 or 5.6 depending on the size of E|Dj|,
for each j ≥ (yC + ε)n. If E|Dj| ≤ (log n)5/4 then we apply Theorem 5.5 and the expected
number of i with εn < i < j−εn and i incomparable to j is at most εn. If E|Dj| > (log n)5/4 then
by definition j > zC . If also j > zC + εn then Theorem 5.6 implies that the expected number
of i with εn < i < j − εn and i incomparable to j is at most εn. Combining this information
we have that for all j > yCn, except at most 2εn (those j in [yCn, (yC + ε)n] ∪ [zC , zC + εn]),
the expected number of elements i earlier than and incomparable to j is at most 3εn, and
therefore the expected number of incomparable pairs i, j ∈ Pn with j > yCn is less than
3εn× n + n× 2εn = 5εn2.

We now prove (b). We have that

∫ yC−ε

ε

R(t)dt ≤ 1. We first show that integrating over

the smaller range [ε, yC − 2ε] gives a value strictly less than one, i.e., there exists δ < ε such

that

∫ yC−2ε

ε

R(t)dt < 1− 2δ.

Consider I =

∫ yC−ε

yC−2ε

R(t)dt. If I = 0, then since R(t) ≥ 0 on [0, yC), we have R(yC−2ε) = 0.

But then Lemma 6.1 implies that R(t) = 0 for all t ∈ [ε, yC − 2ε] and so
∫ yC−2ε

ε
R(t)dt = 0 and

is certainly less than 1− 2δ for some δ < ε.

Otherwise, I > 0, so there exists δ < ε with I > 2δ and therefore
∫ yC−2ε

ε
R(t)dt < 1− 2δ as

required.

Now, from Lemma 6.3 we have

lim sup
n→∞

∫ yC−2ε

ε

rn(t)dt ≤
∫ yC−2ε

ε

R(t)dt < 1− 2δ.

Then, by Lemma 6.2,

lim sup
n→∞

d(n)(dεne, d(yC − 2ε)ne) ≤ lim sup
n→∞

∫ yC−2ε

ε

rn(t)dt

and therefore, d(n)(εn, (yC−kε)n) < 1−δ for all sufficiently large n. Now we apply Theorem 5.5:
for any i, j ∈ [εn, (yc − 2ε)n], we certainly have rn(j/n) bounded, and therefore E|Dj| =
O(log n), so the conditions of Theorem 5.5 hold and P(i < j in P (t)) < δ < ε. Therefore the
expected number of comparable elements i < j with j ≤ yCn is at most 2εn×n+n×3εn = 5εn2.

Now we prove case (i). Define yC = inf{y : limn→∞ rn(y) = ∞} and set yC = 1 if no such y
exists. As in case (ii), we have limn→∞ rn(x) = ∞ for all x ∈ (yC , 1]. Therefore, the order ≺ on
the continuum limit Tr has x ≺ y for all y > yC and x < y, as in case (ii). Again, it is enough
to show

(1) λ(R; Bn) → λ(R; P ) as n →∞ for all finite partial orders R;

(2) λ(R; En) → λ(R; Q) as n →∞ for all finite partial orders R; and
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(3) E#{i, j ∈ Pn : i ≤ yCn < j and i, j incomparable}/n2 → 0 as n →∞;

where here P is the partially ordered measure space Tr restricted to [0, yC ] and Q is the
chain on [yC , 1]. So, again (2) and (3) can be proved by showing that E#{i < j ∈ Pn :
j > yCn and i, j incomparable}/n2 → 0 as n → ∞, and this follows from exactly the same
proof as in case (ii).

It remains to show that λ(R; Bn) → λ(R; P ) as n → ∞ for all finite partial orders R, for
P = ([0, yC ],B, µL,≺), where ≺ is defined by x ≺ y if and only if

∫ y

x
r(t)dt > 1. The proof of

this roughly corresponds to the non-trivial case (ii) of Theorem 4.2.

Fix ε > 0, with ε < 1/8, and assume throughout that n is sufficiently large. For each n, take
a random order Pn according to Pn, and consider Bn the order induced by Pn on [0, byCnc].
Define an order ≺n on [0, yC ], by dividing [0, yC ] into byCnc intervals of length 1/n, identifying
[i/n, (i + 1)/n) with i ∈ [0, byCnc], and putting [i/n, (i + 1)/n) below [j/n, (j + 1)/n) if and
only if i < j in Bn. Let B̄n be the atomless partially ordered measure space ([0, yC ],B, µL,≺n).
A similar argument to that in the proof of Theorem 4.2 implies that Eλ(Q; Bn) − Eλ(Q; B̄n)
tends to zero as n tends to infinity, for all finite partial orders Q. So, it is enough to show
that Eλ(Q; B̄n) → λ(Q; P ), which follows if P(≺n induces different partial order from ≺) → 0
as n → ∞. As in the proof of Theorem 4.2, it is enough to consider to elements x, y chosen
uniformly at random from [0, yC ] and show that

P(≺n induces different partial order from ≺ on {x, y}) → 0 (13)

as n →∞.

Call a pair of intervals [i/n, (i + 1)/n) and [j/n, (j + 1)/n), with i < j, good if either

(i)

∫ j/n

(i+1)/n

r(t)dt > 1 and i, j are comparable in Pn, or

(ii)

∫ (j+1)/n

i/n

r(t)dt < 1 and i, j are incomparable in Pn,

and call a pair of intervals bad otherwise.

We will show that the expected number of bad pairs of intervals is a small fraction of n2.
This will prove (13), since ≺n and ≺ will only induce different partial orders on {x, y} if the
intervals that contain x and y are a bad pair of intervals.

We can be rather crude with our calculations, and can afford to assume that pairs of
intervals that are “too close to call” are all bad. That is, we assume that all pairs i < j
with 1 − ε ≤ d(n)(i, j) ≤ 1 + ε are bad. Also, we assume that all pairs i < j with either
i 6∈ [εn, (yC − ε)n] or j 6∈ [εn, (yC − ε)n] are bad. We need to show that the number of such
pairs is small, but first we show that almost all the remaining pairs, i.e., the pairs i < j with
i, j ∈ [εn, (yC − ε)n] and |d(n)(i, j)− 1| > ε, are good, as follows.

Since n0 is sufficiently large, Lemmas 6.2 and 6.3 imply that∣∣∣∣d(n)(dxne, dyne)−
∫ y

x

r(t)dt

∣∣∣∣ < ε/2 (14)

for all n ≥ n0. Consider a pair i < j with i, j ∈ [εn, (yc − ε)n] and d(n)(i, j) > 1 + ε. Equation

(14) implies that

∫ j/n

i/n

r(t)dt > 1 + ε/2 and since r(t) is finite almost everywhere on [ε, yC − ε],
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we have

∫ j/n

(i+1)/n

r(t)dt > 1 for large enough n. So, such a pair is bad if i, j are incomparable in

Pn. However, since r(j/n) is almost surely finite, we have E|Dj| = O(log n) and so Theorem 5.5
implies that i, j are incomparable in Pn with probability less than ε. Similarly, pairs i < j with

i, j ∈ [εn, (yc − ε)n] and d(n)(i, j) < 1 − ε, have

∫ (j+1)/n

i/n

r(t)dt < 1, and i, j are comparable

in Pn with probability less than ε. So in total, the expected number of bad pairs i < j with
i, j ∈ [εn, (yc − ε)n] and |d(n)(i, j)− 1| > ε is at most εn2.

Clearly, the number of pairs i < j with either i 6∈ [εn, (yC − ε)n] or j 6∈ [εn, (yC − ε)n] is
at most 2εn2, and so it remains to show that the number of pairs i < j ∈ [εn, (yC − ε)n] with
|d(n)(i, j)− 1| ≤ ε is a small fraction of n2.

Note that by equation (14), it is enough to show that the number of pairs i < j ∈ [εn, (yC −
ε)n] with ∣∣∣∣∣

∫ j/n

i/n

r(t)dt− 1

∣∣∣∣∣ ≤ 2ε (15)

in small.

Define G ⊆ [ε, yC − ε] as the set of x such that
∫ yC−ε

x
r(t)dt ≥ 1 − 2ε. Clearly G is an

interval of [ε, yC − ε]; indeed, it is a down-set (under the natural ordering of R). We only need
to consider pairs i < j with i/n ∈ G: if i/n 6∈ G then∫ j/n

i/n

r(t)dt ≤
∫ yC−ε

i/n

r(t)dt < 1− 2ε,

for all j ∈ [i + 1, (yC − ε)n]. So we may assume that G is non-empty, and therefore that ε ∈ G.

For x ∈ G define the function g(x) implicitly as∫ g(x)

x

r(t)dt = 1− 2ε.

Clearly g is increasing on G, and maps G surjectively onto [g(ε), yC − ε].

Now, take i with i/n ∈ G, so that
∫ g(i/n)

i/n
r(t)dt = 1 − 2ε. By Lemma 6.1, t r(t) < (1 +

ε)g( i
n
)r
(
g( i

n
)
)

for t ∈ [ i
n
, g( i

n
)], so

1− 2ε =

∫ g(i/n)

i/n

r(t)dt ≤ (1 + ε)g( i
n
)r
(
g( i

n
)
) ∫ g(i/n)

i/n

dt

t
≤ (1 + ε)g( i

n
)r
(
g( i

n
)
)n

i
,

or g( i
n
)r
(
g( i

n
)
)

> 2i/3n, since ε < 1/8. Then, again by Lemma 6.1,∫ g(i/n)+7εn/i

g(i/n)

r(t)dt ≥ (1− ε)g( i
n
)r
(
g( i

n
)
) ∫ g(i/n)+7εn/i

g(i/n)

dt

t

≥ (1− ε)g( i
n
)r
(
g( i

n
)
)7εn

i
> (1− ε)

2i

3n

7εn

i
> 4ε.

Therefore, ∫ g(i/n)+7εn/i

i/n

r(t)dt > 1 + 2ε,

so, for this i, in order for j to satisfy (15), we must have g(i/n) ≤ j/n < g(i/n) + 7εn/i. That
is, there are at most 7εn2/i points satisfying (15).
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So, the total number of pairs is at most

∑
i∈G

7εn2

i
≤ 7εn2

(yC−ε)n∑
i=εn

1

i
≤ 7εn2

∫ (yC−ε)n

εn−1

dx

x
≤ 7εn2 log (1/ε).

Since ε log (1/ε) → 0 as ε → 0, we have an arbitrarily small fraction of n2 pairs satisfying (15),
as required, and this completes the proof.

Note that despite the extra freedom of having a sequence of parameters t(n) for each n,
rather than the single parameter p(n) in the random graph order case, the structure of the
continuum limits exhibited in Theorem 6.4 are qualitatively very similar to those of an random
graph order in that they are all semiorders. Unfortunately, we do not have an analogue to
Theorem 4.5 and so we cannot say whether this is the only way for a sequence of classical
sequential growth models to have a continuum limit. Nevertheless, we have shown that any
other continuum limit has essentially the same structure, in that it is an almost-semiorder.

We finish with an example of a sequence of classical sequential growth models other than a
sequence of random graph orders that has a non-trivial continuum limit. The example is not
particularly exciting, but given its simplicity we feel that any number of increasingly complex
examples could be produced in a similar way. Basically, we define the sequences t(n) to have
only two non-zero terms (excluding the non-zero t0)—meaning that almost surely the size |Dxn|
is one of two values—in such a way that the limit of the expectation limn→∞ E|Dxn| exhibits a
sharp phase transition between these two values as x varies over [0, 1].

For any 0 < α < β, and 0 < γ < 1, define the function rα,β,γ by

rα,β,γ(x) =

{
α/x for 0 < x < γ,

β/x for γ < x ≤ 1.

Proposition 6.5. The partially ordered measure space Trα,β,γ
is the continuum limit of the

sequence (P(t(n)))∞n=1 of classical sequential growth models, where the only non-zero terms of
t(n) are

t
(n)
0 = 1, t

(n)
α log n =

(
γn

β log n

)
, t

(n)
β log n =

(
γn

α log n

)
,

for all n ∈ N.

Proof. As alluded to earlier, we show that E|Dγn+l| is asymptotically equal to α log n when
l ≤ −n/

√
log n, and asymptotically equal to β log n when l ≥ n/

√
log n.

Recall that in general

E|Dy| =
∑y

k=0 kt
(n)
k

(
y
k

)∑y
k=0 t

(n)
k

(
y
k

) ,

so that here

E|Dγn+l| =
α log n

(
γn

β log n

)(
γn+l
α log n

)
+ β log n

(
γn

α log n

)(
γn+l
β log n

)
1 +

(
γn

β log n

)(
γn+l
α log n

)
+
(

γn
α log n

)(
γn+l
β log n

)
∼ α log n + Rβ log n

1 + R
,

where

R =

(
γn

α log n

)(
γn+l
β log n

)(
γn

β log n

)(
γn+l
α log n

) ∼ (1 +
l

γn

)(β−α) log n

∼ exp

(
l(β − α) log n

γn

)
.
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Since R → 0 if l ≤ −n/
√

log n, and R →∞ if l ≥ n/
√

log n, we have,

E|Dγn+l| ∼

{
α log n if l ≤ −n/

√
log n,

β log n if l ≥ n/
√

log n.

Therefore the limit limn→∞ rn(x) exists for all x ∈ (0, 1] \ {γ} and is equal to rα,β,γ. So, by
Theorem 1.8, the continuum limit exists, and it is equal to Trα,β,γ

.
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