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Abstract

A hash table is a fundamental data structure in computer
science that can offer rapid storage and retrieval of data.
A leading implementation for string keys is the cache-
conscious array hash table. Although fast with strings,
there is currently no information in the research literature
on its performance with integer keys. More importantly,
we do not know how efficient an integer-based array hash
table is compared to other hash tables that are designed for
integers, such as bucketized cuckoo hashing. In this paper,
we explain how to efficiently implement an array hash ta-
ble for integers. We then demonstrate, through careful ex-
perimental evaluations, which hash table, whether it be a
bucketized cuckoo hash table, an array hash table, or al-
ternative hash table schemes such as linear probing, offers
the best performance—with respect to time and space—
for maintaining a large dictionary of integers in-memory,
on a current cache-oriented processor.

Keywords: Cuckoo hashing, integers, cache, array hash,
dictionary, in-memory.

1 Introduction

In-memory data structures are fundamental tools used in
virtually any computing application that requires efficient
management of data. A well-known example is a hash
table (Knuth 1998), which distributes keys amongst a
set of slots by using a hash function (Ramakrishna &
Zobel 1997, Zobel, Heinz & Williams 2001). A hash ta-
ble can offer rapid insertion, deletion, and search of both
strings and integers but requires a form of collision reso-
lution to resolve cases where two or more keys are hashed
to the same slot. The simplest and most effective colli-
sion resolution scheme for when the number of keys is not
known in advance is the use of linked lists. This forms
a chaining hash table (Zobel et al. 2001) also known as a
standard-chain hash table (Askitis & Zobel 2005).

Linked lists (or chains) are simple and flexible struc-
tures to implement and maintain but are not particularly
cache-friendly. Nodes and their associated keys are typ-
ically scattered in main memory and as a consequence,
traversing a chain can result in poor use of CPU cache.
In addition, nodes are accessed via pointers which incurs
pointer-chasing, a phenomenon that hinders the effective-
ness of hardware data prefetchers (Askitis 2007).

Askitis and Zobel (Askitis & Zobel 2005) addressed
these issues by replacing the chains used to resolve col-
lisions with dynamic arrays, yielding a cache-conscious
collision resolution scheme called the array hash. The
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key advantage offered by the array hash is the elimina-
tion of nodes and string pointers that were used to access
strings. This configuration permits good use of CPU cache
and hardware data prefetch while simultaneously saving
space.

We can avoid the use of chains and arrays altogether
by storing homogeneous keys such as integers directly
within hash slots. This forms an open-address hash ta-
ble (Peterson 1957) which can be simpler to implement
and can result in better use of both CPU cache and
space (Heileman & Luo 2005). When a collision oc-
curs in an open-address hash table, several well-known
techniques can be applied such as linear probing or dou-
ble hashing (Askitis 2007). Our focus is with a rela-
tively newer technique called cuckoo hashing (Pagh &
Rodler 2004).

Cuckoo hashing uses two open-address hash tables and
two independent hash functions. A key is stored in either
one of the hash tables but not both. When a collision oc-
curs in the first hash table (using the first hash function),
the key occupying the slot is evicted and replaced by the
new key. The evicted key is then hashed using the second
hash function and stored in the second hash table. If this
causes another collision, then the eviction process repeats
until all keys are hashed without collision. Cuckoo hash-
ing offers a constant worst-case probe cost since at most
only two hash slots are accessed during search (Pagh &
Rodler 2004, Panigrahy 2005).

Cuckoo hashing, however, requires the average load
factor (i.e., keys/slots) to be kept less than 0.49 (Pagh &
Rodler 2004). If we were to exceed this threshold, then
the probability of an insertion failure (an irresolvable col-
lision) will greatly increase. Recent innovations of cuckoo
hashing have addressed this issue by employing several
hash functions to reduce the cost of collisions (Fotakis,
Pagh, Sanders & Spirakis 2003), and with hash slots that
can store more than one key—otherwise known asbucke-
tized cuckoo hashing. These variants, among others, can
efficiently support a load factor of almost 1 (Zukowski,
Héman & Boncz 2006, Ross 2007).

Despite its popularity (Kirsch, Mitzenmacher, &
Wieder 2008), cuckoo hashing has yet to be compared
against an integer-based array hash. The array hash is
structurally dissimilar to cuckoo hashing, since it employs
dynamic arrays to resolve collisions. The main disadvan-
tage with this approach in comparison to cuckoo hash-
ing, is that more space can be required as a result of slot
pointers and memory allocation overheads. In addition,
more keys can be compared in the worst-case since ar-
rays are dynamic (each hash slot is able to store an un-
bounded number of keys). However, the array hash has
a useful property that cuckoo hashing lacks—it can make
good use of cache while supporting a load factor greater
than 1. The array hash is therefore ascalable hash ta-
ble; it can remain efficient to use as the number of keys
increase (Askitis 2007). The number of keys that can
be stored in an open-address hash table, in contrast, is
bounded by the number of slots and their capacity. Hence,



to accommodate an unexpected increase in the number of
keys processed, an open-address hash table would need to
be resized and rehashed, which can be an expensive pro-
cess particularly with a large number of keys (Cieslewicz
& Ross 2007, Kirsch et al. 2008, Askitis & Zobel 2008b).

Drawing together the themes we have sketched, this
paper provides three important contributions. First, we
will show how to develop an array hash table for inte-
gers which we experimentally compare against a standard-
chain hash table (Zobel et al. 2001), a more cache-efficient
variant known as a clustered-chain hash table (Chilimbi
1999, Askitis 2007), and a linear probing open-address
hash table (Peterson 1957, Heileman & Luo 2005). Our
experiments measure the time, space, and actual cache
performance of these hash tables using large volumes of
32-bit integers. Second, we experimentally compare the
performance of the integer-based array hash against lead-
ing implementations of bucketized cuckoo hashing, which
are designed to operate efficiently with a load factor of al-
most 1 (Ross 2007, Kirsch et al. 2008). Third, based on
our results, we show which hash table is ideally suited—
with respect to overall performance and space usage—for
the task of storing and retrieving a large set of integers
with payload data (that is, to maintain a dictionary) in-
memory.

2 Background

A hash table is a data structure that distributes keys
amongst a set of slots by using a hash function. A
hash function should be both fast and from a universal
class (Ramakrishna & Zobel 1997, Askitis 2007, Ross
2007), so that keys are distributed as well as possible. For
integers, a multiplicative-based hash table is considered
to be universal and computationally efficient (Ross 2007).
Alternatively, assuming that the input sequence of integers
is random, a simple modulo calculation can also serve as
a fast and effective hash function (Zukowski et al. 2006).

A hash function, however, can not guarantee that each
slot will have at most one key when the total number of
keys is not known in advance (Knuth 1998). Therefore,
a form of collision resolution is needed. For strings, a
simple and effective technique is the use of linked lists
with move-to-front on access (Knuth 1998), forming a
standard-chain hash table (Askitis & Zobel 2005).

Linked lists, however, are not cache-efficient data
structures (VanderWiel & Lilja 2000, Kowarschik & Weiß
2003). As a consequence, the standard-chain hash ta-
ble is likely to attract high performance penalties (cache
misses) on current cache-oriented processors. Node clus-
tering can, to some extent, improve the cache perfor-
mance of a linked list by packing its homogeneous nodes
into blocks of memory that are sized to match the CPU
cache-line (typically between 64 and 256 bytes) (Chilimbi
1999, Badawy, Aggarwal, Yeung & Tseng 2004). In this
manner, access to the first node in a chain will auto-
matically cache the next few nodes, which can improve
cache usage. The application of node clustering to the
standard-chain hash table yields aclustered-chain hash ta-
ble (Askitis 2007).

Similar techniques that relocate or group data to im-
prove cache utilization include virtual cache lines (Rubin,
Bernstein & Rodeh 1999), customized memory alloca-
tors (Truong, Bodin & Seznec 1998, Kistler & Franz 2000,
Berger, Zorn & McKinley 2002), and memory relocation
techniques (Calder, Krintz, John & Austin 1998, Lattner
& Adve 2005, Chilimbi & Shaham 2006). A similar node
clustering technique known as hash buckets was applied
to the two chained hash tables used to perform the hash-
join algorithm in SQL (Graefe, Bunker & Cooper 1998).
Another variant combines hash buckets with software
prefetching and multi-threaded access to further speed up
hash-join (Garcia & Korth 2006). Ghoting et al. also pro-
posed a node clustering technique to improve the cache

performance of the FP-tree, which is used in frequent-
pattern mining (Ghoting, Buehrer, Parthasarathy, Kim,
Nguyen, Chen & Dubey 2006). In this approach, the orig-
inal pointer-based FP-tree is copied into a static contigu-
ous block of memory which represents a cache-conscious
FP-tree.

Askitis and Zobel advanced the idea of clustering by
replacing the linked lists used by the standard-chain hash
table with dynamic arrays, forming anarray hash ta-
ble (Askitis & Zobel 2005). In this manner, strings are
stored contiguously in memory eliminating nodes and
pointers which allows for high reductions in both cache
misses and space usage—speed gains of up to 97% with
around a 70% simultaneous reduction in space was re-
ported over standard chaining. The dynamic array tech-
niques were also applied to the string burst trie (Heinz,
Zobel & Williams 2002) and binary search tree (Knuth
1998), yielding superior cache-conscious variants known
as thearray burst trie andarray BST (Askitis 2007, Aski-
tis & Zobel 2008b).

We can eliminate the use of chains and arrays alto-
gether by storing homogeneous keys such as 32-bit or 64-
bit integers directly within hash slots, forming an open-
address hash table (Peterson 1957). A collision resolu-
tion scheme is still required, however, with the simplest
beinglinear probing; the hash table is scanned from left
to right (beginning from a hash slot selected by the hash
function) until a vacancy is found (Peterson 1957). Instead
of scanning, heuristics can be used to guess the location
of a vacant slot. This is known asdouble hashing; another
hash function independent of the first is used to skip to a
location that may be vacant. This approach requires, on
average, fewer probes than linear probing (Knuth 1998).
A similar approach calledquadratic probing guesses the
next available hash slot (from left-to-right) by using a
quadratic function. Another is areordering scheme (Brent
1973) which moves items around to reduce expected probe
costs. Alternative techniques include coalesced chaining,
which allows lists to coalesce to reduce memory wasted
by unused slots (Vitter 1983), and to combine chaining
and open-addressing, known as pseudo-chaining (Halatsis
& Philokyprou 1978).

Linear probing and double hashing were surveyed and
analyzed by Munro and Celis (Munro & Celis 1986),
and were found to offer poor performance compared to a
chained hash table when the load factor (i.e., keys/slots)
approached 1. In addition, since keys are stored di-
rectly within slots, the total number of keys supported
by an open-address hash table is bounded by the num-
ber of slots and their capacity. Resizing an open-address
hash table to accommodate more keys can be an expen-
sive and space-consuming process (Askitis 2007, Kirsch
et al. 2008). As a consequence, open-address schemes
are typically best suited for applications where the total
number of keys is known in advance, or when keys can
be evicted (Cieslewicz & Ross 2007). Linear probing and
double hashing have recently been investigated in the con-
text of CPU cache (Heileman & Luo 2005), with linear
probing found to be the overall efficient option as a result
of its better use of cache.

Cuckoo hashing (Pagh & Rodler 2004) is a relatively
new open-address hash table that uses two hash tables and
two hash functions to resolve collisions—often a single
open-address hash table is divided equally to form the two
independent hash tables required. A key is stored in either
one of the hash tables, but not both. When a collision
occurs in the first hash table (using the first hash function),
the key occupying the slot is evicted and replaced by the
new key. The evicted key is then hashed using the second
hash function and stored in the second hash table. If this
causes another collision, then the eviction process repeats
until all keys are hashed without collision.

Cuckoo hashing offers a constant worst-case cost dur-
ing search but requires the load factor be kept below
0.49 (Pagh & Rodler 2004, Ross 2007). This implies that



over half of the slots are to be kept empty. If the load
factor is increased beyond this threshold, then an inser-
tion will likely fail due to an irresolvable collision (Pagh
& Rodler 2004). Fotakis et al. proposed ad-ary cuckoo
hashing scheme which employs a set of independent hash
functions to probe the hash table (Fotakis et al. 2003). The
authors showed that by employing four independent hash
functions, each assigned to a different region of the hash
table, a load factor of approximately 0.97 can be achieved
before the first irresolvable collision occurs.

A simple variant of cuckoo hashing known as bucke-
tized cuckoo hashing allows hash slots to contain up to a
fixed number of keys. With a slot capacity of two keys,
for example, a load factor of 0.89 can be achieved before
the first irresolvable collision occurs (Panigrahy 2005, Di-
etzfelbinger & Weidling 2007). Erlingsson et al. studied
the combination ofd-ary cuckoo hashing and bucketized
cuckoo hashing (Erlingsson, Manasse & Mcsherry 2006),
and showed that two independent hash functions and a slot
capacity of up to four keys can yield good performance
and space utilization.

Kirsch et al. proposed the use of astash, a simple
data structure independent of the cuckoo hash table that is
used to store keys that cause irresolvable collisions. The
use of a stash can greatly improve the failure probabil-
ity bounds of insertion, and given knowledge of the to-
tal number of keys inserted, only a constant amount of
additional space is required (Kirsch et al. 2008). Addi-
tional variants of cuckoo hashing include one that is engi-
neered for use in hardware (Kirsch & Mitzenmacher 2008)
and history-independent hashing (Naor, Segev & Wieder
2008). Kutzelnigg (Kutzelnigg 2008) analyzed the per-
formance of an asymmetric cuckoo hash table (Pagh &
Rodler 2004) (where the two hash tables used contain
a different number of slots). However, this variant was
found to increase the probability of insertion failure.

Zukowski et al. studied the application of a non-
bucketized cuckoo hash table in database operations such
as aggregation and join. The authors proposed a simple
variant that eliminates theif-then-else branches used dur-
ing search, which can improve lookup performance rela-
tive to a chained hash table (Zukowski et al. 2006).

Similarly, Ross explored the application of a bucke-
tized cuckoo hash table for database operations such as ag-
gregation (Ross 2007), and proposed combining a bucke-
tized cuckoo hash table withd-ary cuckoo hashing, branch
elimination and the use of SIMD operations (single in-
structions, multiple data), to further speed-up process-
ing of hash slots in database operations. This variant of
cuckoo hashing, also known as a splash table (Ross 2007),
was shown to offer superior space utilization and perfor-
mance with both small and large hash tables. Further-
more, unlike the variants of cuckoo hashing previously
discussed, the splash table can efficiently support payload
data (a counter or a pointer that is associated with every
homogeneous key inserted).

The cache-sensitive search tree is another data struc-
ture that can offer efficient sorted access to integers (Rao
& Ross 1999). It is a binary search tree (with nodes sized
to match the cache-line) that is built on top of an existing
static array of sorted integers. As a consequence, how-
ever, it can not be updated efficiently. The adaptive trie is
another cache-efficient data structure for strings and inte-
gers (Acharya, Zhu & Shen 1999), but was shown to be
slower and more space-intensive against other data struc-
tures such as the array burst trie and variants of binary
search tree, particularly under skew access—due to the
overhead of maintaining adaptive nodes (Askitis 2007,
Crescenzi, Grossi & Italiano 2003). Similarly, the Judy
trie (Silverstein 2002) can also maintain sorted access to
integers, but was shown to offer poor performance against
alternative trie-based data structures, particularly under
skew access (Askitis 2007, Askitis & Zobel 2008b).

Nash et al. studied the performance of several integer-
based data structures that can efficiently retrieve integers

in sort order (Nash & Gregg 2008). The authors showed
that a variant of burst trie (Heinz et al. 2002, Askitis 2007)
that is designed for integers offers the best performance.
However, their focus was solely on sorted data manage-
ment. As a result, the authors did not explore the perfor-
mance of integer-based hash tables.

Cache-oblivious data structures attempt to perform
well on all levels of the memory hierarchy, includ-
ing disk, without knowledge of the characteristics of
each level (Kumar 2003). Some examples include the
cache-oblivious string B-tree (Bender, Farach-Colton &
Kuszmaul 2006) and a cache-oblivious index for ap-
proximate string matching (Hon, Lam, Shah, Tam &
Vitter 2007), but of which often assume uniform distribu-
tion in data and operations (Bender, Demaine & Farach-
Colton 2002, Askitis & Zobel 2008a). An recent imple-
mentation of a cache-oblivious algorithm involving matrix
calculations and homogeneous keys was shown to offer
inferior performance, compared to alternative algorithms
that were tuned to exploit CPU cache (Yotov, Roeder, Pin-
gali, Gunnels & Gustavson 2007). The data structures that
we consider in this paper reside solely within volatile main
memory and are not cache-oblivious.

3 Implementing Hash Tables for Integers

Array hash table. The array hash table can be easily
adapted to store, delete, and retrieve fixed-length keys,
namely 32-bit or 64-bit integers. In this paper, we only
consider 32-bit integers but the algorithms we describe be-
low are readily adaptable to 64-bit integers.

To search for an integer (a key) in an array hash ta-
ble, we first hash the key to acquire a slot. If the slot is
empty, then the key does not exist in the hash table and
the search fails. Otherwise, we scan the array acquired, a
key at a time, until a match is found or until we exhaust
the array—in which case, the search fails. On successful
search, the key and its payload data are not moved to the
front of the array due to the high computational costs in-
volved (Askitis 2007); as we show in later experiments,
cache-efficiency more than compensates.

When a search fails, we can then insert the key into the
hash table. Insertion proceeds as follows: if the slot was
empty, a new 12 byte array is allocated and assigned. The
first 4 bytes in the array are reserved to store the number
of entries (which is initialized to 1). The next 8 bytes store
the key (4 bytes) followed by its payload data, a 4 byte in-
teger. Otherwise, we resize the existing array by 8 bytes (4
bytes for the key and 4 bytes for its payload data) using the
realloc system call. The key and its payload are then ap-
pended to the array and the number of entries in the array
is incremented by 1, completing the insertion process.

Deletion proceeds in a similar manner: the key is
hashed, the acquired array (if any) is searched and assum-
ing the key is found, we overwrite the key and its payload
data by sliding the remaining keys (if any) with their pay-
load data one entry towards the start of the array. The
number of entries in the array is then decremented by 1.
The array can then be resized using therealloc system call
to shrink the array by 8 bytes. Figure 1 shows an example
of an array hash.

As shown in Figure 1, we interleave keys with their
payload data. Alternatively, we can separate keys from
their payload by storing the keys first followed by their
payload data (in order of occurrence). However, prelimi-
nary experiments using this array configuration yielded no
significant gains in performance.

Standard-chain hash table. Inserting, searching, or
deleting a key in a standard-chain hash table is a relatively
straight-forward task. The key to search or insert is first
hashed to acquire a slot. If the slot anchors a linked list,
the list is traversed until a match is found. If found, the
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Figure 1: Some integers (keys) along with their payload data (square brackets) are inserted into an array hash, a
standard-chain hash, and a clustered-chain hash table. Each dynamic array starts with the no. of keys (in parenthesis).

node containing the required key and payload is moved to
the front of the list via pointer manipulation.

The key can only be inserted on search failure, in
which case, the key (4 bytes) and its payload data (4 bytes)
are encapsulated within a 12 byte node which contains a
null 4-byte next-node pointer. The node is then appended
to the end of the list completing the insertion process.
Deletion proceeds in a similar manner: assuming that the
key is found, its node is deleted and the list is re-arranged
via pointer manipulation. Figure 1 shows an example of a
standard-chain hash table.

Clustered-chain hash table. The standard-chain hash
table is a simple and flexible data structure but it is not
particularly cache-efficient, as nodes are likely to be scat-
tered in memory. We can address this issue by cluster-
ing nodes (Chilimbi 1999). That is, each slot anchors a
block of memory that is sized to match the CPU cache-line
(64 bytes in our case). Searching for, or inserting a key
(along with its payload data) proceeds as described for the
standard-chain, except that during insertion, a node is ap-
pended to the acquired block. If the block is full, we store
the node in a new empty block that is linked to the old.
This effectively forms a linked list of blocks which should
improve spatial access locality and should also reduce the
impact of pointer-chasing (Askitis 2007). Figure 1 shows
an example of a clustered-chain hash table.

Details regarding deletion in a clustered-chain are gen-
erally not available in the literature (Chilimbi 1999). To
delete a key in a clustered-chain, we must overwrite it and
its payload by sliding all remaining keys (and payloads)
up one entry towards the start of the chain. However, this
can involve accessing and manipulating keys from several
blocks which can be expensive (Askitis 2007).

We can pre-allocate space prior to building the stan-
dard or clustered-chain hash table which will reduce the
computational cost of allocating nodes (or blocks), but not
their cache-efficiency (Askitis 2007). We can also use a
cache-efficient memory allocator such asIalloc (Truong
et al. 1998), which attempts to interleave nodes to im-
prove cache-line utilization. However, Askitis demon-
strated that both pre-allocation andIalloc are ineffective
for the chained hash table (Askitis 2007). Berger et al.
also reported similar results after comparing the perfor-
mance of pointer-intensive programs using several cus-
tom memory allocators (Berger et al. 2002). The general-
purposemalloc allocator—sometimes known as the Doug
Lea allocator which is provided by mostgcc compilers—
was found to offer superior performance in the majority of
cases. Compiler based techniques (Calder et al. 1998)—

which attempt to reallocate stack and heap data to better
utilize cache—can also be applied, but often require pro-
gram profiles and are therefore not particularly effective
for dynamic data structures (Askitis 2007).

The clustered-chain hash table can also be optimized
to exploit SIMD instructions (single instruction, multiple-
data). On initial access to a block of nodes, we can copy
its keys and their payloads into SIMD registers. This
will allow the set of keys in the block to be compared
against a key using a single instruction. However, ex-
ploiting SIMD instructions in a clustered-chain hash table
(and also in an array hash) resulted in poor overall per-
formance. Ross also observed inferior performance after
attempting to exploit SIMD instructions in a chained hash
table (Ross 2007).

Bucketized cuckoo hashing. We implement bucketized
cuckoo hashing where each hash slot is abucket that can
store up to four keys and their payload data. A bucket
is structured as an array of eight 32-bit integers. The
first four store keys while the remaining four store their
payload data, in order of occurrence. This bucket struc-
ture and its capacity were shown to offer the best perfor-
mance (with respect to both time and space) for bucketized
cuckoo hashing (Ross 2007, Erlingsson et al. 2006). We
assume that zero is an invalid payload value. This will al-
low us to efficiently count the number of keys stored in a
bucket. Alteratively, we could reserve the first 32-bit entry
(to maintain word-alignment) in each bucket as a counter,
but at a cost in space (Ross 2007). An example of a buck-
etized cuckoo hash table is shown in Figure 2.

To search for a key (i.e., the query key), we hash it us-
ing the first hash function. We then access the required
bucket from the first hash table and compare its keys
against the query key. If the query key is not found, we
hash it again using the second hash function to acquire a
bucket from the second hash table. We search the second
bucket and if the query key is found, we return its payload
data. Otherwise, the search is unsuccessful. Zukowski et
al. suggests deriving the second hash value from the first
by shifting it byn bits to the right (Zukowski et al. 2006).
However, we found this approach to be unsuitable for a
large number of keys, due to poorer distributions of keys
to slots which as a consequence, led to poorer overall per-
formance.

Deletion proceeds in a similar manner. We search for
the query key as described, and if found, we remove it
and its payload from the acquired bucket by sliding any
remaining keys (along with their payload data) one entry
towards the start of the array. If the last key is deleted, we
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Figure 2:Some integers (keys) along with their payload data (in square brackets) are inserted into a bucketized cuckoo
hash table with two hash functions and a bucket capacity of two. The stash stores keys that cause irresolvable collisions.

simply set its payload value to zero.
It is possible to parallelize the search phase by pro-

cessing both buckets at once by using threads (Pagh &
Rodler 2004). However, since buckets are small in size
(they can fit entirely with a cache-line), they can be
processed rapidly. As a consequence, the overhead of
creating and synchronizing threads is likely to impact
overall performance (Askitis 2008). Leading implemen-
tations of bucketized cuckoo hashing have instead re-
lied on careful coding to exploit compiler optimizations,
hardware-level parallelism and out-of-order execution of
instructions (Zukowski et al. 2006, Ross 2007, Kirsch
et al. 2008).

We implement search by manually unrolling the loop
used to compare the keys in a bucket. We attempted to
eliminate branches (i.e., theif statements) used to com-
pare keys (Zukowski et al. 2006). However, because buck-
ets can store more than one key with payload data that is
returned if a key matches the query key (two properties
not considered by Zukowski et al.), we found that man-
ual loop unrolling combined with compiler optimizations
yielded the best results. Similarly, the use of SIMD in-
structions during search yielded no improvements com-
pared to our original code. One issue regarding the use of
SIMD instructions is that we must first load the keys of a
bucket into SIMD register(s). This would be beneficial if
the bucket is accessed multiple times during search, which
can occur in database operations (Ross 2007). However,
in our case, with an unpredictable input sequence of keys,
buckets can be accessed at random and are not re-used dur-
ing the search phase, hindering the effectiveness of SIMD.

When the search ends in failure, we can insert the
query key by appending it (and its payload) to the bucket
acquired from the first hash table. If the bucket is full, we
then check if the bucket from the second hash table can
accommodate. If so, the key and its payload data are ap-
pended, completing the insertion. Otherwise, we evict the
oldest key from either the first or second bucket. Since
keys and their payload data are added in order of occur-
rence, the first key in a bucket is the oldest. The remaining
keys (and their payload data) are moved one entry towards
the start of the bucket to allow the new key and its payload
to be appended. We then take the evicted key (storing its
payload in a temporary space), and hash it using the two
independent hash functions to acquire a bucket from both
hash tables. We then attempt to re-insert the evicted key
(with its payload) as described above.

It is possible for the eviction process to loop indefi-
nitely causing an irresolvable collision. We allow the evic-
tion process to repeat 1000 times before we declare the in-
sertion as a failure. If an insertion fails, we can attempt
to re-hash all of the keys using two different hash func-
tions (Pagh & Rodler 2004), or we can double the num-
ber of slots available, say, and use the same hash func-
tions to re-hash the keys. Both options are, however, ex-
pensive particularly with a large number of keys (Kirsch
et al. 2008).

We implement two variants of bucketized cuckoo hash-
ing. Our first does not handle insertion failures—we sim-

ply halt the construction of the hash table. Our second in-
cludes astash (Kirsch et al. 2008), an auxiliary data struc-
ture that stores the keys (and their payload) that cause irre-
solvable collisions. The stash, in our case, is an array hash
table with 8192 slots that uses a simple modulo (a mask)
as a hash function.

4 Experimental Design

We compare the performance of the hash tables described
in Section 3 by measuring the elapsed time (in seconds),
the space required (in megabytes) and the actual cache
performance incurred for the task of inserting, searching,
and deleting a large set of integers. We also compare
against a simple linear probing hash table as discussed in
Section 2, which is known to be both compact and cache-
efficient (Heileman & Luo 2005). Our measure of time
was averaged over a sequence of ten runs (we flooded
main memory after each run with random data to flush
system caches). Our measure of space includes an es-
timate of the operating system overhead (16 bytes) im-
posed per memory allocation request, which we found to
be consistent with the total memory usage reported in the
/proc/stat/ table.

We used PAPI (Dongarra, London, Moore, Mucci &
Terpstra 2001) to measure the actual number of L2 cache
misses and CPU cycles incurred during search. The cache
performance of insertion and deletion was found to be
similar and was thus omitted due to space constraints. Un-
fortunately, we could not measure TLB misses as our pri-
mary machine lacked a working TLB hardware counter;
simulating TLB misses usingvalgrind (available online)
is currently not an option. Our measure of CPU cycles,
however, compensates to some extent, as it includes the
CPU cycles lost from both L2 and TLB misses.

Our primary machine was an Intel E6850 Core 2 Duo
running a 64-bit Linux Operating System (kernel 2.6.24)
kept under light load (single user, no X server); the ma-
chine had 4GB of generic DDR2 1066 RAM with 4MB
of L2 cache and 64-byte cache-lines. We also tested the
data structures on alternative architectures: a 1.3Ghz Ul-
traSPARC III, a 700Mhz Pentium III, and a 2.8Ghz Pen-
tium IV and observed similar results which we report in
our full paper.

Our first dataset was derived from the complete set
of words found in the five TREC CDs (Harman 1995).
The dataset is therefore highly skew, containing many
hundreds of millions of words but of which only around
a million are distinct. We converted (up to) the first 4
bytes of each word, in order of occurrence, into a 32-
bit unsigned integer. This generated ourskew dataset
which contains 752 495 240 integers (approx. 3GB), but
which only 48 283 are distinct. Our second dataset labeled
distinct was created by randomly generating (from a
memory-less source) 60 million distinct unsigned integers
between the range of 0 to 232. Satellite data associated
with each key was set to a random (non-zero) number.



We varied the number of slots used by the hash ta-
bles from 215, doubling up to 226. We employed the same
multiplicative-based (64-bit) hash function with a mask as
a modulo1 in all of our hash tables, which we found to be
both fast and effective. We also used the same hash func-
tion for our implementations of bucketized cuckoo hash-
ing, but derived two independent hash functions by using
two different hash seeds (set to large prime values). Our
bucketized cuckoo hash tables implement two indepen-
dent hash tables by evenly dividing the number of slots
allocated to a single open-address hash table.

We are confident after extensive profiling that our data
structures (implemented in C) are of high quality and are
available for study upon request2. We compiled the data
structures usinggcc version 4.3.0 with all optimizations
enabled. We discuss the results of our experiments below.

5 Results

Skewed data. Figure 3 shows the time and space re-
quired to build and then search the hash tables respec-
tively, using our skew dataset. Despite its effort to
exploit cache, the clustered-chain hash table was only
slightly faster to build and search relative to the standard-
chain hash table, when under heavy load. With only 215

slots for example, the clustered-chain hash table required
about 18.13s to build and search, whereas the equivalent
standard-chain required about 18.19s to build and search.
These results may be surprising at first, since we would
normally expect better performance from a hash table
that uses cache-efficient linked lists to resolve collisions.
However, our results do coincide with those involving a
clustered-chain hash table and string keys (Askitis 2007).

The reason why the clustered-chain was generally
slower in these experiments was due to a lack of effi-
cient support for move-to-front on access. Move-to-front
is beneficial under skew access as it can reduce the cost
of accessing frequent keys. In a standard-chain, moving
a node to the start of the list requires only pointer ma-
nipulation which is computationally efficient. The impact
on performance becomes more apparent as we decrease
the load factor (i.e., by increasing the number of slots), in
which case, the standard-chain hash table becomes notice-
ably faster to build and search than the clustered-chain.
Pointer manipulation wont work in a clustered-chain as
it can violate the principle of node clustering. In order
to implement move-to-front in a clustered-chain, we must
explicitly move nodes in and amongst blocks which can
be expensive (Askitis 2007).

Comparing the L2 and CPU cycle costs incurred dur-
ing search shown in Figure 3, we observe consistent re-
sults to our timings. The clustered-chain hash table in-
curs slightly fewer L2 misses per search but only under
heavy load. However, the clustered-chain also consumes
more CPU cycles relative to the standard-chain due to the
absence of move-to-front on access. As we reduce the
average load factor (by adding more slots), the standard-
chain begins to rival the cache-efficiency of the equivalent
clustered-chain; and coupled with fewer CPU cycles per
search as a result of move-to-front on access, the standard-
chain offered overall superior performance.

Building an array hash table, in contrast, is clearly
more expensive than a standard or clustered-chain hash
table, but is more space-efficient due the elimination of
nodes and pointers. The array hash is more expensive to
build due to the high computational cost involved with
resizing arrays. We observe this fact by comparing the
time required to build against the time required to search.
During search, arrays are not resized, and as a result, the
array hash table is consistently faster than the standard
and clustered-chained hash tables. The array hash does

1http://www.concentric.net/ Ttwang/tech/inthash.htm
2http://www.cs.rmit.edu.au/˜naskitis/

not employ move-to-front on access due to the high com-
putational costs associated with moving keys (Askitis &
Zobel 2005). Nonetheless, our results show that cache-
efficiency more than compensates.

The high costs observed with building the array hash
table is also caused by the small number of insertions
made. In these experiments only 48 283 keys were in-
serted. The remaining 752 446 957 keys were duplicates.
As we increase the number of keys inserted, the compu-
tational cost of resizing arrays will be compensated by
a high reduction in cache misses (Askitis 2007). We
demonstrate this fact in a later experiment involving our
distinct dataset.

The bucketized cuckoo hash table was found to be
the slowest hash table to build and search under skew
access. At best—with 218 hash slots—the bucketized
cuckoo hash table (without a stash) consumed about 8.39
megabytes of space and required 24.09s to build and
21.57s to search. The equivalent array hash table required
only 3.37 megabytes of space and 20.47s to build and
17.68s to search—which is up to 19% faster. Similarly,
the clustered and standard-chain hash tables also offered
consistently superior performance relative to bucketized
cuckoo hashing. The equivalent standard-chain, for exam-
ple, consumed only 3.64 megabytes of space and required
around 18.88s to build and 18.78s to search. The use of
a stash in bucketized cuckoo hashing was of no benefit in
these experiments and was thus omitted, as no irresolvable
collisions occurred (hence, the stash was never accessed).

The results of L2 cache misses and CPU cycle costs
during search were consistent to our timings, with the
bucketized cuckoo hash table incurring the most cache
misses and consuming the most CPU cycles. Under heavy
load, the bucketized cuckoo hash table rivaled the cache-
efficiency of the equivalent array hash, but so did the
chained hash tables; they were all small enough to remain
cache resident.

Linear probing was consistently the fastest hash ta-
ble to build and search in these experiments when given
enough space—a minimum of 216 slots. The L2 cache
misses and CPU cycle costs measured were also consis-
tent with our timings, with linear probing incurring the
fewest cache misses per search and simultaneously con-
suming the least amount of CPU cycles. Our results also
coincide with previous research that reported linear hash-
ing to a cache-efficient open-address hash table (Heileman
& Luo 2005).

Although linear probing requires at least one available
slot per key inserted, no buckets, linked lists, or arrays are
used to resolve collisions. Hence, each hash slot occupies
just 8 bytes of memory (for a key and its payload). As
such, in addition to its high performance under skew ac-
cess, linear probing is relatively space-efficient. With a
just 216 slots for example, linear probing consumed only
0.52 megabytes of space and required 15.59s to build and
16.25s to search. The equivalent array hash table con-
sumed 1.59 megabytes of space and required 20.08s to
build and 17.41s to search. Similarly, the equivalent buck-
etized cuckoo hash table consumed 2.10 megabytes of
space and required 25.17s and 23.11s to build and search,
respectively.

Despite its impressive performance, linear probing has
poor worst-case performance and as a consequence, it can
become a slow hash table to use. Consider the follow-
ing experiment where we build the hash tables using our
distinct dataset and then search for all of the keys in our
skew dataset. The difference in this experiment—despite
the increased size of the hash tables—is that search fail-
ures will occur. From the 752 495 240 searches made, only
21 262 337 are successfully found; the rest incur the full
cost of traversal. With 226 slots, the linear probing hash
table required a total of 70.93s. The equivalent array hash
required only 26.20s while the bucketized cuckoo hash
table (with its constant worst-cost probe cost) required
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Figure 3: The time and space (top graphs) required to build and search the hash tables using our skew dataset. The
actual L2 and CPU cycles incurred during search is also shown (bottom graphs). The plots represent the number of slots
starting from 215 (left-most), doubling up to 226.

33.15s—53% faster than linear probing.
With a load factor of about 0.9, searching for a key that

does not exist in a linear probing hash table will likely in-
volve scanning and comparing a large proportion of the
hash table, which will consume a surplus of CPU cycles.
We can reduce this cost by reducing the average load fac-
tor (by adding a surplus of empty slots) but at the expense
of both space and overall performance, since fewer fre-
quently accessed slots are likely to remain cache-resident.
In contrast, when we traverse a slot in an array hash, we
are only comparing keys that have the same hash value.
As such, fewer keys are likely to be compared resulting in
better use of cache and the consumption of fewer CPU cy-
cles. Similarly, with bucketized cuckoo hashing, we pro-
cess only two buckets per search. However, unlike scan-
ning a single contiguous array of integers, these buckets
are likely to be scattered in main memory and can there-
fore result in more cache misses (relative to the array hash)
on initial access, which is reflected in our timings.

Distinct data. The time and space required to build and
then search the hash tables using ourdistinct dataset
is shown in Table 1. With no skew in the data distribu-
tion, move-to-front on access is rendered ineffective. With
only 215 slots, for example, the clustered-chain hash ta-
ble required about 2194s to be built and 1.2 gigabytes of
space. The equivalent standard-chain required over 6000s
and consumed over 1.9 gigabytes—which is 63% slower
and around 37% more space-intensive than the clustered-
chain hash table. The standard-chain was slower than the
clustered-chain because 60 million distinct keys were in-
serted. As a result, longer linked lists, on average, were
traversed during search and with no skew each key (node)

has equal probability of access. As a consequence, an ex-
cessive number of L2 cache-misses were incurred by the
standard-chain. Hence, with no skew in the data distri-
bution, node clustering is indeed an effective technique
for improving the cache utilization of a chained hash ta-
ble (Chilimbi 1999).

Despite the substantial performance gains offered by
the clustered-chain it still remained, in all cases, infe-
rior to the array hash. With only 215 slots, for exam-
ple, the array hash required 116s to be built and about
85s to search while simultaneously consuming approxi-
mately 480 megabytes of space. This is an improvement
in speed of about 95% relative to the equivalent clustered-
chain, with a simultaneous reduction in space of about
60%. These results also demonstrate that despite the high
computational costs incurred from frequent array resizing,
cache efficiency more than compensates allowing the ar-
ray method to be more efficient in practice (Askitis 2007).
These results also highlight that the array hash is ascal-
able hash table—the cost of inserting or searching a key
increases gracefully as the number of keys (or load fac-
tor) increase. The standard and compact-chained hash ta-
bles can only rival the performance of the array hash once
given a surplus of space.

The bucketized cuckoo hash table (without a stash) dis-
played competitive performance but required a minimum
of 224 slots to prevent irresolvable collisions. At best
(with 224 slots), the bucketized cuckoo hash table con-
sumed 536.8 megabytes of space and required 13.5s and
8.3s to build and search, respectively. This is considerably
more space-efficient than the equivalent standard-chain,
clustered-chain, and the array hash table which could only
rival in speed once given the same number of slots. With



Table 1:Time (sec) and space (MB) required to build and then search the hash tables using our distinct dataset.

Num Standard hash Clustered hash Array hash
slots Build (s) Search (s) Space (MB) Build (s) Search (s) Space (MB) Build (s) Search (s) Space (MB)
215 6112.2 6106.8 1920.2 2194.9 2196.5 1201.2 116.6 85.6 480.9
216 3092.6 3085.0 1920.5 1109.1 1110.2 1202.4 71.6 50.2 481.8
217 1560.9 1555.5 1921.0 561.3 563.7 1204.9 46.2 32.3 483.6
218 784.4 780.7 1922.1 285.3 285.5 1209.9 33.5 23.3 487.3
219 397.3 394.9 1924.1 147.2 146.5 1219.9 26.7 18.4 494.6
220 203.0 201.0 1928.3 78.5 76.4 1239.8 22.3 15.3 509.3
221 106.2 104.3 1936.7 43.9 41.0 1279.6 19.8 13.3 538.7
222 57.6 55.6 1953.5 26.7 22.6 1359.3 18.3 11.7 597.4
223 33.4 31.1 1987.1 18.1 12.7 1518.7 16.7 9.7 714.7
224 21.3 18.3 2054.2 14.1 8.3 1841.4 15.0 8.0 940.6
225 15.4 11.2 2188.4 12.5 7.1 2602.0 13.1 7.1 1308.6
226 12.5 7.3 2456.8 12.5 8.8 3734.7 11.8 6.2 1813.6

Num Cuckoo hash Cuckoo hash + stash Linear probing
slots Build (s) Search (s) Space (MB) Build (s) Search (s) Space (MB) Build (s) Search (s) Space (MB)
223 – – – 1821.1 72.7 480.2 – – –
224 13.5 8.3 536.8 13.7 8.4 536.9 – – –
225 14.1 9.3 1073.7 14.3 9.3 1073.8 – – –
226 15.1 10.3 2147.4 15.5 10.3 2147.5 5.1 4.7 536.8

224 slots, for example, the array hash consumed 940.6
megabytes of space and required about 15s to build and
8s to search.

Increasing the number of slots available to the bucke-
tized cuckoo hash table yields poorer performance relative
to the equivalent chained and array hash tables, as fewer
buckets are likely to remain cache-resident; this reduction
in locality impacts bucketized cuckoo hashing more than
the equivalent chained and array hash tables, since up to
two random buckets are accessed during search. In ad-
dition, by doubling the amount of space used, more TLB
misses are likely to occur in bucketized cuckoo hashing as
fewer virtual to physical memory translations are likely to
be stored within the TLB (Askitis 2007).

With a stash enabled, we can safely reduce the number
of slots available to the bucketized cuckoo hash table as
shown in Table 1. With 223 slots, 26 449 132 keys out of
the 60 million were stored in the stash. The stash, how-
ever, is not intended to maintain such a large volume of
keys. As a result, the overall space consumed by the buck-
etized cuckoo hash table drops to around 480 megabytes,
since almost half of the keys are stored in an auxiliary ar-
ray hash that uses only 8192 slots (hence, the space over-
head incurred from slot pointers and allocating dynamic
arrays is tiny). However, performance is severely jeopar-
dized as a result. We can reduce the time required to build
and search by increasing the number of slots in the stash,
but at the expense of space.

Linear probing required at least 226 slots to operate in
these experiments, since 60 million distinct keys were in-
serted. However, as each slot is only 8 bytes long, the
total space consumed was just over double the space re-
quired by ourdistinct dataset—536 megabytes. This
is still reasonably space-efficient when compared to the
array hash table, which can only rival in space-efficiency
when given less than 221 slots. In all, even with a load
factor of 0.9 and with no skew in the data distribution, lin-
ear probing offered the fastest insertion and search. Buck-
etized cuckoo hashing can match the space-efficiency of
linear probing with 224 slots, but remained around twice
as slow. However, as we highlighted during our previous
skew search experiments, linear probing can be expensive
in the worse-case which occurs when we search for a large
batch of keys that are not found. We demonstrate this in
the next section that involves key deletion.

Deletion. For our next experiment we build the
standard-chain hash table, the array hash, the linear prob-

ing hash table, and the bucketized cuckoo hash table (with-
out a stash) using ourdistinct dataset. We then measure
the time required to delete 30 million integers selected at
random from ourdistinct dataset. Under heavy load
(with 216 slots), the standard-chain hash table required
478.8s to delete the random batch of keys. The equiva-
lent array hash, in contrast, needed only 57.3s. We ob-
served consistent results as we reduced the average load
factor (by adding more slots). With 223 slots for example,
the standard-chain hash required 11.4s whereas the equiv-
alent array hash needed only 8.5s. When we delete a ran-
dom key from the standard-chain hash table, a linked list
is likely to be traversed which will incur cache misses—
the cost of which will out-weigh the overall cost of array
scanning and resizing.

Bucketized cuckoo hashing required only 4.8s to delete
the random batch of keys using 225 slots. Its speed, how-
ever, is due to the fact that no real deletion took place.
Since hash slots are represented as fixed (cache-lined)
sized buckets, a key and its payload data are deleted by
either overwriting or by setting the payload value to zero.
Hence, unlike the standard-chain or array hash tables, no
memory is actually freed—no time is lost to system calls
(i.e., to free a node) or to resize an array. Similarly, delet-
ing a key in a linear probing hash table involves flagging
the key and its payload as having been deleted. As a result,
with 226 slots, linear probing required only 1.8s to delete
the random batch of keys.

Although the array hash table was shown to be supe-
rior to the standard-chain for random key deletion, it can
be slower in the worse-case which occurs when we con-
tinually delete the first key from any slot. This process
is expensive because we have to scan and resize the en-
tire array. In a linked list, we only need to delete the
first node and reassign its pointers. With 216 slots, the
standard-chain hash required only 2.1s to delete 60 million
integers (our entiredistinct dataset), all of which were
found at the start of each slot. The equivalent array hash
table needed over 90s due to the high computational costs
involved with array scanning and resizing. This worst-
case cost can be reduced if we resize arrays periodically,
but at the expense of maintaining unused space within ar-
rays (Askitis & Zobel 2005). Similarly, by relaxing some
constraint on space-efficiency, we can effectively elimi-
nate this worst-case cost altogether by employing a type
of lazy deletion. We flag the key and its payload as having
been deleted, and optionally resize the array only when,
say, it becomes half empty.



In our final experiment we build our set of hash ta-
bles using thedistinct dataset. We then generate 100
million unsigned integers at random (from a memory-less
source) to form a new batch of keys to delete. Unlike the
previous batch, only 2 731 980 keys are found in the hash
tables. The remaining 97 268 020 keys are not present in
our distinct dataset and only 63 878 in total are dupli-
cates. With 220 slots, the array hash table required about
32.3s to delete the skew batch of keys. The equivalent
standard-chain hash table required over 686.1s. We ob-
served consistent results as we reduced the load factor
by adding more slots, with the standard-chain (using 225

slots) at 20.7s and the equivalent array hash at 13.4s. The
standard-chain is more expensive because the majority of
searches end in failure, thereby incurring the full cost of
traversal (traversing a linked list will incur more cache
misses than scanning its equivalent array). Move-to-front
on access is also rendered ineffective since the majority of
keys are distinct.

Though not as fast as the array hash, with 225 slots,
the bucketized cuckoo hash table required only 17.1s to
delete the skew batch of keys. Bucketized cuckoo hashing
offers a constant worst-case probe cost since at most only
two buckets are processed. However, these buckets are
unlikely to be physically located close to each other and
as a consequence, can incur more cache misses (and TLB
misses) on initial access compared to scanning and resiz-
ing a single array. As expected, linear probing was slower
than the array hash and the bucketized cuckoo hash table,
requiring 22.8s with 226 slots due to the excessive number
of hash slots accessed.

6 Conclusion

We have described how to efficiently implement a
cache-conscious array hash table for integer keys. We
then experimentally compared its performance against
two variants of chained hash table and against two
open-address hash tables—linear probing and bucketized
cuckoo hashing—for the specific task of maintaining a
dictionary of integer keys (with payload data) in-memory.

When we can afford to allocate as many hash slots
as the number of distinct keys inserted (with a surplus of
empty slots), linear probing is by far the fastest hash table
with or without skew (duplicate keys) in the data distinc-
tion. Linear probing, however, has poor worst-case perfor-
mance which can jeopardize its efficiency as a dictionary.
The array hash table was shown to be a better option in
this case.

Despite a constant worst-case probe cost, bucketized
cuckoo hashing was consistently slower than the array
hash to build, search, and delete keys with a skew dis-
tribution. The bucketized cuckoo hash table could only
rival the performance of the array hash when under heavy
load and with no skew in the data distribution. However,
unlike linear probing or bucketized cuckoo hashing, the
array hash can operate efficiently (that is, it does not need
to be resized) with a load factor greater than 1, making it
a more scalable option.

The array hash was also among the fastest hash tables
to delete random keys, but it can become slower than both
a chained hash table and bucketized cuckoo hashing in a
specific case involving key deletion. Yet with some relax-
ation on space-efficiency, we can employ simple lazy dele-
tion schemes with periodic array resizing to effectively
eliminate this worst-case deletion cost, making the array
hash an ideal option for use as a dictionary.
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