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Multilevel data structure
• Students nested within schools
• Children nested within families
• Respondents nested within interviewers
• Repeated measures nested within individuals –

longitudinal data, growth curve modeling

In the example of student nested within schools:
• Level-1 variables, such as student’s gender and age
• Level-2 variables, such as school type and size





How would we analyze such 
multilevel data?

• OLS regression
• OLS regression with robust standard error
• Aggregation
• Disaggregation
• Ecological fallacy – interpreting analyses 

on aggregated data at the individual level



Ecological Fallacy

See figure 3.1, on page 14 from Multilevel Analysis by Snijders and Bosker



Hierarchical linear model

• Random Intercept model

Yij = β0j + rij
β0j = γ00 + u0j 

• Written in mixed model format:

Yij = γ00 + u0j + rij

• i is for individuals and j is for schools
• β0j is the mean of Yij for school j
• γ00 is the average of all the β0j’s, therefore the grand
• rij and u0j are normally distributed
• rij and u0j are independent of each other
• Parameters to be estimated include regression coefficients and 

variance components: γ00, var(rij) and var(u0j)



Hierarchical linear model

• Random Intercept and random slope model
Yij = β0j + β1jX + rij
β0j = γ00 + u0j
β1j = γ10 + u1j 

• Written in mixed model format:

Yij = γ00 + γ10X + u0j + u1jX+ rij

• β0j is the mean of Yij for school j when X is zero
• β1j is the slope of X for school j (or the effect of X for school j)
• rij, u0j and u1j are normally distributed
• u0j and u1j are assumed to be correlated
• cross-level error terms are assumed to be independent
• parameters: γ00, γ10, var(u0j), var(u1j), cov(u0j, u1j) and var(rij)



Hierarchical linear model

• Random Intercept and random slope model
• Level-2 variable(s) to predict intercept and/or slope

Yij = β0j + β1jX + rij
β0j = γ00 + γ01W + u0j

β1j = γ10 + γ11W + u1j
• Written in mixed model format:

Yij = γ00 + γ01W + γ10X + γ11W*X + u0j + u1j*X + rij

• β0j is the mean of Yij for school j when X is zero
• β1j is the slope of X for school j (or the effect of X for school j)
• γ00 is the average intercept
• γ11 is the coefficient for the cross-level interaction term 
• rij, u0j and u1j are normally distributed
• u0j and u1j are assumed to be correlated
• Cross-level error terms are assumed to be independent
• parameters to be estimated: γ00, γ01, γ10, γ11, var(u0j), var(u1j), cov(u0j, 

u1j) and var(rij)



Comparing the assumptions 
for hierarchical linear models with OLS models

OLS Assumptions

• Linearity: function form is linear
• Normality: residuals are 

normally distributed
• Homoscedasticity: residual 

variance is constant
• Independence: observations are 

independent of each other

HLM assumptions
• Linearity: function forms are 

linear at each level
• Normality: level-1 residuals 

are normally distributed and 
level-2 random effects u’s
have a multivariate normal 
distribution

• Homoscedasticity: level-1 
residual variance is constant

• Independence: level-1 
residuals and level-2 
residuals are uncorrelated

• Independence: observations 
at highest level are 
independent of each other



Estimation Methods: REML vs. ML

• Reading: Section 4.6 Parameter Estimation from Snijder and Bosker

• REML and ML produce similar regression coefficients

• REML and ML differ in terms of estimating the variance components

• If the number of level-2 units is small , then ML variance estimates 
will be smaller than REML, leading to artificially short confidence 
interval and biased significant tests.

• REML is the default estimation method for HLM

• Likelihood ratio test for nested models 
– When fixed effects are the same, model has fewer random 

effects , then both REML or ML may be used  
– When one model has fewer fixed effects and possibly fewer 

random effects, then ML may be used



Issues with Centering

• Reading: Section 5.2 The effects of centering from Kreft and De 
Leeuw

• In OLS centering is to change the interpretation of the intercept
• Centering in HLM is not a simple issue
• Grand-mean centering

“The raw score model and the grand mean centered model are 
equivalent linear models.”

• Group-mean centering
Most of the times, the group mean centered model and the raw 
score model are neither equivalent in the fixed part nor in the 
random part.  

• Combining substantive and statistical reasons in choosing
– raw score 
– group-centering with reintroducing the means 
– group-centering without reintroducing the means 



An Example
• The dataset is a subsample from the 1982 High School 

and Beyond Survey and is used extensively in 
Hierarchical Linear Models by Raudenbush and Bryk. 

• It consists of 7185 students nested in 160 schools. 
• The outcome variable of interest is the student-level 

math achievement score, mathach.
• Predictor variables

– Level-1 (student level) predictor variables: 
• ses: social-economic-status of a student
• female 0 = male and 1 = female

– Level-2 (school level)  predictor variables:
• meanses: mean ses at school level, aggregated from student level 
• schtype: type of school: 0 = public and 1 = private, there are 90 

public and 70 private schools
• size: size of a school



Model Building

• Reading: Section 6.4 Model specification from Snijder and Bosker

• Unconditional model:

mathachij = β0j + rij
β0j = γ00 + u0j

• Random intercept model with level-2 predictor(s):

mathachij = β0j + rij
β0j = γ00 + γ01(meanses) + u0j

• Random intercept and random slope model:

mathachij = β0j + β1j(ses) + rij
β0j = γ00 + u0j
β1j = γ10 + u1j 

• Full model:

mathachij = β0j + β1j(group_mean_centered_ses) + rij
β0j = γ00 + γ01(schtype) + γ02(meanses) + u0j
β1j = γ10 + γ11(schtype) + γ12(meanses) + u1j 



Model 1: Unconditional Means Model

mathachij = β0j + rij β0j = γ00 + u0j
γ00 = 12.636972
var(rij) = 39.14831           var(u0j) = 8.61431
Rho = var(u0j)/(var(u0j) + var(rij)) 

= 8.61431/(8.61431+39.14831) = .18035673



Final model

mathachij = β0j + β1j(group_mean_centered_ses) + rij
β0j = γ00 + γ01(schtype) + γ02(meanses) + u0j
β1j = γ10 + γ11(schtype) + γ12(meanses) + u1j 

Tau
INTRCPT1,B0 2.37996 0.19058 

SES,B1 0.19058 0.14892

Final estimation of fixed effects
(with robust standard errors)
----------------------------------------------------------------------------

Standard Approx.
Fixed Effect Coefficient Error T-ratio d.f. P-value

----------------------------------------------------------------------------
For INTRCPT1, B0

INTRCPT2, G00 12.096006 0.173699 69.638 157 0.000
SCHTYPE, G01 1.226384 0.308484 3.976 157 0.000
MEANSES, G02 5.333056 0.334600 15.939 157 0.000

For SES slope, B1
INTRCPT2, G10 2.937981 0.147620 19.902 157 0.000
SCHTYPE, G11 -1.640954 0.237401 -6.912 157 0.000
MEANSES, G12 1.034427 0.332785 3.108 157 0.003

----------------------------------------------------------------------------

Final estimation of variance components:
-----------------------------------------------------------------------------
Random Effect Standard Variance df Chi-square P-value

Deviation Component
-----------------------------------------------------------------------------
INTRCPT1, U0 1.54271 2.37996 157 605.29503 0.000

SES slope, U1 0.38590 0.14892 157 162.30867 0.369
level-1, R 6.05831 36.70313

---------------------------------------------------------------------------------------------------------



Final Model (continued)

mathachij = β0j + β1j(group_mean_centered_ses) + rij
β0j = γ00 + γ01(schtype) + γ02(meanses) + u0j
β1j = γ10 + γ11(schtype) + γ12(meanses) + u1j 

γ00 = 12.096: the intercept for public schools with meanses =0 (average ses)
γ01 = 1.226: the change in intercept from a public school to a private school

– the intercept for private school with meanses = 0 is 12.096+1.226 = 13.322
γ02 = 5.333: the change in intercept for a one-unit change in meanses

– the intercept for public school with meanses = 1 is 12.096 + 5.333 = 17.429
γ10 = 2.94: the slope of gcses for public schools with meanses = 0. 

– the effect of gcses for public schools with meanses = 0 is 2.94
γ11 = -1.641: the change in slope from a public school to a private school

– the effect of gcses for private schools with meanses = 0 is 2.94 – 1.641 = 1.299
γ12 = 1.034: the change in slope for a one-unit change in meanses

– the effect of gcses for public schools with meanses = 0 is 2.94 
– the effect of gcses for public schools with meanses = 1 is 2.94 + 1.034 = 3.974

For INTRCPT1, B0
INTRCPT2, G00 12.096006 0.173699 69.638 157 0.000
SCHTYPE, G01 1.226384 0.308484 3.976 157 0.000
MEANSES, G02 5.333056 0.334600 15.939 157 0.000

For SES slope, B1
INTRCPT2, G10 2.937981 0.147620 19.902 157 0.000
SCHTYPE, G11 -1.640954 0.237401 -6.912 157 0.000
MEANSES, G12 1.034427 0.332785 3.108 157 0.003



What’s new in HLM 6

The following paragraph is based on:

http://www.ssicentral.com/hlm/new.html

HLM 6 greatly broadens the range of hierarchical models that can be estimated. 
It also offers greater convenience of use than previous versions. Here is a quick 
overview of key new features and options:

– All new graphical displays of data. 
– Greater expanded graphics for fitted models. 
– Model equations displayed in hierarchical or mixed-model format with or without subscripts -

easy to save for publication. Distribution assumptions and link functions are presented in 
detail. 

– Slightly different and easier way for specifying random effects.
– Cross-classified random effects models for linear models and non-linear link functions with 

convenient Windows interface. 
– High-order Laplace approximation with EM algorithm for stable convergence and accurate 

estimation in two-level hierarchical generalized linear models (HGLM). 
– Multinomial and ordinal models for three-level data. Also see the types of models. 
– New flexible and accurate sample design weighting for two- and three-level HLMs and 

HGLMs.
– Easier automated input from a wide variety of software packages, including the current 

versions of SAS, SPSS, and STATA. 
– Residual files can be saved directly as SPSS (*.sav) or STATA (*.dta) files. 
– Analyses are based on MDM files, replacing the older less flexible SSM format.

http://www.ssicentral.com/hlm/new.html
http://www.ssicentral.com/hlm/examples.html#s4
http://www.ssicentral.com/hlm/examples.html#s5
http://www.ssicentral.com/hlm/crossclassify.html
http://www.ssicentral.com/hlm/crossclassify.html
http://www.ssicentral.com/hlm/crossclassify.html
http://www.ssicentral.com/hlm/example6-2.html
http://www.ssicentral.com/hlm/example6-2.html
http://www.ssicentral.com/hlm/residual.html
http://www.ssicentral.com/hlm/examples.html


Getting ready for using HLM software for multilevel data analysis

• Creating MDM file
– separate level-1 and level2 files for HLM2, or a single file
– original file can be in different format, such as SPSS, Stata and SAS
– linking variable can be either numeric or character
– variables in the analyses have to be numeric
– mdm file: binary file used for analyses and graphics
– mdmt file: template file in text format for creating mdm file
– hlm2mdm.sts: text file containing the summary statistics

• Data management
– HLM does not have data management capability
– One has to use other stat package(s) to clean the data and to create 

variables, such as dummy variables and within-level interaction terms
– HLM handles cross-level interactions nicely



Choosing preferences and other settings



Demo on using HLM

• Input Data and Creating the "MDM" file
– from a single SPSS file 

• data-based graphs
– box-plot
– scatter plot

• Model Building 
– unconditional means model 
– regression with means-as-outcomes 
– random-coefficient model 
– intercepts and slopes-as-outcomes model 

• Hypothesis Testing, Model Fit
– Multivariate hypothesis tests on fixed effects 
– Multivariate Tests of variance-covariance components specification 
– Model-based graphs 

• Other Issues
– Modeling Heterogeneity of Level-1 Variances 
– Models Without a Level-1 Intercept 
– Constraints on Fixed Effects 
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