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1 Introduction

How do we measure the ”size” of a set in IR? Let’s start with the simplest ones: intervals.
Obviously, the natural candidate for a measure of an interval is its length, which is used
frequently in differentiation and integration. For any bounded interval I (open, closed,
half-open) with endpoints a and b (a ≤ b), the length of I is defined by `(I) = b − a. Of
course, the length of any unbounded interval is defined to be infinite, that is, `(I) = ∞ if I
is of the form (a,∞), (−∞, b), or (−∞,∞).

How do we measure the size of sets other than intervals? An extension to unions of
intervals is obvious, but is much less obvious for arbitrary sets. For instance, what is the
size of the set of irrational numbers in [0, 2]? Is it possible to extend this concept of length
(or size) of an interval to arbitrary sets? Lebesgue measure is one of several approaches
to solving this problem.

Here, we want to define and study the basic properties of Lebesgue measure. Given a set
E of real numbers, µ(E) will represent its Lebesgue measure. Before defining this concept,
let’s consider the properties that it should have.

(1) If I is an interval, then µ(I) should naturally be `(I), as we expected.

(2) If A ⊆ B, then µ(A) ≤ µ(B). Smaller set, smaller measure.

(3) Given A ⊆ IR and x0 ∈ IR, define A + x0 = {x + x0 : x ∈ A}, the translation of A.
Then µ(A + x0) = µ(A) since translation should not change the measure.

(4) If A and B are disjoint sets, then µ(A
⋃

B) should be the sum µ(A) + µ(B). In fact, if
{Ai}∞i=1 is a sequence of disjoint sets, then µ(

⋃∞
i=1 Ai) should be

∑∞
i=1 µ(Ai).

Unfortunately, it is not possible to define a measure that satisfies all of these properties
for all subsets of real numbers. The difficulty lies in property (4). Since this property
is essential to guarantee the linearity of the Lebesgue integral (as we will see later), it
is necessary to restrict the collection of sets and consider only those for which all of the
properties are valid. In other words, some sets will not have a Lebesgue measure.
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2 Some facts on the topology of IR

Definition 2.1 Let A be a subset of IR.

1) A is open in IR if for each x ∈ A there exists a neighborhood Vδ(x) such that Vδ(x) ⊆ A.

2) A is closed in IR if its complement IR\A is open in IR.

The following basic results describe the manner in which open and closed sets relate to
the operations of the union and intersection of sets.

Theorem 2.2 i) The union of an arbitrary collection of open sets is open.

ii) The intersection of any finite collection of open sets is open.

iii) The intersection of an arbitrary collection of closed sets is closed.

iv) The union of any finite collection of closed sets is closed.

Theorem 2.3 A set A is closed iff any convergent sequence (xn) of elements in A must
have its limit lim xn ∈ A.

An important class of subsets of IR is the class of compact sets. We have the following
definition.

Definition 2.4 Let A be a subset of IR. An open cover of A is a collection {Gα} of open
sets in IR whose union contains A; that is, A ⊆

⋃
α Gα.

Definition 2.5 A subset K of IR is said to be compact iff every open cover of K has a
finite subcover.

Theorem 2.6 (Heine-Borel theorem) A subset K of IR is compact iff it is closed and
bounded.

Theorem 2.7 A subset K of IR is compact iff every sequence in K has a subsequence that
converges to a point in K.

The proof of the above facts can be found in Chapter 11 of the text.
Exercises

1. Show that every open set in IR can be expressed as a countable union of open intervals
(Hint: The set of rationals is countable).
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3 Outer measure

Let’s begin with a way to ”measure” all sets.

Definition 3.1 Let E be a subset of IR. The Lebesgue outer measure of E, denoted by
µ∗(E), is defined by

inf{
∑
k

`(Ik) : {Ik} is a sequence of open intervals such that E ⊆
⋃

k Ik}.

If {Ik} is a sequence of open intervals such that E ⊆
⋃

k Ik, we call {Ik} a cover of E by
open intervals. It is obvious that 0 ≤ µ∗(E) ≤ ∞.

Firstly, µ∗ is almost a desired measure as it has the following properties.

Theorem 3.2 Lebesgue outer measure has the following properties:

(a) If A ⊆ B, then µ∗(A) ≤ µ∗(B).

(b) µ∗(∅) is zero.

(c) If A is a countable set then µ∗(A) is zero.

(d) Lebesgue outer measure is invariant under translation, that is, for each real number
x0, µ∗(E + x0) = µ∗(E).

(e) Lebesgue outer measure is countably subadditive, that is, given a sequence of sets {Ei},
µ∗(
⋃

i Ei) ≤
∑

i µ
∗(Ei).

(f) For any interval I, µ∗(I) = `(I).

Proof: (a) and (b) are trivial (exercise).
Proof of (c): Let A = {xi : i = 1, 2, . . .} be a countable set. Let ε > 0 and εk = ε/2k+1,

k = 1, 2, . . .. Define Ik = (xk − εk, xk + εk) then A ⊆
⋃

k Ik. Since

∑
k

`(Ik) =
∑
k

2εk ≤
∞∑

k=1

ε

2k
= ε

∞∑
k=1

1
2k

= ε.

It follows that µ∗(A) ≤ ε for all ε > 0. Thus, µ∗(A) = 0.
Proof of (d): Since each cover of the set E by open intervals Ik generates a cover

of E + x0 by open intervals Ik + x0 with the same length. Thus, µ∗(E + x0) ≤ µ∗(E).
Similarly, µ∗(E) ≤ µ∗(E +x0) since E = (E +x0)+ (−x0) is a translation of E +x0. Thus,
µ∗(E) = µ∗(E + x0).

Proof of (e): If
∑

i µ
∗(Ei) = ∞, then (e) is trivial. Suppose that the sum is finite. Let

ε > 0 be given. For each i, there is a sequence {Iik} of open intervals such that Ei ⊆
⋃

k Iik

and
∑

k `(Iik) < µ∗(Ei) + ε/2i. Clearly, the doubly-indexed sequence {Iik} is a cover for⋃
i Ei. That is

⋃
i Ei ⊆

⋃
i

⋃
k Iik. We have

µ∗(
⋃
i

Ei) ≤
∑
i,k

`(Iik) =
∑

i

∑
k

`(Iik) ≤
∑

i

(µ∗(Ei) + ε/2i)) =
∑

i

µ∗(Ei) + ε.
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Since ε > 0 is arbitrary, the above gives µ∗(
⋃

i Ei) ≤
∑

i µ
∗(Ei).

Proof of (f): Suppose first that I is bounded and its endpoints are a, b. For any given
ε > 0, we have

I ⊆ (a, b)
⋃

(a− ε, a + ε)
⋃

(b− ε, b + ε).

Thus,

µ∗(I) ≤ `((a, b)) + `((a− ε, a + ε)) + `((b− ε, b + ε)) = (b− a) + 2ε + 2ε = b− a + 4ε.

As ε > 0 is arbitrary, we conclude that µ∗(I) ≤ b− a = `(I).
We need only to prove that µ∗(I) ≥ `(I). Firstly, consider the case when I = [a, b]. Let

{Ik} be any sequence of open intervals that covers I. Since I is compact, by the Heine-Borel
theorem, there is a finite subcollection {Ji : 1 ≤ i ≤ n} of {Ik} still covers I. By reordering
and deleting if necessary, we can assume that a ∈ J1 = (a1, b1),

b1 ∈ J2 = (a2, b2), b2 ∈ J3 = (a3, b3), . . . , bn−1 ∈ Jn = (an, bn),

and b ∈ Jn. We then have

b− a < bn − a1 =
n∑

i=2

(bi − bi−1) + (b1 − a1) <
n∑

i=1

`(Ji) ≤
∑

i

`(Ii).

Hence, `(I) ≤ µ∗(I). This proves the result when I = [a, b].
If I = (a, b) then, as we have shown above,

`([a, b]) = µ∗([a, b]) ≤ µ∗((a, b)) + µ∗(a) + µ∗(b) = µ∗((a, b)).

Hence `(I) = `([a, b]) ≤ µ∗((a, b)) as we desired. The case of half open intervals is treated
similarly. The case of infinite intervals is left as exercise.

From Definition 3.1, every set has a Lebesgue outer measure. The above theorem shows
that Lebesgue outer measure satisfies the desired properties (1),(2) and (3) listed at the
beginning of this lecture. However, the property (4) is not verified by Lebesgue outer
measure as we will present later an example of two disjoint sets A,B for which µ∗(A

⋃
B) 6=

µ∗(A) + µ∗(B)! Of course, we will not want to consider these sets to be normal in order
that they are measurable. Instead, we will focus our attention on a collection of sets, known
as measurable sets, for which the property (4) is valid.

Definition 3.3 A set E ⊆ IR is Lebesgue measurable if for each set A ⊆ IR, we have
µ∗(A) = µ∗(A

⋂
E) + µ∗(A

⋂
EC) (Here, EC = IR\E, the complement of E in IR). If E is

a Lebesgue measurable set, then the Lebesgue measure of E, denoted by µ(E), is defined to
be its outer Lebesgue measure µ∗(E).

It will not be immediately obvious that the property (4) will be valid for µ. However,
we first note that the definition includes sets E that behave at least normally. Basically, E
should divide any set A into two disjoint parts, A

⋂
E and A

⋂
EC , whose outer measures

add up to give the outer measure of A as expected.
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Remark 3.4 Also note that, we have proven in (e) of Theorem 3.2 that µ∗(A) ≤ µ∗(A
⋂

E)+
µ∗(A

⋂
EC) so that we need only to show the reverse inequality to establish that the set E

is measurable.

The proof of the following elementary facts are left as exercise.

Theorem 3.5 The collection of measurable sets has the following properties.

a) ∅ and IR are measurable.

b) If E is measurable the so is EC .

c) If µ∗(E) = 0 then E is measurable.

We also have

Theorem 3.6 If E1, E2 are measurable, then E1
⋃

E2 and E1
⋂

E2 are also measurable.

Proof: Let A be any set in IR. Since E1, E2 are measurable, we have

µ∗(A) = µ∗(A
⋂

E1) + µ∗(A
⋂

EC
1 )

= µ∗(A
⋂

E1) + µ∗(A
⋂

EC
1

⋂
E2) + µ∗(A

⋂
EC

1

⋂
EC

2 ).

But A
⋂

(E1
⋃

E2) = (A
⋂

E1)
⋃

(A
⋂

EC
1

⋂
E2) and EC

1

⋂
EC

2 = (E1
⋃

E2)C . Thus, the
above implies

µ∗(A) ≥ µ∗(A
⋂

(E1

⋃
E2)) + µ∗(A

⋂
(E1

⋃
E2)C),

which shows that E1
⋃

E2 is measurable. Since E1
⋂

E2 = (EC
1

⋃
EC

2 )C , the set E1
⋂

E2 is
also measurable (why?).

Theorem 3.7 If E is measurable, then E + x0 is measurable.

Proof: For any A ⊆ IR, we compute

µ∗(A) = µ∗(A
⋂

E) + µ∗(A
⋂

EC)
(why?) = µ∗((A

⋂
E) + x0) + µ∗((A

⋂
EC) + x0)

= µ∗((A + x0)
⋂

(E + x0)) + µ∗((A + x0)
⋂

(EC + x0))
= µ∗((A + x0)

⋂
(E + x0)) + µ∗((A + x0)

⋂
(E + x0)C).

We replace A by A− x0 in the above and find that

µ∗(A) = µ∗(A− x0) = µ∗(A
⋂

(E + x0)) + µ∗(A
⋂

(E + x0)C),

and it follows that E + x0 is measurable.

Naturally, we should expect that

Theorem 3.8 Every interval is measurable.
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Proof: Let a ∈ IR. We need only (why?) to show that (a,∞) is measurable. To this
end, we will prove that

µ∗(A
⋂

(a,∞)) + µ∗(A
⋂

(−∞, a]) ≤ µ∗(A). (3.1)

This is trivial if µ∗(A) = ∞ so suppose that µ∗(A) < ∞. Let ε > 0. There exists a sequence
{Ik} of open interval such that A ⊆

⋃
k Ik and

∑
k `(Ik) < µ∗(A) + ε. For each k, let

I1
k = Ik

⋂
(a,∞) and I2

k = Ik
⋂

(−∞, a]. Obviously, {I1
k} and {I2

k} are sequence of intervals
that cover A

⋂
(a,∞) and A

⋂
(−∞, a], respectively, and µ∗(I1

k) + µ∗(I2
k) = `(Ik). Hence,

µ∗(A
⋂

(a,∞)) + µ∗(A
⋂

(−∞, a]) ≤
∑
k

`(Ik) < µ∗(A) + ε.

Since ε > 0 was arbitrary, we get (3.1).

Our first step in proving the property (4) is the following

Lemma 3.9 Let {Ei}n
i=1 be a finite collection of disjoint measurable sets. If A ⊆ IR, then

µ∗(
⋃
i

(A
⋂

Ei)) = µ∗(A
⋂

(
⋃
i

Ei)) =
∑

i

µ∗(A
⋂

Ei). (3.2)

In particular, when A = IR, µ(
⋃

i Ei) =
∑

i µ(Ei).

Proof: We prove this by induction. (3.2) is obvious when n = 1. Suppose that it holds
for some n. Consider n + 1 disjoint measurable sets Ei. Since En+1 is measurable,

µ∗(A
⋂

(
⋃n+1

i=1 Ei)) = µ∗(A
⋂

(
⋃n+1

i=1 Ei)
⋂

En+1) + µ∗(A
⋂

(
⋃n+1

i=1 Ei)
⋂

EC
n+1)

= µ∗(A
⋂

En+1) + µ∗(A
⋂

(
⋃n

i=1 Ei))
(induction) = µ∗(A

⋂
En+1) +

∑n
i µ∗(A

⋂
Ei) =

∑n+1
i µ∗(A

⋂
Ei).

Thus, (3.2) continues to hold for n + 1.

Theorem 3.10 If {Ei} is a sequence of measurable sets, then
⋃

i Ei and
⋂

i Ei are also
measurable.

Proof: Let E =
⋃

i Ei, H1 = E1 and Hn = En −
⋃n−1

i=1 Ei. Then {Hi} is a sequence of
measurable sets and E =

⋃
i Hi. Let A ⊆ IR and use the previous lemma to see that

µ∗(A) = µ∗(A
⋂

(
n⋃

i=1

Hi)) + µ∗(A
⋂

(
n⋃

i=1

Hi)C) ≥
n∑

i=1

µ∗(A
⋂

Hi) + µ∗(A
⋂

EC),

because EC ⊆ (
⋃n

i=1 Hi)C (why?). Thus, by letting n tend to ∞, we have

µ∗(A) ≥
∞∑
i=1

µ∗(A
⋂

Hi) + µ∗(A
⋂

EC).

Since A
⋂

E =
⋃∞

i=1(A
⋂

Hi), we have that µ∗(A
⋂

E) ≤
∑∞

i=1 µ∗(A
⋂

Hi). This and the
above give

µ∗(A
⋂

E) + µ∗(A
⋂

EC) ≤ µ∗(A).

Hence, E is a measurable set. Since
⋂

i Ei = (
⋃

i E
C
i )C , the proof is complete (why?).
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Theorem 3.11 If Ei is an arbitrary sequence of disjoint measurable sets, then µ(
⋃

i Ei) =∑
i µ(Ei).

Proof: For each finite n, Lemma 3.9 shows that
∑n

i=1 µ(Ei) = µ(
⋃n

i=1 Ei) ≤ µ(
⋃∞

i=1 Ei).
Thus,

∑∞
i=1 µ(Ei) ≤ µ(

⋃∞
i=1 Ei). The reverse inequality is obvious due to the countable

subadditivity. The proof is complete.

We have just shown that Lebesgue measure satisfies all four desired properties (1)-(4).
Our next question is: What sets are measurable? First of all, we have

Theorem 3.12 Every open set and every closed set are measurable.

Proof: Since every open set in IR is the union of countably many open intervals (why?),
we can use Theorem 3.8 and Theorem 3.10 and (b) of Theorem 3.5 to get the conclusion.

There are sets that are not measurable. We give an example of such set below. This set is
not easy to visualize; but it is important to know that there exist such strange sets.

Theorem 3.13 There exist sets that are not measurable.

Proof: Define a relation ∼ on IR by x ∼ y if x − y is rational. Note that ∼ is an
equivalence relation (check it!). Thus, this relation divides IR into equivalent classes of the
form {x+ r : r ∈ Q}. Each equivalent class contains a point in [0, 1]. Let E ⊂ [0, 1] be a set
that consists of one point from each equivalent class (Axiom of Choice is used here). Let
{ri} = Q

⋂
[−1, 1] and let Ei = E + ri for each i. We thus have a sequence of sets.

We will show that
[0, 1] ⊂

⋃
i

Ei ⊂ [−1, 2].

The second inclusion is obvious (check it). Let’s prove the first. For each x ∈ [0, 1], there
is y ∈ E such that x ∼ y and x − y ∈ [−1, 1]. Thus, x − y = ri for some i. Hence,
x = y + ri ∈ Ei.

Furthermore, the sets Ei are disjoint. Otherwise, if Ei
⋂

Ej 6= ∅ for i 6= j, then there is
y, z ∈ E such that y + ri = z + rj which implies that y ∼ z, a contradiction (as E does not
contain two elements of the same class).

Now suppose that E is measurable. Then each Ei is also measurable and µ(Ei) = µ(E).
Theorem 3.11 yields

1 = `([0, 1]) ≤ µ(
∞⋃
i=1

Ei) =
∞∑
i=1

µ(E) ≤ `([−1, 2]) = 3.

The first inequality shows that µ(E) 6= 0 while the second inequality forces µ(E) = 0
(why?). Hence, we have a contradiction. This mean E cannot be measurable.

We should remark that the above proof used only properties (1)-(4) listed at the begin-
ning and nothing special about Lebesgue measure. This means that one cannot construct
a measure that satisfies all four properties on all subsets of IR.
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Also, is the equality µ∗(A
⋃

B) = µ∗(A) + µ∗(B) valid for all disjoint sets A,B? The
answer is no! Otherwise, we would have from the proof of the above theorem that

nµ∗(E) =
n∑

i=1

µ∗(Ei) = µ∗(
n⋃

i=1

Ei) ≤ `([−1, 2] = 3

for every n. This forces µ∗(E) = 0. But this implies E is measurable, a contradiction.
However, the answer to our question is yes if A,B are disjoint measurable sets. That’s why
we will want to consider only measurable sets.

The above theorems lead us to the following definitions.

Definition 3.14 A collection A of sets is an algebra if ∅ ∈ A, EC ∈ A whenever E ∈ A,
and A is closed under finite unions ( and hence finite intersections).

Definition 3.15 An algebra A is a σ-algebra if it is closed under countable unions (and
hence countable intersections).

The previous theorems showed that the collection of Lebesgue measurable sets is a
σ-algebra.

It is easy to see that an arbitrary intersection of σ-algebras is also a σ-algebra (prove
it!).

Let B be the intersection of all σ-algebras that contain the open sets. Hence B is the
smallest σ-algebra that contains all the open sets. A set in B is called a Borel set. All
countable sets, intervals, open sets and closed sets are Borel sets.

From our previous theorems, it is easy to see that every Borel set in B is measurable
(why?).

Two particular classes of Borel will be frequently used. A Gδ set is any set that can
be expressed as a countable intersection of open sets. An Fδ set is any set that can be
expressed as a countable union of closed sets.

The next theorem relates measure and limit operations and it will be useful once the
Lebesgue is defined.

Theorem 3.16 Let {En} be a sequence of measurable sets.

a) If En ⊂ En+1 for all n and E =
⋃∞

n=1 En, the µ(E) = limn→∞ µ(En).

b) Suppose that µ(E1) < ∞. If En ⊇ En+1 for all n and E =
⋂∞

n=1 En, the µ(E) =
limn→∞ µ(En).

Proof: a) is trivial if µ(En) = ∞ for some n (why?). Suppose that µ(En) < ∞ for
all n. Let H1 = E1 and Hn = En − En−1 for n ≥ 2. Then {Hn} is a sequence of disjoint
measurable sets such that E =

⋃∞
n=1 Hn. Note that µ(Hn) = µ(En) − µ(En−1. We now

have,

µ(E) =
∞∑

n=1

µ(Hn) = lim
n→∞

(
n∑

k=2

(µ(Ek)− µ(Ek−1)) + µ(E1)

)
= lim

n→∞
µ(En).

8



This completes the proof of a). The proof of b) is left as an exercise (Hint: define Ēi =
E1 − Ei, Ē = E1 − E).

The definition of a measurable set may not be useful in other situations and there are
other equivalent forms of this definition to be used accordingly. Some of these forms are
presented in the following theorem.

Theorem 3.17 For any set E ⊆ IR, the following are equivalent:

1) The set E is measurable.

2) For each ε > 0, there exists an open set O ⊇ E such that µ∗(O − E) < ε.

3) For each ε > 0, there exists a closed set K ⊆ E such that µ∗(E −K) < ε.

4) There exists a Gδ set G such that E ⊆ G and µ∗(G− E) = 0.

5) There exists a Fδ set F such that F ⊆ E and µ∗(E − F ) = 0.

Proof: We will prove that 1)⇒2)⇒4)⇒1)⇒3)⇒5)⇒1).
1)⇒2): Let E be a measurable set and assume first that µ(E) < ∞. Let ε > 0. By

the definition, we can choose a sequence of open intervals {Ik} such that E ⊆
⋃

k Ik and∑
k `(Ik) < µ(E)+ε. Let O =

⋃
k Ik then O is an open set contains E. Since O = E

⋃
(O−E)

is a disjoint union of two open sets, we have

µ(O − E) = µ(O)− µ(E) ≤
∑
k

`(Ik)− µ(E) < ε.

This proves 2) when µ(E) < ∞. Suppose now that µ(E) = ∞ and let En = E
⋂

([n −
1, n)

⋃
(−n,−(n− 1)] for each integer n. Each of En is measurable and µ(En) < ∞. Thus,

there is an open set On such that En ⊆ On and µ(On −En) < ε/2n. The set O =
⋃

n On is
open and E ⊆ O. Moreover, since O − E ⊆

⋃
n(On − En), we have

µ(O − E) ≤
∑
n

µ(On − En) <
∑
n

ε/2n = ε.

Thus, 1) implies 2).
2)⇒4): For each integer n there is an open set On such that E ⊆ On and µ∗(On−E) <

1/n. Let G =
⋂

n On. then G is a Gδ set, E ⊆ G and µ∗(G − E) ≤ µ∗(On − E) < 1/n for
all n. This implies that µ∗(G− E) = 0.

4)⇒1): Since µ∗(G−E) = 0, the set G−E is measurable (why?). Thus, E = G
⋂

(G−
E)C is also measurable (why?).

The proof of 1)⇒3)⇒5)⇒1) is similar and will be left as an exercise.

It is important to note that 2) does not state that µ∗(O)−µ∗(E) < ε but µ∗(O−E) < ε.
In fact, by the definition of measure, for any set E (not necessarily measurable) with
µ∗(E) < ∞ we can find open set O such that E ⊆ O and µ∗(O)− µ∗(E) < ε.
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Finally, we introduce here the concept of inner measure. But first of all, since a set is
open iff it can be expressed as a countable union of open intervals, the outer measure of a
set E can be rewritten as

µ∗(E) = inf{µ(O) : E ⊆ O and O is open}.

This leads to the following definition.

Definition 3.18 Let E ⊆ IR. The inner measure of E is defined by

µ∗(E) = sup{µ(K) : K ⊆ E and K is closed}.

It is clear that µ∗(E) ≤ µ∗(E) and µ∗(A) ≤ µ∗(B) if A ⊆ B. We have the following
theorem on the basic properties of the inner measure.

Theorem 3.19 Let A,E be subsets of IR.

a) Let µ∗(E) < ∞. Then E is measurable if and only if µ∗(E) = µ∗(E).

b) There exists an Fδ set F such that F ⊆ E and µ(F ) = µ∗(E).

c) If A and E are disjoint, then µ∗(A
⋃

E) ≥ µ∗(A) + µ∗(E).

d) If E is measurable and A ⊆ E, then µ(E) = µ∗(A) + µ∗(E −A).

Proof: a): Suppose first that E is measurable and let ε > 0. There exists a closed set
K ⊆ E such that µ(E −K) < ε. Thus,

µ∗(E) ≥ µ∗(E) ≥ µ(K) > µ(E)− ε = µ∗(E)− ε.

Since ε is arbitrary, we must have µ∗(E) = µ∗(E). Conversely, if µ∗(E) = µ∗(E), then for
every given ε > 0, we can find a closed set K and an open set G such that K ⊆ E ⊆ G and

µ(K) > µ∗(E)− ε/2, µ(G) < µ∗(E) + ε/2.

Hence,
µ∗(G− E) ≤ µ∗(G−K) = µ(G−K) = µ(G)− µ(K) < ε.

Theorem 3.17 asserts that E is measurable.
b) and c): exercises.
d): For each ε > 0, we can find a closed set K ⊆ A such that µ(K) > µ∗(A)− ε. Hence,

µ(E) = µ(K) + µ(E −K) > µ∗(A)− ε + µ∗(E −A)

and it follows that µ(E) ≥ µ∗(A) + µ∗(E − A). By the exercise, we can find a measurable
set B such that E − A ⊆ B ⊆ E such that µ(B) = µ∗(E − A). Since E − B ⊆ A, we have
µ∗(E −B) ≤ µ∗(A). Thus,

µ(E) = µ(B) + µ(E −B) = µ∗(E −A) + µ(E −B) ≤ µ∗(E −A) + µ∗(A).

Combining the inequalities, we get µ(E) = µ∗(A) + µ∗(E −A).
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Exercises

1. Prove a) and b) of Theorem 3.2.

2. Complete the proof of f) of Theorem 3.2 when the interval I is infinite.

3. Prove that for any set E (not necessarily measurable) with µ∗(E) < ∞ we can find
open set O such that E ⊆ O and µ∗(O)− µ∗(E) < ε.

4. Let {En} be a sequence of sets of zero measure. Show that µ(
⋃

n En) = 0.

5. Show that any measurable subset of the nonmeasurable set E described in the proof
of Theorem 3.13 must have zero measure.

6. Show that an arbitrary intersection of σ-algebras is also a σ-algebra.

7. Prove part b) of Theorem 3.16.

8. Complete the proof of 1)⇒3)⇒5)⇒1) of Theorem 3.17.

9. Let E be a measurable set with µ(E) > 0. Prove that there is a closed set K ⊆ E
such that µ(K) > 0.

10. Let A ⊆ IR. Prove that there is a Gδ set G such that A ⊆ G and µ(G) = µ∗(E).

11. Prove b) and c) Theorem 3.19.

12. Let A ⊆ IR with µ∗(A) < ∞. Suppose that there is a measurable set B such that
B ⊆ A and µ(B) = µ∗(A). Prove that A is measurable.

Sample test problems:

1. Let f : IR → IR be a Lipschitz function and E ⊆ IR be a measurable set with µ(E) = 0.
Show that µ(f(E)) = 0. What if f is only locally Lipschitz?

2. Let A ⊆ IR be a measurable set. Define the function g : [0,∞) → [0,∞) by g(x) =
µ(A

⋂
[−x, x]).

(a) Show that g is an increasing function.
(b) Show that g is Lipschitz. What is its Lipschitz constant?
(c) What if A is not measurable and g(x) = µ∗(A

⋂
[−x, x])?

3. Let E be the nonmeasurable set described in the lecture notes. Let A ⊂ E. If A is
measurable, then show that µ(A) = 0.

4. For any A ⊆ IR. Show that there exist a Gδ set G and a Fδ set K such that K ⊆ A ⊆
G, and µ(G) = µ∗(A) and µ(K) = µ∗(A).

5. Let {An}∞n=1 be a sequence of measurable sets such that
∞∑

n=1

µ(An) < ∞.

Show that the set
⋂∞

n=1

⋃∞
k=n Ak has measure zero.
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6. Let X ⊆ IR be a measurable set with µ(X) = 1. Let A1, . . . , An be measurable subsets
of X such that

∑n
i=1 µ(Ai) > n− 1. Prove that µ(

⋂n
i=1 Ai) > 0.

7. Let A,B be two measurable sets. Show that

µ(A
⋃

B) + µ(A
⋂

B) = µ(A) + µ(B).

8. Let A ⊆ IR be a measurable set and B ⊆ IR be any set. Assume that A,B are disjoint.
Show that

µ∗(A
⋃

B) = µ(A) + µ∗(B).

9. Let A be any set with µ∗(A) < ∞. Assume that there exists a measurable set B ⊆ A
such that µ(B) = µ∗(A). Show that A is measurable.
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