Fast and Compact Hash Tablesfor Integer Keys

Nikolas Askitis

School of Computer Science and Information Technology,
RMIT University, Melbourne 3001, Australia.
Email:naskitis@s.rnit.edu. au

Abstract key advantage offered by the array hash is the elimina-
tion of nodes and string pointers that were used to access
A hash table is a fundamental data structure in computestrings. This configuration permits good use of CPU cache
science that can offer rapid storage and retrieval of dateand hardware data prefetch while simultaneously saving
A leading implementation for string keys is the cache-space.
conscious array hash table. Although fast with strings, We can avoid the use of chains and arrays altogether
there is currently no information in the research literatur by storing homogeneous keys such as integers directly
on its performance with integer keys. More importantly, within hash slots. This forms an open-address hash ta-
we do not know how efficient an integer-based array haslble (Peterson 1957) which can be simpler to implement
table is compared to other hash tables that are designed fand can result in better use of both CPU cache and
integers, such as bucketized cuckoo hashing. In this papespace (Heileman & Luo 2005). When a collision oc-
we explain how to efficiently implement an array hash ta-curs in an open-address hash table, several well-known
ble for integers. We then demonstrate, through careful extechniques can be applied such as linear probing or dou-
perimental evaluations, which hash table, whether it be dle hashing (Askitis 2007). Our focus is with a rela-
bucketized cuckoo hash table, an array hash table, or atively newer technique called cuckoo hashing (Pagh &
ternative hash table schemes such as linear probing, offeRodler 2004).
the best performance—with respect to time and space— Cuckoo hashing uses two open-address hash tables and
for maintaining a large dictionary of integers in-memory, two independent hash functions. A key is stored in either
on a current cache-oriented processor. one of the hash tables but not both. When a collision oc-
. curs in the first hash table (using the first hash function),
Keywords: Cuckoo hashing, integers, cache, array hashihe key occupying the slot is evicted and replaced by the

dictionary, in-memory. new key. The evicted key is then hashed using the second
hash function and stored in the second hash table. If this
1 Introduction causes another collision, then the eviction process repeat

until all keys are hashed without collision. Cuckoo hash-

In-memory data structures are fundamental tools used if'g offers a constant worst-case probe cost since at most
virtually any computing application that requires effidien ONly two hash slots are accessed during search (Pagh &
management of data. A well-known example is a hastRodler 2004, Panigrahy 2005). .

table (Knuth 1998), which distributes keys amongst a,__Cuckoo hashing, however, requires the average load
set of slots by using a hash function (Ramakrishna gfactor (i.e., keys/slots) to be kept less than 0.49 (Pagh &
Zobel 1997, Zobel, Heinz & Williams 2001). A hash ta- Redler 2004). If we were to exceed this threshold, then
ble can offer rapid insertion, deletion, and search of bottf€ Probability of an insertion failure (an irresolvable-co
strings and integers but requires a form of collision reso-iSion) will greatly increase. Recent innovations of cueko
lution to resolve cases where two or more keys are hashddfShing have addressed this issue by employing several
to the same slot. The simplest and most effective colli'ash functions to reduce the cost of collisions (Fotakis,
sion resolution scheme for when the number of keys is nof @0, Sanders & Spirakis 2003), and with hash slots that
known in advance is the use of linked lists. This formstan store more than one key—otherwise knowbuzse-

a chaining hash table (Zobel et al. 2001) also known as §28d cuckoo hashing. These variants, among others, can

standard-chain hash table (Askitis & Zobel 2005). efficiently support a load factor of almost 1 (Zukowski,
Linked lists (or chains) are simple and flexible struc- Héman & Boncz 2006, Ross 2007).
tures to implement and maintain but are not particularly,, . Despite its popularity (Kirsch, Mitzenmacher, &
cache-friendly. Nodes and their associated keys are typl/ieder 2008), cuckoo hashing has yet to be compared
ically scattered in main memory and as a consequenc@d@inst an integer-based array hash. The array hash is
traversing a chain can result in poor use of CPU cacheStructurally dissimilar to cuckoo hashing, since it emloy
In addition, nodes are accessed via pointers which incurdynamic arrays to resolve collisions. The main disadvan-
pointer-chasing, a phenomenon that hinders the effectivéd?9€, With this approach in comparison to cuckoo hash-
ness of hardware data prefetchers (Askitis 2007). ing, is that more space can be required as a result of slot
Askitis and Zobel (Askitis & Zobel 2005) addressed pointers and memory allocation overheads. In addition,
these issues by replacing the chains used to resolve cdlfore keys can be compared in the worst-case since ar-
lisions with dynamic arrays, yielding a cache-conscioud2YS are dynamic (each hash slot is able to store an un-

collision resolution scheme called the array hash. Th&0unded number of keys). However, the array hash has
a useful property that cuckoo hashing lacks—it can make

Copyright ©2009, Australian Computer Society, Inc. This paper ap- good use of cache while supporting a load factor greater
peared at th_e 32nd Australasian Computer Science Conte(@@SC than 1. The array hash is thereforesgalable hash ta-
2009), Wellington, New Zealand, January 2009. Conferenioes ble; it can remain efficient to use as the number of keys
Research and Practice in Information Technology (CRPITD), 91, increase (Askitis 2007). The number of keys that can
Bernard dMa”Sz dE‘C’j- ﬁef’md.uc.“orl‘ Lor dacademic' not-for pmiiposes ha stored in an open-address hash table, in contrast, is
ermitted provided this text is included. 0 - '
permitied provided this text s Inclu bounded by the number of slots and their capacity. Hence,

to accommodate an unexpected increase in the number performance of the FP-tree, which is used in frequent-
keys processed, an open-address hash table would needpattern mining (Ghoting, Buehrer, Parthasarathy, Kim,
be resized and rehashed, which can be an expensive prihiguyen, Chen & Dubey 2006). In this approach, the orig-
cess particularly with a large number of keys (Cieslewiczinal pointer-based FP-tree is copied into a static contigu-
& Ross 2007, Kirsch et al. 2008, Askitis & Zobel 20§)8 ous block of memory which represents a cache-conscious
Drawing together the themes we have sketched, thi§P-tree.
paper provides three important contributions. First, we Askitis and Zobel advanced the idea of clustering by
will show how to develop an array hash table for inte- replacing the linked lists used by the standard-chain hash
gers which we experimentally compare against a standardable with dynamic arrays, forming aarray hash ta-
chain hash table (Zobel et al. 2001), a more cache-efficiertle (Askitis & Zobel 2005). In this manner, strings are
variant known as a clustered-chain hash table (Chilimbstored contiguously in memory eliminating nodes and
1999, Askitis 2007), and a linear probing open-addrespointers which allows for high reductions in both cache
hash table (Peterson 1957, Heileman & Luo 2005). Oumisses and space usage—speed gains of up to 97% with
experiments measure the time, space, and actual caclaeound a 70% simultaneous reduction in space was re-
performance of these hash tables using large volumes gforted over standard chaining. The dynamic array tech-
32-bit integers. Second, we experimentally compare th@iques were also applied to the string burst trie (Heinz,
performance of the integer-based array hash against leadobel & Williams 2002) and binary search tree (Knuth
ing implementations of bucketized cuckoo hashing, which1998), yielding superior cache-conscious variants known
are designed to operate efficiently with a load factor of al-as thearray burst trie andarray BST (Askitis 2007, Aski-
most 1 (Ross 2007, Kirsch et al. 2008). Third, based ortis & Zobel 200&)).
our results, we show which hash table is ideally suited— We can eliminate the use of chains and arrays alto-
with respect to overall performance and space usage—fagether by storing homogeneous keys such as 32-bit or 64-
the task of storing and retrieving a large set of integerdit integers directly within hash slots, forming an open-
with payload data (that is, to maintain a dictionary) in- address hash table (Peterson 1957). A collision resolu-
memory. tion scheme is still required, however, with the simplest
beinglinear probing; the hash table is scanned from left
to right (beginning from a hash slot selected by the hash
function) until a vacancy is found (Peterson 1957). Instead
. L of scanning, heuristics can be used to guess the location
A hash table is a data structure that distributes key%fav::lc::mtgslot. This is known abublehaghing; another
amongst a set of slots by using a hash function. Arash function independent of the first is used to skip to a
hash function should be both fast and from a universa|y:ation that may be vacant. This approach requires, on

class (Ramakrishna & Zobel 1997, Askitis 2007, ROSSyerage, fewer probes than linear probing (Knuth 1998).

2007), so that keys are distributed as well as possible. FOR gimilar approach calleduadratic probing guesses the
ext available hash slot (from left-to-right) by using a
guadratic function. Another isr@ordering scheme (Brent
/ d - dul lculati | 1973) which moves items around to reduce expected probe
IS random, a simple modulo calculation can also serve aggsts. Alternative techniques include coalesced chajning
afast and effective hash function (Zukowski et al. 2006). \yhich allows lists to coalesce to reduce memory wasted
| A h'lallshh function, howeV(Ia(r, canhnot %uaran'fee th%t eachy unused slots (Vitter 1983), and to combine chaining
slot will have at most one key when the total number of 5,4 gpen-addressing, known as pseudo-chaining (Halatsis
keys is not known in advance (Knuth 1998). Therefore,g Philokyprou 1978).
a form of collision resolution is needed. For strings, a | inear probing and double hashing were surveyed and
simple and effective technique is the use of linked “Stsanalyzed by Munro and Celis (Munro & Celis 1986)
with dmgvi't?"fﬁonaonbf‘ccssi. _(Kguzth b1?92%)65f0rmlng & and were found to offer poor performance compared to a
standard-chain hash table (Askitis & Zobe >): chained hash table when the load factor (i.e., keys/slots)
Linked lists, however, are not cache-efficient dataznnoached 1. In addition, since keys are stored di-
structures (VanderWiel & Lilja 2000, Kowarschik & WeifS ey within slots, the total number of keys supported
2003). As a consequence, the standard-chain hash gy 3 open-address hash table is bounded by the num-
ble is likely to attract high performance penalties (cache,e of sjots and their capacity. Resizing an open-address

misses) on current cache-oriented processors. Node Clugzsh table to accommodate more keys can be an expen-

tering can, to some extent, improve the cache perforgjye and space-consuming process (Askitis 2007, Kirsch
mance of a linked list by packing its homogeneous node

®t al. 2008). As a consequence, open-address schemes

into blocks of memory that are sized to maich the CPUy o 4 nically best suited for applications where the total

cache-line (typically between 64 and 256 bytes) (Chilimbi; mper of keys is known in advance, or when keys can

1999, Badawy, Aggarwal, Yeung & Tseng 2004). In this o eicted (Cieslewicz & Ross 2007). Linear probing and

manner, access to the first node in a chain will autoq, pie hashing have recently been investigated in the con-

matically cache the next few nodes, which can improvge, of CPU cache (Heileman & Luo 2005), with linear
cache usage. The application of node clustering to they,ping found to be the overall efficient option as a result
standard-chain hash table yielddlastered-chainhash ta- ¢ its better use of cache.

bleS(AS.'T'“S 2027)- h | q : Cuckoo hashing (Pagh & Rodler 2004) is a relatively

imilar techniques that relocate or group data to Im-ye,y, open-address hash table that uses two hash tables and

prove cache utilization include virtual cache lines (Rubin o hash functions to resolve collisions—often a single
Berngi_teln & Eog_eh&ls%g), ngggg.edl mgrlr:mry azlg’gg'open—address hash table is divided equally to form the two
tors (Truong, Bodin & Seznec Kistler & Franz 2000, j,qependent hash tables required. A key is stored in either
Berger, Zorn & McKinley 2002), and memory relocation e ot the hash tables, but not both. When a collision

techniques (Calder, Krintz, John & Austin 1998, Lattner j-cursin the first hash table (usin ; ;
= 7 I g the first hash function),
& Adve 2005, Chilimbi & Shaham 2006). A similar node 4 key occupying the slot is evicted and replaced by the

clustering technique known as hash buckets was applie : ; ;
to the two chained hash tables used to perform the hasrﬁ—ew key. The evicted key is then hashed using the second

e) ! ash function and stored in the second hash table. If this
join algorithm in SQL (Graefe, Bunker & Cooper 1998). 5,565 another collision, then the eviction process repeat
Another variant combines hash buckets with softwar

. . &until all keys are hashed without collision.
prefetching and multi-threaded access to further speed Up ¢ ckoo hashing offers a constant worst-case cost dur-

hash-join (Garcia & Korth 2006). Ghoting et al. also pro-jng “search but requires the load factor be kept below
posed a node clustering technique to improve the cachig 29 (pagh & Rodler 2004, Ross 2007). This implies that

2 Background

to be universal and computationally efficient (Ross 2007)
Alternatively, assuming that the input sequence of integer

over half of the slots are to be kept empty. If the loadin sort order (Nash & Gregg 2008). The authors showed
factor is increased beyond this threshold, then an insetthat a variant of burst trie (Heinz et al. 2002, Askitis 2007)
tion will likely fail due to an irresolvable collision (Pagh that is designed for integers offers the best performance.
& Rodler 2004). Fotakis et al. proposediaary cuckoo However, their focus was solely on sorted data manage-
hashing scheme which employs a set of independent hashent. As a result, the authors did not explore the perfor-
functions to probe the hash table (Fotakis et al. 2003). Thenance of integer-based hash tables.
authors showed that by employing four independent hash Cache-oblivious data structures attempt to perform
functions, each assigned to a different region of the haskwell on all levels of the memory hierarchy, includ-
table, a load factor of approximately 0.97 can be achieveihg disk, without knowledge of the characteristics of
before the first irresolvable collision occurs. each level (Kumar 2003). Some examples include the
A simple variant of cuckoo hashing known as bucke-cache-oblivious string B-tree (Bender, Farach-Colton &
tized cuckoo hashing allows hash slots to contain up to &uszmaul 2006) and a cache-oblivious index for ap-
fixed number of keys. With a slot capacity of two keys, proximate string matching (Hon, Lam, Shah, Tam &
for example, a load factor of 0.89 can be achieved befor&/itter 2007), but of which often assume uniform distribu-
the first irresolvable collision occurs (Panigrahy 2005, Di tion in data and operations (Bender, Demaine & Farach-
etzfelbinger & Weidling 2007). Erlingsson et al. studied Colton 2002, Askitis & Zobel 2008. An recent imple-
the combination ofl-ary cuckoo hashing and bucketized mentation of a cache-oblivious algorithm involving matrix
cuckoo hashing (Erlingsson, Manasse & Mcsherry 2006)¢alculations and homogeneous keys was shown to offer
and showed that two independent hash functions and a slatferior performance, compared to alternative algorithms
capacity of up to four keys can yield good performancethat were tuned to exploit CPU cache (Yotov, Roeder, Pin-
and space utilization. gali, Gunnels & Gustavson 2007). The data structures that
Kirsch et al. proposed the use ofstash, a simple we consider in this paper reside solely within volatile main
data structure independent of the cuckoo hash table that imemory and are not cache-oblivious.
used to store keys that cause irresolvable collisions. The
use of a stash can greatly improve the failure probabil- .
ity bounds of insertion, and given knowledge of the to-3 | MPlementing Hash Tablesfor Integers

tal number of keys inserted, only a constant amount of .
additional space is required (Kirsch et al. 2008). Addi-Array hash table. The array hash table can be easily

tional variants of cuckoo hashing include one that is engi-""d""ptle‘jBtz0 k;%_tore,egegete, and retlriev;:_ fixed-length kelys,
neered for use in hardware (Kirsch & Mitzenmacher 2008)1amely 32-bit or 64-bit integers. In this paper, we only
and history-independent hashing (Naor, Segev & Wiede onsider 32-bitintegers but the algorithms we describe be-
2008). Kutzelnigg (Kutzelnigg 2008) analyzed the per- owTare readrlllyfadaptable to 64‘&” Integers. hash
formance of an asymmetric cuckoo hash table (Pagh o search for an integer (a key) in an array hash ta-
Rodler 2004) (where the two hash tables used contaifl!€; We first hash the key to acquire a slot. If the slot is
a different number of slots). However, this variant was€MPY: then the key does not exist in the hash table and
found to increase the probability of insertion failure. the search fails. Otherwise, we scan the array acquired, a
Zukowski et al. studied the application of a non- key at a time, until a match is found or until we exhaust

bucketized cuckoo hash table in database operations sulfi¢ @ray—in which case, the search fails. On successful
as aggregation and join. The authors proposed a simp earch, the key and its payload data are not moved to the

variant that eliminates thié-then-else branches used dur- '7ont of the array due to the high computational costs in-
ing search, which can improve lookup performance relaY0lved (Askitis 2007); as we show in later experiments,

tive to a chained hash table (Zukowski et al. 2006). cache-efficiency more than compensates. .
Similarly, Ross explored the application of a bucke- When a search fails, we can then msert_the key into the

tized cuckoo hash table for database operations such as digsh table. Inisgrglon proceeds"as follgws.dn‘ the sloctj V‘.ﬁf

gregation (Ross 2007), and proposed combining a buckéEMPY, @ new 12 byte array is allocated and assigned. The

tized cuckoo hash table withary cuckoo hashing, branch i;St ‘t pyt?s ri]'".' trf:e ".ir.rt‘?yl.ar% rtesle)rv_?rc]i to St‘t?’gebthte nutmber
iy - : - _of entries (which is initialized to 1). The next 8 bytes store
elimination and the use of SIMD operations (single in the key (4 bytes) followed by its payload data, a 4 byte in-

structions, multiple data), to further speed-up process; - - o
ing of hash slotspin datat))ase operationps. Thig v%riant C;S%ger. Otherwise, we resize the existing array by 8 bytes (4

cuckoo hashing, also known as a splash table (Ross 2007)ytes for the key and 4 bytes for its payload data) using the
was shown to offer superior space utilization and perfor/€&10C system call. The key and its payload are then ap-

mance with both small and large hash tables. FurtherP€nded fo the array and the number of entries in the array
more, unlike the variants of cuckoo hashing previously!S incremented by 1, completing the insertion process.

discussed, the splash table can efficiently support paylo I%elgti%n procee%s in a .?imilar_ manneﬁ: dthedkey is
data (a counter or a pointer that is associated with everj)@shed, the acquired array (if any) is searched and assum-
homogeneous key inserted). ng the key is found, we overwrite the key and its payload

The cache-sensitive search tree is another data stru@ata by sliding the remaining keys (if any) with their pay-

ture that can offer efficient sorted access to integers (Ralpad data one entry towards the start of the array. The

& Ross 1999). It is a binary search tree (with nodes size lﬁmber of entrLes ig the arr%y is th(ret&écfecremented ﬁy 1.
to match the cache-line) that is built on top of an existing, '€ array can then be resized usingress|oc system ca

static array of sorted integers. As a consequence, how? Shrink the array by 8 bytes. Figure 1 shows an example

ever, it can not be updated efficiently. The adaptive trie i<f i{] arLay ha_sh.F. 1 inter] ‘ th thei
another cache-efficient data structure for strings and inte__ /}S Shown in Figure 1, we interieave keys with their
gers (Acharya, Zhu & Shen 1999), but was shown to b ayload data. Alternatively, we can separate keys from

slower and more space-intensive against other data stru _eilr p%y(ljoatld by stgringfthe keys first Ellowed by t?.eif
tures such as the array burst trie and variants of binarp@yl0ad data (in order of occurrence). However, prelimi-

search tree, particularly under skew access—due to tHa&"y. experiments using this array configuration yielded no

overhead of maintaining adaptive nodes (Askitis 2007 Significant gains in performance.

Crescenzi, Grossi & Italiano 2003). Similarly, the Judy

trie (Silverstein 2002) can also maintain sorted access tStandard-chain hash table. Inserting, searching, or

integers, but was shown to offer poor performance againsdeleting a key in a standard-chain hash table is a relatively

alternative trie-based data structures, particularlyeund straight-forward task. The key to search or insert is first

skew access (Askitis 2007, Askitis & Zobel 201)8 hashed to acquire a slot. If the slot anchors a linked list,
Nash et al. studied the performance of several integetthe list is traversed until a match is found. If found, the

based data structures that can efficiently retrieve inseger

(a) Array Hash Table (b) Standard Hash Table

L [[« T1 Lol T Tol T Teo]]

/

(3) 19475[4], 234[5], 42[1] ‘

19475[4] \

']
I |
234[5] 233[7]

42[1]

(c) Clustered Hash Table
AL T Tel [T]

l T

1947514]
|

T

[4715] \ 1 | [s133) \

ik

AN,

42[1]

f

Figure 1: Some integers (keys) along with their payload data (square brackets) are inserted into an array hash, a
standard-chain hash, and a clustered-chain hash table. Each dynamic array starts with the no. of keys (in parenthesis).

node containing the required key and payload is moved tevhich attempt to reallocate stack and heap data to better
the front of the list via pointer manipulation. utilize cache—can also be applied, but often require pro-
The key can only be inserted on search failure, ingram profiles and are therefore not particularly effective
which case, the key (4 bytes) and its payload data (4 bytedpr dynamic data structures (Askitis 2007).
are encapsulated within a 12 byte node which contains a The clustered-chain hash table can also be optimized
null 4-byte next-node pointer. The node is then appendetb exploit SIMD instructions (single instruction, multgl
to the end of the list completing the insertion process.data). On initial access to a block of nodes, we can copy
Deletion proceeds in a similar manner: assuming that thés keys and their payloads into SIMD registers. This
key is found, its node is deleted and the list is re-arrangedvill allow the set of keys in the block to be compared
via pointer manipulation. Figure 1 shows an example of aagainst a key using a single instruction. However, ex-
standard-chain hash table. ploiting SIMD instructions in a clustered-chain hash table
(and also in an array hash) resulted in poor overall per-

; : formance. Ross also observed inferior performance after
Clustered-chain hash table. The standard-chain hash : ;
table is a simple and flexible data structure but it is notAlleMPLng to exploit SIMD instructions in a chained hash

particularly cache-efficient, as nodes are likely to be-scat able (Ross 2007).
tered in memory. We can address this issue by cluster-
ing nodes (Chilimbi 1999). That is, each slot anchors aBucketized cuckoo hashing. We implement bucketized
block of memory that is sized to match the CPU cache-linecuckoo hashing where each hash slot mieket that can
(64 bytes in our case). Searching for, or inserting a keystore up to four keys and their payload data. A bucket
(along with its payload data) proceeds as described for this structured as an array of eight 32-bit integers. The
standard-chain, except that during insertion, a node is agfirst four store keys while the remaining four store their
pended to the acquired block. If the block is full, we storepayload data, in order of occurrence. This bucket struc-
the node in a new empty block that is linked to the old.ture and its capacity were shown to offer the best perfor-
This effectively forms a linked list of blocks which should mance (with respect to both time and space) for bucketized
improve spatial access locality and should also reduce theuckoo hashing (Ross 2007, Erlingsson et al. 2006). We
impact of pointer-chasing (Askitis 2007). Figure 1 showsassume that zero is an invalid payload value. This will al-
an example of a clustered-chain hash table. low us to efficiently count the number of keys stored in a
Details regarding deletion in a clustered-chain are genbucket. Alteratively, we could reserve the first 32-bit gntr
erally not available in the literature (Chilimbi 1999). To (to maintain word-alignment) in each bucket as a counter,
delete a key in a clustered-chain, we must overwrite it andut at a cost in space (Ross 2007). An example of a buck-
its payload by sliding all remaining keys (and payloads)etized cuckoo hash table is shown in Figure 2.
up one entry towards the start of the chain. However, this To search for a key (i.e., the query key), we hash it us-
can involve accessing and manipulating keys from severahg the first hash function. We then access the required
blocks which can be expensive (Askitis 2007). bucket from the first hash table and compare its keys
We can pre-allocate space prior to building the stan-against the query key. If the query key is not found, we
dard or clustered-chain hash table which will reduce thehash it again using the second hash function to acquire a
computational cost of allocating nodes (or blocks), but notbucket from the second hash table. We search the second
their cache-efficiency (Askitis 2007). We can also use abucket and if the query key is found, we return its payload
cache-efficient memory allocator suchlafioc (Truong data. Otherwise, the search is unsuccessful. Zukowski et
et al. 1998), which attempts to interleave nodes to im-al. suggests deriving the second hash value from the first
prove cache-line utilization. However, Askitis demon- by shifting it by n bits to the right (Zukowski et al. 2006).
strated that both pre-allocation ahalloc are ineffective However, we found this approach to be unsuitable for a
for the chained hash table (Askitis 2007). Berger et allarge number of keys, due to poorer distributions of keys
also reported similar results after comparing the perforto slots which as a consequence, led to poorer overall per-
mance of pointer-intensive programs using several cusformance.
tom memory allocators (Berger et al. 2002). The general- Deletion proceeds in a similar manner. We search for
purposemalloc allocator—sometimes known as the Doug the query key as described, and if found, we remove it
Lea allocator which is provided by mogtc compilers— and its payload from the acquired bucket by sliding any
was found to offer superior performance in the majority ofremaining keys (along with their payload data) one entry
cases. Compiler based techniques (Calder et al. 1998)-tewards the start of the array. If the last key is deleted, we

Hash table 1 Hash table 2

10475 |42 5 47 10 9475 Stash
234 233 7893

[4] [1] [33] [5] [423] |[9]

[5] [7] [52]

Figure 2:Some integers (keys) along with their payload data (in square brackets) are inserted into a bucketized cuckoo
hash table with two hash functions and a bucket capacity of two. The stash stores keys that cause irresolvable collisions.

simply set its payload value to zero. ply halt the construction of the hash table. Our second in-
It is possible to parallelize the search phase by pro<ludes astash (Kirsch et al. 2008), an auxiliary data struc-

cessing both buckets at once by using threads (Pagh &ure that stores the keys (and their payload) that cause irre
Rodler 2004). However, since buckets are small in sizesolvable collisions. The stash, in our case, is an array hash
(they can fit entirely with a cache-line), they can betable with 8192 slots that uses a simple modulo (a mask)
processed rapidly. As a consequence, the overhead @k a hash function.

creating and synchronizing threads is likely to impact
overall performance (Askitis 2008). Leading implemen-
tations of bucketized cuckoo hashing have instead re

lied on careful coding to exploit compiler optimizations, .
hardware-level paralielism and out-of-order execution of V& compare the performance of the hash tables described

instructions (Zukowski et al. 2006, Ross 2007, Kirschill Séction 3 by measuring the elapsed time (in seconds),
et al. 2008) the space required (in megabytes) and the actual cache
We implément search by manually unrolling the loop performance incurred for the task of inserting, searching,

used to compare the keys in a bucket. We attempted tgnd deleting a large set of integers. We also compare
eliminate branches (i.e., tHé statements) used to com- 2dainsta simple linear probing hash table as discussed in
pare keys (Zukowski et al. 2006). However, because buck-sﬁ.ct'on 2|,_|w_r|1|ch IS Igula_wn tgo%% botg compact and fcache-
ets can store more than one key with payload data that igTicient (Heileman & Luo). Our measure of time

returned if a key matches the query key (two propertiesV@S averaged over a sequence of ten runs (we flooded
not considered by Zukowski et al.), we found that man-main memory after each run with random data to flush

ual loop unrolling combined with compiler optimizations SYStém caches). Our measure of space includes an es-
yielded the best results. Similarly, the use of SIMD in- imate of the operating system overhead (16 bytes) im-
structions during search yielded no improvements compP0S€d per memory allocation request, which we found to

pared to our original code. One issue regarding the use (ﬁe consistent with the total memory usage reported in the

; A ; proc/stat/ table.
SIMD instructions is that we must first load the keys of a We used PAPI (Dongarra, London, Moore, Mucci &

4 Experimental Design

buckets can be accessed at random and are not re-used agiffilar and was thus omitted due to space constraints. Un-
ortunately, we could not measure TLB misses as our pri-

ing the search phase, hindering the effectiveness of SIMD, : .)

When the search ends in failure, we can insert théh@ry machine lacked a working TLB hardware counter;
query key by appending it (and its payload) to the bucketsmulatmglg TLB misses usmroyalgrmd (avaﬂafblcti:)onl|ne)I
acquired from the first hash table. If the bucket is full, we'S currently not an option. Our measure of CPU cycles,
then check if the bucket from the second hash table caOWeVer, compensates to some extent, as it includes the
accommodate. If so, the key and its payload data are a _Pg cycles lost frorr;]_both L2 andl TLFErggSSS% ’D
pended, completing the insertion. Otherwise, we evict the U’ p”%‘frg mLac '”8 was an gte " or|e2 5 2‘20
oldest key from either the first or second bucket. Sincerrklgr‘)?'ﬂg dae ; Ii(:;hltt |0|23X(Sinpge|reaﬂggr %gts(mse(zr\%?)? 2 'ma)
keys and their payload data are added in order of occurz:t ; , 2 :
rence, the first key in a bucket is the oldest. The remainin]t"[‘ze hadh4GBdo{3‘gl]ebner|c DERZI. 1066V5A'V|' with 4'\/(|th
keys (and their payload data) are moved one entry towar cache and 64-byte cache-lines. We also tested the
the start of the bucket to allow the new key and its payloadi@ta structures on alternative architectures: a 1.3Ghz Ul-
to be appended. We then take the evicted key (storing itd @SPARC Ill, a 700Mhz Pentium IIl, and a 2.8Ghz Pen-
payload in a temporary space), and hash it using the twgYm IV and observed similar results which we report in
independent hash functions to acquire a bucket from botQUr full paper.

hash tables. We then attempt to re-insert the evicted key, OUr first dataset was derived from the complete set
(with its payload) as described above. Xf words found in the five TREC CDs (Harman 1995).

It is possible for the eviction process to loop indefi- | N€ dataset is therefore highly skew, containing many
nitely causing an irresolvable collision. We allow the evic hundreds of millions of words but of which only around

tion process to repeat 1000 times before we declare the it Million are distinct. We converted (up to) the first 4
ytes of each word, in order of occurrence, into a 32-

sertion as a failure. If an insertion fails, we can attemptbit unsigned integer. This generated akew dataset
to re-hash all of the keys using two different hash func-Which contains 752 495 240 integers (approx. 3GB), but

Eg?%f(F;?c%g gvgi?gt;?é 25054)525 valgec?ﬁedso;rglg ﬁgir? l]fl'}:igghich only 48 283 are distinct. Our second dataset labeled

tions to re-hash the keys. Both options are, however, exd! Stinct was created by randomly generating (from a
pensive particularly with a large number of keys (Kirsch memory-less source) 60 million distinct unsigned integers

et al. 2008). between the range of 0 t62 Satellite data associated

We implement two variants of bucketized cuckoo hash-With each key was set to a random (non-zero) number.
ing. Our first does not handle insertion failures—we sim-

We varied the number of slots used by the hash tanot employ move-to-front on access due to the high com-
bles from 25, doubling up to 25. We employed the same Pputational costs associated with moving keys (Askitis &
multiplicative-based (64-bit) hash function with a mask asZobel 2005). Nonetheless, our results show that cache-

a moduld in all of our hash tables, which we found to be €ffi¢iency more than compensates.
both fast and effective. We also used the same hash fune- The high costs observed with building the array hash
tion for our implementations of bucketized cuckoo hash-t2ble is also caused by the small number of insertions
ing, but derived two independent hash functions by usind"@de. In these experiments only 48283 keys were in-
two different hash seeds (set to large prime values). Oupe'ed. The remaining 752446 957 keys were duplicates.
bucketized cuckoo hash tables implement two indepenfS We increase the number of keys inserted, the compu-
dent hash tables by evenly dividing the number of slotd@tional cost of resizing arrays will be compensated by
allocated to a single open-address hash table. a high reduction in cache misses (Askitis 2007). We
We are confident after extensive profiling that our datademenstrate this fact in a later experiment involving our
structures (implemented in C) are of high quality and arefi Sti nct dataset.

available for study upon requéstWe compiled the data The bucketized cuckoo hash table was found to be
structures usingycc version 4.3.0 with all optimizations the slowest hash table to build and search under skew

! . access. At best—with 8 hash slots—the bucketized
enabled. We discuss the results of our experiments belo"l’:uckoo hash table (without a stash) consumed about 8.39
megabytes of space and required 24.09s to build and
5 Results 21.57sto search. The equivalent array hash table required
only 3.37 megabytes of space and 20.47s to build and
Skewed data. Figure 3 shows the time and space re-17.68s to search—which is up to 19% faster. Similarly,
quired to build and then search the hash tables respedhe clustered and standard-chain hash tables also offered
tively, using ourskew dataset. Despite its effort to consistently superior performance relative to bucketized
exploit cache, the clustered-chain hash table was onlguckoo hashing. The equivalent standard-chain, for exam-
slightly faster to build and search relative to the standardple, consumed only 3.64 megabytes of space and required

chain hash table, when under heavy load. With orifyy 2 @round 18.88s to build and 18.78s to search. The use of
slots for example, the clustered-chain hash table requireﬁﬂStaSh in bucketized cuckoo hashing was of no benefit in
about 18.13s to build and search, whereas the equivaleHt€Se experiments and was thus omitted, as no irresolvable
standard-chain required about 18.19s to build and searckellisions occurred (hence, the stash was never accessed).
These results may be surprising at first, since we would, 1he results of L2 cache misses and CPU cycle costs

normally expect better performance from a hash tabl uring search were consistent to our timings, with the
that uses cache-efficient linked lists to resolve collision Pucketized cuckoo hash table incurring the most cache

However, our results do coincide with those involving a Misses and consuming the most CPU cycles. Under heavy
clustered-chain hash table and string keys (Askitis 2007)10ad, the bucketized cuckoo hash table rivaled the cache-
The reason why the clustered-chain was generalgfficiency of the equivalent array hash, but so did the
slower in these experiments was due to a lack of effichained hash tables; they were all small enough to remain
cient support for move-to-front on access. Move-to-frontcache resident. .
is beneficial under skew access as it can reduce the cosf Linear probing was consistently the fastest hash ta-
of accessing frequent keys. In a standard-chain, movin§ e to build and search in these experiments when given
a node to the start of the list requires only pointer ma-e€nough space—a minimum of2slots. The L2 cache
nipulation which is computationally efficient. The impact misses and CPU cycle costs measured were also consis-
on performance becomes more apparent as we decreagt with our timings, with linear probing incurring the
the load factor (i.e., by increasing the number of slots), infewest cache misses per search and simultaneously con-
which case, the standard-chain hash table becomes noticguming the least amount of CPU cycles. Our results also
ably faster to build and search than the clustered-chairgoincide with previous research that reported linear hash-
Pointer manipulation wont work in a clustered-chain asing to a cache-efficient open-address hash table (Heileman
it can violate the principle of node clustering. In order & Luo 2005). _ _ _
to implement move-to-front in a clustered-chain, we must Although linear probing requires at least one available
explicitly move nodes in and amongst blocks which canslot per key inserted, no buckets, linked lists, or arrags ar
be expensive (Askitis 2007). used to resolve collisions. Hence, each hash slot occupies
Comparing the L2 and CPU cycle costs incurred dur-just 8 bytes of memory (for a key and its payload). As
ing search shown in Figure 3, we observe consistent resuch, in addition to its high performance under skew ac-
sults to our timings. The clustered-chain hash table incess, linear probing is relatively space-efficient. With a
curs slightly fewer L2 misses per search but only undeijust 2'° slots for example, linear probing consumed only
heavy load. However, the clustered-chain also consume3.52 megabytes of space and required 15.59s to build and
more CPU cycles relative to the standard-chain due to th&6.25s to search. The equivalent array hash table con-
absence of move-to-front on access. As we reduce thsumed 1.59 megabytes of space and required 20.08s to
average load factor (by adding more slots), the standardsuild and 17.41s to search. Similarly, the equivalent buck-
chain begins to rival the cache-efficiency of the equivalenttized cuckoo hash table consumed 2.10 megabytes of
clustered-chain; and coupled with fewer CPU cycles pespace and required 25.17s and 23.11s to build and search,
search as a result of move-to-fronton access, the standartespectively.
chain offered overall superior performance. Despite its impressive performance, linear probing has
Building an array hash table, in contrast, is clearly poor worst-case performance and as a consequence, it can
more expensive than a standard or clustered-chain haskecome a slow hash table to use. Consider the follow-
table, but is more space-efficient due the elimination ofing experiment where we build the hash tables using our
nodes and pointers. The array hash is more expensive th sti nct dataset and then search for all of the keys in our
build due to the high computational cost involved with skew dataset. The difference in this experiment—despite
resizing arrays. We observe this fact by comparing thahe increased size of the hash tables—is that search fail-
time required to build against the time required to searchures will occur. From the 752 495 240 searches made, only
During search, arrays are not resized, and as a result, ttg1 262 337 are successfully found; the rest incur the full
array hash table is consistently faster than the standargbst of traversal. With # slots, the linear probing hash
and clustered-chained hash tables. The array hash doggle required a total of 70.93s. The equivalent array hash
T, , . required only 26.20s while the bucketized cuckoo hash
p://lwww.concentric.net/ Ttwang/tech/inthash.htm . . R
2hitp-www.cs. rmit.edu.aurnaskitis/ table (with its constant worst-cost probe cost) required

—e— Standard-chain hash table

--<-- Clustered-chain hash table
—=— Array hash table

--x-- Bucketized cuckoo hashing
—— Linear probing

—e— Standard-chain hash table

--o-- Clustered-chain hash table
—=— Array hash table

--x-- Bucketized cuckoo hashing
—+— Linear probing

Build time (sec)
Search time (sec)

1000 1500 2000 0 500 1000 1500 2000
Memory (MB) Memory (MB)
187 e e)
0.030- [,

TR 516

< T =
£ 0.025+ L o Standard hash g o, —oStandardhash
9 o —=— Array hash - o g —=— Array hash
= bocx- - -x ---- Clustered hash 4 gs“* o Clustered hash
@ i ..o - Bucketized cuckoo e = - Bucketized cuckoo
7] i SRR :) >14 -— - ; .
g j y e, —— Linear probing ; -t —— Linear probing

| - ///////’/// o
oy 0020 L 5

=
N
W

0.015 T T T 7 T T T 7
0 200 400 600 800 1000 0 200 400 600 800 1000

Memory (MB) Memory (MB)

Figure 3: The time and space (top graphs) required to build and search the hash tables using our skew dataset. The
actual L2 and CPU cyclesincurred during search is also shown (bottomgraphs). The plots represent the number of slots

starting from 215 (left-most), doubling up to 22,

33.15s—53% faster than linear probing. has equal probability of access. As a consequence, an ex-

With a load factor of about 0.9, searching for a key thatcessive number of L2 cache-misses were incurred by the
does not exist in a linear probing hash table will likely in- standard-chain. Hence, with no skew in the data distri-
volve scanning and comparing a large proportion of thebution, node clustering is indeed an effective technique
hash table, which will consume a surplus of CPU cyclesfor improving the cache utilization of a chained hash ta-
We can reduce this cost by reducing the average load fadle (Chilimbi 1999).
tor (by adding a surplus of empty slots) but at the expense Despite the substantial performance gains offered by
of both space and overall performance, since fewer frethe clustered-chain it still remained, in all cases, infe-
quently accessed slots are likely to remain cache-residentior to the array hash. With only'2 slots, for exam-
In contrast, when we traverse a slot in an array hash, wele, the array hash required 116s to be built and about
are only comparing keys that have the same hash valugss to search while simultaneously consuming approxi-
As such, fewer keys are likely to be compared resulting inrmately 480 megabytes of space. This is an improvement
better use of cache and the consumption of fewer CPU cyin speed of about 95% relative to the equivalent clustered-
cles. Similarly, with bucketized cuckoo hashing, we pro-chain, with a simultaneous reduction in space of about
cess only two buckets per search. However, unlike scan60%. These results also demonstrate that despite the high
ning a single contiguous array of integers, these bucketsomputational costs incurred from frequent array resizing
are likely to be scattered in main memory and can therecache efficiency more than compensates allowing the ar-
fore resultin more cache misses (relative to the array hashhy method to be more efficient in practice (Askitis 2007).
on initial access, which is reflected in our timings. These results also highlight that the array hash ssa&

able hash table—the cost of inserting or searching a key

Distinct data. The time and space required to build and incréases gracefully as the number of keys (or load fac-
then search the hash tables using distinct dataset tor) increase. The standard and compact-chained hash ta-

is shown in Table 1. With no skew in the data distribu- bles can only rival the performance of the array hash once

tion, move-to-front on access is rendered ineffectivehwit 9iven a surplus of space. . .
only 215 slots, for example, the clustered-chain hash ta- The bucketized cuckoo hash table (without a stash) dis-

ble required about 2194s to be built and 1.2 gigabytes Oplay2e4d competitive perfqrmance but req_w_red aminimum
space. The equivalent standard-chain required over 60064 2°" Slots to prevent irresolvable collisions. At best
and consumed over 1.9 gigabytes—which is 63% slowefwith 224 slots), the bucketized cuckoo hash table con-
and around 37% more space-intensive than the clusteregumed 536.8 megabytes of space and required 13.5s and
chain hash table. The standard-chain was slower than tH3s to build and search, respectively. This is considgrabl
clustered-chain because 60 million distinct keys were in-more space-efficient than the equivalent standard-chain,
serted. As a result, longer linked lists, on average, werglustered-chain, and the array hash table which could only
traversed during search and with no skew each key (node)val in speed once given the same number of slots. With

Table 1:Time (sec) and space (MB) required to build and then search the hash tablesusing our di st i nct dataset.

Num Standard hash Clustered hash Array hash

slots Build (s) Search(s) Space (MB) Build (s) Search (s) Space)(MB Build (s) Search (s) Space (MB)
2 6112.2 6106.8 1920.2 2194.9 2196.5 1201.2 116.6 85.6 480.9
216 3092.6 3085.0 1920.5 1109.1 1110.2 1202.4 71.6 50.2 481.8
217 1560.9 1555.5 1921.0 561.3 563.7 1204.9 46.2 32.3 483.6
218 784.4 780.7 1922.1 285.3 285.5 1209.9 335 23.3 487.3
219 397.3 394.9 1924.1 147.2 146.5 1219.9 26.7 18.4 494.6
220 203.0 201.0 1928.3 78.5 76.4 1239.8 22.3 15.3 509.3
221 106.2 104.3 1936.7 43.9 41.0 1279.6 19.8 13.3 538.7
222 57.6 55.6 1953.5 26.7 22.6 1359.3 18.3 11.7 597.4
223 334 311 1987.1 18.1 12.7 1518.7 16.7 9.7 714.7
224 21.3 18.3 2054.2 14.1 8.3 1841.4 15.0 8.0 940.6
225 15.4 11.2 2188.4 12,5 7.1 2602.0 13.1 7.1 1308.6
226 12.5 7.3 2456.8 12.5 8.8 3734.7 11.8 6.2 1813.6
Num Cuckoo hash Cuckoo hash + stash Linear probing

slots Build (s) Search(s) Space (MB) Build (s) Search (s) Space)(MB Build (s) Search (s) Space (MB)
273 - - — 1821.1 72.7 480.2 — - -
224 13.5 8.3 536.8 13.7 8.4 536.9 - -
225 14.1 9.3 1073.7 14.3 9.3 1073.8 - - -
226 15.1 10.3 2147.4 15.5 10.3 2147.5 5.1 4.7 536.8

224 slots, for example, the array hash consumed 940.6ng hash table, and the bucketized cuckoo hash table (with-
megabytes of space and required about 15s to build andut a stash) using odr sti nct dataset. We then measure
8s to search. the time required to delete 30 million integers selected at
Increasing the number of slots available to the buckerandom from ourdi stinct dataset. Under heavy load
tized cuckoo hash table yields poorer performance relativgwith 216 slots), the standard-chain hash table required
to the equivalent chained and array hash tables, as fewe78.8s to delete the random batch of keys. The equiva-
buckets are likely to remain cache-resident; this reductio |ent array hash, in contrast, needed only 57.3s. We ob-
in locality impacts bucketized cuckoo hashing more thanserved consistent results as we reduced the average load
the equivalent chained and array hash tables, since up {g¢tor (by adding more slots). Wit#2slots for example,
two random buckets are accessed during search. In age standard-chain hash required 11.4s whereas the equiv-
dition, by doubling the amount of space used, more TLBg|ent array hash needed only 8.5s. When we delete a ran-
misses are likely to occur in bucketized cuckoo hashing agom key from the standard-chain hash table, a linked list
fewer virtual to physical memory translations are likely 0 5 jikely to be traversed which will incur cache misses—
be stored within the TLB (Askitis 2007). the cost of which will out-weigh the overall cost of array

With a stash enabled, we can safely reduce the n“mb%rcanning and resizing
of slots available to t.hegucketized cuckoo hash table as™ g|;cketized cuckoo'hashing required only 4.8s to delete
Shown n Table L Wi £ slots, 26449 132 kY5 UL e randam batch ofkeys usingSot, s spee, how-
ever, is not intended to maintain such a large volume ofVer: 1 due to the fact that no real deletion took place.
kevs. A It th I d by the buciaince hash slots are represented as fixed (cache-lined)
e(tai)zlzd csuglgcs)uhgstheta(\)k;/leérgros psage g:)onusnudmdfego %é %but% ized buckets, a key and its payload data are deleted by

: | half of the k P di 'I'g y ‘Elther overwriting or by setting the payload value to zero.
f;ncﬁaimﬁt uzeg otnle 8?%%%%&%%”& atrggtém;ecl;yoebr lence, unlike the standard-chain or array hash tables, no
h y di d f |y . d allocati % - tTnemory is actually freed—no time is lost to system calls

ead incurred from slot pointers and allocating dynami {i.e., to free a node) or to resize an array. Similarly, delet
g_rra)és s tiny). ll;iowever, pe(rjformta;]nc? IS sever_el;gjjteoga_rl. g a key in a linear probing hash table involves flégging

ized as a result. We can reduce the time required to bui . .

: : : e key and its payload as having been deleted. As aresult,
and search by increasing the number of slots in the stas i 2%/6 Slots I?neyar brobing rquuired only 1.85 to delete
but a_t the expense of space. the random batch of keys .

Linear probing required at Iea}s%GZS_Io'gs to operate in. Although the array hash table was shown to be supe-
these experiments, since 60 million distinct keys were in- ior to the standard-chain for random key deletion. it can
sert;ed. However, asdeach slot is onljy 8bl?yt$]s long, th(-ée slower in the worse-case which occurs when we con-
tojﬁengc%g%?ssl{'rinrﬁ:t v(\;%?;ijggg_oges% rglé :bt thSpeT‘%?Sr inually delete the first key from any slot. This process

9 il y bl ffici h gaby d h is expensive because we have to scan and resize the en
Is still reasonably space-efficient when compared to t ire array. In a linked list, we only need to delete the
array hQSh table, wh|(:2h can only rival in spage-efﬂmenc first node and reassign its: pointers. WitH Blots, the
e S e owson - SaNGaI-chainesh €quredonly 15 o delete SOl
: ; : f n r r entirdi stin which wer
S e e h st oo and s, Bl G L by s
¢t|ze cuckoo has '3219 can match t € space-etliciency gl e heeded over 90s due to the high computational costs
Imea}r pro|_t|)|ng with slotﬁ,. kr’h‘t rhemda:?eq around twice inyolved with array scanning and resizing. This worst-
as slow. However, as we highlighted during our previouseage cost can be reduced if we resize arrays periodically,
skew search experiments, linear probing can be expensiygi; 4t the expense of maintaining unused space within ar-
in the worse-case which occurs when we search for a I_ar.g,'s-ays (Askitis & Zobel 2005). Similarly, by relaxing some
bhatch of keys thaﬁ are ”Olt foulzld. dWIe demonstrate this inonsiraint on space-efficiency, we can effectively elimi-
the next section that involves key deletion. nate this worst-case cost altogether by employing a type
of lazy deletion. We flag the key and its payload as having
Deletion. For our next experiment we build the been deleted, and optionally resize the array only when,

standard-chain hash table, the array hash, the linear prolsay, it becomes half empty.

In our final experiment we build our set of hash ta- Askitis, N. (2007), Efficient Data Structures for
bles using theali stinct dataset. We then generate 100 Cache Architectures, PhD thesis, RMIT Uni-
million unsigned integers at random (from a memory-less versity. RMIT Technical Report TR-08-5.
source) to form a new batch of keys to delete. Unlike the http://www.cs.rmit.edu.au/ naskitis.
previous batch, only 2731980 keys are found in the hash .
tables. The remaining 97 268020 keys are not present iftskitis, N. (2008), CORE-hash: A cache and core con-
ourdi stinct dataset and only 63878 in total are dupli- scious string hash table, Technical report. RMIT
cates. With 20 slots, the array hash table required about ~ JMNIVersity, TR-08-8. Manuscript in submission.
32.3s to delete the skew batch of keys. The equivalenhskitis, N. & Zobel, J. (2005), Cache-conscious collision
standard-chain hash table required over 686.1s. We ob- resolution in string hash tableis) ‘SPIRE’, pp. 91—
served consistent results as we reduced the load factor 102,
by adding more slots, with the standard-chain (usify 2
slots) at 20.7s and the equivalent array hash at 13.4s. Thisskitis, N. & Zobel, J. (2008), B-tries for disk-based
standard-chain is more expensive because the majority of ~ string managementn ‘Int. Journal on Very Large
searches end in failure, thereby incurring the full cost of Databases’. To appear.
traversal (traversing a linked list will incur more cache .) - .
misses than scanning its equivalent array). Move-to-fronf\skitis, N. & Zobel, J. (200B), ‘Redesigning the string

on access is also rendered ineffective since the majority of ~ hash table, burst trie, and BST to exploit cache’.
keys are distinct. RMIT University TR-08-04. Manuscript in submis-

Though not as fast as the array hash, with gots, sion.
the bucketized cuckoo hash table required only 17.1s tgadawy, A. A., Aggarwal, A., Yeung, D. & Tseng, C.
delete the skew batch of keyS. Bucketized cuckoo haShing (2004)’ ‘The efﬁcacy of software prefetching and
offers a constant worst-case probe cost since at mostonly |ocality optimizations on future memory systems’,
two buckets are processed. However, these buckets are journal of Instruction-Level Parallelism 6(7).
unlikely to be physically located close to each other and
as a consequence, can incur more cache misses (and TlEBender, M. A., Demaine, E. D. & Farach-Colton, M.
misses) on initial access compared to scanning and resiz- (2002), Efficient tree layout in a multilevel memory
ing a single array. As expected, linear probing was slower hierarchyjn ‘ESA, pp. 165-173.
than the array hash and the bucketized cuckoo hash tablg’ender, M. A., Farach-Colton, M. & Kuszmaul, B. C.

requiring 22.8s with 2° slots due to the excessive number (2006), Cache-oblivious strin g ;
) - g B-treds, ‘PODS’,
of hash slots accessed. pp. 233-242.

Berger, E. D., Zorn, B. G. & McKinley, K. S. (2002),
Reconsidering custom memory allocatiom,ACM

We have described how to efficiently implement a OOPSLA, pp. 1-12.

cache-conscious array hash table for integer keys. Wgrent R. P, (1973), ‘Reducing the retrieval time of scat-

then experimentally compared its performance against ter storage techniquesCommunications of the ACM
two variants of chained hash table and against two 16(2), 105—109.

open-address hash tables—linear probing and bucketized
cuckoo hashing—for the specific task of maintaining aCalder, B., Krintz, C., John, S. & Austin, T. (1998),
dictionary of integer keys (with payload data) in-memory. Cache-conscious data placeméntProc. Int. Conf.
When we can afford to allocate as many hash slots on Architectural Support for Programming Lan-
as the number of distinct keys inserted (with a surplus of guages and Operating Systems’, pp. 139-149.
empty slots), linear probing is by far the fastest hash table =~)
with or without skew (duplicate keys) in the data distinc- Chilimbi, T. M. (1999), Cache-Conscious Data
tion. Linear probing, however, has poor worst-case perfor- Structures—Design and Implementation, ~PhD
mance which can jeopardize its efficiency as a dictionary. thesis, Computer Sciences Department, University
The array hash table was shown to be a better option’in ~ of Wisconsin-Madison.

this case. o)
. .__Chilimbi, T. M. & Shaham, R. (2006), Cache-conscious
Despite a constant worst-case probe cost, bUCketIZGG coallocation of hot data streanis Proc. ACM SIG-

cuckoo hashing was consistently slower than the array PLAN Conf. on Pro ; ;
> . i . gramming Language Design and
hash to build, search, and delete keys with a skew dis Implementation’, pp. 252—262.

tribution. The bucketized cuckoo hash table could only

rival the performance of the array hash when under heavgieslewicz, J. & Ross, K. A. (2007), Adaptive aggregation

load and with no skew in the data distribution. However, on chip multiprocessorsy ‘VLDB Conf., pp. 339—

unlike linear probing or bucketized cuckoo hashing, the 350.

array hash can operate efficiently (that is, it does not need

to be resized) with a load factor greater than 1, making itCrescenzi, P., Grossi, R. & Italiano, G. F. (2003), Search

a more scalable option. data structures for skewed strindgs, ‘Experimen-
The array hash was also among the fastest hash tables tal and Efficient Algorithms: Second Int. Workshop,

to delete random keys, but it can become slower than both ~ WEA, pp. 81-96.

a chained hash table and bucketized cuckoo hashing in a. . - .
specific case involving key deletion. Yet with some relax- 6|etzfelb|nger, M. & Weidling, C. (2007), ‘Balanced allo-
cation and dictionaries with tightly packed constant

ation on space-efficiency, we can employ simple lazy dele- ¢ ol A .
tion schemes with periodic array resizing to effectively size bins’, Theoretical Computer Science 380(1-

eliminate this worst-case deletion cost, making the array 2), 47-68.

6 Conclusion

hash an ideal option for use as a dictionary. Dongarra, J., London, K., Moore, S., Mucci, S. & Terp-
stra, D. (2001), Using PAPI for hardware perfor-

References mance monitoring on Linux systemnig,'Proc. Conf.
on Linux Clusters: The HPC Revolution’.

Acharya, A., Zhu, H. & Shen, K. (1999), Adaptive algo- *http:/ficl.cs.utk.edu/papi/

rithms for cache-efficient trie searaln, ALENEX’,
pp. 296-311.

Erlingsson, U., Manasse, M. & Mcsherry, F. (2006), A Lattner, C. & Adve, V. (2005), Automatic pool allocation:

cool and practical alternative to traditional hash ta- improving performance by controlling data structure
bles, in ‘Workshop on Distributed Data and Struc- layout in the heapin ‘Proc. ACM SIGPLAN Conf.
tures’. on Programming Language Design and Implementa-

. o tion’, pp. 129-142.
Fotakis, D., Pagh, R., Sanders, P. & Spirakis, P. G. (2003),
Space efficient hash tables with worst case conMunro, J. I. & Celis, P. (1986), Techniques for collision

stant access timean ‘Proceedings of the 20th An- resolution in hash tables with open addressiimg,
nual Symposium on Theoretical Aspects of Com- ‘Proc. ACM Fall Joint Computer Conf.’, pp. 601-
puter Science’, pp. 271-282. 610.

Garcia, P. & Korth, H. F. (2006), Database hash-join algoNaor, M., Segev, G. & Wieder, U. (2008), History-
rithms on multithreaded computer architecturies, independent cuckoo hashing,‘International Col-
‘Conf. CF’, pp. 241-252. loguium on Automata, Languages and Programming

. _ (ICALP)’, Vol. 5126, pp. 631-642.

Ghoting, A., Buehrer, G., Parthasarathy, S., Kim, D.,
Nguyen, A., Chen, Y. & Dubey, P. (2006), ‘Cache- Nash, N. & Gregg, D. (2008), Comparing integer data
conscious frequent pattern mining on modern and structures for 32 and 64 bit keyis, "WEA, pp. 28—
emerging processorsint. Journal on Very Large 42,

Databases 16(1), 77-96.)
Pagh, R. & Rodler, F. F. (2004), ‘Cuckoo hashinggur-
Graefe, G., Bunker, R. & Cooper, S. (1998), Hash joins nal of Algorithms51(2), 122—-144.

and hash teams in Microsoft SQL servaer,'Proc. . - . .
Int. Conf. on Very Large Databases’, pp. 86—97. Panigrahy, R. (2005), Efficient hashing with lookups
in two memory accessesn ‘Proceedings of the

Halatsis, C. & Philokyprou, G. (1978), ‘Pseudochain- sixteenth annual ACM-SIAM symposium on Dis-

ing in hash tables’ Communications of the ACM crete algorithms’, Society for Industrial and Applied
21(7), 554-557. Mathematics, pp. 830—-839.

Harman, D. (1995), ‘Overview of the second text retrieval Peterson, W. W. (1957), ‘Open addressin@M Journal
conf. (TREC-2)',Information Processing and Man- of Research and Development 1(2), 130-146.

agement 31(3), 271-289. _ .
g) Ramakrishna, M. V. & Zobel, J. (1997), Performance in

Heileman, G. L. & Luo, W. (2005), How caching affects practice of string hashing functions) ‘DASFAA,
hashing,in ‘Proc. ALENEX Workshop on Algo- \ol. 6, pp. 215-224.

rithm Engineering and Experiments’, pp. 141-154. . . .
g ¢ P PP Rao, J. & Ross, K. A. (1999), Cache conscious indexing

Heinz, S., Zobel, J. & Williams, H. E. (2002), ‘Burst tries: for decision-support in main memoriy ‘Proc. Int.
A fast, efficient data structure for string key8CM Conf. on Very Large Databases’, pp. 78—89.
Transactions on Information Systems 20(2), 192— -
223, Ross, K. A. (2007), Efficient hash probes on modern pro-
cessorsjn ‘IEEE 23rd International Conference on
Hon, W.-K., Lam, T. W., Shah, R., Tam, S.-L. & Vitter, Data Engineering’, pp. 1297 — 1301.
J. S. (2007), Cache-oblivious index for approximate . . i
string matching.in ‘CPM’, pp. 40-51. Rubin, S., Bernstein, D. & Rodeh, M. (1999), Virtual
cache line: A new technique to improve cache ex-
Kirsch, A. & Mitzenmacher, M. (2008), The power of one ploitation for recursive data structurés,'Proc. Int.
move: Hashing schemes for hardware'|EEE IN- Conf. on Compiler Construction’, pp. 259-273.
FOCOM:', pp. 106-110. Silverstein, A. (2002), ‘Judy IV shop manual'
Kirsch, A., Mitzenmacher, M., & Wieder, U. (2008), http://judy.sourceforge.net/.

More robust hashing: Cuckoo hashing with a stash .)
in ‘To appear in Proceedings of the 16th An- Truong, D. N., Bodin, F. & Seznec, A. (1998), Improving

http://mww.eecs.harvard.edu/kirsch/pubs/. tures,in ‘Proc. Int. Conf. on Parallel Architectures

and Compilation Techniques’, pp. 322-329.
Kistler, T. & Franz, M. (2000), ‘Automated data-member) .)

performance’ ACM Transactions on Programming mechanisms’ACM Computing Surveys 32(2), 174~
Languages and Systems 22(3), 490—505. 199.

Knuth, D. E. (1998)The Art of Computer Programming: Vitter, J. S. (1983), ‘Analysis of the search performance of
Sorting and Searching, Vol. 3, second edn, Addison- coalesced hashinglpurnal of the ACM 30(2), 231~
Wesley Longman. 258.

Kowarschik, M. & Wei3, C. (2003), An overview of cache Yotov, K., Roeder, T., Pingali, K., Gunnels, J. & Gus-
optimization techniques and cache-aware numeri- tavson, F. (2007), An experimental comparison of
cal algorithms.jn ‘Algorithms for Memory Hierar- cache-oblivious and cache-conscious prograims,
chies’, pp. 213-232. SPAA, pp. 93-104.

Kumar, P. (2003), Cache oblivious algorithmis /Algo- ~ Z0bel, J., Heinz, S. & Williams, H. E. (2001), ‘In-memory
rithms for Memory Hierarchies’, pp. 193—212. hash tables for accumulating text vocabulariés’,

formation Processing Letters 80(6), 271-277.
Kutzelnigg, R. (2008), An improved version of cuckoo . ,
hashing: Average case analysis of construction cosgukowski, M., Héman, S. & Boncz, P. (2006),

and search operationis) ‘To appear, Workshop on Architecture-conscious hashingn ‘International
Combinatorial Algorithms (IWOCA).". workshop on Data management on new hardware’,

pp. 6-14.

