Logic Column 8

Column Editor: Jon G. Riecke
Bell Laboratories, Lucent Technologies
700 Mountain Avenue
Murray Hill, NJ 07974
riecke@bell-labs.com

Continuations, functions and jumps*

Hayo Thielecke
ht@dcs.qmw.ac.uk
Department of Computer Science
Queen Mary and Westfield College, University of London
London E1 4NS, UK

1 Introduction

Practically all programming languages have some form of control structure or jumping. The more
advanced forms of control structure tend to resemble function calls, so much so that they are usually
not even described as jumps. Consider for example the library function exit in C. Its use is much
like a function, in that it may be called with an argument; but the whole point of exit is of course
that its behaviour is utterly non-functional, in that it jumps out of arbitrarily many surrounding
blocks and pending function calls. Such a “non-returning function” or “jump with arguments” is
an example of a continuation in the sense which we are interested in here.

On the other hand, a simple but fundamental idea in compiling is that a function call is broken
down into two jumps: one from the caller to the callee for the call itself, and another jump back
from the callee to the caller upon returning. (The return statement in C is in fact listed among
the “jump statements” [5].) This is most obvious for void-accepting and -returning functions, but
it generalizes to other functions as well, if one is willing to understand “jump” in the broader sense
of jump with arguments, i.e. continuation.

In this view, then, continuations are everywhere. Continuations have been used in many different
settings, in which they appear in different guises, ranging from mathematical functions to machine
addresses. Rather than confine ourselves to a definition of what a continuation is, we will focus
on continuation-passing style (CPS), as it brings out the commonalities. The CPS transform
compresses a great deal of insight into three little equations in A-calculus. Making sense of it
intuitively, however, requires some background knowledge and a certain fluency. The purpose of
this article, therefore, is to help the reader uncompress the CPS transform by way of a rational
reconstruction from jumps.
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Sample program Step 1: goto Step 2: non-returning functions

void p(char x) void p(char x, void p(char x,
{ void *k) void (*k)())
putchar(x) ; { {
} putchar(x) ; putchar(x) ;
goto *k; (xk) () ;
} }
main() main () void L1O{p(’b’, &exit);}
{ {
p(’a’); P(,a,’ &&Li); maln()
P(,b’); L1: p(’b’, &&L2), {
} L2: exit(); p(’a’, &L1);
} }

Figure 1: An example of van Wijngaarden’s CPS transformation, applied to a C function p

In the sequel, we will attempt to illustrate the correspondence between continuations and jumps
(even in the guise of the abhorred goto). The intent is partly historical, to retrace some of the
analysis of jumps that led to the discoveries of continuations. At the same time, the language of
choice for many researchers during the (pre)history of continuations, ALGOL 60, is not so different
from today’s mainstream languages (i.e. C); we hope that occasional snippets of C may be more
easily accessible to many readers than a functional language would be. So in each of the four
sections (Sections 2-5 below) that make up the body of this paper, some C code will be used to
give a naive but concrete example of the issue under consideration, before generalizing to a more
abstract setting.

2 Continuation-passing style

The basic idea of continuation-passing is (perhaps deceptively) simple. Just as universal com-
putation could be realized in many different media, including fanciful ones such as a horde of
dutiful clerks with finite notepads, one could imagine continuation-passing to be realized by a
scheme of postal communication where every letter to which a reply is expected needs to enclose a
self-addressed envelope for the reply. Here the self-addressed envelope implements a return contin-
uation. In fact, return addresses, in both the non-technical and the programming language sense,
are arguably the most approachable instances of continuations.

Slightly more technically, for continuation-passing style, a function call is transformed into a
jump with arguments to the callee, such that one of the argument is a return address, i.e. a
continuation that enables the callee to jump back to the caller. To match this, all function definitions
need to be transformed to take the return address as an extra argument. The systematic addition
of return addresses is described in an early paper by van Wijngaarden [17], which Reynolds [12]
credits with the earliest use of continuation-passing style. Van Wijngaarden (cited in [12]) describes
the introduction of continuation parameters thus:

Provide each procedure declaration with an extra formal parameter — specified label
— and insert at the end of its body a goto statement leading to that formal parameter.



Correspondingly, label the statement following a procedure statement, if not labeled
already, and provide that label as the corresponding extra actual parameter.

In modern terminology, this additional formal parameter is called a continuation, and the trans-
form that introduces these continuation parameters is called a continuation-passing style (CPS)
transform [14].

As a first illustration of the transformation, consider an example C program (on the left in
Figure 1) containing a function definition and two calls to that function. In the middle column we
use the Gnu dialect of C, which like ALGOL 60 has labels as values. The “&&” operator in Gnu
C takes the address (of type void *) of a label. After this transformation, the function p never
returns: p jumps to the return continuation k instead of ever reaching its closing }. Likewise, had
there been any return-statements (absent in ALGOL 60), we would also have replaced them with
an explicit jump goto *k;. In fact, the calls to p itself could be replaced with gotos, if we had
some mechanism for passing arguments along with the jump. The resulting program is hardly one
that anyone would care to write, being maximally unstructured in its use of gotos, but that is part
of the point: it is closer to what might be generated in the early phase of compiling.

A further transformation can then be applied, turning all labels into pointers to functions (see
the right column in Figure 1), essentially by rewriting L: ... as void L(){...}. If we transcribe
mechanically, we would write for L1,

void L1(){p(’b’?,&L2);}
But L2 is only there to call exit, so it is simpler to optimize,
void L1 {p(’b’?,&exit);}

The return type void is actually arbitrary here, as the function never returns. A goto is rewritten
as a call to the function generated from the corresponding label; for instance, goto *k; is replaced
by (xk) () ;. The C syntax may look similar at first sight, but note that in the first case, k is
a pointer to void (that is, a machine address), while in the second case, k is (the address of) a
function. For the purpose of this example, both are good enough implementations of continuations.

A certain amount of continuation-passing is possible in many languages that allow addresses,
function pointers, or some other serviceable implementation of continuations to be passed as argu-
ments. But for a more complete version, we now turn to the A-calculus. The version of the CPS
transform we give here is based on Plotkin’s (call-by-value) transform [10], except that we use as
the target language a small calculus idealizing the intermediate language from Appel’s account of
the Standard ML of New Jersey compiler [1, 16]. A CPS term M consists of a jump kz; ...z, to
k with arguments z ... z,, together with some bindings of the form where fz...z, = M'. The
grammar is given by the single rule,

M = zz* (where zz* = M)"

To sketch the intended meaning, suffice it to say here that a jump should be reduced by fetching the
term jumped to, and substituting the actual for the formal parameters (avoiding name capture):

fx1...xy ... where fy1...yn=M...
— My1:=2z1,...,Yn =2y ... where fy;...y, =M...



A A-calculus term M relative to continuation k is transformed into a CPS term [M]k as follows:

[z]k = kzx
[Me.M]k = kf where fzh=[M]h
[MN]k = [M]m where mf = ([N]n where nz = fzk)

The crucial clause is the one for Az.M, as it shows how functions are broken down into continuations.
A function is translated into a (two-argument) continuation, to which an argument x and a return
continuation h can be passed; the body M of the function is transformed in such a way that it will
return its value by explicitly passing it to the return continuation. For instance, if the body is just
z, it becomes hzx.

To establish the link with the van Wijngaarden CPS earlier, consider as an example the term
(pa; pb), which, as usual, is shorthand for (A().pb) (pa). Eliding details and simplifications, we would
CPS transform this into

[pa; pble = pal; where I1() = pbe

essentially as in Figure 1. CPS requires us to supply something as the outermost, or top-level,
continuation. Here we use a free variable e, analogous to the use of C’s “top-level continuation”
&exit in the C code.

The jumps with arguments in the CPS notation can be translated into functions, that is, the
CPS notation can be read as macros for A-terms:

(fr1...2p)° = fr1...29
(M where fzi...z,=N)° = (AfM°)(Az1...z,.N°)

As with the transformation in Figure 1, we found it convenient to factor the CPS into the
introduction of continuations as the first step, and implementation of the continuations as functions
as a separate second step. We will say a little more about each in the following two sections.

3 From functions to jumps

At first sight, it may seem rather odd that conversion to CPS transforms functions into even more
functions — but one should keep in mind how much simpler the resulting functions are. One does
not even have to consider them as functions at all, as they are interchangeable with jumps.

The original function p has been transformed into a function that never returns. So when we
write p(‘a’,&&L1) ; to call p, we only want to use part of the procedure call mechanism, the ability
to pass arguments, but not the ability to return from the call. (In fact, we inserted an exit(); to
get rid of the pile-up of unwanted returns.) If we had the ability to pass arguments along with a
jump, say by way of a macro for pushing onto a call stack, then p itself could be transformed into
a label. Calls to it would then read somewhat like this:

push(’a’);
push (&&L1);
goto *p;

Li: ;

We would still be transforming into a subset of C, but to one that is so restricted that, as far as
control structure in concerned, it is closer to assembly language than C. (This subset is still far



removed from assembly in that it uses variables rather than explicit memory access, but this too
could be brought closer to the machine by subsequent transformations, such as closure conversion
[1], or register allocation.)

Despite these connections to compiling, the breaking down of functions into jumps does not
force us to adopt a low-level, or overly machine-dependent viewpoint; it can in fact be expressed
at quite an abstract level, such as types, or categories [16]. Specifically, let us consider a type
system for the CPS language. We need only one constructor, -, so that types can be given by
the grammar 7 = —(7*). At the type level, the breaking down of functions is given by the
transform [r; — 7] = =([71], =[2]). The closest approximation to =7 in C is void(7), conflating
functions returning no value with those that do not return at all. In the C example, the type of p,
void(char), was transformed into void(char,void(void)).

This may make it clearer that we can translate the where-notation we used for CPS not only into
the A-calculus, but into a more primitive calculus without functions. Specifically, Milner’s m-calculus
[8] and its descendants depend on this aspect of continuations for their ability to encode “functions
as processes” [9, 2, 16]. In such a process interpretation of continuations, we would read the jump
“fxi...x,” as “send the values zj ...z, on channel f”. The binding “where fzy...x, = M”
would be read as “make a new process that can be sent values along a new channel f, and such
that upon receiving z;...x,, this process will become unblocked and run M”. In =w-calculus
notation, this interpretation amounts to the following macro translation:

(fzy...2,)* = flzy...2p)
(M where fzi...z, =N)* (wf)(M® | f(z1...2,).N*®)

The concurrency in the w-calculus plays no part here, but it is essential that the addresses of
processes can be sent on channels.

In sum, this section concentrated on the breaking down of functions into jumps, or “\ as goto
with arguments” [14, 1]. Though different authors have tended to emphasize different aspects of
CPS as a useful tool in compiling, an added bonus of the CPS transform in the style of Appel [1]
is that only atomic data (such as variables) need to be passed as arguments. While not a feature
of CPS as such, this restricted calling mechanism is crucial for the translation to the mw-calculus,
which is a “name-passing” calculus. (Even in the C code in Figure 1 there was an element of this,
in that only addresses were passed as arguments.)

4 From jumps to functions

We have sketched in the previous section how the CPS transform can be used to compile functions
into more primitive jumps with arguments (corresponding to the first step in Figure 1.) Concen-
trating now on the second step, this section addresses how, conversely, the transform can be used
to eliminate goto in favour of function call. Recall that in the second step of van Wijngaarden’s
transform, every goto was replaced by a function call. If the original program had already con-
tained gotos, then these too would be replaced by function calls. For instance, suppose we had
used a goto to skip the second call to p by jumping straight to the end:

main()

{
pCla’);
goto end;
p(C’b?);



end: ;

}

After the transform, we have a program in which the second call to p appears only as part of a
continuation that is never called.

void L1(){p(’b’, &end);}

void LO{(*end) ();}

main()
{

p(’a’, &L);
}

The non-functional behaviour of jumping past a statement is thus explicated in functional terms
as simply ignoring the corresponding continuation. Moreover, as the resulting program contains
no jumps, it would be much easier to assign a meaning in terms of mathematical (rather than C)
functions to it than to the original. Rather than use a CPS transformation, one could also build
the continuation-passing into the mathematical model itself; the principle remains much the same.

Apart from giving a functional meaning to goto, the CPS transform lets one see how restrictive
goto is in that it does not take arguments. All the continuations generated by transforming gotos
are void-accepting. That is to say, continuations that accept arguments suggest adding constructs
to the source language to denote them. A straightforward way to achieve this generalization is to
allow labels not only in front of statements, but anywhere in an expression. This generalization
seems even more natural if one starts from a language based on the A-calculus, where everything
is an expression.

Whereas labels in imperative languages label statements, in A-calculus, they need to label
expressions. To make continuations available to the programmer, one could label a subexpression
asin (...(L: M)...). More accurately, it is not M itself that is labeled, but the position where
M is implicitly slotted into some surrounding expression. Inside M, the label would be available
as the target of a jump goto L. Expressions could then be interspersed with jumps, say:

100 + (L: (10 + ((goto L)1)))

with the intended meaning of “jump with the argument 1 to the place labeled L where the number
to be added to 100 is expected”, giving the result 101. 10 is not added to the result, as we jumped
past it. The result is as if we had jumped between these statements:

sum = 1;

goto L;

sum += 10;
L: sum += 100;

This narrative may no doubt sound fanciful, but it is not that far removed from what actually
happened in the history of programming languages. Generalizing goto to the A-calculus led Landin
to invent the J-operator [6, 7], and the construct for labeling the position of a subexpression is
in fact Reynolds’s escape operator [11]; one writes escape L in M in place of L: M. In a
minor notational twist, escape L in M is nowadays written as callcc(AL.M), where callcc
abbreviates “call with current continuation”. For example, in Standard ML of New Jersey the
above example looks like this:



100 + callcc(fn L => 10 + throw L 1)

Hence callcc(fn L => ...) is analogous to labeling L: ..., and throw L... to goto L;. The
control operators callcc and throw are added to the A-calculus by extending the CPS transform
as follows:

[callcc M)k = [M]m where mf = fkk
[throw M N]k = [M]m where mh = ([N]n where nz = hx)

Only one programming language, Scheme [4], has such first-class continuations as part of its
standard. But control constructs in countless other languages can be understood in terms of contin-
uations. Often they can be seen as an idiom of callcc, possibly subject to certain implementation
restrictions. The situation for continuations is in this regard quite analogous to that for func-
tions: functions (or A-calculus as a language for first-class functions) can be used to elucidate many
constructs, whether or not the programming language under consideration itself has first-class func-
tions. Many languages lack true first-class functions because, due to implementation restrictions,
functions may not be returned as the result of functions. There is again an analogy with continua-
tions here, because traditional control constructs like goto and longjmp in C [5] are less powerful
than callcc for similar implementation restrictions on what can be returned from a function, as
will be illustrated in the next section.

5 The impact of adding continuations to a language

It is sometimes said that, due to the existence of CPS transforms into the A-calculus, control
constructs such as callcc add nothing to a programming language, in that it can all be translated
to the A-calculus — a point of view not unlike the position that all Turing-complete languages are
equivalent, as they can all compute exactly the same functions. To counter that impression, we will
briefly sketch how radically the semantics of a programming language is altered by the addition of
a continuation construct like callcc.

The fact that continuations have indefinite extent [4] makes callcc so powerful: a continuation
can be invoked anywhere it is known, and it does not go away after being invoked, so that it can
be invoked again. As an illustration of what is implied by indefinite extent here, and why it may
seem mildly surprising in the context of jumps, we again start out by looking at Gnu C. This time,
though, we do this for contrast as much as similarity: usages of jumps that are discouraged even
in a language as permissive as Gnu C make perfect sense with callcc.

See Figure 2 for a Gnu C function that returns a local label as its result, so that after calling
that function, one can jump back into it. The program duly prints

The function returned; now jump back into it.
Jumped back into the function.

but leaves the stack in disarray. It may hence seem as if the very idea of returning labels from a
function so as to jump back into the function is inherently meaningless. In fact, any difficulties
are not due to the jumping as such, but to the fact that in languages like C, anything local to a
function cannot be returned as its result without some risk of smashing the stack. It is not essential
whether the value returned is a local label or the address of a local variable, say:

int *a(int x) { return &x; }



void *label_as_result()

{
return &&L;
L: printf ("Jumped back into the function. \n");
}
main()
{
void *p;
p = label_as_result();
printf ("The function returned; now jump back into it.\n");
goto *p;
}

Figure 2: Jumping back into a function in Gnu C

But in a language with first-class functions and callcc, no such implementation restrictions
apply. Just as with the label as a result in C, we can return a continuation introduced by callcc
from a function so as to jump back into the function. When we did this with goto, the stack was
smashed, but with callcc the function just returns again. Consider the following function:

A().callcc(Ak.Az.throwk (\y.z))

The continuation k is returned as part of the result, roughly analogous to returning a label as the
result in C. Because it is arguably the simplest case of such control behaviour, this function has
been used for several counterexamples in the literature. In particular, consider the two expressions

(A\zx.pxx) M and Az Ay.pry) M M

One could argue that there is no way to distinguish these two expressions in a language without
assignment, not even by jumping. For, should a jump occur during the evaluation of M, both
expressions will boil down to a jump. What is remarkable is that this argument is essentially
correct — but not for continuations. More precisely, one can formalize the argument to show
that in a language with a different form of jumping, namely exceptions, the two expressions are
indistinguishable [13]. In a language with callcc, by contrast, the expressions can be distinguished
by using the function above, which returns twice.

The point we would like to make here is not so much that this obvious-seeming equivalence
fails, but why it fails: in the presence of continuations, function call is not like a substitution of the
actual for the formal parameters, or some variant thereof. Rather, it is a jump with arguments,
that may return by jumping back to the caller — or not, or more than once.

6 Conclusions

The breaking down of functions by means of continuations has been emphasized in CPS-based
compiling for decades. But in programming language theory, it seems to have been comparatively
neglected, so that one could be forgiven for thinking of continuations as little more than a technical
device for the domestication of goto. We found the “A as goto plus arguments” view [14] so



fundamental for understanding continuations that we chose here to sacrifice other aspects, however
important. For instance, in denotational semantics, where the term “continuation” was actually
coined [15], one would say that a continuation is a function mapping values to final answers, while
in type theory one would stress that CPS transforms correspond to double-negation translations,
and that control operators such as callcc have “classical” types [3].

Writing about the “discoveries of continuations”, Reynolds [12] describes how continuations
were not only discovered but even inadvertently re-discovered several times. The encodings of
A-calculus into 7-calculus can, with hindsight, be seen as an instance of continuation-passing style.
At the moment, there seems to be another such rediscovery under way, this time under the banner
of A-calculi for classical logic. Such rediscoveries are perhaps to be expected, given the protean
nature of continuations, and witness to their importance as a fundamental concept.
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