

OpenCable™ Specifications

CableCARD™ Interface 2.0 Specification

OC-SP-CCIF2.0-I07-060803

ISSUED

Notice
This document is the result of a cooperative effort undertaken at the
direction of Cable Television Laboratories, Inc. for the benefit of the
cable industry and its customers. This document may contain
references to other documents not owned or controlled by
CableLabs. Use and understanding of this document may require
access to such other documents. Designing, manufacturing,
distributing, using, selling, or servicing products, or providing
services, based on this document may require intellectual property
licenses for technology referenced in the document.

Neither CableLabs nor any member company is responsible to any
party for any liability of any nature whatsoever resulting from or
arising out of use or reliance upon this document, or any document
referenced herein. This document is furnished on an "AS IS" basis
and neither CableLabs nor its members provides any representation
or warranty, express or implied, regarding the accuracy,
completeness, or fitness for a particular purpose of this document, or
any document referenced herein.

© Copyright 2004-2006 Cable Television Laboratories, Inc. All rights
reserved.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

ii CableLabs® 8/03/06

Document Status Sheet

Document Control Number: OC-SP-CCIF2.0-I07-060803

Document Title: CableCARD™ Interface 2.0 Specification

Revision History: I01 – March 31, 2005

I02 – July 8, 2005

I03 – November 17, 2005

I04 – January 26, 2006

I05 – April 13, 2006

I06 – June 22, 2006

I07 – August 3, 2006

Date: August 3, 2006

Responsible Editor Steve Young

Status: Work in
Progress

Draft Issued Closed

Distribution Restrictions: Author
Only

CL/Member CL/Member/
Vendor

Public

Key to Document Status Codes:

Work in Progress An incomplete document, designed to guide discussion and generate
feedback, which may include several alternative requirements for
consideration.

Draft A document in specification format considered largely complete, but
lacking review by Members and vendors. Drafts are susceptible to
substantial change during the review process.

Issued A document that has undergone rigorous Member and vendor review,
suitable for product design and development, cross-vendor interoperability,
and for certification testing.

Closed A stable document, reviewed, tested and validated, suitable to enable
cross-vendor interoperability.

TRADEMARKS:

DOCSIS®, eDOCSIS™, M-CMTS™, PacketCable™, CableHome®, CableOffice™, OpenCable™, CableCARD™,
OCAP™, DCAS™, and CableLabs® are trademarks of Cable Television Laboratories, Inc.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® iii

Contents

1 SCOPE ..1
1.1 Introduction and Overview... 1
1.2 Historical Perspective (Informative) .. 2
1.3 Requirements (Conformance Notation) .. 2
1.4 Numerical... 3

2 REFERENCES ..4
2.1 Normative References .. 4
2.2 Informative References .. 5
2.3 Reference Acquisition .. 5

3 TERMS AND DEFINITIONS..7

4 ABBREVIATIONS AND ACRONYMS...11

5 MODEL OF OPERATION..14
5.1 Advanced Cable Services .. 14

5.1.1 Interactive Program Guide (IPG) ... 14
5.1.2 Impulse Pay-Per-View (IPPV) ... 14
5.1.3 Video-on-Demand (VOD) .. 14
5.1.4 Interactive services.. 15

5.2 CableCARD Device Functional Description.. 15
5.2.1 Transport Stream Interface ... 16
5.2.2 Command Interface... 16

5.3 Network Connectivity/OOB Signaling ... 16
5.4 Card Operational Modes... 17

5.4.1 S-CARD in S-Mode ... 17
5.4.2 M-CARD in S-Mode... 17
5.4.3 M-CARD in M-Mode .. 17

5.5 One-way Networks .. 17
5.6 Two-way Networks.. 18
5.7 Two-way Networks with DOCSIS... 19
5.8 M-CARD Device Functional Description ... 20
5.9 Inband Interface - MPEG Data Flow... 22
5.10 OOB Interface ... 23

5.10.1 QPSK .. 24
5.10.2 DSG... 24

6 DELETED ..27

7 PHYSICAL INTERFACE ...28

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

iv CableLabs® 8/03/06

7.1 Electrical Characteristics ... 28
7.2 S-Mode Start-Up .. 30

7.2.1 Card Port Custom Interface (0x341).. 30
7.3 Interface Functional Description ... 30

7.3.1 S-Mode.. 30
7.3.2 M-Mode ... 30
7.3.3 Card Signal Descriptions... 30
7.3.4 Card Type Identification .. 34
7.3.5 Card Information Structure .. 36
7.3.6 MPEG Transport Interface... 37

7.4 Electrical Specifications... 40
7.4.1 DC Characteristics .. 40
7.4.2 AC Characteristics... 45

7.5 Mechanical Specifications ... 51
7.5.1 Form Factor ... 51
7.5.2 Connector.. 51
7.5.3 Environmental ... 51
7.5.4 PC Card Guidance .. 51
7.5.5 Grounding/EMI Clips ... 51
7.5.6 Connector Reliability ... 52
7.5.7 Connector Durability .. 52
7.5.8 PC Card Environmental... 52

7.6 CPU Interface... 52
7.6.1 S-Mode.. 52
7.6.2 M-Mode ... 56
7.6.3 S-Mode Initialization and Operation .. 58
7.6.4 M-CARD Initialization and Operation.. 82

8 COPY PROTECTION ..85

9 COMMAND CHANNEL OPERATION ...86
9.1 Session Layer.. 86

9.1.1 S-Mode.. 86
9.1.2 M-Mode ... 86
9.1.3 Resources with Multiple Sessions... 86
9.1.4 SPDU Structure... 86

9.2 Application Layer .. 90
9.2.1 Resource Identifier Structure... 90

9.3 APDUs .. 91
9.3.1 Interface Resource Loading .. 96

9.4 Resource Manager .. 97
9.4.1 profile_inq() ... 98
9.4.2 profile_reply() .. 98
9.4.3 profile_changed() .. 98

9.5 Application Information.. 99
9.5.1 application_info_req().. 99

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® v

9.5.2 application_info_cnf() .. 101
9.5.3 server_query() ... 103
9.5.4 server_reply() .. 104

9.6 Low Speed Communication ... 105
9.7 CA Support .. 105

9.7.1 ca_info_inquiry .. 106
9.7.2 ca_info... 107
9.7.3 ca_pmt... 107
9.7.4 ca_pmt_reply... 113
9.7.5 ca_update.. 116

9.8 Host Control .. 118
9.8.1 OOB_TX_tune_req.. 119
9.8.2 OOB_TX_tune_cnf .. 120
9.8.3 OOB_RX_tune_req ... 121
9.8.4 OOB_RX_tune_cnf.. 121
9.8.5 inband_tune_req ... 122
9.8.6 inband_tune_cnf.. 123

9.9 Generic IPPV Support ... 124
9.10 System Time ... 124

9.10.1 system_time_inq ... 124
9.10.2 system_time .. 125

9.11 Man-Machine Interface (MMI) .. 125
9.11.1 open_mmi_req .. 126
9.11.2 open_mmi_cnf ... 127
9.11.3 close_mmi_req .. 127
9.11.4 close_mmi_cnf .. 127

9.12 M-Mode Device Capability Discovery... 128
9.12.1 stream_profile APDU... 129
9.12.2 stream_profile_cnf APDU.. 129
9.12.3 program_profile APDU .. 129
9.12.4 program_profile_cnf APDU.. 130
9.12.5 es_profile APDU.. 130
9.12.6 es_profile_cnf APDU ... 131
9.12.7 request_pids APDU... 131
9.12.8 request_pids_cnf APDU .. 132

9.13 Copy Protection.. 132
9.14 Extended Channel Support ... 132

9.14.1 new_flow_req APDU ... 133
9.14.2 new_flow_cnf APDU.. 137
9.14.3 delete_flow_req APDU .. 139
9.14.4 delete_flow_cnf APDU .. 139
9.14.5 lost_flow_ind APDU... 140
9.14.6 lost_flow_cnf APDU... 140

9.15 Generic Feature Control .. 141
9.15.1 Parameter Storage .. 141
9.15.2 Parameter Operation... 141

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

vi CableLabs® 8/03/06

9.15.3 Generic Feature Control Resource Identifier... 144
9.15.4 Feature ID ... 144
9.15.5 Generic Feature Control APDUs ... 144

9.16 Generic Diagnostic Support.. 153
9.16.1 diagnostic_req APDU .. 154
9.16.2 diagnostic_cnf APDU .. 156
9.16.3 Diagnostic Report Definition.. 159

9.17 Specific Application Support .. 173
9.17.1 SAS_connect_rqst APDU.. 175
9.17.2 SAS_connect_cnf APDU... 175
9.17.3 SAS_data_rqst APDU ... 176
9.17.4 SAS_data_av APDU.. 176
9.17.5 SAS_data_cnf APDU... 177
9.17.6 SAS_server_query APDU ... 177
9.17.7 SAS_server_reply APDU... 178
9.17.8 SAS Async APDU.. 178

9.18 Card Firmware Upgrade... 179
9.18.1 Introduction.. 179
9.18.2 Implementation.. 180
9.18.3 Host Operation (Normative)... 180
9.18.4 Homing Resource.. 183

9.19 Support for Common Download Specification.. 186
9.19.1 Overview of Protocol ... 186
9.19.2 Operational Details .. 190
9.19.3 System Control Resource.. 199
9.19.4 Operational Behavior... 208
9.19.5 Signaling Contention ... 209

9.20 DSG Resource .. 209
9.20.1 DSG Mode... 209
9.20.2 inquire_DSG_mode APDU.. 214
9.20.3 set_DSG_mode APDU.. 214
9.20.4 send_DCD_info APDU .. 217
9.20.5 DSG_directory APDU.. 217
9.20.6 DSG_message APDU ... 223
9.20.7 DSG_error APDU .. 225

10 EXTENDED CHANNEL OPERATION...227
10.1 Internet Protocol Flows ... 227
10.2 Socket Flows .. 227
10.3 Flow Examples—QPSK Modem Case .. 228
10.4 Flow Examples— Embedded Cable Modem Case DSG Mode 229
10.5 Summary of Extended Channel Flow Requirement 232
10.6 System/Service Information Requirements ... 232
10.7 Link Layer ... 233

10.7.1 S-Mode.. 233

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® vii

10.7.2 M-Mode ... 233
10.7.3 Maximum PDUs... 234

10.8 Modem Models ... 234
10.8.1 Unidirectional Host Model ... 234
10.8.2 Bidirectional With Modem in Card ... 234
10.8.3 Bidirectional With Modem in Host ... 235

10.9 SI Requirements... 235
10.10 EAS Requirements .. 235
10.11 XAIT Requirements ... 235
10.12 OCAP OOB Object Carousel Requirements 235

ANNEX A BASELINE HTML PROFILE SUPPORT237
A.1 Format .. 237

A.1.1 Display... 237
A.1.2 Font ... 237
A.1.3 Text and Background Color... 237
A.1.4 Unvisited Link Color .. 238
A.1.5 Paragraph.. 238
A.1.6 Image .. 238
A.1.7 Table ... 238
A.1.8 Forms .. 238

A.2 Supported User Interactions.. 238
A.2.1 Navigation and Links ... 238
A.2.2 HTML Keywords .. 238

A.3 Characters ... 239

ANNEX B ERROR HANDLING..244

ANNEX C CRC-8 REFERENCE MODEL...260

ANNEX D S-CARD ATTRIBUTE AND CONFIGURATION REGISTERS261
D.1 General... 261
D.2 Attribute Tuples... 261

D.2.1 CISTPL_LINKTARGET ... 261
D.2.2 CISTPL_DEVICE_0A .. 261
D.2.3 CISTPL_DEVICE_0C.. 262
D.2.4 CISTPL_VERS_1 .. 262
D.2.5 CISTPL_MANFID .. 264
D.2.6 CISTPL_CONFIG.. 264
D.2.7 CCST-CIF.. 264
D.2.8 CISTABLE_ENTRY... 265
D.2.9 STCE_EV .. 266
D.2.10 STCE_PD.. 267
D.2.11 CISTPL_END .. 267

D.3 Configuration Option Register... 267
D.4 Values to Enable CableCARD Personality Change...................................... 267

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

viii CableLabs® 8/03/06

D.5 Operation After Invoking CableCARD Personality Change 267

ANNEX E DOWNLOADINFOINDICATOR MESSAGE DETAIL FOR COMMON
DOWNLOAD (NORMATIVE)...268

ANNEX F EXTENDED CHANNEL RESOURCE APDUS (DEPRECATED) 272
F.1 DSG Mode .. 272

F.1.1 inquire_DSG_mode APDU.. 273
F.1.2 set_DSG_mode APDU.. 273

APPENDIX I HEADEND REQUIREMENTS TO SUPPORT OPENCABLE
DOWNLOAD SPECIFICATION—OOB FDC METHOD (INFORMATIVE) ..283
I.1 Introduction ... 283
I.2 Requirements for OOB FDC download ... 283
I.3 Requirements for broadcast (one-way) download....................................... 283
I.4 Use Cases impacting head-end operation.. 284

I.4.1 Default CVT... 284
I.4.2 Forced download... 284

I.5 Relationships between Certification and CVT generation 285
I.5.1 Failure to change CVT to default after a certification wave................... 285

I.6 CVTs having a Time-To-Live (TTL) property... 285

APPENDIX II SELECTED USE CASE SCENARIOS—OOB FDC METHOD
(INFORMATIVE)..286
II.1 Scenarios Common to Download Now and Deferred Download................ 286

II.1.1 On initialization .. 286
II.1.2 Initiation of download protocol without CableCARD reset 286
II.1.3 CVT changes during download operation ... 286
II.1.4 Deferred download .. 286
II.1.5 Use of Default CVT ... 286

II.2 Broadcast... 286
II.2.1 Code File Available ... 286
II.2.2 Download Not Supported .. 286
II.2.3 Forced Upgrade .. 286

II.3 Code File Available ... 287
II.3.1 Code File Available on Carousel ... 287
II.3.2 Code File Available but Not on Carousel .. 287
II.3.3 Download not supported ... 287

APPENDIX III REVISION HISTORY ...288

Tables
Table 1.4–1 - Numerical Representation .. 3
Table 5.4–1 - Card/Host Combinations and Operating Modes 17
Table 5.8–1 - Card-Host Resource Communication ... 22

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® ix

Table 5.8–2 - Resource Example Request ... 22
Table 7.1–1 - Card Interface Pin Assignments ... 28
Table 7.3–1 - Timing Relationship Limits.. 32
Table 7.3–2 - Transmission Signals.. 34
Table 7.3–3 - VPP Pin Configurations, and Associated Card Operating Mode 36
Table 7.3–4 - CIS Minimum Set of Tuples .. 37
Table 7.4–1 - M-Mode Power Supply DC Characteristics .. 42
Table 7.4–2 - Card Signal Types by Mode ... 42
Table 7.4–3 - DC Signal Requirements .. 43
Table 7.4–4 - DC Signaling Characteristics for the “LogicPC” Signaling Level 43
Table 7.4–5 - DC Signaling Characteristics for the “LogicCB” Signaling Level 44
Table 7.4–6 - CableCARD and Host Pullups and Pulldowns.. 45
Table 7.4–7 - S-Mode/M-Mode Signal Parameters .. 46
Table 7.4–8 - M-CARD Power-On and Reset Timing Requirements.............................. 49
Table 7.4–9 - M-CARD MPEG Transport Timing.. 49
Table 7.4–10 - M-Mode Serial Interface Timing.. 51
Table 7.6–1 - Extended Interface Registers ... 54
Table 7.6–2 - Control Register Definitions .. 55
Table 7.6–3 - Status Register Definitions ... 56
Table 7.6–4 - CPU Interface Packet Format... 56
Table 7.6–5 - Length field used by all PDUs at Transport, Session and Application Layers
.. 65
Table 7.6–6 - Expected Received Objects – Transport Connection on the Host............ 68
Table 7.6–7 - Expected Received Objects – Transport Connection on the Card 69
Table 7.6–8 - Command TPDU (C_TPDU)... 71
Table 7.6–9 - Response TPDU (R_TPDU) ... 72
Table 7.6–10 - Coding of bit8 of SB_value ... 72
Table 7.6–11 - Create Transport Connection (Create_T_C) .. 72
Table 7.6–12 - Create Transport Connection Reply (C_T_C_Reply) 73
Table 7.6–13 - Delete Transport Connection (Delete_T_C) ... 73
Table 7.6–14 - Delete Transport Connection Reply (D_T_C Reply).............................. 74
Table 7.6–15 - Request Transport Connection (Request_T_C) 74
Table 7.6–16 - New Transport Connection (New_T_C).. 75
Table 7.6–17 - Transport Connection Error (T_C_Error) .. 75
Table 7.6–18 - Error Code Values .. 75
Table 7.6–19 - Send Data C_TPDU ... 76
Table 7.6–20 - Send Data R_TPDU ... 76
Table 7.6–21 - Receive Data C_TPDU.. 76
Table 7.6–22 - Receive Data R_TPDU... 77
Table 7.6–23 - Transport Tag Values ... 77
Table 7.6–24 - Profile Changed .. 79
Table 7.6–25 - Profile Inquiry.. 79
Table 7.6–26 - Profile Reply ... 80
Table 7.6–27 - Buffer 1 ... 82
Table 7.6–28 - Buffer 2 ... 82
Table 7.6–29 - Buffer 3 ... 83
Table 7.6–30 - Buffer 4 ... 83
Table 9.1–1 - SPDU Structure Syntax .. 87
Table 9.1–2 - open_session_request() Syntax ... 87
Table 9.1–3 - open_session_response() Syntax .. 88
Table 9.1–4 - close_session_request() Syntax... 88

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

x CableLabs® 8/03/06

Table 9.1–5 - close_session_response() Syntax .. 89
Table 9.1–6 - session_number() Syntax ... 89
Table 9.1–7 - Summary of SPDU Tags .. 89
Table 9.2–1 - Public Resource Identifier... 90
Table 9.2–2 - Private Resource Identifier ... 90
Table 9.2–3 - resource_identifier() Syntax.. 91
Table 9.3–1 - APDU Structure Syntax .. 91
Table 9.3–2 - Resource Identifier Values.. 92
Table 9.3–3 - Application Object Tag Values.. 93
Table 9.3–4 - Host-Card Interface Resource Loading .. 96
Table 9.4–1 - Resource Manager Resource Identifier .. 97
Table 9.4–2 - Resource Manager APDU List.. 97
Table 9.4–3 - profile_inq() APDU Syntax.. 98
Table 9.4–4 - profile_reply() APDU Syntax... 98
Table 9.4–5 - profile_changed() APDU Syntax... 98
Table 9.5–1 - Application Information Resource Identifier .. 99
Table 9.5–2 - Application Information APDU List.. 99
Table 9.5–3 - application_info_req() APDU Syntax .. 100
Table 9.5–4 - application_info_cnf() APDU Syntax... 102
Table 9.5–5 - server_query() APDU Syntax.. 103
Table 9.5–6 - server_reply() APDU Syntax... 104
Table 9.6–1 - A Low Speed Communication Resource .. 105
Table 9.6–2 - Low-Speed Communication Resource ID Reporting Matrix 105
Table 9.7–1 - C A Support Resource.. 106
Table 9.7–2 - CA Support APDUs .. 106
Table 9.7–3 - ca_info_inquiry() APDU Syntax .. 106
Table 9.7–4 - ca_info() APDU Syntax... 107
Table 9.7–5 - S-Mode ca_pmt() APDU Syntax (Resource Type 1 Version 2) 108
Table 9.7–6 - M-Mode ca_pmt() APDU Syntax (Resource Type 2 Version 1)............. 110
Table 9.7–7 - S-Mode ca_pmt_reply() APDU Syntax (Resource Type 1 Version 2) ... 114
Table 9.7–8 - M-Mode ca_pmt_reply() APDU Syntax (Resource Type 2 Version 1)... 115
Table 9.7–9 - S-Mode ca_update() APDU Syntax (Resource Type 1 Version 2) 116
Table 9.7–10 - M-Mode ca_update() APDU Syntax (Resource Type 2 Version 1)...... 117
Table 9.8–1 - Host Control Support Resource.. 119
Table 9.8–2 - Host Control Support APDUs ... 119
Table 9.8–3 - OOB_TX_tune_req() APDU Syntax.. 119
Table 9.8–4 - RF TX Frequency Value ... 120
Table 9.8–5 - RF TX Power Level... 120
Table 9.8–6 - RF TX Rate Value... 120
Table 9.8–7 - OOB_TX_tune_cnf() APDU Syntax .. 120
Table 9.8–8 - OOB_RX_tune_req() APDU Syntax ... 121
Table 9.8–9 - RF RX Frequency Value... 121
Table 9.8–10 - OOB Transmit Rate Format.. 121
Table 9.8–11 - OOB_RX_tune_cnf() APDU Syntax.. 122
Table 9.8–12 - inband_tune_req() APDU Syntax ... 122
Table 9.8–13 - Tune Frequency Value ... 123
Table 9.8–14 - S-Mode - inband_tune_cnf() APDU Syntax (Resource Type 1 Version 3)123
Table 9.8–15 - M-Mode - inband_tune_cnf() APDU Syntax (Resource Type 1 Version 3)123
Table 9.10–1 - System Time Support Resource... 124
Table 9.10–2 - System Time Support APDUs .. 124
Table 9.10–3 - Transmission of system_time_inq .. 124

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® xi

Table 9.10–4 - system_time APDU... 125
Table 9.11–1 - MMI Support Resource... 125
Table 9.11–2 - MMI Support APDUs .. 126
Table 9.11–3 - open_mmi_req() ... 126
Table 9.11–4 - open_mmi_cnf .. 127
Table 9.11–5 - close_mmi_req ... 127
Table 9.11–6 - close_mmi_cnf.. 128
Table 9.12–1 - CableCARD Device Resources Resource... 128
Table 9.12–2 - CableCARD Resources Support APDUs.. 128
Table 9.12–3 - stream_profile APDU Syntax .. 129
Table 9.12–4 - stream_profile_cnf APDU ... 129
Table 9.12–5 - program_profile APDU.. 130
Table 9.12–6 - program_profile_cnf APDU... 130
Table 9.12–7 - es_profile APDU Syntax ... 130
Table 9.12–8 - es_profile_cnf APDU Syntax .. 131
Table 9.12–9 - request_pids APDU .. 131
Table 9.12–10 - request_pids_cnf APDU ... 132
Table 9.13–1 - CableCARD Copy Protection Resource ... 132
Table 9.14–1 - Extended Channel Support Resource .. 133
Table 9.14–2 - Extended Channel Support APDUs.. 133
Table 9.14–3 - new_flow_req APDU Syntax... 135
Table 9.14–4 - Card DHCP Vendor Specific Information (Option 43) Sub-option Encoding
.. 136
Table 9.14–5 - Card DHCP Vendor Class Identifier (Option 60) Encoding 137
Table 9.14–6 - new_flow_cnf APDU Syntax ... 138
Table 9.14–7 - Flag field definitions .. 139
Table 9.14–8 - delete_flow_req APDU Syntax ... 139
Table 9.14–9 - delete_flow_cnf APDU Syntax.. 140
Table 9.14–10 - lost_flow_ind APDU Syntax .. 140
Table 9.14–11 - lost_flow_cnf APDU Syntax .. 141
Table 9.15–1 - Generic Feature Control Resource... 144
Table 9.15–2 - Feature Ids.. 144
Table 9.15–3 - Generic Feature Control APDUs .. 144
Table 9.15–4 - feature_list_req APDU Syntax .. 145
Table 9.15–5 - feature_list APDU Syntax ... 145
Table 9.15–6 - feature_list_cnf APDU Syntax .. 146
Table 9.15–7 - feature_list_changed APDU Syntax ... 146
Table 9.15–8 - feature_parameters_req APDU Syntax .. 146
Table 9.15–9 - feature_parameters APDU Syntax ... 147
Table 9.15–10 - Feature Parameters Confirm Object Syntax....................................... 148
Table 9.15–11 - rf_output_channel ... 149
Table 9.15–12 - p_c_pin ... 149
Table 9.15–13 - p_c_settings.. 149
Table 9.15–14 - purchase_pin .. 150
Table 9.15–15 - time_zone ... 150
Table 9.15–16 - daylight_savings ... 151
Table 9.15–17 - ac_outlet ... 151
Table 9.15–18 - language ... 151
Table 9.15–19 - rating_region... 152
Table 9.15–20 - reset_pin ... 152
Table 9.15–21 - cable_urls ... 152

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

xii CableLabs® 8/03/06

Table 9.15–22 - EA_location_code... 153
Table 9.16–1 - Generic Diagnostic Support Resource ... 153
Table 9.16–2 - Generic Diagnostic Support APDUs ... 154
Table 9.16–3 - Diagnostic Ids ... 154
Table 9.16–4 - S-Mode - diagnostic_req APDU Syntax (Version 2) 155
Table 9.16–5 - M-Mode - diagnostic_req APDU Syntax (Version 1)............................. 155
Table 9.16–6 - S-Mode - diagnostic_cnf APDU Syntax (Type 1, Version 2)................. 156
Table 9.16–7 - M-Mode - diagnostic_cnf APDU Syntax (Type 2, Version 1) 158
Table 9.16–8 - Table Status Field Values... 159
Table 9.16–9 - memory_report ... 159
Table 9.16–10 - software_ver_report.. 160
Table 9.16–11 - firmware_ver_report.. 161
Table 9.16–12 - MAC_address_report.. 161
Table 9.16–13 - FAT_status_report .. 162
Table 9.16–14 - FDC_status_report ... 162
Table 9.16–15 - FDC Center Frequency Value .. 163
Table 9.16–16 - current_channel_report... 163
Table 9.16–17 - 1394_port_report .. 164
Table 9.16–18 - DVI Status Report Syntax... 165
Table 9.16–19 - Frame Rate Associated With the Video Format On the DVI Link 166
Table 9.16–20 - Aspect Ratio Associated With the Video Format On the DVI Link...... 166
Table 9.16–21 - eCMStatus Report Syntax .. 167
Table 9.16–22 - Downstream Center Frequency Value.. 167
Table 9.16–23 - Upstream Transmit Center Frequency Value 168
Table 9.16–24 - HDMI Status Report Syntax.. 168
Table 9.16–25 - Frame Rate Associated With the Video Format On the HDMI Link.... 169
Table 9.16–26 - Aspect Ratio Associated With the Video Format On the HDMI Link .. 169
Table 9.16–27 - RDC_status_report ... 170
Table 9.16–28 - RDC Center Frequency Value .. 171
Table 9.16–29 - net_address_report... 171
Table 9.16–30 - home_network_report... 172
Table 9.16–31 - home_network_report... 173
Table 9.17–1 - Specific Application Support Resource... 175
Table 9.17–2 - Specific Application Support APDUs .. 175
Table 9.17–3 - SAS_connect_rqst APDU Syntax ... 175
Table 9.17–4 - SAS_connect_cnf APDU Syntax .. 176
Table 9.17–5 - SAS_data_rqst APDU Syntax... 176
Table 9.17–6 - SAS_data_av APDU Syntax... 177
Table 9.17–7 - SAS_data_cnf APDU Syntax.. 177
Table 9.17–8 - SAS_server_query APDU Syntax... 177
Table 9.17–9 - SAS_server_reply APDU Syntax.. 178
Table 9.17–10 - SAS_Async Message APDU Syntax ... 178
Table 9.18–1 - Homing Resource ... 183
Table 9.18–2 - Homing Objects .. 183
Table 9.18–3 - Open Homing Object Syntax .. 183
Table 9.18–4 - Open Homing Reply Object Syntax .. 184
Table 9.18–5 - Homing Active Object Syntax ... 184
Table 9.18–6 - Homing Cancelled Object Syntax ... 184
Table 9.18–7 - Homing Complete Object Syntax.. 184
Table 9.18–8 - Firmware Upgrade Object Syntax... 185
Table 9.18–9 - Firmware Upgrade Reply Object Syntax... 186

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® xiii

Table 9.18–10 - Firmware Upgrade Complete Object Syntax 186
Table 9.19–1 - Resource Identifier.. 200
Table 9.19–2 - Table of Application Protocol Data Units .. 200
Table 9.19–3 - host_info_request ... 201
Table 9.19–4 - host_info_response .. 201
Table 9.19–5 - Code Version Table .. 203
Table 9.19–6 - code_version_table_reply... 207
Table 9.19–7 - host_download_control table .. 208
Table 9.20–1 - DSG Resource.. 210
Table 9.20–2 - DSG APDUs .. 210
Table 9.20–3 - inquire_DSG_mode APDU Syntax ... 214
Table 9.20–4 - set_DSG_mode APDU Syntax ... 215
Table 9.20–5 - send_DCD_info APDU Syntax ... 217
Table 9.20–6 - DSG_directory APDU Syntax .. 221
Table 9.20–7 - ADSG_Filter Syntax.. 223
Table 9.20–8 - DSG_message APDU Syntax... 224
Table 9.20–9 - DSG_error APDU Syntax.. 225
Table 10.5–1 - Flow Requirements... 232
Table 10.7–1 - S-Mode Extended Channel Link Layer Packet 233
Table 10.7–2 - M-Mode Extended Channel Link Layer Packet 234
Table A–1 - HTML Keyword List ... 238
Table A–2 - Characters... 239
Table B–1 - Error Handling ... 244
Table D.2–1 - CISTPL_LINKTARGET .. 261
Table D.2–2 - CISTPL_DEVICE_0A... 262
Table D.2–3 - CISTPL_DEVICE_0C... 262
Table D.2–4 - CISTPL_VERS_1... 263
Table D.2–5 - CISTPL_MANFID... 264
Table D.2–6 - CISTPL_CONFIG... 264
Table D.2–7 - CCST-CIF .. 265
Table D.2–8 - CISTPL_CFTABLE_ENTRY .. 265
Table D.2–9 - STCE_EV... 266
Table D.2–10 - STCE_PD... 267
Table D.2–11 - CISTPL_END ... 267
Table D.3–1 - Configuration Option Register.. 267
Table E–1 - DownloadInfoIndicator Message Detail ... 269
Table F.1–1 - inquire_DSG_mode APDU Syntax ... 273
Table F.1–2 - set_DSG_mode APDU Syntax ... 274
Table F.1–3 - Configure Advanced DSG Object Syntax... 278
Table F.1–4 - DSG Message Object Syntax... 280
Table F.1–5 - send_DCD_info Object Syntax (Resource Version 3) 282
Table F.1–6 - DSG_error APDU Syntax ... 282

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

xiv CableLabs® 8/03/06

Figures
Figure 5.2-1 - Card Interfaces... 15
Figure 5.2-2 - Transport Stream Interface Layers... 16
Figure 5.2-3 - Command Interface Layers .. 16
Figure 5.5-1 - System with One-way Network... 18
Figure 5.6-1 - System with Two-way Network... 19
Figure 5.7-1 - System with DOCSIS Two-way Network.. 20
Figure 5.8-1 - Host and M-CARD Device Block Diagram Example 21
Figure 5.10-1 - CableCARD Out-of-Band Interface .. 23
Figure 5.10-2 - M-Mode: CHI Diagram ... 24
Figure 5.10-3 - DSG Packet Format Across Card Interface ... 25
Figure 5.10-4 - S-Mode CHI Diagram ... 26
Figure 7.3-1 - Timing Relationships for Transport Stream Interface Signals 32
Figure 7.3-2 - Card Type Detection Signals.. 36
Figure 7.3-3 - CMP Diagram... 39
Figure 7.3-4 - M-Mode MPEG Transport Stream Pre-Header 39
Figure 7.3-5 - CRC Polynomial ... 40
Figure 7.4-1 - CableCARD Device Output Timing Diagram.. 47
Figure 7.4-2 - CableCARD Device Input Timing Diagram... 47
Figure 7.4-3 - M-CARD Power-On and Reset Timing Diagram 48
Figure 7.4-4 - M-Mode Serial Interface Timing Diagram... 50
Figure 7.6-1 - Hardware Interface Registers... 52
Figure 7.6-2 - Status Register... 52
Figure 7.6-3 - Command Register .. 53
Figure 7.6-4 - Modem in-the-Card System Overview.. 54
Figure 7.6-5 - Modem in-the-Host System View ... 54
Figure 7.6-6 - Map of Hardware Interface Registers... 55
Figure 7.6-7 - Card RS Operation... 60
Figure 7.6-8 - CableCARD Personality Change Sequence .. 63
Figure 7.6-9 - Layout of Link Protocol Data Unit... 65
Figure 7.6-10 - State Transition Diagram – Host Side of the Transport Protocol 68
Figure 7.6-11 - State Transition Diagram – Card Side of the Transport Protocol 69
Figure 7.6-12 - Object Transfer Sequence – Transport Protocol.................................... 70
Figure 7.6-13 - C_TPDU Structure ... 71
Figure 7.6-14 - R_TPDU Structure ... 71
Figure 7.6-15 - SB_value .. 72
Figure 7.6-16 - Create_T_C Structure .. 73
Figure 7.6-17 - C_T_C_Reply Structure ... 73
Figure 7.6-18 - Delete_T_C Structure... 74
Figure 7.6-19 - D_T_C_Reply Structure ... 74
Figure 7.6-20 - Request_T_C Structure.. 74
Figure 7.6-21 - Request_T_C Structure.. 75
Figure 7.6-22 - T_C_Error Structure ... 75
Figure 7.6-23 - Send Data command/ Response Pair .. 76
Figure 7.6-24 - Receive Data command/ Response Pair ... 76
Figure 7.6-25 - Object Transfer Sequence – Transport Protocol.................................... 78
Figure 7.6-26 - CableCARD Device Interrupt Logical Operation 81
Figure 7.6-27 - M-Mode Serial Interface Protocol Diagram .. 84
Figure 9.1-1 - SPDU Structure.. 86

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® xv

Figure 9.3-1 - APDU Structure.. 91
Figure 9.3-2 - Primitive Tag Coding .. 93
Figure 9.7-1 - Program Index Table 1... 112
Figure 9.7-2 - Program Index Table 2... 112
Figure 9.7-3 - Program Index Table 3... 113
Figure 9.15-1 - Generic Feature List Exchange.. 142
Figure 9.15-2 - Card Feature List Change .. 142
Figure 9.15-3 - Host Feature List Change .. 142
Figure 9.15-4 - Host to CableCARD Device Feature Parameters................................. 143
Figure 9.15-5 - Host Parameter Update.. 143
Figure 9.15-6 - Headend to Host Feature Parameters ... 143
Figure 9.17-1 - Specific Application Support Connection Sequence 174
Figure 9.17-2 - Specific Application Support Alternate Connection Sequence............. 174
Figure 9.18-1 - Firmware Upgrade Flowchart ... 182
Figure 9.19-1 - OOB Forward Data Channel Operation ... 191
Figure 9.19-2 - DSG Channel Advanced Mode Operation ... 193
Figure 9.19-3 - DSG Channel Basic Mode Operation... 195
Figure 9.19-4 - Flow Chart Summarizing Download Operations 196
Figure 9.19-5 - Flow Chart Summarizing DSG Channel Download Operations 197
Figure 9.19-6 - Flow Chart Summarizing Code File Download and Verification........... 198
Figure 9.20-1 - Sample DSG Basic Mode Message Flow .. 211
Figure 9.20-2 - Sample Advanced Mode Message Flow .. 213
Figure 9.20-3 - UCID Flow Example from Host Perspective... 219
Figure 9.20-4 - VCT_ID Flow from Host Perspective.. 220
Figure 10.3-1 - Flow Examples - QPSK Modem Case.. 229
Figure 10.4-1 - Flow Examples - eCM Case Basic Mode ... 230
Figure 10.4-2 - Flow Examples - eCM Case Advanced Direct Mode............................ 231
Figure B–1 - Error Display .. 258
Figure C–1 - 8 bit CRC generator/checker model... 260
Figure F–1 - DSG Mode Message Flow ... 273
Figure F–2 - Sample Advanced Mode Message Flow .. 277
Figure I-1 - Headend Architecture... 284

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

xvi CableLabs® 8/03/06

This page left blank intentionally.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 1

1 SCOPE

This specification defines the normative characteristics for the interface between a security module owned and
distributed by cable operators and commercially available consumer receivers and set-top terminals, “Host
Devices”, that are used to access multi-channel television programming delivered on North American cable systems.
Some examples of the Host devices could be a set-top box, a television, a VCR, etc. In some cases the local cable
operator may optionally choose to supply this Host device in addition to the security module. In order to receive
scrambled cable services, the Host would require this security module, called a CableCARDTM device, to be inserted
and authorized to receive services. This CableCARD device, previously identified as a Point of Deployment (POD)
module, provides the conditional access operation and the network connectivity for the Host.

This CableCARD device-Host Interface (CHI) specification defines the interface between the Host device (Host)
and the CableCARD device (Card).

There are currently two modes of operation in which the Host and the Card can operate. The Single-Stream
CableCARD device (S-CARD) is the first generation security module that can only operate in the Single-Stream
Mode (S-Mode), and the Multi-Stream CableCARD device (M-CARD), a second-generation variant, is capable of
operation in Multi-Stream Mode (M-Mode), or in Single-Stream Mode (S-Mode), based on the Host and its
available functionality.

This document defines the interface for both the S-CARD and the M-CARD and the different operating modes. The
M-CARD, when operating in S-Mode, is backward compatible with the Single-Stream CableCARD Host Interface
as previously defined via ANSI/SCTE 28, the Host-POD Interface Standard, and ANSI/SCTE 41, the POD Copy
Protection System. When the M-CARD is running in M-Mode, functionality to support multiple program decryption
from multiple transport streams is added. One application for the M-CARD could be a Host device with multiple
tuners and QAM demodulators.

While analog television channels may be tuned, only digital television channels will be passed through the Card for
descrambling of authorized conditional access channels, and passed back to the Host. The Card will not only
provide the conditional access decryption of the digital television channel, but MAY also provide the network
interface between the Host and the cable system.

This document is a compilation of the specifications, standards, and related text from the OpenCable Specification
CableCARD Interface documents, single stream and multi-stream, OC-SP-CC-IF and OC-SP-MC-IF, as well as the
SCTE 28, 2004 documents. For the text that was extracted from the SCTE 28 2004 document, in all cases, the terms
“POD” and “POD module” were replaced with the terms “Card” and “CableCARD device”.

1.1 Introduction and Overview
This specification defines the characteristics and normative specifications for the interface between the Card device
and the Host device. This specification describes the interface for both the Single Stream Card and the Multi-Stream
Card.

• Single Stream Card (S-CARD) for use with or between Cards and Hosts capable only of processing a single
program on the interface is said to be operating in Single Stream Mode (S-Mode).

• Multi-Stream Card (M-CARD) for use between a Card and Host both capable of processing multiple
simultaneous programs on the interface is said to be operating in Multi-Stream Mode (M-Mode). The M-
CARD, when instructed to do so by the Host, can operate in S-Mode. The M-CARD can only operate in either
M-Mode or S-Mode, not both.

This specification supports a variety of conditional access scrambling systems. Entitlement management messages
(EMMs) and Entitlement Control Messages (ECMs) across the interface for such scrambling systems are carried in
the cable out-of-band channel as defined by [SCTE55-2], [SCTE55-1], and the DOCSIS® Set-top Gateway
Specification [DSG].

The interface will support Emergency Alert messages transmitted over the out-of-band channel to the Card which
will deliver the message to the Host using the format defined in [J042].

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

2 CableLabs® 8/03/06

This specification defines, sometimes by reference, the physical interface, signal timing, link interface, and
application interface for the Card-Host interface (CHI).

1.2 Historical Perspective (Informative)
Portions of this specification have origins in EIA-679, the National Renewable Security Standard, which was
initially adopted in September 1998. Part B of that standard uses the same physical size, shape and connector of the
computer industry PCMCIA card defined elsewhere, and defines the interface protocols and stack. Part B of that
standard was adopted by SCTE DVS.

Further extensions and modifications of EIA-679 led to the adoption of EIA-679-B in 2000. The EIA-679 standard
was developed substantially by the EIA/NCTA Joint Engineering Committee (JEC) National Renewable Security
Standard (NRSS) Subcommittee, and was a joint work of NCTA and CEMA Technology & Standards.

The M-Mode specification has its origin in ANSI/SCTE 28, where the original version of the Card provided only
enough bandwidth for a S-Mode. As DVRs, picture-in-picture, and other M-Mode features were developed, it was
realized that the original S-Mode had inadequate bandwidth for some of these features, and could not grow to
support multi-tuner gateway scenarios.

A M-Mode provides the higher transport data throughput rates that would be required to support future features,
such as multiple-tuner Hosts, Hosts with DVRs, Hosts with picture-in-picture capability, and future extensions of
existing conditional access functions to include Digital Rights Management.

This specification document is based on and conforms to much of the technical content as found in ANSI/SCTE 28,
2004.

1.3 Requirements (Conformance Notation)
Throughout this document, the words that are used to define the significance of particular requirements are
capitalized. These words are:

“SHALL/MUST” These words or the adjective “REQUIRED” means that the item is an absolute
requirement of this specification.

“SHALL NOT/
MUST NOT”

This phrase means that the item is an absolute prohibition of this specification.

“SHOULD” This word or the adjective “SHOULD” means that there may exist valid reasons in
particular circumstances to ignore this item, but the full implications should be
understood and the case carefully weighed before choosing a different course.

“SHOULD NOT” This phrase means that there may exist valid reasons in particular circumstances
when the listed behavior is acceptable or even useful, but the full implications
should be understood and the case carefully weighed before implementing any
behavior described with this label.

“MAY” This word or the adjective “MAY” means that this item is truly optional. One
vendor may choose to include the item because a particular marketplace requires it
or because it enhances the product, for example; another vendor may omit the
same item.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 3

1.4 Numerical
In most cases all numbers without a prefix are base 10 (decimal). The following prefixes are to be used to designate
different bases.

Table 1.4–1 - Numerical Representation

Prefix/Suffix Base Name

b 2 Binary
0 10 Decimal
0x 16 Hexadecimal

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

4 CableLabs® 8/03/06

2 REFERENCES

The following specifications and standards contain provisions that, through reference in this text, constitute
normative provisions of this specification. At the time of publication, the editions indicated are current. All
standards are subject to revision, and parties to agreements based on this specification are encouraged to investigate
the possibility of applying for the most recent editions of the standards listed in this section.

In order to claim compliance with this specification, it is necessary to conform to the following standards and other
works as indicated, in addition to the other requirements of this specification. Notwithstanding, intellectual property
rights may be required to use or implement such normative references.

2.1 Normative References
[DSG] DOCSIS® Set-top Gateway (DSG) Interface Specification, SP-DSG-I08-060728, July

28, 2006, Cable Television Laboratories, Inc.

[DOCSIS2.0] Data-Over-Cable Service Interface Specification DOCSIS 2.0, OC-SP-RFIv2.0-I11-
060602, June 2, 2006, Cable Television Laboratories, Inc.

[OCHD2] OpenCable Host Device 2.0 Core Functional Requirements, OC-SP-HOST2.0-CFR-I10-
060803, August 3, 2006, Cable Television Laboratories, Inc.

[J042] American National Standard, J-STD-042-2002, Emergency Alert Message for Cable
(SCTE 18 and EIA/CEA 814).

[ISO10646-1] ISO/IEC 10646-1: 1993 Information technology - Universal Multiple-Octet Coded
Character Set (UCS) - Part 1: Architecture and Basic Multilingual Plane.

[ISO13818-1] ISO/IEC 13818-1 Generic Coding of Moving Pictures and Associated Audio: Systems.

[ISO13818-6] ISO/IEC 13818-6 Op Cit, Extensions for DSM-CC.

[ISO13818-9] ISO/IEC 13818-9 Extension for real time interface for systems decoders.

[ISO639-1] ISO 639-1: 2002 Codes for the representation of names of Languages - Part 1: Alpha-2
code.

[ISO639-2] ISO 639-2: 2002 Codes for the representation of names of Languages - Part 1: Alpha-3
code.

[ISO8825] ISO 8825: 1987 Open Systems Interconnection- Specification of basic encoding rules for
Abstract Syntax Notation One (ASN.1)

[ISO8859-1] ISO 8859-1: 1998 Information technology, 8-bit single-byte coded graphic character sets,
Part 1: Latin alphabet No. 1.

[CCCP2] OpenCable™ CableCARD™ Copy Protection 2.0 Specification, OC-SP-CCCP2.0-I04-
060803, August 3, 2006, Cable Television Laboratories, Inc.

[OCAP] OpenCable™ Application Platform Specification, OCAP 1.0 Profile, OC-SP-OCAP1.0-
I16-050803, August 3, 2005, Cable Television Laboratories, Inc.

[OCSEC] OpenCable™ System Security Specification, OC-SP-SEC-I06-060413, April 13, 2006,
Cable Television Laboratories, Inc.

[PCMCIA2] PCMCIA PC Card Standard Volume 2 Release 8.0, April 2001 Electrical Specification.

[PCMCIA3] PCMCIA PC Card Standard Volume 3 Release 8.0, April 2001 Physical Specification.

[PCMCIA4] PCMCIA PC Card Standard Volume 4 Release 8.0, April 2001 Metaformat
Specification.

[RFC2132] DHCP Options and BOOTP Vendor Extensions, March 1997.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 5

[RFC2396] IETF RFC 2396, August 1998, T. Berners-Lee, R. Fielding, and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax".

[RFC2131] IETF RFC 2131, March 1997, R. Droms, "Dynamic Host Configuration Protocol".

[SCTE23] ANSI/SCTE 23-2 2002 is DOCSIS 1.1 Part 2 Baseline Privacy Interface Plus.

[SCTE28] ANSI/SCTE 28 2004 Host POD Interface Standard.

[SCTE41] ANSI/SCTE 41 2004 POD Copy Protection System.

[SCTE55-1] ANSI/SCTE 55-1 2002 Digital Broadband Delivery System: Out Of Band Transport Part
1: Mode A.

[SCTE55-2] ANSI/SCTE 55-2 2002 Digital Broadband Delivery System: Out Of Band Transport Part
2: Mode B.

[SCTE65] ANSI/SCTE 65 2002 Service Information Delivered Out Of Band.

[SCTE80] ANSI/SCTE 80 2002 In-Band Data Broadcast Standard including Out-of-Band
Announcements.

2.2 Informative References
[CHILA] CableLabs CableCARD-Host Interface License Agreement.

[NRSSB] CEA-679-C Part B, National Renewable Security Standard (July 2005). A joint work of
NCTA and CEMA Technology and Standards.

2.3 Reference Acquisition
• CableLabs Specifications and License Agreements

Cable Television Laboratories, Inc. 858 Coal Creek Circle, Louisville, CO 80027;
Telephone: +1-303-661-9100; Internet: http://www.cablelabs.com/

• ISO/IEC Specifications

ISO Central Secretariat: International Organization for Standardization (ISO), 1, rue de Varembé, Case postale
56, CH-1211 Geneva 20, Switzerland; Internet: http://www.iso.ch/

• SCTE/DVS Specifications

SCTE - Society of Cable Telecommunications Engineers Inc., 140 Philips Road, Exton, PA 19341;
Telephone: 610-363-6888 / 800-542-5040; Fax: 610-363-5898; Internet: http://www.scte.org/

• ANSI/EIA Standards

American National Standards Institute, Customer Service, 11 West 42nd Street, New York, NY 10036;
Telephone 212-642-4900; Facsimile 212-302-1286; E-mail sales@ansi.org; URL http://www.ansi.org

• EIA Standards: United States of America

Global Engineering Documents, World Headquarters, 15 Inverness Way East, Englewood, CO USA 80112-
5776; Telephone: 800-854-7179; Facsimile: 303-397-2740; E-mail: global@ihs.com; URL:
<http://global.ihs.com>

• ITU Standards

ITU Sales and Marketing Service, International Telecommunication Union, Place des Nations CH-1211,
Geneva 20, Switzerland; Telephone: +41 22 730 6141; Facsimile: +41 22 730 5194; E-mail: sales@itu.int ;
URL: <http://www.itu.org>

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

6 CableLabs® 8/03/06

• Internet Specifications

The Internet Engineering Task Force, IETF Secretariat, c/o Corporation for National Research Initiatives, 1895
Preston White Drive, Suite 100, Reston, VA 20101-5434; Telephone: 703-620-8990; Facsimile: 703-620-9071;
E-mail: ietf-secretariat@ietf.org; URL: http://www.ietf.org/rfc

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 7

3 TERMS AND DEFINITIONS

This specification uses the following terms:

Term Definition

American Standard Code for
Information Interchange

Internationally recognized method for the binary representation of
text.

Application Protocol Data
Unit

A common structure to send application data between the Card and
Host.

Application Program Interface The software interface to system services or software libraries. An
API can consist of classes, function calls, subroutine calls,
descriptive tags, etc.

CableCARDTM device A PCMCIA card distributed by cable providers and inserted into a
Host device to enable premium services in compliance with the
OpenCable specifications, also called “Card” and “Point of
Deployment” (POD) module.

Card CableCARD device
Card Information Structure Low-level configuration information contained in the Card’s

Attribute Memory.
Command Channel Also identified as Data Channel.
Conditional Access and
encryption

A system that provides selective access to programming to
individual customers.

Conditional Access System Secures delivery of cable services to the Card.
CPU Interface The logical interface between the Card and the Host comprised of

the Data and Extended communications channels.
Data Channel Also identified as Command Channel.
DOCSIS Set-top Gateway A method of using DOCSIS protocols to support a one-way out-of-

band communication path.
Downstream Transmission from headend to Host.
DSG Advanced Mode Also known as Advanced DSG (ADSG). Operation with the DCD

message. Address assignment is dynamic. The DSG Tunnel Address
is determined by the DSG Agent and learned by the DSG Client
through the DSG Address Table in the DCD message.

DSG Basic Mode Also known as Basic DSG (BDSG). Operation without the DCD
message. Address assignment is static. The DSG Tunnel Address is
determined by the DSG Client and learned by the DSG Agent
through configuration. This mode provides backwards compatibility
with earlier versions of the DSG specification.

DSG Tunnel A single instance of a DSG Rule within a DCD message.
Dynamic Host Configuration
Protocol

An Internet standard for assigning IP addresses dynamically to IP
hosts.

eCM A DOCSIS Cable Modem that has been embedded into a Set-
top/Host device and includes DSG functionality.

Encryption Mode Indicator Defines the copy protection mode for digital outputs.
Entitlement Management
Message

A conditional access control message to a Card.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

8 CableLabs® 8/03/06

Term Definition

Extended Application
Information Table

Used for launching and managing the lifecycle of unbound
applications for OCAP.

Extended Text Table An MPEG 2 table contained in the Program and System Information
Protocol (“PSIP”), which provides detailed descriptions of virtual
channels and events.

Forward Application
Transport

A data channel carried from the headend to the set-top or Host
device in a modulated channel at a rate of 27 or 36 Mbps. MPEG-2
transport is used to multiplex video, audio, and data into the FAT
channel.

Forward Data Channel An out-of-band (“OOB”) data channel from the headend to the
Host.

Gapped Clock A periodic signal in which some transitions are omitted creating
gaps in a clock pattern.

Headend The control center of a cable television system, where incoming
signals are amplified, converted, processed and combined into a
common cable along with any original cable casting, for
transmission to subscribers. The System usually includes antennas,
preamplifiers, frequency converters, demodulators, modulators,
processors and other related equipment.

High-Z Greater than 100K Ohm resistance to power or to ground.
Host The consumer device used to access and navigate cable content.

Typically a digital TV or set-top DTV receiver, further defined in
[OCHD2].

HTTP The transport layer for HTML documents over the Internet Protocol
(“IP”).

Hypertext Markup Language A presentation language for the display of multiple media contents,
typically used on the Internet.

Inband Within the main Forward Applications Transport channel.
Internet Protocol The internet protocol provides for transmitting blocks of data called

datagrams from sources to destinations, where sources and
destinations are hosts identified by fixed length addresses.

IP datagram An Internet Protocol datagram, which is either sent in a single MAC
frame or may be fragmented and transmitted across multiple MAC
frames.

IP packet The portion of an Internet Protocol datagram inserted into or
extracted from a MAC frame. If an IP datagram has been
fragmented, then each of the fragments is an IP packet. If an IP
datagram has not been fragmented, then the entire datagram is in a
single IP packet.

IP Unicast Point-to-Point Internet Protocol datagram service.
IP Multicast Point to multi-point Internet Protocol datagram service.
Local Transport Stream ID Assigned by the Host operating in M-Mode.
LSB Least Significant Bit or Byte of a specified binary value.
M-CARD Multi-Stream Card, capable of operating in either S-Mode or M-

Mode.
M-Host Multi-Stream/Multi-Tuner Host device.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 9

Term Definition

M-Mode A Multi-Stream Card (M-CARD), capable of processing multiple
simultaneous programs on the interface, is said to be operating in
Multi-Stream Mode (M-Mode).

Model ID The model as it is marketed and appears on the label of the Certified
Device, and as reported in the Digital Certificate Usage Report (see
OpenCable Host 2.0 Digital Certificate authorization Agreement).

MPEG Moving Picture Experts Group. Colloquial name for ISO-IEC
SC29/WG11, which develops standards for compressed full-motion
video, still image, audio, and other associated information.

MPEG-2 Video ISO-IEC 13818-2, international standard for the compression of
video.

MPEG-2 Transport ISO-IEC 13818-1, international standard for the transport of
compressed digital media.

MSB Most Significant Byte or Bit, of a specified binary value.
National Television Systems
Committee

An entity that developed the analog television system used in North
America and elsewhere.

OC Signaling A DSG Broadcast Tunnel containing CVTs and XAITs as defined in
[DSG].

Out-of-Band The combination of the Forward and Reverse Data Channels. The
OOB channel provides a data communication channel between the
cable system and the Host.

PC Card A device that complies with the PC Card Standard, as referenced in
this document.

Point of Deployment Synonymous with “POD”, “point of deployment module”,
CableCARD device and Card. A detachable device distributed by
cable providers and inserted into a Host connector to enable
reception of encrypted services.

Protocol Data Unit A packet of data passed across a network or interface.
Quadrature Amplitude
Modulation

A digital modulation method in which the value of a symbol
consisting of multiple bits is represented by amplitude and phase
states of a carrier. Typical types of QAM include 16-QAM (four bits
per symbol), 32-QAM (five bits), 64QAM (six bits), and 256QAM
(eight bits).

Quadrature Phase Shift
Keying

A digital modulation method in which the state of a two-bit symbol
is represented by one of four possible phase states.

Remote Procedure Call The ability for client software to invoke a function or procedure call
on a remote server machine.

Resource A unit of functionality provided by the host for use by a Card. A
resource defines a set of objects exchanged between Card and host
by which the Card uses the resource.

Return Data Channel A data communication channel running upstream from home to the
headend, i.e., an out-of-band (“OOB”) data channel from the host to
the headend.

S-CARD Single-Stream Card compliant to ANSI/SCTE 28, capable of only
operating in S-Mode.

S-Host Single-Stream Host device.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

10 CableLabs® 8/03/06

Term Definition

S-Mode A Single Stream Card (S-CARD), capable only of processing a
single program on the interface, is said to be operating in Single
Stream Mode (S-Mode).

Subtuple Subset of a Tuple.
Tuple Data stored within a PC Card that can be used to determine the

capabilities of the card.
Uniform Resource Locator A standard method of specifying the location of an object or file.
Upstream Transmission from host to headend.
User Datagram Protocol A protocol on top of IP that is used for end-to-end transmission of

user messages. Unlike TCP, UDP is an unreliable protocol, which
means that it does not contain any retransmission mechanisms.

Virtual Channel Table An MPEG-2 table which contains a list of all the channels that are or
will be on plus their attributes.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 11

4 ABBREVIATIONS AND ACRONYMS

This specification uses the following abbreviations and acronyms:

Abbreviation/
Acronym

Definition

ADSG Advanced DSG mode
AES Advanced Encryption Standard
ANSI American National Standards Institute
APDU Application Protocol Data Unit
API Application Program Interface
ASCII American Standard Code for Information Interchange
ASD Authorized Service Domain
ATSC Advanced Television System Committee
BDSG Basic DSG Mode
bslbf Bit String (serial) – Left Most Bit First
CA Conditional Access
CAS Conditional Access System
CEA Consumer Electronic Association
CHI Card - Host Interface
CIS Card Information Structure
CMOS Complementary Metal Oxide Silicon
CMP CableCARD MPEG Packet
CMTS Cable Modem Termination System
CPU Central Processing Unit.
CRC Cyclic Redundancy Check
CVDT Code Version Download Table
CVT Code Version Table
DCD Downstream Channel Descriptor
DHCP Dynamic Host Configuration Protocol
DII Download Info Indicator
DOCSIS® Data Over Cable Service Interface Specifications
DRAM Dynamic Random Access Memory
DSG DOCSIS Set-top Gateway
DSM-CC Digital Storage Medium – Command and Control
DVR Digital Video Recorder
DVS Digital Video Subcommittee
EAS Emergency Alert System
ECM Entitlement Control Message
eCM Embedded Cable Modem
EIA Electronics Industries Alliance

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

12 CableLabs® 8/03/06

Abbreviation/
Acronym

Definition

EMI Encryption Mode Indicator
EMM Entitlement Management Message
ETT Extended Text Table
FAT Forward Application Transport
FCC Federal Communications Commission
FDC Forward Data Channel
HTML Hypertext Markup Language
I/O Input or output
IB Inband
ID Identifier/Identity/Identification
IIR Initialize Interface Request
IP Internet Protocol
IP_U IP Unicast
IP_M IP Multicast
IPG Interactive Program Guide
IPPV Impulse Pay-Per-View
IQB Interface Query Byte
kHz kilohertz
LPDU Link Protocol Data Unit
LTSID Local Transport Stream ID
mA milliAmps
MAC Media Access Control
MHz Megahertz
MMI Man-Machine Interface
MoCA Multimedia over Coax Alliance
ms millisecond
MSO Multiple System Operator
MTU Maximum Transmission Unit
NAT Network Address Translation
ns nanosecond
NTSC National Television Systems Committee
NVM Non-Volatile Memory
OCAP OpenCable Application Platform
OOB Out-of-Band
OUI Organizationally Unique Identifier
OCHD2 OpenCable Host Device 2 (includes OCS2 and OCS2 Profiles)
OCS2 OpenCable Set-top 2
PCMCIA Personal Computer Memory Card International Association
PCR Program Clock Reference

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 13

Abbreviation/
Acronym

Definition

PDU Protocol Data Unit
pF PicoFarad
PHY Physical Layer
PID Packet Identifier
PIN Personal Identification Number
PNG Portable Network Graphics
POD Point of Deployment
PPV Pay-Per-View
PSI Program Specific Information
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
RDC Return Data Channel
RF Radio Frequency
RFC Request For Comments
RPC Remote Procedure Call
ROM Read Only Memory
RX Receive
SAS Specific Application Support
SCTE Society of Cable Telecommunications Engineers
SI System Information
SRAM Static Random Access Memory
tcimsbf Two’s complement integer, (msb) sign bit first
TPDU Transport Protocol Data Unit
TSID Transport Stream Identifier
TX Transmit
UDP User Datagram Protocol
uimsbf Unsigned Integer Most Significant Bit First
URL Uniform Resource Locator
V Volt
VCR Video Cassette Recorder
VCT Virtual Channel Table
VOD Video-on-Demand
WKMA Well Known MAC Address
XAIT Extended Application Information Table

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

14 CableLabs® 8/03/06

5 MODEL OF OPERATION

The Card provides the conditional access operation and the network connectivity for the Host. MPEG transport
streams are received by the Host and passed to the Card for decryption. The streams are returned to the Host device
to be displayed.

In addition to MPEG streams, the CHI also carries out-of-band communications, as well as command and control
signals. Cable system deployments utilize the OOB FDC and RDC paths for reception of the EMMs, SI data, EAS,
and network connectivity.

5.1 Advanced Cable Services
The Card interface specification is designed to support advanced digital cable services by a digital television
receiver when a Card is inserted.

In this case, “Advanced Digital Cable Services” would include support of the following functions:

• Interactive Program Guide

• Impulse Pay-Per-View (IPPV) using OCAP

• Video On Demand (VOD)

• Interactive Services

5.1.1 Interactive Program Guide (IPG)

The Host may support an Interactive Program Guide (IPG) to enable the user to navigate to available services. The
services supported by the IPG may include basic channel, premium channels, and Impulse Pay-Per-View (IPPV)
events. Program guide data may be delivered to the application by means of the in-band (QAM) channel, DSG or
FDC:

• In-band transmission of program and system information typically describes only the digital multiplex in which
it is sent. This means that a single-tuner Host will periodically scan through all channels to receive data for each
channel and store this information in memory.

• Optionally, at the discretion of the cable operator, the FDC or DSG may be used to deliver guide data. The
format of this information over the FDC or DSG will be defined by the cable operator and may be used to
support specific IPG implementations. The Host receives data from the Card either over the Extended Channel
as described in Section 10 of this document or directly from the eCM via the DSG interface. This guide data
typically describe the entire range of services offered by the cable system.

5.1.2 Impulse Pay-Per-View (IPPV)

 The Host may support the purchase of Impulse Pay-Per-View (IPPV) events using OCAP. The CableCARD
Interface support of the Generic IPPV resource is deprecated. If supported, it SHALL comply with Section 8.10 of
SCTE 28.

5.1.3 Video-on-Demand (VOD)

Video-on-Demand (VOD) may be modeled as an IPPV event where the program stream is dedicated to an
individual subscriber. The VOD application executes in the Host and supports all of the User Interface (UI)
functions.

The additional streaming media control functions (i.e., Pause, Play, Fast-Forward, Rewind) may be supported using
DSM-CC User-to-User messages. The Extended Channel, described in Section 10 of this document, may be used
as the communication path for VOD signaling, and may also be used for VOD event purchases. After a VOD
control session is established via the session creation interface, UDP messages may be exchanged transparently

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 15

between the Host and the cable system. RFC 1831, 1832, and 1833 may be used as the underlying RPC mechanism
for the exchange of DSM-CC UU.

5.1.4 Interactive services

Interactive Services may be supported by applications executing on the Host, such as, an email or game application.
To advertise interactive services, a mechanism is required to deliver information about applications to the Host and the
protocols described in [SCTE80] may be used for this purpose. Typically, information about interactive services are not
associated with a streaming media service, so information about them is delivered via the FDC or DSG. The service
information is passed to the Host via the Extended Channel resource when the Card serves as the OOB modem or across
a DSG tunnel.

The Extended Channel may also be used as the communication path for interactive service signaling when the Card
is serving as the OOB modem. After an interactive service session is established via the session creation interface,
UDP messages may be exchanged transparently between the Host and the cable system. RFC 1831, 1832, and 1833
may be used as the underlying RPC mechanism for the exchange of application level messages.

5.2 CableCARD Device Functional Description
The CHI contains three sub-interfaces:

• An Inband interface for MPEG-2 Transport Stream input and output

• An Out-of-band Interface for receiving OOB data under two different delivery methods (but not
simultaneously)

• ANSI/SCTE 55-1 2002 (formerly DVS 178) Digital Broadband Delivery System: Out Of Band Transport
Part 1: Mode A

• ANSI/SCTE 55-2 2002 (formerly DVS 167) Digital Broadband Delivery System: Out Of Band Transport
Part 2: Mode B

• A CPU Interface supporting:

• Command Channel (also called Data Channel)

• Extended Channel

The various interfaces are summarized in the following figure:

CableCARD Interface

CPU Interface

Out-of-Band
Interface

Inband (MPEG-2 Transport)
Interface

Extended
Channel

Command/
Data

Channel

Figure 5.2-1 - Card Interfaces

Copy protection is required for protection of high-valued content, content marker with a non-zero EMI, across the
CHI. Section 8, [CCCP2], as well as [SCTE41], identify this functionality and the expected behavior.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

16 CableLabs® 8/03/06

5.2.1 Transport Stream Interface

The in-band transport stream interface carries MPEG-2 transport packets in both directions. If the Card gives access
to any services in the transport stream and those services have been selected by the Host, then the packets carrying
those services will be returned descrambled, and the other packets are not modified. On the transport stream
interface a constant delay through the module and any associated physical layer conditioning logic is preserved
under most conditions (see Section 7.3.6.1). The transport stream interface layers are shown below. The Transport
Layer and all upper layers are defined in the MPEG-2 specification, ISO 13818.

Upper Layers
Transport Layers

PC Card Link Layer
PC Card Physical Layer

Figure 5.2-2 - Transport Stream Interface Layers

5.2.2 Command Interface

The Command Interface carries all the communication between the application(s) running in the Card and the Host.
The communication protocols on this interface are defined in several layers in order to provide the necessary
functionality. This functionality includes the ability to support complex combinations of transactions between the
Card and host, and an extensible set of functional primitives (objects) which allow the host to provide resources to
the Card. This layering is shown below.

Application
Resources:

User Interface Low-Speed
Communications

System Optional
extensions

Session Layer
Generic Transport Sublayer
PC Card Transport Sublayer

PC Card Link Layer
PC Card Physical Layer

Figure 5.2-3 - Command Interface Layers

The PC Card implementation described has its own physical and link layers, and also its own transport lower
sublayer. A future different physical implementation may differ in these layers and any difference will be restricted
to these layers. The implementation-specific features of the transport lower sublayer are limited to coding and
specific details of the message exchange protocol, and the common upper sublayer defines identification, initiation
and termination of transport layer connections. The Session, Resource and Application layers are common to all
physical implementations.

5.3 Network Connectivity/OOB Signaling
One of three types of signaling MAY be utilized, legacy OOB ([SCTE55-2] or [SCTE55-1]) or [DSG].

In the legacy OOB modes, the signaling functions are split between the Host and the Card such that only the RF
processing and QPSK demodulation and modulation are done in the Host. The remainder of the processing,
including all of the Data-link and MAC protocols, is implemented in the Card.

Hosts that only support the legacy OOB signaling methods can be either one-way or two-way Hosts. One-way
Hosts lack the upstream transmitter of the legacy signaling method. DSG Hosts are all two-way Hosts.

In the DSG mode of operation, all of the Data-link and MAC level protocols are implemented in the embedded
cable modem in the Host. In this case, the Card is not responsible for implementing these protocols, since they are
provided via the embedded cable modem (eCM). The forward data channel messaging is transported as follows:

The forward data channel messaging is transported via one or more DSG Tunnels to the Host. The Host filters
the IP packets on the DSG Tunnels identified by the Ethernet MAC addresses, specified by the Card. The Host,

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 17

when instructed to do so, removes the Ethernet and IP headers bytes of these packets as instructed by the Card
(the Card specifies the number of bytes to be removed from the headers).

5.4 Card Operational Modes
The S-CARD operates only in Single-Stream mode (S-Mode). An M-Host MAY support a Card operating in S-
Mode or it may reject the S-CARD operating in S-Mode and require that an M-CARD be inserted and that the Card
operate in M-Mode only.

The M-CARD physical interface will operate in two modes depending on the capabilities of the Host:

• S-Mode

• M-Mode

The different Card/Host combinations are summarized in Table 5.4–1.

Table 5.4–1 - Card/Host Combinations and Operating Modes

 Single-Stream Host Multi-Stream Host
S-CARD S-Mode Host may reject S-CARD*

M-CARD S-Mode M-Mode

* M-Host may optionally support the S-Mode interface, which will affect the ability to support multi-stream
functionality for that Host, i.e., only a single transport stream may be supported across the interface.

5.4.1 S-CARD in S-Mode

S-CARD interface defined in this specification and the corresponding compatible Hosts capable of processing a
single transport stream, are built in compliance with the Single-Stream mode (S-Mode) functionality as defined in
this document. The S-CARD, when inserted into an M-Host, may or may not be capable of transport stream
processing, for both one-way and two-way operation. Said differently, the S-CARD when inserted into a M-Host
may not perform in the same manor as if it were inserted into a Host only capable of processing a single transport
stream.

5.4.2 M-CARD in S-Mode

The M-CARD defined in this specification SHALL function in a single-tuner Host built in compliance with the S-
Mode operation as defined in this document. An M-CARD operating in such a Host will be said to be operating in
S-Mode.

5.4.3 M-CARD in M-Mode

The M-CARD defined in this specification, capable of processing multiple transport streams, SHALL function in a
M-Host as defined in this specification document.

The M-CARD physical interface is compatible with the S-CARD physical interface. For M-Mode, the MPEG data
flow has been modified to support multiple streams and new APDUs have been added. The command and control
interface is a serial interface in M-Mode mode, versus the parallel interface in the S-Mode.

The M-CARD, when inserted into the M-Host, when configured/commanded to do so, could operate in the M-
Mode, but only have one stream enabled.

5.5 One-way Networks
The configuration shown in Figure 5.5-1 applies where there is a no return channel.

The QPSK transmitter in the Host is not active (and it is therefore omitted from the diagram). The receiver circuit
operates in the same manner as described in Section 9.8.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

18 CableLabs® 8/03/06

The DSG communication path using the extended channel is intended to provide transport of Out-of-Band
messaging over a DOCSIS channel that is traditionally carried on dedicated channels, specifically those defined in
[SCTE55-1] and [SCTE55-2], and is to be capable of supporting a one-way (downstream) transport without
requiring return path functionality from the DSG client.

TUNER

OOB RX

DEMOD DEMUX

CPU

OOB INB CPU

CableCARD

Host

Figure 5.5-1 - System with One-way Network

After Card initialization, the Host informs the Card about the available Low Speed Communication resources as
defined by Section 9.6. Then, when the Card requires setting up a connection with the cable headend, datagrams are
sent to the modem via the CPU interface.

5.6 Two-way Networks
Figure 5.6-1 gives a block diagram view of the system when the cable network includes an OOB return Data
Channel based on [SCTE55-1] or [SCTE55-2].

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 19

TUNER

OOB RX

QPSK TX

DEMOD DEMUX

CPU

OOB INB CPU

CableCARD

Host

Figure 5.6-1 - System with Two-way Network

The QPSK receiver circuit in the Host tunes and demodulates the QPSK Forward Data Channel (FDC). The
receiver circuit adapts to the 1.544/3.088 Mbps or 2.048 Mbps FDC bit rate, and delivers the bit-stream and clock to
the Card. (This data is used primarily to send conditional access entitlement management messages from the cable
system to the Card. These messages are beyond the scope of this standard.)

Tuning of the QPSK receiver circuit is under control of the Card, as explained in Section 9.8. The tuning range is
between 70 and 130 MHz.

In the return path, the Card generates QPSK symbols and clock and transfers them to the QPSK transmitter circuit
in the Host. The transmitter circuit adapts to the 1.544/3.088 Mbps or 0.256 Mbps RDC bit rate. The QPSK
transmitter circuit modulates the QPSK symbols onto a narrow band carrier.

Tuning and level control of the QPSK transmitter are under control of the Card as explained in Section 9.8. The
tuning range is between 5 MHz and 42 MHz.

5.7 Two-way Networks with DOCSIS
The configuration shown in Figure 5.7-1 applies where DSG capability via a DOCSIS modem exists in the Host.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

20 CableLabs® 8/03/06

TUNER-1

TUNER-2

OOB RX

OOB RDC or
DOCSIS RDC

TX

DOCSIS
eCM

DEMOD DEMUX

CPU

OOB INB CPU

CableCARD

Host

Cable

DOCSIS
Modulator

OOB QPSK
Modulator

64/256 QAM
Demodulator

OOB QPSK
Demodulator

Figure 5.7-1 - System with DOCSIS Two-way Network

In this configuration a single upstream transmit path is shared between the Card and the DOCSIS modem. In order
to prevent conflict between the DOCSIS upstream and the OOB RDC, the system will operate in one of two modes.

• OOB mode – The downstream Conditional Access Messages and network management messages will be
delivered to the Card via the QPSK receive interface on the Card using, e.g., [SCTE55-1], [SCTE55-2], or
other agreed OOB specification. The upstream Conditional Access Messages and network management
messages will be transmitted from the Card via the QPSK transmit interface on the Card using, e.g., [SCTE55-
1], [SCTE55-2].

• DSG mode – The downstream Conditional Access Messages and network management messages will be
delivered to the Card by the Extended Channel using the DSG Service type in the DOCSIS downstream in
accordance with the DOCSIS Set-top Gateway Specification [DSG]. The upstream Conditional Access
Messages and network management messages will be transmitted from the Card via IP over the DOCSIS
upstream channel using the Extended Channel. The DOCSIS bi-directional channel can be used by any
applications running in the Host, simultaneously with the Card's communication with the headend via the
Extended Channel using DOCSIS. The use of the Extended Channel by the Card for IP flows does not change
DSG usage of the DSG Service type on the Extended Channel.

The mode used is based on whether the DOCSIS Set-top Gateway is supported by the network. The Card informs
the Host which of these modes is to be used as detailed later in this specification.

5.8 M-CARD Device Functional Description
The functional elements of a Host and M-CARD are shown in the following figure. Shown in the diagram is an
example of a possible M-Mode implementation that includes multiple FAT tuners and an eCM.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 21

Tuner-1

DOCSIS Channel
Tuner

OOB RX

OOB/ DOCSIS TX

DOCSIS

Multiplexor DEMUX

CPU

OOB INB CPU

CableCARD

Host

Tuner-2

MPEG
Decoder(s)

Cable

Figure 5.8-1 - Host and M-CARD Device Block Diagram Example

The multiplexer sends one complete MPEG transport packet at a time across the MPEG interface to the M-CARD.
The Host identifies each of the transport stream packets in the multiplex by appending a pre-header to the MPEG-2
transport header. This pre-header contains an 8-bit transport stream ID value, indicating to which transport stream
the appended packet belongs.

In order to support multiple streams, the bandwidth of the physical interface between the Card and the Host device
is increased from 27/38Mbps to support up to 200Mbps of aggregate MPEG transport packet data both into and out
of the Card simultaneously. This is sufficient for five simultaneous transport streams from up to five 256QAM
tuners/demodulators, or up to six streams from six 64QAM tuners/demodulators.

For the Card, the maximum number of unique MPEG transport streams input into the Card from the Host will be
greater than three. The maximum number of programs that the Card’s CA system can request that the Card
simultaneously decrypt can be greater than or equal to four. In addition, the maximum number of elementary
streams that the Card can manage can be greater than or equal to sixteen (16). The Card MAY request a maximum
of 8 PIDs be transmitted to it. Section 9.12, M-Mode Device Capability Discovery, identifies this functionality.

In addition to increasing the number of transport streams that can be transmitted across the interface, this
specification also adds capability to the Card-Host command interface to enable the decryption of multiple programs
within each transport stream. Therefore, it is possible for the Host to request that multiple programs from each
transport stream be decrypted. Through the CA_PMT structure, which is passed from the Host to the Card, the Host
indicates which programs and which individual elementary streams within each transport stream are to be decrypted
by the Card. Conversely, upon initialization, the Card indicates to the Host the number of simultaneous programs
and simultaneous elementary streams (PIDs) it can decrypt. The Host can, therefore, keep track of how many of
each of these resources it has used to determine how many additional programs and elementary streams it can
request to be decoded. These commands are diagramed in the following table.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

22 CableLabs® 8/03/06

Table 5.8–1 - Card-Host Resource Communication

Host Card
 Maximum number of transport streams supported

 Maximum number of simultaneous programs
supported

 Maximum number of simultaneous elementary
streams (PIDs) supported

CA_PMT structure(s) (one per
program)

An example of the resources that need to be tracked are shown in Table 5.8–2, where the Host has requested six
programs consisting of two movies, one multi-angle movie, and three music programs, for a total of six programs,
eleven elementary streams, and three transport streams. If the Card had indicated that it could support 4 transport
streams, 16 programs, and 32 elementary streams, the Host knows that there are sufficient resources for additional
decryption requests. If the Card only supported simultaneous decryption of a maximum of six programs, the Host
would know not to send any additional program decrypt requests. If the Card indicated that it could only support
three simultaneous streams, the Host could optionally re-multiplex two separate transport streams into one and pass
it to the Card instead, as long as the decryption request remained under the maximum limits indicated by the Card.

Table 5.8–2 - Resource Example Request
From the Host to Decrypt 11 Elementary Streams From 6 Programs Across 3 Transport Streams

Transport Layer Program Layer Elementary
Layer

Transport Stream 1 Program 1 Video ES

 Audio ES

 Program 2 Video ES
 Audio ES
Transport Stream 2 Program 3 Video ES 1
 Video ES 2
 Audio ES 1
 Audio ES 2
Transport Stream 3 Program 4 Audio ES
 Program 5 Audio ES
 Program 6 Audio ES

5.9 Inband Interface - MPEG Data Flow
In S-Mode, the CHI SHALL support the transport stream interface data rates of 26.97035 Mb/s and 38.81070 Mb/s
averaged over the period between the sync bytes of successive transport packets with allowable jitter of +/- one
MCLKI clock period.

The Card’s MPEG data flow uses two separate 8-bit buses, one for input, and one for output for the MPEG data.
All of the Host MPEG data is transmitted through the Card. The Card only descrambles the selected program
indicated by the Host. If the program is marked as high value content, non-zero EMI, that program is scrambled
across the CHI.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 23

In M-Mode only, packets from multiple transport streams are temporally multiplexed and sent across the parallel
MPEG transport interface. In addition, a header is added before each packet for identification. The clock rate of the
interface is increased in order to support the increased number of packets.

5.10 OOB Interface
The S-CARD device was modified from the [NRSSB]-defined Card to include signaling for the ANSI/SCTE 55-1
and 55-2 OOB methods operation. A later modification added the DSG functionality where the OOB data can be
transmitted over the extended channel interface to the Card.

The Host provides the QPSK physical layer to support OOB (FDC and RDC) communications according to
[SCTE55-1] and [SCTE55-2]. The data link and media access control protocols for [SCTE55-1] and [SCTE55-2]
are implemented in the Card. See Figure 5.10-1 below.

The interface data rates are:

• Forward Receiver: 1.544/3.088 Mbps and 2.048 Mbps

• Reverse Transmitter: 772/1544 ksymbol/s and 128 ksymbol/s
 (i.e., 1.544/3.088 Mbps and 256 kbps)

The transmit and receive interfaces for the Card OOB Interface are shown in Figure 5.10-1 below. The receiver
interface comprises a serial bit stream and a clock, while the transmitter interface comprises I and Q data, a symbol
clock, and a transmit-enable signal. The clock signal should be transferred from the Host to the Card, as shown in
Figure 5.10-1.

QPSK
Demodulator

QPSK
Transmitter

Master
Clock

ITX CTXETX

Host

CableCARD
Device

QTXDRX CRX

Figure 5.10-1 - CableCARD Out-of-Band Interface

The Card operating in S-Mode or M-Mode SHALL support DSG, ANSI/SCTE 55-1 and ANSI/SCTE 55-2 Out-Of-
Band (OOB) methods defined in [DSG] [SCTE55-1] and [SCTE55-2] respectively. Only one method will be active
at a time.

For the DSG operation, the Host SHALL support DOCSIS as defined in the [OCHD2] specification. Operation will
follow the [DSG] specification.

The following diagram shows the connections for the MPEG transport and Out-Of-Band (OOB) data flows for the
Card operating in M-Mode:

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

24 CableLabs® 8/03/06

QPSK
Demodulator

QPSK
Modulator

DRX

CRX

CTX
ETX
QTX
ITX

Link/Data
Layer OOB Payload

OOB Payload
Link/Data

Layer
MAC
Filter

Host M-CARD PCMCIA
Connector

Transport Stream
Multiplexor

MDI[7:0]
MICLK

MISTRT
MPEG

Processing

Transport Stream
De-Multiplexor

MDO[7:0]
MOCLK

CableCARD
device Control/

Data Channel

Host Control/Data
Channel SDI

SCTL
SCLK

SDO

MOSTRT

DSG OOB Payload DSG compatible
cable modem

Figure 5.10-2 - M-Mode: CHI Diagram

5.10.1 QPSK

The common modulation method for ANSI/SCTE 55-1 and ANSI/SCTE 55-2 is QPSK. This allows the Host to
incorporate a common receiver and transmitter for support of the legacy QPSK signaling. The receive signals (data
and clock) are passed to the Card, which performs all the necessary MAC and higher layers of operation.

5.10.2 DSG

The Host performs all the DOCSIS operations and through the use of DSG, allows for the transmission of the DSG
data to the Card.

The Host DOCSIS cable modem provides the physical data link and media access control protocols. Unlike the
SCTE 55 mode, the data link and media access control protocols for ANSI/SCTE 55-1 and ANSI/SCTE 55-2 are
not used. The downstream communications are implemented in accordance with the DOCSIS Set-top Gateway
Specification [DSG]. The upstream Conditional Access Messages and network management messages will be
transmitted from the Card via IP over the DOCSIS upstream channel using the Extended Channel.

The interface data rates are:

• Downstream direction: 2.048 Mbps

The first two bytes of the frame are the total number of bytes following in the frame, i.e., they do not include this
two-byte length field. There is no CRC check required on the frame, as the interface between the Host and Card is
reliable. It is the responsibility of the Card vendor to implement error detection in the encapsulated DSG data. The
Card should disregard any invalid packets received from the Host. The Host SHALL provide buffer space for a
minimum of two DSG PDUs, one for transmission to the Card and one for receiving from the DOCSIS channel.
 Informational note: The DSG rate limits the aggregate data rate to 2.048 Mbps to avoid buffer overflow.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 25

Figure 5.10-3 below shows how the DSG packets are transported across the Card interface with and without
removal of header bytes. Prior to transmission across the Card interface, the Ethernet CRC of the DSG packet
received from the eCM is removed, then optionally header bytes may be removed in order from the Ethernet header
through the IP header and the UDP header, resulting in the removal of X header bytes, where X is designated by the
CableCARD as per the remove_header_bytes of the set_DSG_mode() APDU (note that X may be zero, thus no
header bytes are removed). A two-byte field containing the DSG byte count of the resulting data payload is
prepended to the remaining frame and transmitted across the CHI.

DSG Packet
from eCM

UDP PayloadIP Header
(20 bytes)

UDP
Header
(8 bytes)

Ethernet Header
(14 bytes)

Ethernet
CRC

Bytes removed

DSG Packet Across
Card Interface
(Remove_Header_Bytes = 0)

UDP PayloadIP Header UDP
HeaderEthernet HeaderDSG Byte

Count

Card Interface
(Remove_Header_Bytes = 44)

UDP PayloadUDP
Header

DSG Byte
Count

DSG Packet
from eCM

UDP PayloadIP Header
(20 bytes)

UDP
Header
(8 bytes)

Ethernet Header
(14 bytes)

Ethernet
CRC

Example 1: Card requests that no bytes be removed from DSG Packet

Example 2: Card requests that Ethernet and IP Header (44 bytes) be removed from DSG Packet

Bytes removed

DSG Packet Across
Card Interface
(Remove_Header_Bytes = 52)

UDP PayloadDSG Byte
Count

DSG Packet
from eCM

UDP PayloadIP Header
(20 bytes)

UDP
Header
(8 bytes)

Ethernet Header
(14 bytes)

Ethernet
CRC

Example 3: Card requests that Ethernet, IP and UDP Header (52 bytes) be removed from DSG Packet

NOTE 1: The IP header may not always be 20 bytes in length, the inclusion of “options” & “padding” will increase the length of the header. It is
the responsibility of the Card to determine the number of bytes to remove. The Host must always remove the requested number of header
bytes regardless of the size of any individual header.
NOTE 2: DSG packets are not limited to UDP datagrams. UDP datagrams are utilized in these example as informative illustrations only.

Figure 5.10-3 - DSG Packet Format Across Card Interface

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

26 CableLabs® 8/03/06

The following diagram shows the connections for the MPEG transport and Out-Of-Band (OOB) data flows for the
Card operating in S-Mode:

CARDHost

RDC QPSK
Modulator

FDC QPSK
Demod

Link/Data
Layer

PCMCIA
Connector

FAT QAM
Demod

Transport
Stream
DEMUX

Host
Control/Data

Channel

Link/Data
Layer

MPEG
Processing

CableCARD
Control /

Data
Channel

DRX

CRX

CTX

ETX

QTX

ITX

MDI[7:0]

MICLK

MOSTR

MDO[7:0]

MOCLK

MOSTRT

OOB
Interface

Inband
MPEG

Interface

CPU
Interface

Figure 5.10-4 - S-Mode CHI Diagram

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 27

6 DELETED

NOTE: This section intentionally left blank to retain document’s section numbering.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

28 CableLabs® 8/03/06

7 PHYSICAL INTERFACE

The Card will use the PCMCIA Cardbus Type II physical form factor. The electrical interface differs between S-
Mode and M-Mode. The M-Host senses the presence of an M-CARD and operates as defined below. If the M-Host
detects that the Card is not an M-CARD, it can reject the Card.

The M-Host MAY reject an S-CARD. The M-CARD will start up directly in M-Mode when VPP1# is logic low,
and VPP2# is powered. When VPP1# and VPP2# is powered, the M-CARD will follow the PC Card start-up
procedure for personality change to S-Mode.

The S-CARD will always follow the PC Card start-up procedure for personality change to S-Mode.

7.1 Electrical Characteristics
When in memory card mode, just after reset, the pin assignments in the left hand column of Tables 4-1 and 4-2 of
[PCMCIA2] are used. When the module is configured as the Common Interface variant during the initialization
process, the following reassignments are made: The pins carrying signals A15-A25, D8-D15, BVD1, BVD2, and
VS2# are used to provide high-speed input and output buses for the MPEG-2 multiplex data. IOIS16# is never
asserted and CE2# is ignored. All other pins retain their assignment as an I/O & Memory Card interface.

The following are the different pin assignments for the Card interface for the different modes.

Table 7.1–1 - Card Interface Pin Assignments

CEA-679C part B PC Card Mode S-Mode M-Mode
Pin
Signal and

Pin Name

Card
Input or
Output

Signal and
Pin Name

Card
Input or
Output

Signal and
Pin Name

Card Input
or Output

Signal and
Pin Name

Card Input
or Output

1 GND DC gnd GND DC gnd GND DC gnd GND DC gnd
2 D3 I/O D3 I/O D3 I/O
3 D4 I/O D4 I/O D4 I/O
4 D5 I/O D5 I/O D5 I/O
5 D6 I/O D6 I/O D6 I/O
6 D7 I/O D7 I/O D7 I/O
7 CE1# I CE1# I CE1# I
8 A10 I A10 I
9 OE# I OE# I OE# I

10 A11 I A11 I
11 A9 I A9 I DRX I DRX I
12 A8 I A8 I CRX I CRX I
13 A13 I A13 I MOCLK O
14 A14 I A14 I MCLKO O
15 WE# I WE# I WE# I
16 IREQ# O READY O IREQ# O
17 VCC VCC DC in VCC DC in VCC DC in
18 VPP1 VPP1 DC in VPP1 DC in VPP1 I
19 MIVAL I A16 I MIVAL I
20 MCLKI I A15 I MCLKI I
21 A12 I A12 I MICLK I
22 A7 I A7 I QTX O QTX O
23 A6 I A6 I ETX O ETX O
24 A5 I A5 I ITX O ITX O
25 A4 I A4 I CTX I CTX I

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 29

CEA-679C part B PC Card Mode S-Mode M-Mode
Pin
Signal and

Pin Name

Card
Input or
Output

Signal and
Pin Name

Card
Input or
Output

Signal and
Pin Name

Card Input
or Output

Signal and
Pin Name

Card Input
or Output

26 A3 I A3 I
27 A2 I A2 I SCTL I
28 A1 I A1 I A1 SCLK I
29 A0 I A0 I A0 SDI I
30 D0 I/O D0 I/O D0 I/O
31 D1 I/O D1 I/O D1 I/O
32 D2 I/O D2 I/O D2 I/O
33 IOIS16# WP O IOIS16# O MDET O
34 GND GND DC GND DC GND DC
35 GND GND DC GND DC GND DC
36 CD1# CD1# O CD1# O CD1# O
37 MDO3 O D11 I/O MDO3 O MDO3 O
38 MDO4 O D12 I/O MDO4 O MDO4 O
39 MDO5 O D13 I/O MDO5 O MDO5 O
40 MDO6 O D14 I/O MDO6 O MDO6 O
41 MDO7 O D15 I/O MDO7 O MDO7 O
42 CE2# I CE2# I CE2# I
43 VS1# O VS1# O VS1# O VS1# O
44 IORD# I RFU IORD# I
45 IOWR# I RFU IOWR# I
46 MISTRT I A17 I MISTRT I MISTRT I
47 MDI0 I A18 I MDI0 I MDI0 I
48 MDI1 I A19 I MDI1 I MDI1 I
49 MDI2 I A20 I MDI2 I MDI2 I
50 MDI3 I A21 I MDI3 I MDI3 I
51 VCC VCC DC in VCC DC in VCC DC in
52 VPP2 VPP2 DC in VPP2 DC in VPP2 DC in
53 MDI4 I A22 I MDI4 I MDI4 I
54 MDI5 I A23 I MDI5 I MDI5 I
55 MDI6 I A24 I MDI6 I MDI6 I
56 MDI7 I A25 I MDI7 I MDI7 I
57 MCKLO I VS2# O VS2# O VS2# I/O
58 RESET O RESET I RESET I RESET
59 WAIT# O WAIT# O WAIT# O
60 INPACK# O RFU INPACK# O SDO O
61 REG# I REG# I REG# I
62 MOVAL O BVD2 O MOVAL O
63 MOSTRT O BVD1 O MOSTRT O MOSTRT O
64 MDO0 O D8 I/O MDO0 O MDO0 O
65 MDO1 O D9 I/O MDO1 O MDO1 O
66 MDO2 O D10 I/O MDO2 O MDO2 O
67 CD2# O CD2# O CD2# O CD2# O
68 GND GND DC GND DC GND ground

“I” indicates signal is input to Card; “O” indicates signal is output from Card.

Blank = Unused pin

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

30 CableLabs® 8/03/06

It is recommended that at least 12 bits of address be decoded on the Card (4096 bytes) during memory accesses. A
lower number of bits, as specified in the CIS, SHALL be decoded during I/O accesses as defined in section 4.3 of
[PCMCIA2].

7.2 S-Mode Start-Up
The Card starts up as a PC Card, then goes through a personality change according to the PC Card standard.

7.2.1 Card Port Custom Interface (0x341)

The S-CARD interface is registered to the PC Card Standard as the “POD Module Custom Interface” with the
interface ID number (STCI_IFN) allocated to equal hexadecimal 341 (0x341). In case the Host is not capable of
operating with the Card, the Host SHALL ignore the Card.

The Card SHALL present the 16-bit PC Card memory-only interface following the application of VCC or the
RESET signal. When operating in this configuration, D7-D0 are retained as a byte-oriented I/O port, and the
capability to read the Attribute Memory is retained.

Only two address lines are required for four Bytes of register space. In S-Mode, pin CE2# is assigned to select the
Extended Channel function required for the Card CPU interface to enable the access to the Extended Channel
resource. Pin IOIS16# is never asserted.

In S-Mode the CHI SHALL be required to support transport stream interface data rates of 26.97035 Mb/s and
38.81070 Mb/s averaged over the period between the sync bytes of successive transport packets with allowable jitter
of +/- one MCLKI clock period.

7.3 Interface Functional Description

7.3.1 S-Mode

Table 7.1–1 shows the function of various PC Card signals when the Card is operating in S-Mode and the Port
custom interface mode is set to active in the Host.

Differences between EIA-679-B Part B and the Card when running in S-Mode are identified in Table 7.1–1. The
CHI Specifications affect the A4 to A9 signals, which are now assigned to the OOB RF I/Os, and CE2#, which is
used to access the Extended Channel. The MCLKO is provided on pin 14 to be fully PC Card compliant. This is a
modification from EIA-679-B (Part B). Pin 57 remains the PC Card VS2# signal. Table 7.1–1 indicates the
differences between EIA 679-B Part B and this document, namely pins 11, 12, 14, 22, 23, 24, 25, 42 and 57.

7.3.2 M-Mode

When operating in M-Mode, the M-CARD SHALL have the connector pin assignment as described in Table 7.1–1.
 Note that the EIA 679-B Part B, the PCMCIA PC Card Mode, S-Mode and M-Mode pin assignments are included
for reference.

7.3.3 Card Signal Descriptions

7.3.3.1 Power

VCC If the Card is interfacing to a Host that supports the S-Mode, these pins are power pins
that initially supply 3.3V per Section 7.4.1.1. If the Card is interfacing to a Host using M-
Mode, the VCC pins are at a High-Z until Card-type identification and discovery is
performed. After identification of the M-Card that will be operating in M-Mode is
detected, these pins are powered up to 3.3V.

GND As defined in section 2.1.1 of [PCMCIA2].

VPP1 If the Card is interfacing to a Host that supports the S-Mode, this pin is a power pin that
initially supplies 3.3V and can be switched to 5V per Section 7.4.1.1. If the Card is

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 31

interfacing to a Host using M-Mode, this pin is at a High-Z until Card-type identification
and discovery is performed. The VPP1 pin is then set to logic low to indicate that the
Card will be interfacing to the Host in M-Mode.

VPP2 If the Card is interfacing to a Host that supports the S-Mode, this pin is a power pin that
initially supplies 3.3V and can be switched to 5V per Section 7.4.1.1. If the Card is
interfacing to a Host using M-Mode, this pin is at a High-Z until Card-type identification
and discovery is performed. The VPP2 pin is then configured to a 5V supply pin.

7.3.3.2 Sense

CD2::1# As defined in section 2.2.1 of [PCMCIA2].

VS2::1# As defined in section 2.2.2 of [PCMCIA2]. For M-Mode only, 3.3V will be supported
(VS1# = GND, VS2# = High-Z). VS2# is also used during Card-type detection and tied
directly to MDET.

MDET/IOIS16# M-Card detect signal used by the Host to identify if Card will be operating in S-Mode or
M-Mode. For M-Mode, MDET is tied to VS2#. For S-Mode, IOIS16# is not tied to
VS2#.

7.3.3.3 PCMCIA Signals

As defined in sections 4.4, 4.6, and 4.7 of [PCMCIA2] with the following additions:

For S-Mode, MPEG-2 transport stream interface input and output buses are provided (MDI0-7, MDO0-7). Control
signals MCLKI, MCLKO, MISTRT, MIVAL, MOSTRT, MOVAL are also provided. MCLKI runs at the rate at
which bytes are offered to the Card on MDI0-7. MCLKO runs at the rate at which bytes are offered by the Card on
MDO0-7. For Cards which pass the transport stream through, then MCLKO will in most cases be a buffered version
of MCLKI with a small delay. For Cards which originate data, for example a detachable front-end or a network
connection, then MCLKO may be derived from that data source. Figure 7.3-1 shows the relative timing relationship
of the data signals associated with the MPEG-2 transport stream interface and MCLKI, MCLKO, and Table 7.3–1
gives limits to these timing relationships. Note that the specification for output timing limits can normally be met
easily by generating the output from the falling edge of MCLKO. There is no specification for delay between
MCLKI and MCLKO. In the case of a Card providing its own MCLKO, they may not even be the same frequency.
Both MCLKI and MCLKO SHALL be continuous. It is not intended that burst clocking should be employed.
Bursty data is handled by the appropriate use of MIVAL and MOVAL.

MISTRT is valid during the first byte of each transport packet on MDI0-7. The edge timing of this signal SHALL
be the same as for MDI0-7. See Figure 7.3-1.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

32 CableLabs® 8/03/06

MCLKI

MDI,
MISTRT,
MIVAL

MDO,
MOSTRT,
MOVAL

MCLKO

tclkp

tclkh

tclkl
th

tsu

tclkl

tclkp

tclkh

toh
tosu

Figure 7.3-1 - Timing Relationships for Transport Stream Interface Signals

Table 7.3–1 - Timing Relationship Limits

Item Symbol Min Max

Clock Period Tclkp 110 ns
Clock High time Tclkh 40 ns
Clock Low time Tclkl 40 ns
Input Data Setup Tsu 15 ns
Input Data Hold Th 10 ns
Output Data Setup Tosu 20 ns
Output Data Hold Toh 15 Ns

MIVAL indicates valid data bytes on MDI0-7. All bytes of a transport packet may be consecutive in time, in which
case MIVAL will be at logic 1 for the whole of the duration of the transport packet. However certain clocking
strategies adopted in Hosts may require there to be gaps of one or more byte times between some consecutive bytes
within and/or between transport packets. In this case MIVAL will go to logic 0 for one or more byte times to
indicate data bytes which should be ignored.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 33

MDO0-7 is the output bus for the MPEG-2 transport stream interface. Where MCLKO is derived from MCLKI, and
correspondingly the data on MDO0-7 is a delayed and possibly descrambled version of the data on MDI0-7, then
the timing relationship between the input data and the output data SHALL be governed by the rules in Section
7.3.6.1 of the document.

MOSTRT is valid during the first byte of an output transport packet.

MOVAL indicates the validity of bytes on MDO0-7 in a similar manner to MIVAL. MOVAL may not necessarily
be a time-delayed version of MIVAL, see Section 7.3.6.1.

Support for Interrupt Requests by Hosts as defined in section 4.4.7 of [PCMCIA2] and 7.6.1.1 of this document.
Whenever the Card responds to an I/O operation it SHALL assert INPACK#; see section 4.4.22 of [PCMCIA2].

7.3.3.4 Card Device Signals

DRX QPSK receive data input to the Card from the Host.

CRX QPSK receive gapped clock input to the Card from the Host in which some of the clock
cycles are missing, creating an artificial gap in the clock pattern.

ITX QPSK transmit I-signal output from the Card to the Host and are represented directly to
the phase states as defined in [SCTE55-2].

QTX QPSK transmit Q-signal output from the Card to the Host and are represented directly to
the phase states as defined in [SCTE55-2].

ETX QPSK transmit enable output from the Card to the Host. It is defined to be active high.

CTX QPSK transmit gapped symbol clock input to the Card from the Host.

MCLKI MPEG transport stream clock from Host to the Card operating in S-Mode.

MICLK MPEG transport stream clock from the Host to the Card operating in M-Mode.

Note: When the M-CARD is operating in S-Mode, MICLK (A12 pin 21) will have the characteristics of CCLK
signal type. Additional details in Section 7.4.1.3.2.

MISTRT MPEG transport stream input packet start indicator from the Host to the Card operating
in S-Mode. The Card operating in M-Mode, used to indicate the start of a CableCARD
MPEG Packet, CMP. It is asserted at the same time as the first byte of the CMP header.

MDI[7:0] An 8-bit wide MPEG transport stream input data bus from the Host to the Card.

MCLKO MPEG transport stream clock from the Card to the Host operating in S-Mode.

MOCLK MPEG transport stream clock from the Card to the Host operating in M-Mode. The
MOSTRT and MDO[7:0] signals SHALL be clocked into the Host on the rising edge of
MOCLK. This signal SHALL be derived from MICLK and SHOULD operate at 27
MHz.

MOSTRT MPEG transport stream output packet start indicator from the Card operating in S-Mode
to the Host. The Card, operating in M-Mode, is used to indicate the start of a CMP. It is
asserted at the same time as the first byte of the CMP header.

MDO[7:0] An 8-bit MPEG transport stream output data bus from the Card to the Host.

SCLK CPU interface serial clock from the Host to the Card operating in M-Mode. The clock is
a continuously running clock (not gapped) and has a nominal frequency of 6.75 MHz.

SCTL CPU interface serial interface control signal from the Host into the Card operating in M-
Mode. It signals the start of a byte of data and the beginning of a packet being
transferred across the interface.

SDI CPU interface serial data from the Host into the Card operating in M-Mode.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

34 CableLabs® 8/03/06

SDO CPU interface serial data from the Card operating in M-Mode out to the Host.

RESET Reset input to the Card. RESET is active high or asserted when a logic high.

Table 7.3–2 - Transmission Signals

Signal Rates Type

DRX 1.544/3.088 and 2.048 Mbps I
CRX 1.544/3.088 or 2.048 MHz I
ITX 772/1544 and 128 Ksymbol/s O
QTX 772/1544 and 128 Ksymbol/s O
ETX TX Enable O
CTX 772/1544 and 128 KHz I

When ETX is inactive, the values of ITX and QTX are not valid and the upstream transmitter SHALL NOT transmit
such values. When ETX is active, the values of ITX and QTX are both valid and the upstream transmitter SHALL
transmit these values.

The MICLK signal SHALL always operate at 27Mhz.

The MISTRT and MDI[7:0] data signals SHALL be clocked into the Card on the rising edge of MICLK.

The MOSTRT and MDO[7:0] signals SHALL be clocked into the Host on the rising edge of MOCLK. This signal
SHALL be derived from MICLK and MICLK SHALL operate at 27 MHz.

7.3.4 Card Type Identification

To support 3.3 Volts, the Host SHALL use the detection mechanisms described in section 3 of [PCMCIA2]. To
determine Card operating voltage, Hosts SHALL follow the rules for type of socket according to whether they
provide 3.3v working - section 3.2 of [PCMCIA2]. Hosts need not support the detection mechanisms for CardBus
PC Cards, but may optionally do so - section 3.3 of [PCMCIA2].

To allow Hosts to work with the Card operating in M-Mode, the physical interface, the PC Card keying
mechanisms, and the initialization steps for the Hosts SHALL be the same as those defined for the Card operating in
S-Mode and the S-CARD references in this document. Thus, a step is added to the existing initialization steps that
allows M-Host to reject Cards operating in S-Mode and allows the M-Card to determine what type of Host
configuration to support.

7.3.4.1 S-Mode

The Host has two different ways to recognize a Card operating in S-Mode, using the Application Info EIA-679-B
Part B resource, or at the physical level as defined by PCMCIA.

In PCMCIA memory mode, the Host accesses the Card’s Attribute Memory to read the Card Information Structure
(CIS) on the even addresses (first byte at address 0x 000, second byte at address 0x 002, etc.). Since the Card
interface is a PC Card Custom Interface, the CIS SHALL include a custom interface subtuple (CCST_CIF) that
provides the interface ID number (STCI_IFN) defined by PCMCIA (0x341).

For a more explicit identification, the CIS also includes in the tuple CISTPL_VER_1, the field name of the product
of subtuple TPLLV1_INFO defined as “OPENCABLE_POD_MODULE”.

This information in the CIS is mandatory to ensure backup operation in case of trouble when the CI stack is lost
(e.g., power shut down, Card extraction).

Note: for the Card operating in S-Mode, PIN 33, ISIO16# should not be tied to VS2# through the Pull-up resistor to
3.3V.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 35

7.3.4.1.1 Memory Function

The Host SHALL support Attribute Memory function described in Section 4.6 of [PCMCIA2]. Attribute Memory
function support by Hosts is mandatory. Note that Attribute Memory is byte-wide - Attribute Memory data only
appears on data lines D7-D0. Also consecutive bytes are at consecutive even addresses (0, 2, 4, etc.). Note also that
Attribute Memory must still be able to be read or written to even when the Card is configured to operate with the
Common Interface. Common Memory function support in the Host is optional. Cards SHALL NOT use Common
Memory.

7.3.4.1.2 Timing Function

The Host SHALL support Attribute Memory Timing functions described in Section 4.7 of [PCMCIA2]. Attribute
Memory support by Hosts is mandatory. Common Memory support in the Host is optional.

7.3.4.2 M-Mode

The M-Host SHALL determine whether the Card is an S-CARD or an M-CARD before applying power to the VCC
and VPP pins on the CHI. The Card SHALL be designed such that when un-powered, VS1# SHALL = ground and
VS2# SHALL be connected directly to MDET. Upon removal/insertion of the Card, when operating in M-Mode,
the Host SHALL use the CD1# and CD2# pins to determine when to power up/down the VCC and VPP interface
pins. M-Hosts SHALL:

1. Set the state of VPP1= Logic Low (grounded or pulled-down) and VPP2= open circuit.

2. Pull-up CD1#, CD2#, VS1#, VS2# and MDET to 3.3VDC using a pull-up resistor as defined in table 4-19
of [PCMCIA2].

3. Detect the presence of a Card using CD1# and CD2# as defined in section 4.10 of [PCMCIA2].

4. High Z VCC pins until after the CableCARD device type is determined.

5. Determine if VS2# is tied to MDET. The M-Host MAY test this by toggling VS2# and watching to see
that MDET tracks VS2#. If VS2# is tied to MDET, the M-Host SHALL proceed with the power up in M-
Mode; otherwise, if the M-Host does not support S-Mode on the CHI the Host SHALL NOT power the PC
Card and SHALL display an error message indicating the Card inserted is not supported as defined in
Annex B of this document.

6. Apply power to the VCC pins (3.3V) and VPP2 (5.0V) once the Host determines that the Card is an M-
CARD. VPP2 is provided to support an M-CARD that contains an optional smart card.

The M-Host will not be required to support PC Card memory-only interface; it MAY immediately operate in the M-
Mode.

As power is applied to the M-CARD, all interface pins on the M-CARD SHALL be defined in a manner such that it
will not contend with the Host until it knows what mode to operate in. The operating mode is determined by the
Card detecting the logic levels of the VPP1 and VPP2 pins when RESET is de-asserted. If the VPP1 and VPP2 pins
are at a logic high then the Card SHALL initialize to S-Mode. If the VPP1 pin is at a logic low and the VPP2 pin is
a logic high (5V), the Card SHALL initialize to M-Mode.

If the VPP1/VPP2 configuration is one of the two reserved settings in Table 7.3–3, the M-CARD SHALL keep
SDO (pin 60) and READY (pin 16) low. If SDO and READY have not gone active after 5 seconds, the Host may
use this as an indication that the M-CARD is not configured correctly to respond. Note that for the M-CARD
functioning in S-Mode, only the READY line has significance, and SDO has no meaning.

If an M-CARD is inserted into an S-Host, the Card SHALL sense the state of VPP1 and VPP2 and if they both are
High, the Card SHALL begin S-Mode Start-up as defined in Section 7.2 of this document.

The following table summarizes the VPP pin configurations, and associated Card operating modes.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

36 CableLabs® 8/03/06

Table 7.3–3 - VPP Pin Configurations, and Associated Card Operating Mode

VPP1 VPP2 Card Configuration

Low High M-Mode
Low Low Reserved
High Low Reserved
High High S-Mode

Figure 7.3-2 shows the Card type detection and identification signals for Host capable of operating in M-Mode.

VS1#

M-Host Card

3.3V

CD1#

VS2#

MDET

M-Host
Silicon Card SiliconCD2#

3.3V

3.3V

3.3V

Switched
3.3V

Supply

Switched
5V Supply

3.3V

5.0V

VCC

VPP2

VPP1

VCC

VCC

VPP2

3.3V

Figure 7.3-2 - Card Type Detection Signals

7.3.5 Card Information Structure

7.3.5.1 S-Mode

The Card Information Structure (CIS) SHALL be readable whenever the Card is powered, the Card has been reset
by the Host in accordance with section 4.12.1 of [PCMCIA2], the Card is asserting the READY signal, and the Card
Personality Change has not occurred. The CIS contains the information needed by the Host to verify that a Card
has been installed. After the Card Personality Change, the CIS SHALL no longer be available.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 37

The following table is the minimum set of tuples required for the CableCARD.

Table 7.3–4 - CIS Minimum Set of Tuples

CISTPL_LINKTARGET

CISTPL_DEVICE_0A

CISTPL_DEVICE_0C

CISTPL_VERS_1

CISTPL_MANFID

CISTPL_CONFIG

CISTPL_CFTABLE_ENTRY

CISTPL_NO_LINK

CISTPL_END

The list of all of the S-CARD Attribute and Configuration Registers can be found in Annex D of this document.

7.3.5.1.1 Operation After Invoking CableCARD Personality Change

After the correct value is written into the configuration register, the Card SHALL wait a minimum of 10 usec before
switching from the PCMCIA to Card interface.

7.3.5.2 M- Mode

In M-Mode operation, the CIS structure is not read by the Host, and does not need to be presented by the Card.

7.3.6 MPEG Transport Interface

The MPEG interface consists of an input clock (MCLKI for S-Mode and MICLK for M-Mode), an input start of
packet signal (MISTRT), an eight-bit input bus (MDI[7:0]), an output clock (MCLKO for S-Mode and MOCLK for
M-Mode), an output start of packet signal (MOSTRT), and an eight-bit output bus (MDO[7:0]). Note that ‘input’
and ‘output’ labels are from the perspective of the Card.

For M-Mode, MDI[7:0] data and MISTRT are clocked into the Card on the rising edge of MICLK. Similarly,
MDO[7:0] and MOSTRT are clocked into the Host on the rising edge of MOCLK.

MOCLK SHALL be derived from MICLK.

The MISTRT and MOSTRT signals indicate the start of an MPEG packet from the Card to the Host. They are
asserted at the same time as the first byte of the CableCARD MPEG Packet header.

7.3.6.1 S-Mode

The CHI SHALL support independent both-way logical connections for the Transport Stream and for commands.
 The CHI SHALL accept an MPEG-2 Transport Stream, consisting of a sequence of Transport Packets, either
contiguously or separated by null data. The returned Transport Stream may have some of the incoming transport
packets returned in a descrambled form. The Transport Stream Interface is subject to the following restrictions:

1. When the Card is the source of a transport stream its output SHALL comply with [ISO13818-9].

2. Each output packet SHALL be contiguous if the module is the source of the packet or the input packet
is contiguous.

3. The Card SHALL introduce a constant delay when processing an input transport packet, with a
maximum delay variation (tmdv) applied to any byte given by the following formula:

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

38 CableLabs® 8/03/06

tmdvmax = (n * TMCLKI) + (2 * TMCLKO).

And-

tmdvmax <= 1 microsecond when n = 0

Where:

tmdv = Module Delay Variation

n = Number of gaps present within the corresponding input transport packet

TMCLKI = Input data clock period

TMCLKO = Output data clock period

A `gap' is defined to be one MCLKI rising edge for which the MIVAL signal is inactive.

All Hosts are strongly recommended to output contiguous transport packets, as packets arrive
synchronously with the clock, but not necessarily continuously.

Inter-packet gaps may vary considerably.

4. All interfaces SHALL support a minimum byte transfer clock period of 110 ns.

5. The CHI SHALL transfer commands as defined by the appropriate Transport Layer part of this
document in both directions. The data rate supported in each direction SHALL be at least 3.5
Megabits/sec.

7.3.6.1.1 Transport Stream Interface – Transport Layer

The transport layer used is the same as the MPEG-2 System transport layer. Data traveling over the transport stream
interface is organized in MPEG-2 Transport Packets. The whole MPEG-2 multiplex is sent over this transport
stream interface and is received back fully or partly descrambled. If the packet is not scrambled, the Card returns it
as is. If it is scrambled and the packet belongs to the selected service and the Card can give access to that service,
then the Card returns the corresponding descrambled packet with the transport_scrambling_control flag set to '00'. If
scrambling is performed at Packetized Elementary Stream (PES) level, then the module reacts in the same way and
under the same conditions as above, and returns the corresponding descrambled PES with the
PES_scrambling_control flag set to '00'.

The transport packet and the PES packet are completely defined in the MPEG-2 System specification [ISO13818-1].

7.3.6.1.2 Transport Stream Interface – Upper Layers

Apart from the Packetized Elementary Stream, any layering or structure of the MPEG-2 data above the Transport
Stream layer is not relevant to this specification. However the specification does assume that the Card will find and
extract certain data required for its operation, such as ECM and EMM messages, directly from the Transport
Stream.

7.3.6.1.3 Transport Stream Interface – Link Layer

There is no Link Layer on the Transport Stream Interface. The data is in the form of consecutive MPEG-2 Transport
Packets, possibly with data gaps within and between Transport Packets.

7.3.6.2 M-Mode MPEG Flow Model

A CableCARD MPEG Packet (CMP) consists of a 188-byte MPEG packet with a 12 byte header pre-appended to
MPEG packet. Each CMP packet header and packet SHALL be transmitted with no gaps after the packet start
signal is active. The packet SHALL consist of 200 contiguous bytes. In other words, the packets SHALL be
buffered.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 39

Each packet header and packet SHALL have a fixed delay through the Card with no more than one MICLK period
worth of jitter.

The M-CARD SHALL keep track of the number of bytes received, starting with the packet start signal, and form a
packet from the first 200 bytes. During the next byte, if the packet start signal is active, that marks the beginning of
the next packet, otherwise, the Card SHALL discard the sampled data until the next packet start signal is active.

If the Card receives less than 200 bytes prior to MISTRT being asserted, it is not required to pass that packet to the
Host and may drop the bytes. However, this SHOULD NOT affect the delay through the Card for any other
packets.

Figure 7.3-3 shows an example of a single CMP packet transmitted across the interface.

MISTRT,
MOSTRT

MDI[7:0],
MDO[7:0]

MPEG TS
Packet

(188 bytes)

MICLK,
MOCLK

hdr
12 ts1

Host Inserted
Pre-Header
(12 bytes)

ts2 ts3 ts
188

hdr
1 ts4 ts

187
hdr
2

hdr
3

hdr
4

hdr
5

hdr
6

hdr
7

hdr
8

hdr
9

hdr
10

hdr
11 ...

...

...

(x47)

Figure 7.3-3 - CMP Diagram

7.3.6.2.1 M-Mode MPEG Transport Stream Pre-Header

A 12-byte field SHALL be pre-pended by the Host to each MPEG packet sent across the CHI. This pre-header
provides identification information to allow packets from multiple transport streams to be multiplexed prior to
delivery to the Card. The data format is shown in Figure 7.3-4; the transport streams are identified by local
transport stream IDs (LTSID), which are inserted by the Host. This LTSID is not required to be the same as the
QAM transport stream ID. These 8-bit IDs in the transport packet pre-header allow for correlation between the
command APDUs and the transport streams.

HOSTres
16 bits

LTS
32 bits

CableCARD
res

16 bits

PAYLOAD
188 bytes

mpeg TS packet

RES1
8 bits

LTSID
8 bits

host inserted fields

CRC
8 bits

RES2
8 bits

Figure 7.3-4 - M-Mode MPEG Transport Stream Pre-Header

LTSID Local Transport Stream ID – Each packet in a given transport stream SHALL be tagged
with the same unique LTSID, in order to allow multiple transport streams to be
multiplexed, transferred across the transport interface, correctly decrypted by the Card,
and de-multiplexed, and correctly routed at their destination. The Host SHALL be
responsible for generating the LTSID value. It is not required to be the same Transport
Stream ID as assigned to the QAM transport stream. The Card SHALL NOT modify it.

Res1, Res2 Two 8-bit fields reserved for future use. The Card and Host SHOULD ignore these
fields. The default value for both is 0x00.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

40 CableLabs® 8/03/06

Host_reserved A 16-bit field, containing data generated by the Host, identifying additional
characteristics of the transport packets. The use of this field is optional for the Host. The
Card SHALL NOT modify the values in this field.

LTS Local Time Stamp – A 32-bit local time stamp, whose value is set by the Host. The Card
SHALL NOT modify this value. The Host MAY use the local time stamp to manage
MPEG timing of the packets received from the Card. Setting a value in this field is
optional for the Host.

CableCARD_reserved A 16-bit field. The default value is 0x00. The usage of this field is optional for the Card.

CRC Cyclic Redundancy Check – An 8-bit value calculated and inserted by the Host to
provide the ability to check that the LTSID, CableCARD_reserved, Host_reserved, and
LTS are transferred across the transport interface without error. If the Card inserts data
into the CableCARD_reserved field, it SHALL recalculate the CRC for those packets.
 The CRC is calculated across the 11 bytes of the pre-header. The CRC polynomial is:

CRC-8 x8+x7+x6+x4+x2+1 8

Figure 7.3-5 - CRC Polynomial

Note: A detailed explanation of the CRC Polynomial can be found in Annex C.

7.4 Electrical Specifications
In order to remain compliant with the PC Card standard and to simplify the Host and Card implementations, and
regardless of the powering state of the Host (i.e., active or standby), the Host and Card SHALL implement the
power characteristics as define in this document.

A Common Interface module is implemented as a variant of the 16-bit PC Card Electrical Interface, Section 4 of
[PCMCIA2]. The command interface uses the least significant byte of the data bus, together with the lower part of
the address bus (A0-A14), and appropriate control signals. The command interface operates in I/O interface mode.
The upper address lines (A15-A25), the most significant half of the data bus (D8-D15), and certain other control
signals are redefined for this interface variant.

When first plugged in and before configuration, a Card conforming to this interface specification SHALL behave as
a Memory-Only device with the following restrictions:

1. Signals D8-D15 shall remain in the high-impedance state.

2. 16-bit read and write modes are not available. CE2# SHALL be ignored and interpreted by the Card as
always being in the ‘High’ state.

3. Address lines A15-A25 SHALL NOT be available for use as address lines. The maximum address space
available on the Card is limited to 32768 bytes (16384 bytes of Attribute Memory as it only appears at even
addresses).

4. Signals BVD1 and BVD2 SHALL remain ‘High’.

7.4.1 DC Characteristics

7.4.1.1 S-Mode

In order to remain compliant with the PC Card standard and to simplify the Host and Card implementations, and
regardless of the powering state of the Host (i.e., active or standby), the following power management features are
required.

• The Host SHALL permanently supply 3.3V on the VCC pins. The Host SHALL be capable of supplying up to
a maximum of 1 amp total on the VCC pins (500 mA each) at 3.3 VDC per Card supported.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 41

• The Host SHALL supply 5V on the VPP pins if requested by the Card CIS. The Host SHALL be capable of
supplying up to 250 mA total on the VPP pins (125 mA each) at 5 VDC per Card supported.

• The Host SHALL continuously supply 3.3V on the VPP pins upon Host power-up and also when a Card is not
installed. When a Card is installed, if the voltage sense pins are set as required per the CHI Specification, the
Host SHALL supply 5 V on the VPP pins only if requested by the Card CIS. Otherwise, the Host SHALL
continue to supply 3.3 V on the VPP pins while the Card is installed. Upon removal of a Card, the Host
SHALL revert to or continue to supply 3.3V on the VPP pins. The Host SHALL be capable of supplying up to
250 mA total on the VPP pins (125 mA each) at 5 VDC per Card supported.

• If the Host receives a value of 0x3 in the Power field of the Feature Selection Byte (TPCE_FS) from the Card
according to section 6.1.2 of [SCTE28], the Host SHALL NOT be required to support the separate nominal
voltage parameter descriptors in the power descriptor structures for VPP1 and/or VPP2. If the Host does not
support the Power Field value of 0x3h, then it SHALL continue to supply a nominal voltage of +3.3V to both
the VPP1 and VPP2 pins.

• The Card SHALL only support the value of 0x2 in the Power field of the Feature Selection Byte (TPCE_FS)
and the associated parameter descriptor according to section 3.3.2.3 of [PCMCIA4] if the Card requires a
switched nominal voltage level of +5V on the VPP lines.

• There is no standby power mode for the Card.

• The Card SHALL draw no more than 2.5 watts averaged over a period of 10 seconds.

• The Host OOB Receive circuitry SHALL continue to operate in all powering states of the Host.

• The Host SHALL support hot insertion and removal of the Card.

• The Card SHALL implement the mechanical Low Voltage Keying.

• The Card SHALL force VS1# (pin 43) to ground and VS2 (pin 57) to high impedance until it switches to the
CableCARD device Custom Interface mode.

• The Card SHALL support 3.3V hot insertion.

• The Card does not have to meet the requirement of section 4.12.2 of [PCMCIA2] to limit its average current to
70 mA prior to the CableCARD device Personality Change (writing to the Configuration Option Register).

7.4.1.2 M-Mode

• The Host SHALL provide 3.3 V on VCC and 5V on VPP2 with the DC Characteristics as defined in Table 7.4–
1. The Host SHALL apply 3.3 V on VCC and 5V on VPP2 as defined in Section 7.3.4.2.

• The Host SHALL be capable of providing up to 1 Amp total on the VCC pins (500 mA each) per Card
supported.

• The Host SHALL be capable of providing up to 125 mA on the VPP2 pin.

• There is no standby power mode for the Card.

• The Card SHALL NOT draw more than 1.5 watts averaged over a period of 10 seconds.

• Pin type LogicPC - DC Signal levels as defined in Table 4-15 DC Specifications for 3.3V Signaling in Section
4.7.1 of [PCMCIA2] Release 8.0.

• The Host OOB circuitry SHALL continue to operate in all powering states of the Host.

• Upon removal of the Card, when operating in M-Mode, the Host SHALL detect the state of the CD1# and
CD2# pins and power-down the VCC and VPP interface pins, and upon Card insertion, determine the Card type
prior to applying VCC and VPP power.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

42 CableLabs® 8/03/06

Table 7.4–1 - M-Mode Power Supply DC Characteristics

Symbol Parameter Min Max Units Notes

VCC Supply Voltage 3.0 3.6 V 1
ICC Supply Current - 1.0 A 2
VPP2 Supply Voltage 4.75 5.25 V 1
IPP2 Supply Current 0 0.125 A 2
Notes:
1. There is no standby power mode for the Card.
2. The Host SHALL be capable of providing up to 1 Amp total on the VCC pins (500 mA each) per Card.

7.4.1.3 Signaling Interfaces

7.4.1.3.1 S- Mode

The Card and Host SHALL support the Signal Interface as defined in section 4.9 of [PCMCIA2]. Support by Hosts
for overlapping I/O address windows as defined in section 4.9.3.2 of [PCMCIA2] is optional. Cards SHALL use an
independent I/O address window 4 bytes in size.

The DC characteristics of the interface signals in S-Mode are defined in Section 7.3.3.4 of this document with the
exception that when the M-CARD is operating in S-Mode MICLK (A12 pin 21), will have the characteristics of
CCLK signal type.

The Host SHALL detect Card insertion and removal using CD1# and CD2# and the Card SHALL provide a means
of allowing the Host to detect Card insertion and removal as described in Section 4.10 of [PCMCIA2].

Cards SHALL NOT implement or require the battery voltage detect function and support for it by Host is optional.

The Card and the Host SHALL implement the I/O function as defined in Section 4.13 of [PCMCIA2] except that
the Card SHALL only use 8-bit read and write modes.

The Card SHALL implement the Card Configuration as identified in 4.15 and 4.15.1 of [PCMCIA2].

7.4.1.3.2 S-Mode and M- Mode Signal Types

Table 7.4–2 shows the signal type for each of the interface signals when used in S-Mode and M-Mode.

Table 7.4–2 - Card Signal Types by Mode

PC Card Memory-
Only Signals S-Mode Signals M-Mode Signals Signal Type

A13, A12 Unused MOCLK, MICLK CCLK

A[25:17] MDI[7:0], MISTRT MDI[7:0], MISTRT LogicCB (M-
Mode); LogicPC
(S-Mode)

D[15:8], BVD1 MDO[7:0], MOSTRT MDO[7:0], MOSTRT LogicCB (M-
Mode); LogicPC
(S-Mode)

A[9:4] DRX, CRX, CTX, ITX,
QTX, ETX

DRX, CRX, CTX, ITX, QTX,
ETX

LogicPC

A[2:0],RFU Unused, A[1:0], INPACK# SCTL, SCLK, SDI, SDO, LogicPC

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 43

PC Card Memory-
Only Signals S-Mode Signals M-Mode Signals Signal Type

VS1#, VS2# VS1#, VS2# VS1#, VS2# Sense1

RESET RESET RESET LogicPC

WP IOIS16# MDET LogicPC1

VPP1, VPP2 VPP1, VPP2 VPP1, VPP2 VPP1, VPP2

CD[2:1]# CD[2:1]# CD[2:1]# Sense
Note:
1. VS2# is also tied directly to MDET, thus MDET does not need to be sourced or driven from the Card but sourced or

driven by the Host via VS2#.
2. The LogicPC signal type applies to VPP1 and VPP2 only during Card type identification. Otherwise, VPP1 and VPP2

have the supply characteristics described in Section 7.4.

Table 7.4–3 shows the DC characteristics of the signal interfaces for the Card.

Table 7.4–3 - DC Signal Requirements

Signal Type DC Signal Requirements

CCLK DC Signal levels as defined in Table 5-7 DC Specifications for 3.3V
Signaling in Section 5.3.2.1.1 of [PCMCIA2] Release 8.0.

LogicCB DC Signal levels as defined in Table 5-7 DC Specifications for 3.3V
Signaling in Section 5.3.2.1.1 of [PCMCIA2] Release 8.0.

LogicPC DC Signal levels as defined in Table 4-15 DC Specifications for 3.3V
Signaling in Section 4.7.1 of [PCMCIA2] Release 8.0.

Sense Sense signals as defined in [PCMCIA2].

Table 7.4–4 is the DC signaling characteristics for the “LogicPC” signaling level.

Table 7.4–4 - DC Signaling Characteristics for the “LogicPC” Signaling Level

Symbol Parameter Min Max Units Notes

VCC Supply Voltage 3.0 3.6 V
VIH 2.0 VCC + 0.3 V
VIL -0.3 0.8 V
VOH 2.4

(VCC-0.2)
 V 1

VOL 0.4
(0.2)

V 1

Note: All logic levels per JEDEC 8-1B. This table is for reference only.
1. For CMOS Loads

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

44 CableLabs® 8/03/06

Table 7.4–5 is the DC signaling characteristics for the “LogicCB” and "CCLK" signaling level.

Table 7.4–5 - DC Signaling Characteristics for the “LogicCB” Signaling Level

Symbol Parameter Condition Min Max Units Notes

VCC Supply Voltage 3.0 3.6 V
VIH 0.475VC

C
VCC + 0.5 V

VIL -0.5 0.325VCC V
IIL 0 < Vin < VCC +/-10 uA
VOH Iout = -150uA 0.9VCC V
VOL Iout = 700uA 0.1VCC V
Card Card Input Pin

Capacitance
 5 17 pF

Chost System Load Capacitance 5 22 pF
Note: All logic levels per [PCMCIA2]. This table is for reference only.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 45

Table 7.4–6 indicates the requirements for Pullups and Pulldowns for S-Mode and M-Mode Operation.

Table 7.4–6 - CableCARD and Host Pullups and Pulldowns

Item Signal S-CARD M-CARD S-Host M-Host Notes
Card
Detect

CD[2:1]# pullup to Host
3.3V
R.>= 10K

pullup to Host
3.3V
R.>= 10K

6

Voltage
Sense

VS[2:1]# pullup to Host
3.3V
10K <= R.<=
100K

pullup to Host
3.3V
10K <= R.<= 100K

Card
Type
Detect

MDET pullup to Host
3.3V
R >= 100K

Control
Signal

RESET pullup to
VCC
R >= 100K

pullup to
VCC
R >= 100K

 3

MPEG
Interface

MICLK,
MISTRT,
MDI[7:0]

 pulldown
R >= 100K

 1

 MOCLK pulldown
R >= 100K

 1

 MOSTRT Pullup to Host
3.3V
R.>= 10K

1

 MDO[7:0] pulldown
R >= 100K

pulldown
R >= 100K

 1

OOB
Interface

CRX, DRX,
CTX

pulldown
R >= 100K

pulldown
R >= 100K

 1, 5

 ITX, QTX,
ETX

pulldown
R >= 100K

pulldown
R >= 100K

 1, 4

CPU
Interface

SCTL,
SCLK, SDI

 pulldown
R >= 100K

 1, 5

 SDO pullup to Host
3.3V
R.>= 10K

 2, 4

Notes:
1. Due to PC Card Requirement for pullups and pulldowns on the Memory Interface.
2. S-Host has R >= 10K pullup required for INPACK#. The M-Host is responsible for providing signal conditioning (i.e., a

pullup) in a manner that meets the DC an AC requirements of this signal.
3. Note 3 of Table 4-16 of in Section 4.7.1 of [PCMCIA2] Release 8.0 applies.
4. Note 4 of Table 4-16 of in Section 4.7.1 of [PCMCIA2] Release 8.0 applies.
5. Note 5 of Table 4-16 of in Section 4.7.1 of [PCMCIA2] Release 8.0 applies.
6. The CableCARD device SHALL force VS1# (pin 43) to ground and VS2 (pin 57) to high impedance until it switches to

the CableCARD device Custom Interface mode.

7.4.2 AC Characteristics

7.4.2.1 S-Mode and M-Mode Signal Parameters\

All Card signal requirements and timing requirements SHALL comply with Table 7.4–7 and Figure 7.4-1 and
Figure 7.4-2, and SHALL be measured with no less than the maximum load of the receiver as defined in table 4-16
of [PCMCIA2].

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

46 CableLabs® 8/03/06

The PC Card A7, A6, and A5 pin definitions have been modified to QTX, ETX, and ITX. These pins will be driven
by the Card and will have Data Signal characteristics per table 4-16 of [PCMCIA2]. Additionally, the signals
MOVAL and MOSTRT will be driven by the Card and will have Data Signal characteristics per table 4-16 of
[PCMCIA2]. The remaining signals follow the signal type assignments as listed in table 4-16 of [PCMCIA2].

All signal voltage levels are compatible with normal 3.3V CMOS levels.

Table 7.4–7 - S-Mode/M-Mode Signal Parameters

Parameter Signal Unit Min Typ Max Conditions

Frequency CTX kHz 3088

Frequency CRX kHz 3088

Clock High
Time (THIGH)

CTX, CRX ns 129 Notes 1, 2, 3

Clock Low
Time (TLOW)

CTX, CRX ns 129 Notes 1, 2, 3

Delay (tD) ETX, ITX, QTX ns 5 180 Notes 1, 2

Set-up (Tsu) DRX ns 10 From time signal reaches
90% of high level (rising)
or 10% of high level
(falling) until CRX mid-
point transition

Hold (Th) DRX ns 5 From CRX mid-point
transition until signal
reaches 10% of high level
(rising) or 90% of high
level (falling)

Notes:
1. Refer to Figure 7.4-1 - CableCARD Device Output Timing Diagram.
2. AC Timing is measured with Input/Output Timing Reference level at 1.5V.
3. Min value derived assuming a duty cycle of 60/40.

The AC Timing characteristics of the OOB FDC and RDC timing for the Card operating in S-Mode and M-Mode is
illustrated in Figure 7.4-1 and Figure 7.4-2.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 47

CTX
from Host

ETX

ITX or QTX

CableCARD Device RDC
Timing Diagram

tD tD tLCTXtHCTX

Figure 7.4-1 - CableCARD Device Output Timing Diagram

CRX
from Host

DRX
from Host

tH tSU

CableCARD Device Input Timing
Diagram

Figure 7.4-2 - CableCARD Device Input Timing Diagram

7.4.2.2 M-Mode

When the Card is operating in M-Mode, the AC signaling characteristics of CCLK, LogicPC and Logic CB are
described below.

• Pin type CCLK has AC Signal levels as defined in Table 5-9, AC Specifications for 3.3V Signaling (CCLK), in
Section 5.3.2.1.4 of [PCMCIA2] Release 8.0.

• Pin type LogicCB- AC Signal levels as defined in Table 5-8, AC Specifications for 3.3V Signaling, in Section
5.3.2.1.2 of [PCMCIA2] Release 8.0.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

48 CableLabs® 8/03/06

7.4.2.2.1 Power and Reset Timing

The power-on sequence timing is similar to the 16-bit PC card standard, with the exception that the MCLKI and the
SCLK are running prior to RESET being released and VPP2 will be 5V instead of 3.3V. Figure 7.4-3 and Table
7.4–8 show the power up timing requirements.

RESET

MICLK
SCLK

VCC
(3.3V)

VPP2
(5V)

SCTL

tsu(RESET-SCTL)

tw(RESET)
tw(RESET)

VCC min

CableCARD
INPUT

SIGNALS

th(Hi-z RESET)

VPP2 min

th(Hi-z RESET)tsu(VPP2-VCC)

tsu(IN-RESET)

CableCARD
OUTPUT
SIGNALS

tsu(CLK-RESET)

td(RESET - OUT)

Figure 7.4-3 - M-CARD Power-On and Reset Timing Diagram

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 49

Table 7.4–8 - M-CARD Power-On and Reset Timing Requirements

Symbol Parameter Min Max Units Notes

tsu(VPP2-VCC) VCC valid to VPP2 valid 50 us 1

th(Hi-z RESET) VCC and VPP2 valid to RESET assert 1 ms

tw(RESET) Reset pulse width 10 us

t su(CLK-RESET) Clock valid to RESET negate 0 ms

tsu(RESET-SCTL) Reset Negate to CPU Interface Active 20 ms 2

tsu(IN-RESET) Reset Negate to CPU Interface Active 0 ms 2

td(RESET-OUT) Reset Negate to M-CARD Output Signals Valid 0 20 ms 3

Notes:
1. VPP2 SHALL NOT exceed VCC=0.3V until VCC has reached VCC min as defined in Table 7.4–1.
2. The M-CARD input logic signals are Hi-z from when VCC and VPP2 are applied until RESET is asserted.
3. The M-CARD output logic signals are Hi-Z from when VCC and VPP2 are applied until RESET is de-asserted/negated.

7.4.2.2.2 MPEG Packet Jitter

The Host SHALL be responsible for multiplexing and demultiplexing the transport packets, in a manner to
minimize jitter of the MPEG PCR. However, packets sent across the interface from the Host to the Card SHOULD
be returned to the Host with a uniform, fixed delay from receipt to transmission back to the Host. The fixed delay
MAY vary by up to, but not exceed, one MICLK period (MICLK is the MPEG transport interface input clock i.e., ±
1 MICLK period).

All transport stream packets sent across the interface will be returned in the same order in which they are received
by the Card.

7.4.2.2.3 MPEG Transport Timing

The setup and hold times of the MPEG transport interfaces will be similar to the Cardbus data to CCLK Timing
Parameters.

Table 7.4–9 - M-CARD MPEG Transport Timing

Symbol Parameter Min Max Units Notes

tcyc MICLK and MOCLK Cycle Time 37.00 37.074 ns 1, 2, 3

thigh MICLK and MOCLK High Time 15 ns 3

tlow MICLK and MOCLK Low Time 15 ns 3

tsu Input Setup time of MDI[7:0] and MISTRT to MICLK
and Input Setup Time of MDO[7:0] and MOSTRT to
MOCLK

7 ns 4

th Input Hold time of MICLK to MDI[7:0] and MISTRT
and Input Hold Time of MOCLK to MDO[7:0] and
MOSTRT

0 ns 4

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

50 CableLabs® 8/03/06

Symbol Parameter Min Max Units Notes

tval MICLK to and MOCLK to Output Signal Valid Delay. 2 18 ns 4

Notes:
1. MOCLK will be derived directly from MICLK.
2. The Nominal Frequency is 27MHz. As specified, the Card operating in M-Mode will be required to operate at 27MHz +/-

1000ppm although the M-Host may be required to operate at tighter tolerances to maintain MPEG timing.
3. See Figure 5-28, CardBus PC Card Clock Waveform, of [PCMCIA2] Release 8 for reference levels.
4. See Figure 5-30, Input Timing Measurement Conditions, and Table 5-12, Measurement and Test Condition Parameters, of

[PCMCIA2] Release 8 for reference levels.

7.4.2.2.4 S-Mode CPU Interface Timing

The CPU functions for the Card operating in S-Mode are defined in Section 7.6.1.

7.4.2.2.5 M-Mode CPU Interface Timing

SCLK - The clock SHALL operate at a nominal rate of 6.75 MHz (27 MHz/4).

SCTL - The serial control signal SHALL change on the falling edge of the SCLK signal.

SDI - The serial Host data SHALL change on the falling edge of the SCLK signal. The Card SHALL input the
data on the rising edge of the SCLK signal.

SDO - The serial Card data SHALL change on the falling edge of the SCLK signal. The Host SHALL input the
data on the rising edge of the SCLK signal.

SCLK

SCTL, SDO,
SDI

Tperiod

Tlow Thigh

Tsetup Thold

Figure 7.4-4 - M-Mode Serial Interface Timing Diagram

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 51

Table 7.4–10 - M-Mode Serial Interface Timing

Signal Value Nominal Max Min Unit

Frequency 6.75 7.00 6.50 MHz
Thigh 74 88 59 ns

SCLK

Tlow 74 88 59 ns
Tsetup n/a n/a 7 ns SCTL
Thold n/a n/a 0 ns
Tsetup n/a n/a 7 ns SDI
Thold n/a n/a 0 ns
Tsetup n/a n/a 7 ns SDO
Thold n/a n/a 0 ns

Notes:
Minimum times are specified with 0 pF equivalent load; maximum times are specified with 30 pF equivalent load. Actual

test capacitance MAY vary but results SHOULD be correlated to these specifications.
The duty cycle of SCLK SHALL be no less than 40%, no more than 60%.

7.5 Mechanical Specifications

7.5.1 Form Factor

The mechanical design of the Card SHALL follow either the PC Card or CardBus specifications called out in
[PCMCIA3]. Additionally, any future modifications to the physical specification, which are backwards compatible,
may be implemented.

The Card SHALL comply with the Type II PC Card Package Dimensions with Low Voltage Keying as shown in
Figure 11-3 of [PCMCIA3].

The M-Card SHALL include the CardBus/CardBay PC Card Recommended Connector Grounding as shown in
Figure 11-40 [PCMCIA3]. Visual identification to distinguish between a Single-Stream CableCARD device and a
Multi-Stream CableCARD device will be via the label on the Card.

7.5.2 Connector

The Card connector and guidance SHALL comply with the PCMCIA Cardbus Type II connector and guidance
defined in [PCMCIA3].

7.5.3 Environmental

When the Host and Card are operating at room temperature and humidity, no greater than 25°C ambient
temperature, no greater than 95% RH non condensing, with a reference power load Card, the Host and Card
SHALL NOT allow any external protruding surface point hotter that 50°C for metallic, and 60°C for non-metallic
surfaces, and no non-accessible surface point hotter than 65°C.

7.5.4 PC Card Guidance

The Host SHALL have PC Card guidance described in section 5 of [PCMCIA3].

7.5.5 Grounding/EMI Clips

The Card SHALL have grounding and EMI clips described in section 6 of [PCMCIA3].

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

52 CableLabs® 8/03/06

7.5.6 Connector Reliability

The Host SHALL have connector reliability described in section 7 of [PCMCIA3].

7.5.7 Connector Durability

The Host SHALL have connector durability described in section 8.2 (harsh environment) of [PCMCIA3].

7.5.8 PC Card Environmental

The Card SHALL meet or exceed all environmental tests of Environmental Resistance Section described in section
9 of [PCMCIA3]. With regard to temperature specification the Card SHALL operate at up to 55ºC, as defined in
the PC Card Specification. This is primarily to enable reliable battery operation in Cards. In order to facilitate this
operating environment limit the Host SHALL limit the temperature rise between the ambient environment outside
the Host and the ambient environment surrounding the Card to 15ºC when the Card is dissipating its full rated
power. Note that this may not guarantee that the 55ºC limit for Card is met in all environmental conditions
otherwise acceptable to the Host. Card designers SHALL minimize the risk of misoperation of Cards containing
batteries by following the recommendations in the PC Card standard on battery placement and Host designers
should be aware of these recommendations when doing Host thermal design. Note that designers will also have to
conform to any relevant mandatory safety specifications with regard to Card temperature.

7.6 CPU Interface

7.6.1 S-Mode

With OOB traffic included, the Card requires more bandwidth and connections on the CPU Interface than are
supported by the Data Channel alone. Two communication paths SHALL share the same pins on the PC Card
connector.

Data Channel – This channel is compliant as defined below, plus the interrupt mode extension. Card applications
will use this path when they require support from Host resources.

The hardware interface consists of four registers occupying 4 bytes in the address space on the PC Card interface.
Byte offset 0 is the Data Register. This is read to transfer data from the Card and written to transfer data to the Card.
At byte offset 1 are the Control Register and Status Register. Reading at offset 1 reads the Status Register, and
writing at offset 1 writes to the Control Register. The Size Register is a 16-bit register at byte offsets 2 and 3. Offset
2 is the Least Significant half and offset 3 the Most Significant half. The register map is shown in Figure 7.6-1.

Only two address lines, A0 and A1, are decoded by the interface. The Host designer is free to place this block of 4
bytes anywhere within its own address space by suitable decoding or mapping of other address lines within the
Host.

Offset Register

0 Data Register

1 Control/ Status Register

2 Size Register (LS)

3 Size Register (MS)

Figure 7.6-1 - Hardware Interface Registers

The Status Register looks like Figure 7.6-2.

bit 7 6 5 4 3 2 1 0

 DA FR R R R R WE RE

Figure 7.6-2 - Status Register

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 53

DA (Data Available) is set to '1' when the Card has some data to send to the Host.

FR (Free) is set to '1' when the Card is free to accept data from the Host, and at the conclusion of a Reset cycle
initiated by either a Card hardware reset, or by the RS command.

R indicates reserved bits. They read as zero.

WE (Write Error) and RE (Read Error) are used to indicate length errors in read or write operations.

The Command Register looks like Figure 7.6-3.

bit 7 6 5 4 3 2 1 0

 R R R R RS SR SW HC

Figure 7.6-3 - Command Register

RS (Reset) is set to '1' to reset the interface. It does not reset the whole Card.

SR (Size Read) is set to '1' to ask the Card to provide its maximum buffer size. It is reset to '0' by the Host after
the data transfer.

SW (Size Write) is set to '1' to tell the Card what buffer size to use. It is reset to '0' by the Host after the data
transfer.

HC (Host Control) is set to '1' by the Host before starting a data write sequence. It is reset to '0' by the Host
after the data transfer.

R indicates reserved bits. They SHALL always be written as zero.

For Host to Card transfers, the Host sets the HC bit and then tests the FR bit. If FR is ‘0’ then the interface is busy
and the Host must reset HC and wait a period before repeating the test. If FR is ‘1’ then the Host writes the number
of bytes it wishes to send to the Card into the Size register and then writes that number of data bytes to the Data
register. This multiple write SHALL NOT be interrupted by any other operations on the interface except for reads of
the Status Register. When the first byte is written the module sets WE to ‘1’ and sets FR to '0'. During the transfer
the WE bit remains at ‘1’ until the last byte is written, at which point it is set to ‘0’. If any further bytes are written
then the WE bit is set to ‘1’. At the end of the transfer the Host shall reset the HC bit by writing ‘0’ to it.

The Host must test the DA bit before initiating the Host-to-Card cycle above in order to avoid deadlock, as the CHI
does not support a single buffer implementation in the Card.

Both the Card and the Host SHALL provide a double buffer implementation.

This C code fragment illustrates the Host side process:
if (Status_Reg & 0x80) /* go to module-to-host transfer (see below) */
Command_Reg = 0x01;
if (Status_Reg & 0x40) {

Size_Reg[0] = bsize & 0xFF;
Size_Reg[1] = bsize >> 8;
for (i=0; i<bsize; i++)

Data_Reg = write_buf[i];
}
Command_Reg = 0x00;

For the Card to Host Transfers Periodically the Host tests the DA bit in the Status Register. If DA is ‘1’ then the
Host reads the Size Register to find out how much data is to be transferred. It then reads that number of data bytes
from the Data register. This multiple read SHALL NOT be interrupted by any other operations on the interface
except for reads of the Status Register. When the first byte is read the Card sets RE to ‘1’ and sets DA to '0'. During
the transfer the RE bit remains at ‘1’ until the last byte is read, at which point it is set to ‘0’. If any further bytes are
read then the RE bit is set to ‘1’. This C code illustrates the host side process:

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

54 CableLabs® 8/03/06

if (Status_Reg & 0x80) {
bsize = Size_Reg[0] | Size_Reg[1] << 8;
for (i=0; i<bsize; i++)

read_buf[i] = Data_Reg;
}
The bytes of the Size Register can be read or written in either order.

Note that this interface does not support interrupts of the Host by the Card. The Host is expected to test the DA and
FR bits in the status register periodically to determine if communication is required.

Extended Channel – This second communication only includes physical and link layers. The purpose of the
Extended Channel is to provide a communication path between the Card and the Host such that applications in one,
e.g., Host, Card, can communicate with the headend via a link layer or modem function in the other Card, Host
respectively. Whereas the content and format of the messages for the Data Channel are well defined, the content and
format of the messages for the Extended Channel are application specific.

Depending on whether the Card or the Host is acting as the modem (or link device), the Extended Channel has a
reversible function as described in Figure 7.6-4 and Figure 7.6-5.

HEADEND CableCARD HOST

CableCARD
 APPS

Data
Channel

Extended
ChannelOOB

Interface

CPU Interface

Figure 7.6-4 - Modem in-the-Card System Overview

HEADEND HOST
CableCARD

HOST APPS
Data

Channel

Extended
Channel

Modem
or OOB

CPU Interface

Figure 7.6-5 - Modem in-the-Host System View

When the Data Channel is physically activated by CE1# (Card Enable 1), the Extended Channel is enabled by CE2#
(Card Enable 2).

The Extended Channel includes the same type of registers for the Command Interface. The Card enables access to
the Extended Channel after the initialization phase. At this time, the CE2# signal interpretation begins, and the
Extended hardware interface registers can be read and written. The signals mentioned in the table below are all
inputs for the Card. The registers depicted in Figure 7.6-6 are part of the Card.

Table 7.6–1 - Extended Interface Registers

Extended Interface Reg. REG# CE2# CE1# A1 A0 IORD# IOWR#

Standby mode X H H X X X X

Ext_Data Write L L H L L H L

Ext_Data Read L L H L L L H

Ext_Command Write L L H L H H L

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 55

Extended Interface Reg. REG# CE2# CE1# A1 A0 IORD# IOWR#

Ext_Status_Reg. Read L L H L H L H

Ext_Size (LS) Write L L H H L H L

Ext_Size (LS) Read L L H H L L H

Ext_Size (MS) Write L L H H H H L

Ext_Size (MS) Read L L H H H L H

The Extended Channel has its own data buffer that may have a different size than the Data Channel buffer.

Since there are two physical channels (data channel and extended channel), the behavior of the interface is defined
in such a way that when the Host sets the RS_flag on either channel, the interface is reset for both channels.
Therefore, if the Host sets an RS_flag after detection of an error condition, it should set the RS_flag for both
channels.

CE 1#CE2#

Ext_Da ta R egiste r

E xt_Contro l/E xt_S ta tus R eg.

Ext_S ize R eg iste r (LS)

Ext_S ize R eg iste r (M S)

Data R eg ister

Control/S tatus R eg.

S ize R eg ister (LS)

S ize R eg ister (M S)

E xt_bu ffer B uffe r

CP U Interface

Figure 7.6-6 - Map of Hardware Interface Registers

7.6.1.1 Control Register Modification

The following extension to the EIA-679-B Part B Command Interface SHALL be used in order to facilitate the
interrupt mode over the Data Channel and the Extended Channel.

The DA & FR bits of the Status Register should be gated onto the IREQ# line by two new Interrupt Enable bits for
the Control Register: DAIE (bit 7) and FRIE (bit 6) respectively. The Control register now becomes:

Table 7.6–2 - Control Register Definitions

Bit 7 6 5 4 3 2 1 0
 DAIE FRIE R R RS SR SW HC

RS, SR, SW and HC retain their function, as described in the [NRSSB] specification.

When set, DAIE allows any assertion of the DA (Data Available) bit in the Status register also to assert IREQ#.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

56 CableLabs® 8/03/06

When set, FRIE allows any assertion of the FR (Free) bit in the Status register also to assert IREQ#.

When IREQ# is asserted, the Host SHALL first check the data channel, and then the extended channel to determine
the source of the interrupt.

7.6.1.2 Status Register Modification

The following extension to [NRSSB] Status Interface SHALL be used in order to allow the Card to request the
initialization process to occur. A new status bit called the Initialize Interface Request (IIR) is added to bit 4 of the
Status Register to allow the Card to request that the interface be re-initialized. This bit exists in both the data
channel and extended channel. When the Card sets the IIR flag, the Card SHALL also reset the IIR flag when the
RS flag is set.

Table 7.6–3 - Status Register Definitions

Bit 7 6 5 4 3 2 1 0
 DA FR R IIR R R WE RE

7.6.2 M-Mode

When the Card is operating in M-Mode, the CPU interface consists of two logical channels, the data (or command)
channel and the extended channel. The command channel is typically used for command and control transactions,
while the extended channel is typically used for data transfers (SI, EAS, IP, etc.).

7.6.2.1 Physical Interface

The physical interface for the CPU interface is a modified SPI (Serial Peripheral Interface). Since the only
connection is between the Host and the Card, the phase is fixed with the data changing on the falling edge of the
clock (SCLK) and clocked in on the rising edge. A control signal (SCTL) SHALL be utilized to signal the start of a
byte of data as well as the start of a new packet. Two separate data signals SHALL be used: M-Host to Card data
(SDI), and Card to M-Host (SDO).

7.6.2.2 Packet Format

When the start of a packet occurs, the first byte is defined to be the interface query byte, which includes the
interface flags defined below.

After the interface query byte, the packet count consists of two bytes, which contain the number of data bytes
following in the packet. In other words, the ‘length’ does not include the first three bytes of the packet. The MSB of
the packet count is transmitted first. The maximum number of data bytes in a packet is 4,096. Therefore, the three
most significant bits of the 16-bit length should always be zero.

Table 7.6–4 - CPU Interface Packet Format

 Bit 7 6 5 4 3 2 1 0

Query X HR EC L F DA ER X
Length MSB b7 b6 b5 b4 b3 b2 b1 b0
Length LSB b7 b6 b5 b4 b3 b2 b1 b0

Host

Data Byte(s) b7 b6 b5 b4 b3 b2 b1 b0
Query X CR EC L F DA ER X
Length MSB b7 b6 b5 b4 b3 b2 b1 b0
Length LSB b7 b6 b5 b4 b3 b2 b1 b0

M-CARD

Data Bytes(s) b7 b6 b5 b4 b3 b2 b1 b0

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 57

After the packet count, if the DA, HR and CR bits are set in the interface query byte, then either the command
channel or extended channel data SHALL follow.

7.6.2.3 Interface Flags

HR Host Ready: The Host SHALL set this flag when it is ready to receive only or transmit and receive
data. This flag allows the Host to control the throughput of packets from the Card.

CR CableCARD Ready: The Card SHALL set this flag when it is ready to receive only or transmit and
receive data. After the RESET signal goes inactive, this signal will indicate to the Host when the
Card is ready. The Card SHALL set this flag less than 5 seconds after RESET goes inactive. This
flag also allows the M-CARD to control the throughput of packets from the Host.

EC Extended Channel: 0 = Command Channel, 1 = Extended Channel. The Host or Card SHALL use
this flag to determine whether the data transmitted from the source is intended for the Command or
Extended channels. It SHOULD be noted that it is possible for the Host to transmit Command
Channel data while the Card is transmitting Extended Channel data or vice versa.

L Last: Indicates to the Host/Card that the packet is the last one. Transactions are segmented into
multiple packets only when the data size is greater than 4,096 bytes. Transactions that contain less
than 4,096 data bytes SHALL set this flag.

F First: Indicates to the Hosts/Card that the packet is the first one. Transactions are segmented into
multiple packets only when the data size is greater than 4,096 bytes. Transactions that contain less
than 4,096 data bytes SHALL set this flag.

DA Data Available: Indicates to the Host/Card that data is available. When the Host detects that the
Card has set this flag and the CR flag and its HR flag is set, the Host SHALL read the following
length bytes from the Card and SHALL clock all of the remaining data in prior to indicating a start of
message. When the Host sets its DA and HR flag and detects that the Card has set its CR flag, the
Host SHALL send the length bytes to the Card and SHALL send all remaining data prior to
indicating a start of a message.

ER Error detected: The Host or Card has detected an error in the CPU interface. If the Host detects that
the Card has set this flag, it SHALL reset the Card. The Card MAY choose to ignore the Host’s ER
flag.

7.6.2.4 Interface Model

The Host is the master of this interface. The Host SHALL always transmit the interface query byte (IQB), even
when it does not have data to transmit. If the Card has data (DA = 1) and the Card is ready (CR=1) and the Host is
ready (HR=1), then the Host is responsible for clocking and receiving the entire packet length and inputting all
bytes as defined in the packet count. The Host SHALL transmit the IQB immediately following the last byte of the
previous packet byte, even if the previous packet did not include any data. This allows for a high-speed interface
for both Host and Card sourced data without resorting to separate interrupt signals.

The Host SHALL repeatedly send the IQB followed by 2 bytes of packet count until a message transfer begins. If
the Host does not have any data to send, the packet count following the IQB SHALL be set to 0.

The Host and Card both SHALL have separate read and write buffers that are 4,096 bytes, excluding the interface
query byte and packet count.

Each packet SHALL only be either a command or extended type, i.e., no mixing of types.

For the command channel, only one SPDU SHALL be allowed per packet.

For the extended channel, only one flow ID SHALL be allowed per packet.

If a packet is not segmented, then both the F and L bits SHALL be set.

Packets smaller than 4,096 bytes SHALL NOT be segmented.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

58 CableLabs® 8/03/06

If a packet is larger than 4,096 bytes, then it SHALL segmented into contiguous packets. The F bit SHALL be set
for the first packet. The L bit SHALL be set for the last packet.

The ready flags (HR & CR) SHALL be used for flow control.

The interface is assumed to be a reliable interface. Any error condition detected by the Card (i.e., under-run)
SHALL cause the ER bit to be set. This SHOULD be considered to be a catastrophic failure during normal
operation causing the Host to reset the Card. It is the Host’s responsibility to perform the reset operation. There is
an ER bit for the Host to set. However, the Card SHOULD ignore this bit.

7.6.3 S-Mode Initialization and Operation

This section defines the interface initialization procedure between the Card operating in S-Mode and the Host.

7.6.3.1 Descriptions

Initialization is a very general term. The following are definitions of the how the term initialization is used in this
section.

Any computing device SHALL go through an initialization phase whenever a reset condition occurs, such as when
initial power is applied, manual reset, or an unrecoverable software error condition occurs. What is covered in this
section is the initialization of the interface between the host and the Card. This is defined to be the interface
initialization.

7.6.3.2 CableCARD Device Personality Change Definition

The host and Card SHALL initialize to the PCMCIA interface and will, at a particular point in the sequence, change
to the CableCARD device interface. This point is defined as the CableCARD Personality Change.

7.6.3.3 Reset Definition

There are two possible resets that can occur in the Card interface, a hard reset (Called PCMCIA reset) and a soft
reset (called Card reset or POD reset).

7.6.3.3.1 PCMCIA Reset

The PCMCIA reset is defined to be one in which the Host SHALL bring the RESET signal to the Card active. The
interface SHALL revert to the PCMCIA interface including no longer routing the MPEG data stream through the
Card. Obviously this will cause problems to the viewer and should be avoided except in the case that a catastrophic
failure has occurred in the Card or in the interface between the Host and the Card.

7.6.3.3.2 Card Reset

The Card reset is defined to be when the Host sets the RS bit in the control register anytime after the CableCARD
personality change has occurred. The Host SHALL set the RS bit in both the data channel and extended channel.
 The Card SHALL detect whether the RS bit has been set in either channel and, if so, SHALL close all open
sessions and transport connections and operation SHALL revert to that of just after the CableCARD personality
change. This reset SHALL prevent the change of routing of the MPEG data stream, thereby preventing the viewer
from noticing any problems unless the video/audio stream being viewed is scrambled. Since the conditional access
session is closed, the Card SHALL cease descrambling the data stream until a new session is opened and the
appropriate APDU transmitted to the Card.

The Card reset should occur when the Host detects an error in the Card interface or the Card has set the IIR flag (see
below).

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 59

7.6.3.4 Initialize Interface Request Flag

A status bit called the Initialize Interface Request (IIR) flag is included in bit 4 of the status register to allow the
Card to request that the interface be re-initialized. This bit exists in both the data channel and extended channel.
When a condition occurs that the Card needs to request an interface initialization, it SHALL set both IIR bits.
 Upon recognition of the IIR flag being set, the Host SHALL implement a Card reset. The Card will clear the IIR
flag when the RS bit is set. To further ensure reliable interoperability, the Card SHALL be prohibited from sending
LPDUs to the Host after setting the IIR bit and prior to recognizing an active RS bit.

7.6.3.5 Detailed CableCARD Reset Operation

The following flowchart (Card Reset Sequence) is the required implementation of the Card RS operation. LPDUs
SHALL NOT be transmitted until the completion of the Card Reset sequence.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

60 CableLabs® 8/03/06

Host clears RS
flags on Data

Channel after a
minimum of 40

usec

Host sets RS flag
on Extended

Channel

Data Channel
FR flag set?

Extended
Channel

 FR flag set?

Host executes
Data Channel

buffer size
negotiation

Host sets RS flag
on Data Channel

Yes

No

No

Yes

Host clears RS
flags on Extended

Channel after a
minimum of 40

usec

Host executes
Extended Channel

buffer size
negotiation

Figure 7.6-7 - Card RS Operation

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 61

7.6.3.6 Configuration Option Register

The Card and the Host SHALL support the Function Configuration as defined in Section 4.14 of
[PCMCIA2]. Cards SHALL support only the Configuration Option Register. Host support for registers other than
the Configuration Option Register is optional.

The Configuration Option Register (COR) in the Card is only accessible prior to the CableCARD personality
change (Section 7.3.5). After the CableCARD personality change, the COR is no longer available. Any relevant
configuration data SHALL be transferred via the data or extended channels and is not covered in this document.

By writing the COR with the value defined by the Configuration-Table index byte, TPCE_INDX, from the
CISTPL_CFTABLE_ENTRY tuple, the Host configures the Card into the CableCARD device mode, thus causing
the CableCARD personality change.

7.6.3.7 Initialization Conditions

There are four possible conditions that can cause the PCMCIA interface initialization phase, they are as follows:

1. The Host and Card are powered up at the same time. After both have performed their internal
initialization, then the interface initialization SHALL begin.

2. Host has been powered and in a steady state. A Card is then inserted. After the Card has performed its
internal initialization, the interface initialization phase SHALL begin.

3. The Host has performed a reset operation for some reason (spurious signal, brownout, software
problem, etc.) that has not caused the Card to reset. The Host SHALL go through its initialization and
then SHALL perform a PCMCIA reset on the Card. After the Card has performed its internal
initialization, then the interface initialization SHALL begin.

4. The Card has performed a reset operation for some reason (spurious signals, software problem, etc.)
that has not caused the Host to reset. The Host SHALL incorporate the timeout detection and will thus
detect a timeout and SHALL perform a Card reset.

7.6.3.8 OOB Connection and Disconnection Behavior

If a Card is not connected to the Host, the OOB transmitter in the Host SHALL not operate. Upon connection of a
Card, the Host SHALL initiate, with the Card, the low-level personality change sequence defined in Section 7.6.3.9
of this document. If successful, the Host SHALL then activate the OOB transmitter as instructed by the Card.

The OOB receiver in the Host SHALL be connected only to the Card interface.

7.6.3.9 Low Level Step by Step CableCARD Device Personality Change Sequence

The CableCARD personality change covers the detection of the Card and the transition to the CableCARD device
interface. A step-by-step operation for the interface initialization of the physical layer from the Card’s viewpoint is
defined below.

1. The Card is inserted or already present in a Host.

2. Please refer to section 4.12.1 of [PCMCIA2] for timing diagrams and specifications.

Power-up: Power is applied to the Card with the RESET signal in a high-Z state for a minimum of 1
msec after VCC is valid (section 4.4.20 of the PC Card Electrical Specification). The Card’s READY
signal (pin 16) SHALL be inactive (logic 0) within 10 usec after the RESET signal goes inactive (logic
0), unless the Card will be ready for access within 20 msec after RESET goes inactive. Note that at
this time the Card SHALL only operate as an un-configured PCMCIA module.

PCMCIA Reset: The RESET signal goes active for a minimum of 10 usec. The Card’s READY
signal (pin 16) SHALL be inactive (logic 0) within 10 usec after RESET goes inactive (logic 0), unless
the Card will be ready for access within 20 msec after RESET goes inactive. Note that at this time the
Card SHALL only operate as an un-configured PCMCIA module.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

62 CableLabs® 8/03/06

3. After a minimum of 20 msec after RESET goes inactive (section 4.4.6 of [PCMCIA2]), the Host
SHALL test the Card’s READY signal. It SHALL NOT attempt to access the Card until the READY
signal is active (logic 1).

4. After the Card has completed its PCMCIA internal initialization, it SHALL bring the READY signal
active. At this time, all of the interface signals are defined by the PC Card interface standard for
Memory Only Card interface (Table 4-1 of [PCMCIA2]). The Card SHALL bring READY active
within 5 seconds after RESET goes inactive (section 4.4.6 of [PCMCIA2]).

5. The Host SHALL read the Configuration Information Structure (CIS) available in the attribute
memory to determine that the device is a CableCARD device, what version is used, and any other
pertinent information. This data is outlined in Section 7.3.5.1 of this document.

6. The Host SHALL read all the CCST_CIF subtuples to verify that the SCTE interface ID number
(STCI_IFN) is present (0x341).

Informative Note: If it is not present, this means that a different PCMCIA module has been inserted,
which is not capable of operating with the SCTE format, however, it may be capable of operating as an
NRSS-B module (CEA-679-C Part B).

7. The Host SHALL then write into the COR the value read in TPCE_INDX. Following this write
cycle, the Host SHALL switch the address signals A4-A8 to the OOB interface signals and the inband
transport stream signals. The Host SHALL implement a pull-down resistor on the ETX signal to
prevent spurious operation of the transmitter. It SHALL also implement a pull down resistor on the
MCLKO signal to prevent invalid inband transport data from being received prior to the CableCARD
device personality change.

8. At a minimum of 10 usec after the COR write signal, the Card SHALL switch to the OOB interface
signals and the inband transport stream signals.

9. In the event that the Card requires additional initialization, it SHALL NOT bring the FR bit in the
status register active until it is ready to begin communications with the Host.

10. This completes the physical link layer initialization.

The following diagram helps define this operation.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 63

Host reset
Host completes internal initialization

Waits until READY = 1 to begin
CableCARD Device Personality
Change Sequence

Host reads CCST_CIF from SCTE
CableCARD Device's module's
attribute register

Host enables CableCARD Device
interface in SCTE POD module by
writing TPCE_INDX value to
Configuration Option Register (COR)

Host converts toCableCARD Device
interface (A4-A8 become OOB
interface)

Begin upper layer initialization

CableCARD Device reset
CableCARD Device completes internal
initialization

CableCARD Device changes from
PCMCIA interface to CableCARD
Device interface.

Wait 10 usec min.

CableCARD Device OOB interface
becomes active

Host CableCARD Device

READY = 0

READY = 1

Read CCST_CIF

Return hex341

Write TPCE_INDX

End of CableCARD Personality
Change Sequence

CableCARD Personality Change
Sequence

RESET = 0

FR =1

Figure 7.6-8 - CableCARD Personality Change Sequence

7.6.3.10 Initialization Overview

The following sections provide a description of the initialization procedure that SHALL occur between the Card and
the Host.

7.6.3.11 Physical Layer Initialization

The physical layer initialization covers the buffer size negotiation of both the data and extended channels, and the
initialization of the Host-Card transport layer and resource manager. The following physical layer initialization
SHALL be implemented in the order listed.

7.6.3.11.1 Data Channel Initialization

The data channel is initialized by the Host writing a ‘1’ to the RS bit in the data channel Control/Status Register.
After a minimum of 40 usec, the Host will write a ‘0’ to the RS bit in the data channel Control/Status Register. The
Card SHALL clear out any data in the data channel data buffer and configures the Card interface so it can perform
the data channel buffer size negotiation protocol. When the Card is ready, it sets the data channel FR bit to ‘1’.

7.6.3.11.2 Extended Channel Initialization

The extended channel is initialized by the Host writing a ‘1’ to the RS bit in the extended channel Control/Status
Register. After a minimum of 40 usec, the Host will write a ‘0’ to the RS bit in the extended channel Control/Status
Register. The Card SHALL clear out any data in the extended channel data buffer and configure the Card interface
so it can perform the extended data channel buffer size negotiation protocol. When the Card is ready, it sets the
extended channel FR bit to ‘1’.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

64 CableLabs® 8/03/06

7.6.3.11.3 Data Channel Buffer Size Negotiation

When a PC Card is plugged into a Host. The PC Card initialization commences with sensing of the Card being
plugged in by sense pins on the interface. The Host then reads the Card information Structure residing in the
Attribute Memory of the Card. This contains low-level configuration information for the Card, such as PC Card
read and write addresses used by the Card, and indicates to the Host that it is a CableCARD device. The Host now
turns off the Transport Stream Interface bypass link and allows the transport packets to flow through the Card. This
introduces a delay, and consequently a short gap in the Transport Stream data, but this is unavoidable. At the same
time the physical layer interface initialization process takes place to negotiate the buffer size to be used for
communication. At this point the physical layer initialization process is complete and the upper-layer initialization
process, common to all physical implementations, commences with the Host creating a Transport Layer connection
to the module.

During Card initialization and at other times if there is an error, the Host needs to be able to reset the interface. It
does this by writing a '1' to the RS bit in the Control Register. The Card clears out any data in its data transfer
buffer(s) and sets the interface so that it can perform the buffer size negotiation protocol. The Card signals that the
Reset operation is complete by setting the FR bit to ‘1’. After initialization the Host must find out the internal buffer
size of the Card by operating the buffer size negotiation protocol. Neither Host nor Card may use the interface for
transferring data until this protocol has completed. The Host starts the negotiation by writing a '1' to the SR bit in
the Control Register, waiting for the DA bit to be set and then reading the buffer size by a Card to Host transfer
operation. At the end of the transfer operation the host resets the SR bit to '0'. The data returned will be 2 bytes with
the most significant byte first. The Card SHALL support a minimum buffer size of 16 bytes. The maximum is set
by the limitation of the Size Register (65535 bytes). Similarly the Host may have a buffer size limitation that it
imposes. The Host SHALL support a minimum buffer size of 256 bytes but it can be up to 65535 bytes. After
reading the buffer size the Card can support, the Host takes the lower of its own buffer size and the Card buffer size.
This will be the buffer size used for all subsequent data transfers between Host and Card. The Host now tells the
Card to use this buffer size by writing a ‘1’ to the SW bit in the Command Register, waiting until the FR bit is set
and then writing the size as 2 bytes of data, most significant byte first, using the Host to Card transfer operation. At
the end of the transfer the Host sets the SW bit to '0'. The negotiated buffer size applies to both directions of data
flow, even in double buffer implementations.

All future data channel transaction buffer sizes SHALL NOT exceed the maximum buffer size. Note that a data
channel transaction’s buffer size can be smaller than the negotiated buffer size.

7.6.3.11.4 Extended Channel Buffer Size Negotiation

The Extended Channel buffer size negotiation is the same as the data channel defined in Section 7.6.3.11.3. Note
that the buffer sizes of the data and extended channels do not have to be the same. The minimum buffer size for the
Card is 16 bytes and the minimum buffer size for the Host is 256 bytes. The maximum size for both is 65,535
bytes.

Using the Buffer Size Negotiation protocol called out in Section 7.6.3.11.3, the Host will read the Card’s extended
channel buffer size, compare the result to its extended channel buffer size, and write the smaller of the two buffer
sizes to the Card’s extended channel. All future extended channel transaction buffer sizes SHALL NOT exceed the
maximum buffer size. Note that the extended channel transaction’s buffer size can be smaller than the negotiated
buffer size.

7.6.3.11.5 Link Connection

The Link Layer on the Command Interface does two jobs. It fragments Transport Protocol Data Units (TPDU), if
necessary, for sending over the limited buffer size of the Physical Layer, and reassembles received fragments. It also
fairly multiplexes several Transport Connections onto the one Link Connection. It does this by interleaving
fragments from all the Transport Connections which are currently trying to send TPDUs over the link. It assumes
that the Physical Layer transfer mechanism is reliable, that is, it keeps the data in the correct order and neither
deletes nor repeats any of it.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 65

A Link Connection is established automatically as a consequence of the establishment of the Physical Layer
connection, that is, plugging in the Card or powering up, reading the Card Information Structure, and configuring
the Card in the appropriate mode. No further explicit establishment procedure is required. The size of each Link
Protocol Data Unit (LPDU) depends on the size that the Host and Card negotiated using the SR & SW commands
on the interface. Each LPDU consists of a two-byte header followed by a fragment of a TPDU, the total size not
exceeding the negotiated buffer size. The first byte of the header is the Transport Connection Identifier for that
TPDU fragment. The second byte contains a More/Last indicator in its most significant bit. If the bit is set to '1' then
at least one more TPDU fragment follows, and if the bit is set to '0' then it indicates this is the last (or only)
fragment of the TPDU for that Transport Connection. All other bits in the second byte are reserved and SHALL be
set to zero. This is illustrated in Figure 7.6-9.

Transport Connection ID

M/L 0

TPDU fragment

Figure 7.6-9 - Layout of Link Protocol Data Unit

Each TPDU SHALL start in a new LPDU, that is, the LPDU carrying the last fragment of the previous TPDU on a
Transport Connection cannot also carry the first fragment of the next one. If more than one Transport Connection
currently has TPDUs in transit the Link Layer SHALL send a fragment for each of them in turn, so that all
Transport Connections get a fair apportionment of the communication bandwidth available.

No explicit initialization of the Link Layer is required.

7.6.3.11.6 Host-CableCARD Device Transport Layer Connection

The transport layer (TPDU) connection is covered in the following sections, and SHALL be supported with the
addition of the following: “TPDU chaining SHALL NOT be supported. The maximum length of the transport data
SHALL be limited to 65,534 bytes.”

The communication of data across this Command Channel is defined in terms of objects plus the interrupt mode
extension. Card applications SHALL use this path when they require support from Host resources. The objects are
coded by means of a general Tag-Length-Value coding derived from that used to code ASN.1 syntax.

Table 7.6–5 - Length field used by all PDUs at Transport, Session and Application Layers

Syntax # of bits Mnemonic
Length_field(){
 size_indicator 1 bslbf
 if (size_indicator ==0)
 length_value 7 uimsbf
 else if)size_indicator==1){
 length_field_size 7 uimsbf
 for (i=0;i<length_field_size; i++){
 Length_value_byte 8 bslbf
 }
 }
}

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

66 CableLabs® 8/03/06

This section describes the ASN.1 objects for the Transport and Session Layers that travel over the command
interface. For all these objects, and for the Application Layer objects, the coding in Table 7.6–5 applies for the
Length field, which indicates the number of bytes in the following Value field.

Size_indicator is the first bit of the length_field. If size_indicator = 0, the length of the data field is coded in the
succeeding 7 bits. Any length from 0 to 127 can thus be encoded on one byte. If the length exceeds 127, then
size_indicator is set to 1. In this case, the succeeding 7 bits code the number of subsequent bytes in the length field.
Those subsequent bytes shall be concatenated, first byte at the most significant end, to encode an integer value. Any
value field length up to 65535 can thus be encoded by three bytes. The indefinite length format specified by the
basic encoding rules of ASN.1 is not used [ISO8825].

7.6.3.11.6.1 Transport Layer
The Transport Layer of the Command Channel operates on top of a Link Layer provided by the particular physical
implementation used. The transport protocol assumes that the Link Layer is reliable, that is, data is conveyed in the
correct order and with no deletion or repetition of data. The transport protocol is a command-response protocol
where the Host sends a command to the Card, using a Command Transport Protocol Data Unit (C_TPDU) and waits
for a response from the module with a Response Transport Protocol Data Unit (R_TPDU). The Card cannot initiate
communication: it must wait for the Host to poll it or send it data first. The protocol is supported by Transport Layer
objects. Some of them appear only in C_TPDUs from the Host, some only in R_TPDUs from the Card and some
can appear in either. Create_T_C and C_T_C_Reply, create new Transport Connections. Delete_T_C and
D_T_C_Reply, shut them down. Request_T_C and New_T_C allow a Card to request the Host to create a new
Transport Connection. T_C_Error allows error conditions to be signaled. T_SB carries status information from
module to Host. T_RCV requests waiting data from a Card and T_Data_More and T_Data_Last convey data from
higher layers between Host and Card. T_Data_Last with an empty data field is used by the Host to poll regularly for
data from the Card when it has nothing to send itself. A C_TPDU from the Host contains only one Transport
Protocol Object. A R_TPDU from a Card may carry one or two Transport Protocol Objects. The sole object or
second object of a pair in a R_TPDU is always a T_SB object.

7.6.3.11.6.2 Transport protocol objects
All transport layer objects contain a transport connection identifier. This is one octet, allowing up to 255 Transport
Layer connections to be active on the Host simultaneously. Transport connection identifier value 0 is reserved. The
identifier value is always assigned by the Host. The protocol is described in detail here as it is common to all
physical implementations but the objects are only described in general terms. The detailed coding of the objects
depends upon the particular physical layer used.

1. Create_T_C creates the Transport Connection. It is only issued by the Host and carries the transport
connection identifier value for the connection to be established.

2. C_T_C_Reply is the response from the target module to Create_T_C and carries the transport
connection identifier for the created connection.

3. Delete_T_C deletes an existing Transport Connection. It has as a parameter the transport connection
identifier for the connection to be deleted. It can be issued by either Host or Card. If issued by the
Card it does so in response to a poll or data from the Host.

4. D_T_C_Reply is the reply to the delete. In some circumstances this reply may not reach its destination,
so the Delete_T_C object has a time-out associated with it. If the time-out matures before the reply is
received then all actions which would have been taken on receipt of the reply can be taken at the
timeout.

5. Request_T_C requests the Host to create a new Transport Connection. It is sent on an existing
Transport Connection from that Card. It is sent in response to a poll or data from the Host.

6. New_T_C is the response to Request_T_C. It is sent on the same Transport Connection as the
Request_T_C object, and carries the transport connection identifier of the new connection. New_T_C
is immediately followed by a Create_T_C object for the new connection, which sets up the Transport
Connection proper.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 67

7. T_C_Error is sent to signal an error condition and carries a 1-byte error code specifying the error. This
is sent in response to Request_T_C to signal that no more Transport Connections are available.

8. T_SB is sent as a reply to all objects from the Host, either appended to other protocol objects or sent
on its own, as appropriate. It carries one byte which indicates if the module has data available to send.

9. T_RCV is sent by the Host to request that data the module wishes to send (signaled in a previous
T_SB from the Card) be returned to the Host.

10. T_Data_More and T_Data_Last convey data between Host and Card, and can be in either a C_TPDU
or a R_TPDU. From the Card they are only ever sent in response to an explicit request by a T_RCV
from the Host. T_Data_More is used if a Protocol Data Unit (PDU) from a higher layer has to be split
into fragments for sending due to external constraints on the size of data transfers. It indicates that at
least one more fragment of the upper-layer PDU will be sent after this one. T_Data_Last indicates the
last or only fragment of an upper-layer PDU.

7.6.3.11.6.3 Transport protocol
When the Host wishes to set up a transport connection to a Card, it sends the Create_T_C object and moves to state
'In Creation'. The Card shall reply directly with a C_T_C_Reply object. If after a time-out period the Card does not
respond, then the Host returns to the idle state (via the 'Time-out' arc). The Host will not transmit or poll again on
that particular transport connection, and a late C_T_C_Reply will be ignored. If, subsequently, the Host re-uses the
same transport connection identifier, then the Card will receive Create_T_C again, and from this it SHALL infer
that the old transport connection is dead, and a new one is being set up.

When the Card replies with C_T_C_Reply, the Host moves to the 'Active' state of the connection. If the Host has
data to send, it can now do so, but otherwise it issues a poll and then polls regularly thereafter on the connection.

If the Host wishes to terminate the transport connection, it sends a Delete_T_C object and moves to the 'In Deletion'
state. It then returns to the 'Idle' state upon receipt of a D_T_C_Reply object, or after a time-out if none is received.
If the Host receives a Delete_T_C object from the module it issues a D_T_C_Reply object and goes directly to the
idle state. Except for the 'Active' state, any object received in any state which is not expected is ignored.

In the 'Active' state the Host issues polls periodically, or sends data if it has an upper-layer PDU to send. In response
it receives a T_SB object, preceded by a Request_T_C or Delete_T_C object if that is what the Card wants to do.

In the 'Active' state, data can be sent by the Host at any time. If the Card wishes to send data it must wait

for a message from the Host - normally data or a poll - and then indicate that it has data available in the T_SB reply.
The Host will then at some point - not necessarily immediately - send a T_RCV request to the Card to which the
Card responds by sending the waiting data in a T_Data object. Where T_Data_More is used, each subsequent
fragment must wait for another T_RCV from the Host before it can be sent.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

68 CableLabs® 8/03/06

In Deletion

Idle In Creation

Active

Timeout D_T_C_Reply
received

‘Create’ request
from Host S/W Send “Cteate_T_C”

Timeout ‘C_T_C_Reply”
received

‘Delete’ request
from Host S/WSend “Delete_T_C”

“Delete_T_C”
received

Send “D_T_C_Reply””

Send “Poll”

Figure 7.6-10 - State Transition Diagram – Host Side of the Transport Protocol

Table 7.6–6 - Expected Received Objects – Transport Connection on the Host

State Expected Objects - Host

Idle None

In Creation C_T_C_Reply (+T_SB)

Active T_Data_More, T_Data_Last, Request_T_C,
Delete_T_C, T_SB

In Deletion D_T_C_Reply (+T_SB)

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 69

Figure 7.6-11 - State Transition Diagram – Card Side of the Transport Protocol

Table 7.6–7 - Expected Received Objects – Transport Connection on the Card

State Expected Objects - Host

Idle Create_T_C

Active Create_T_C, T_Data_More, T_Data_Last,
New_T_C, Delete_T_C, T_RCV, T_C_Error

In Deletion D_T_C_Reply

If a Card wishes to set up another Transport Connection it SHALL send a Request_T_C object either in response to
a poll or data. If it can meet the request the Host will reply with a New_T_C containing the transport connection
identifier for the new connection, immediately followed by a Create_T_C object to create the connection. If the
Host cannot meet the request because all transport connection identifiers are in use then it SHALL reply with a
T_C_Error containing the appropriate error code.

An example of an object transfer sequence to create and use a Transport Connection is illustrated in Figure 7.6-12.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

70 CableLabs® 8/03/06

CardHost
Create_T_C (1)

C_T_C_Reply (1, no_data)

T_Data_Last (1,data)

T_SB (1, no_data)

T_Data_Last (1,poll)

Req_T_C (1, no_data)

T_SB (1, no_data)

New_T_C (1,2)

Create_T_C (s)

C_T_C_Reply (2,
data_avail)

T_RCV (2)

T_Data_Last (2, data,
no_data)

T_Data_Last (2, data)

T_SB (2, no_data)

Figure 7.6-12 - Object Transfer Sequence – Transport Protocol

In this example it is assumed that the Card has just been plugged in and a physical connection has been established
(PC Card initialization, etc.). The Host now issues a Create_T_C for Transport Connection number 1. The Card
replies immediately with C_T_C_Reply for Transport Connection 1, also indicating it has no data to send. The Host
now sends some data with a T_Data_Last and the Card responds with just a T_SB indicating no data to send. Some
time later the Host polls the Card with an empty T_Data_Last, and the Card responds with a Request_T_C saying it
wishes to have a new Transport Connection created, and also indicating (in the appended T_SB) that it has no data
to send on connection 1. The Host replies with New_T_C indicating that Transport Connection 2 will be set up.
This is immediately followed by Create_T_C for Transport Connection 2. The Card responds with a T_SB to the
first and a C_T_C_Reply to the second, also indicating that it has data to send on this connection. The Host
responds with T_RCV to receive the data, and the Card responds with T_Data_Last containing the data. The Host
replies with data of its own and the Card responds to that indicating it has no further data to send. Both Transport
Connections now persist until either Card or Host deletes one, and the Host polls periodically on both connections
with an empty T_Data_Last.

7.6.3.11.6.4 Transport Protocol Objects
The transport protocol on the Command Channel is a command-response protocol where the Host sends a command
to the Card, using a Command Transport Protocol Data Unit (C_TPDU) and waits for a response from the Card
with a Response Transport Protocol Data Unit (R_TPDU). The Card cannot initiate communication: it must wait for
the Host to poll it or send it data first. The protocol is supported by eleven Transport Layer objects. Some of them
appear only in C_TPDUs from the Host, some only in R_TPDUs from the Card and some can appear in either.
Create_T_C and C_T_C_Reply, create new Transport Connections. Delete_T_C and D_T_C_Reply, clear them

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 71

down. Request_T_C and New_T_C allow a Card to request the Host to create a new Transport Connection.
T_C_Error allows error conditions to be signaled. T_SB carries status information from the Card to the Host.
T_RCV requests waiting data from a Card and T_Data_More and T_Data_Last convey data from higher layers
between the Host and the Card. T_Data_Last with an empty data field is used by the Host to poll regularly for data
from the Card when it has nothing to send itself. In all objects there is a tag_field and a length_field coded
according to the rules defined in [ISO8825], and a t_c_id field which is a single octet.

7.6.3.11.6.4.1 Command TPDU
The Command TPDU (C_TPDU) conveys Transport Protocol objects from Host to Card.

Header Body

C_tpdu_tag length_field t_c_id [data field]

Figure 7.6-13 - C_TPDU Structure

Table 7.6–8 - Command TPDU (C_TPDU)

Syntax No. of Bits Mnemonic
C_TPDU() {

c_tpdu_tag 8 uimsbf
length_field()
t_c_id

8

uimsbf

for (i=0; i<length_value; i++) {
data_byte 8 uimsbf

}
}

The C_TPDU is made of two parts:

• A mandatory header made of a tag value c_tpdu_tag, coding the TPDU command, a length_field, coding the
length of all the following fields, and a transport connection identifier noted t_c_id.

• A conditional body of variable length equal to the length coded by length_field minus one.

7.6.3.11.6.4.2 Response TPDU
The Response TPDU (R_TPDU) conveys Transport Protocol objects from Card to Host.

Header Body Status

r_tpdu_tag length_field t_c_id [data field] SB_tag length_field = 2
SB_value

t_c_id

Figure 7.6-14 - R_TPDU Structure

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

72 CableLabs® 8/03/06

Table 7.6–9 - Response TPDU (R_TPDU)

Syntax No. of Bits Mnemonic
R_TPDU() {

r_tpdu_tag 8 uimsbf
length_field()
t_c_id

8

uimsbf

for (i=0; i<length_value; i++) {
data_byte 8 uimsbf

}
SB_tag 8 uimsbf
length_field()=2
t_c_id 8 uimsbf
SB_value 8 uimsbf

}

The R_TPDU is made of three parts:

• A conditional header made of a tag value r_tpdu_tag, coding the TPDU response, a length field, coding the
length of the following transport connection identifier and data fields, and a transport connection identifier field
noted t_c_id. The status is not included in the calculation of length_field.

• A conditional body of variable length equal to the length coded by length_field minus one.

• A mandatory Status made of a Status tag SB_tag, a length_field equal to 2, a transport connection identifier and
a one-byte Status Byte value (SB_value) coded according to Figure 7.6-15 and Table 7.6–10.

Bit 7 6 5 4 3 2 1 0
 DA reserved

Figure 7.6-15 - SB_value

The 1-bit DA (Data Available) indicator field indicates whether the module has a message available in its output
buffer for the host. The host has to issue a Receive_data C_TPDU to get the message (see 7.6.3.11.6.5). The coding
of DA indicator is given in Table 7.6–10. The ‘reserved’ field shall be set to zero.

Table 7.6–10 - Coding of bit8 of SB_value

Bit 7 Meaning
0 No message available
1 Message available

7.6.3.11.6.4.3 Create Transport Connection (Create_T_C)
The Host SHALL request to open a transport connection. The host SHALL open exactly one transport connection
for each Card.

Table 7.6–11 - Create Transport Connection (Create_T_C)

Syntax Value (hex) # of bits Mnemonic
Create_T_C() {
 create_T_C_tag
 length_field()
 t_c_id
}

0x82
0x01
XX

8
8
8

uimsbf
uimsbf
uimsbf

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 73

Where XX is defined by the Host. A transport connection ID (t_c_ID) value of zero is invalid.

The Create_T_C object is made of only one part:

A mandatory header made of a tag value create_T_C_tag, coding the Create_T_C object, a length_field
equal to one, and a transport connection identifier noted t_c_id.

Header

Create_T_C_tag length_field t_c_id

Figure 7.6-16 - Create_T_C Structure

7.6.3.11.6.4.4 Create Transport Connection Reply (C_T_C_Reply)
The Card SHALL respond with the following.

Table 7.6–12 - Create Transport Connection Reply (C_T_C_Reply)

Syntax Value (hex) # of bits Mnemonic
C_T_C_Reply (){
 C_T_C_Reply_tag
 length_field()
 t_c_id
}

0x83
0x01
XX

8
8
8

uimsbf
uimsbf
uimsbf

The C_T_C_Reply object is made of only one part:

A mandatory header made of a tag value C_T_C_Reply_tag, coding the C_T_C_Reply object, a
length_field equal to one, and a transport connection identifier.

Header

C_T_C_Reply_tag length_field t_c_id

Figure 7.6-17 - C_T_C_Reply Structure

A transport connection of ID “XX” now exists.

7.6.3.11.6.4.5 Delete Transport Connection (Delete_T_C)

Table 7.6–13 - Delete Transport Connection (Delete_T_C)

Syntax Value (hex) # of bits Mnemonic
delete_T_C (){
 C_T_C_Reply_tag
 length_field()
 t_c_id
}

0x84
0x01
XX

8
8
8

uimsbf
uimsbf
uimsbf

The Delete_T_C object is made of only one part:

A mandatory header made of a tag value delete_T_C_tag, coding the Delete_T_C object, a length_field
equal to one, and a transport connection identifier.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

74 CableLabs® 8/03/06

Header

delete_T_C_tag length_field t_c_id

Figure 7.6-18 - Delete_T_C Structure

7.6.3.11.6.4.6 Delete Transport Connection Reply (D_T_C_Reply)

Table 7.6–14 - Delete Transport Connection Reply (D_T_C Reply)

Syntax Value (hex) # of bits Mnemonic
D_T_C_Reply (){
 d_T_C_Reply_tag
 length_field()
 t_c_id
}

0x85
0x01
XX

8
8
8

uimsbf
uimsbf
uimsbf

The D_T_C_Reply object is made of only one part:

A mandatory header made of a tag value d_T_C_Reply_tag, coding the D_T_C_Reply object, a
length_field equal to one, and a transport connection identifier.

Header
d_T_C_Reply_tag length_field t_c_id

Figure 7.6-19 - D_T_C_Reply Structure

7.6.3.11.6.4.7 Request Transport Connection (Request_T_C)

Table 7.6–15 - Request Transport Connection (Request_T_C)

Syntax Value (hex) # of bits Mnemonic
Request_T_C (){
 Request_T_C_tag
 length_field()
 t_c_id
}

0x86
0x01
XX

8
8
8

uimsbf
uimsbf
uimsbf

The Request_T_C object is made of only one part:

A mandatory header made of a tag value request_T_C_tag, coding the Request_T_C object, a length_field
equal to one, and a transport connection identifier.

Header
Request_T_C_tag length_field t_c_id

Figure 7.6-20 - Request_T_C Structure

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 75

7.6.3.11.6.4.8 New Transport Connection (New_T_C)

Table 7.6–16 - New Transport Connection (New_T_C)

Syntax Value (hex) # of bits Mnemonic
New_T_C (){
 new_T_C_tag
 length_field()
 t_c_id
 new_t_c_id
}

0x87
0x02
XX
XX

8
8
8
8

uimsbf
uimsbf
uimsbf
uimsbf

The New_T_C object is made of two parts:

• A mandatory header made of a tag value new_T_C_tag, coding the New_T_C object, a length_field equal to
two and a transport connection identifier.

• A mandatory body consisting of the transport connection identifier for the new connection to be established.

Header
new_T_C_tag length_field t_c_id

Figure 7.6-21 - Request_T_C Structure

7.6.3.11.6.4.9 Transport Connection Error (T_C_Error)

Table 7.6–17 - Transport Connection Error (T_C_Error)

Syntax Value (hex) # of bits Mnemonic
T_C_Error (){
 T_C_Error_tag
 length_field()
 t_c_id
 error_code
}

0x88
0x02
XX
XX

8
8
8
8

uimsbf
uimsbf
uimsbf
uimsbf

The T_C_Error object is made of two parts:

• A mandatory header made of a tag value T_C_Error_tag, coding the T_C_Error object, a length_field equal to
two and a transport connection identifier.

• A mandatory body consisting of the error code for the particular error being signaled.

Transport Connection Error Codes are defined in Table 7.6–18.

Header
T_C_Error_tag length_field t_c_id

Figure 7.6-22 - T_C_Error Structure

Table 7.6–18 - Error Code Values

Error Code Meaning

1 No transport connections available

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

76 CableLabs® 8/03/06

7.6.3.11.6.5 C_TPDUs and Associated R_TPDUs
The send data command is used by the Host, when the transport connection is open, either to send data to the Card
or to get information given by the status byte. The Card replies with the status byte. See Figure 7.6-23.

CardHost
C_TPDU

(Send data header + data field)

R_TPDU
(Status)

Figure 7.6-23 - Send Data command/ Response Pair

Table 7.6–19 - Send Data C_TPDU

c_TPDU_tag M_c_TPDU_tag : Tdata_more
L_c_TPDU_tag : Tdata_last

length_field Length of data field according to [ISO8825]
t_c_id Transport connection identifier
data_field Subset of (TLV TLV … TLV

Table 7.6–20 - Send Data R_TPDU

Status according to Figure 7.6-15

A SEND DATA C_TPDU with L=1 (no data field) can be issued by the Host just to get information given by the
status byte (see polling function, Section 7.6.3.11.6.6).

The receive data command is used by the Host to receive data from the Card. See Figure 7.6-24.

CardHost

C_TPDU (Receive Data)

R_TPDU
(header+data field+Status))

Figure 7.6-24 - Receive Data command/ Response Pair

Table 7.6–21 - Receive Data C_TPDU

c_TPDU_tag TRCV
length_field c_TPDU_length is set to ‘1’
t_c_id Transport connection identifier

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 77

Table 7.6–22 - Receive Data R_TPDU

r_TPDU_tag M_r_TPDU_tag : Tdata_more
L_r_TPDU_tag : Tdata_last

length_field Length of data field according to [ISO8825]
t_c_id Transport connection identifier
data_field Subset of (TLV TLV … TLV
Status According to Figure 7.6-15

7.6.3.11.6.6 Polling Function Rules
The polling function consists in sending a command to the Card in order to know whether it has data to send to the
Host or not.

This function is provided by the Host which has regularly to issue a SEND DATA C_TPDU with length L equal to 1
(t_c_id field only, no data field). As long as data is not available, the Card replies with the status byte having the
DA indicator set to 0. When data is available, the Card replies with the status byte having DA indicator set to 1. The
Host can then issue one or several RECEIVE DATA C_TPDU, that will provoke transmission of data, until the DA
indicator of the status byte is set to 0 again. While the Card still has data to send, that is, the Host has received status
bytes with the DA indicator set, then the poll function shall be suspended. It SHALL be restarted when a status byte
is received with the DA indicator not set.

The maximum period of the polling function is equal to 100ms.

At each poll a time-out of 5 seconds is started, and is reset when the poll response is received. If no poll response
has been received within that time, then the transport connection is deleted by the Host in the normal way. The Host
does not send any additional polls while waiting for a poll response, even if its normal poll interval is exceeded.

7.6.3.11.6.7 Transport Tag List

Table 7.6–23 - Transport Tag Values

tpdu_tag Tag Value (hex) Primitive or
Constructed

Direction
Host ↔ Card

TSB
TRCV
Tcreate_t_c
Tc_t_c_reply
Tdelete_t_c
Td_t_c_reply
Trequest_t_c
Tnew_t_c
Tt_c_error
Tdata_last
Tdata_more

‘80’
‘81’
‘82’
‘83’
‘84’
‘85’
‘86’
‘87’
‘88’
‘A0’
‘A1’

P
P
P
P
P
P
P
P
P
C
C

←
→
→
←
↔
↔
←
→
→
↔
↔

7.6.3.11.7 Resource Manager Session Initialization

The Session Layer provides the mechanism by which applications communicate with and make use of resources.
The resource is a mechanism for encapsulating functionality at the Application Layer and is described fully in
Section 9.2.

Resources vary in the number of simultaneous sessions they can support. Some resources support only one. If a
second application tries to request a session to such a resource already in use then it will receive a 'resource busy'
reply. Other resources can support more than one simultaneous session, in which case resource requests will be

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

78 CableLabs® 8/03/06

honored up to some limit defined by the resource. An example of the latter would be the display resource, which in
some Host implementations may be able to support simultaneous displays in different windows.

7.6.3.11.7.1 Session Protocol Objects
The session objects are described in general terms here, as is the protocol, but the detailed coding of the objects is
described in later sections.

1. open_session_request is issued by an application over its transport connection to the Host requesting
the use of a resource.

2. open_session_response is returned by the Host to an application that requested a resource in order to
allocate a session number or to tell the Card that its request could not be fulfilled.

3. close_session_request is issued by a Card or by the Host to close a session.

4. close_session_response is issued by a Card or by the Host to acknowledge the closing of the session.

5. session_number always precedes the body of the SPDU containing APDU(s).

7.6.3.11.7.2 Session Protocol
The dialogue in the session layer is initiated by a module or by the host. One example is illustrated. In Figure
7.6-25, a Card A wishes to use a resource which is provided by the host.

CardHost

open_sesion_request

open_session_response
(ses_nb =n)

session_nb (n, data)

session_nb (n, data)

close_session_request (n)

close_session_response (n)

Figure 7.6-25 - Object Transfer Sequence – Transport Protocol

The Card requests a session to be opened to a resource on its transport connection. Since the Host provides the
resource itself it replies directly with a session number in its open session response. Communication now proceeds
with application layer data preceded by session_number objects. Eventually the session is closed, in this example,
by the Card but it could also have been closed by the Host, for example if the resource became unavailable for any
reason. Section 9.1 defines the message structure.

7.6.3.11.8 Card Resource Profile

Resource Manager Protocol

When a Card is plugged in or the Host is powered up one transport connection is created to the Card, serving an
application and/or a resource provider. The first thing an application or resource provider does is to request a
session to the Resource Manager resource. The Resource Manager then sends a Profile Inquiry to the application or
resource provider which responds with a Profile Reply listing the resources it provides (if any). The application or
resource provider must now wait for a Profile Change object. While waiting for Profile Change it can neither create

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 79

sessions to other resources nor can it accept sessions from other applications, returning a reply of ‘resource non-
existent’ or ‘resource exists but unavailable’ as appropriate.

When it has asked for profiles on all transport connections and received Profile Replies the Host builds a list of
available resources. Where two or more resources match in both class and type the Host keeps the one with the
highest version number in its list. Where the version numbers match also the host keeps all resources and chooses
one at random when a create session request is received for it. Once the Host has built its resource list it sends a
Profile Change object on all current Resource Manager sessions, and those applications that wish to can then ask the
Host for its list of resources using the Profile Inquiry object.

When it receives the Profile Change notification for the first time the application or resource provider can
interrogate the Host with a Profile Inquiry and receive a Profile Reply with the Host’s list of available resources.
After this first operation of the Profile Change protocol the application or resource provider is now free to create or
accept other sessions. Its session to the Resource Manager persists to allow further Profile Change notification by
the Host from time to time.

If a resource provider wishes to notify a change in the profile of resources it provides, it issues a Profile Change to
the Host. The Host replies with a Profile Inquiry to which the resource provider replies in turn with its updated
resource list. The Host processes this and, if this results in any change to the Host’s own resource list, the Host will
issue a Profile Change on all active Resource Manager sessions. The applications can then inquire and receive an
updated resource list if they wish.

The Card resource profile is obtained by the Host and is covered in Section 9.4. Since the Card is designed to be
the only Card in a Host, it SHALL NOT report any resources to the Host.

7.6.3.11.9 Host Resource Profile

The Host SHALL send a profile_changed() APDU so that the Card SHALL then perform a profile_inq() APDU to
which the Host SHALL respond with its profile_reply() APDU.

The Host sends:

Table 7.6–24 - Profile Changed

Syntax Value (hex) # of bits Mnemonic
profile_changed(){
 profile_changed_tag
 length_field()
}

0x9F8012

00

24
8

uimsbf
uimsbf

To which the Card replies with:

Table 7.6–25 - Profile Inquiry

Syntax Value (hex) # of bits Mnemonic
profile_inq(){
 profile_inq_tag
 length_field()
}

0x9F8010

00

24
8

uimsbf
uimsbf

To which the Host SHALL reply with:

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

80 CableLabs® 8/03/06

Table 7.6–26 - Profile Reply

Syntax Value (hex) # of bits Mnemonic
profile_reply(){
 profile_reply_tag
 length_field()
 for(i=0; i<N; i++) {
 resource_identifier()
 }
}

0x9F8011

N*4

XXXXXXXX

24
8

32

uimsbf
uimsbf

uimsbf

Where N is the number of resource identifiers and XXXXXXXX is each unique resource identifier.

NOTE: If a Host supports multiple types of a given resource, each type of that resource will be reported as a
resource identifier.

Now the Card knows what resources are available in the Host.

7.6.3.11.10 Application Info Session Initialization

The Card application SHALL request to open only one session to the Application Information resource to pass
application information and to manage application menu entry points. Once the session is created, the Host sends
an application_info_req() APDU to the Card. The Card will respond with the application_info_cnf() APDU.
Detailed operation of the application info is covered in Section 9.2 of this document.

7.6.3.11.11 Conditional Access Application Initialization

A Conditional Access application in the Card SHALL request to open a single session to the CA Support resource
in the Host to allow CA information from the SI and information about user-selected services to be given to the
application. Once the session is created, the Host sends a ca_info_inquiry() APDU to the application, which
responds with ca_info() APDU. The Host may then enter into a subsequent dialogue with the CA application to
determine which selected services the CA application can descramble and under what conditions. This is described
in Section 9.7 of this document. Under normal operating conditions, this session will never be closed.

7.6.3.12 Copy Protection

A Copy Protection application in the Card SHALL create a session to the Copy Protection resource in the Host.
 Initialization of Copy Protection is covered in OpenCable CableCARD Copy Protection 2.0 [CCCP2].

7.6.3.13 Extended Channel

An extended channel application in the Card SHALL create a session to the Extended Channel Support resource to
allow for the establishment of flows on the extended channel. These flows will be used for transferring IP packets
and MPEG table sections and DSG PDUs across the CHI. Under normal operating conditions, this session will
never be closed. Please refer to Section 10 of this document.

7.6.3.14 Host Control

A Host Control application SHALL create a session to the Host Control resource to allow the Card to control
various Host devices. Please refer to Section 9.8 and 10 of this document for details on the Host Control resource.

7.6.3.15 Low Speed Communication

If reported by the Host as an available resource and the Card implements a Low Speed Communication application,
the Card application MAY create a session to the Low Speed Communication resource to allow the Card to identify
what type of FDC, RDC, and any type of Host modem implementations available in the Host.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 81

7.6.3.16 Generic IPPV Support

If reported by the Host as an available resource and the Card implements a Generic IPPV application, the Card
application SHALL create a session to the Generic IPPV resource to allow the Host to receive information on and to
purchase IPPV events. The IPPV Operation is defined in Section 9.9 of this document.

7.6.3.17 System Time

The Card SHALL open a single session to the System Time resource to allow the Card to receive system time from
the Host.

7.6.3.18 Homing

The Card SHALL open a single session to the Homing resource in the Host to allow the Card to determine when it
may take control of the tuner. The Homing operation is defined in Section 9.18 of this document.

7.6.3.19 Interrupt Operation

Section 7.6.1.1 of this document defines that the PCMCIA IREQ# signal is available for use by the Host. This
signal can be utilized by the Host to simplify the physical layer operation but currently cannot be used for transport
layer operation.

7.6.3.20 Physical Level

The following diagram shows the Card interrupt logical operation.

Data Channel

Extended Channel

DA

DAIE

FR

FRIE

DA

DAIE

FR

FRIE

IREQ#

Figure 7.6-26 - CableCARD Device Interrupt Logical Operation

As illustrated in Figure 7.6-26, an interrupt SHALL occur whenever the DA or FR bits are set for either the data or
extended channels and their corresponding interrupt enable bit is set.

7.6.3.21 Data Channel Operation

The Host/Card relation on the data channel is defined to be a master-slave interface. The Host will periodically poll
the Card to determine if it has data. The Card will only transmit data to the Host after one of these polls. The
interrupts are particularly useful when the transaction has to be fragmented. The method of interrupt
implementation is dependent on the Host manufacturer and is not defined in this document.

7.6.3.22 Extended Channel Operation

The Host/Card relation on the extended channel is defined in Section 9.14 of this document. This is a peer type
interface. The Host and Card can transmit data over the extended channel at any time. The interrupt
implementation is dependent on the Host manufacturer and is not defined in this document.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

82 CableLabs® 8/03/06

7.6.3.23 Priorities

Since the data and extended channel interrupts are logically OR’ed together to a single interrupt signal, a priority
must be established. Since the data channel is defined to be the command interface, it SHALL have priority over
the extended channel. Additionally, the data channel will have less traffic overall than the extended channel.

This priority can be easily implemented by having the Host first read the data channel status byte and then the
extended channel status byte when an interrupt occurs to resolve the source.

7.6.4 M-CARD Initialization and Operation

For the M-CARD, the following is an example of operation of the CPU interface at initialization through opening
the resource manager session. For the purpose of this example, it is assumed that the M-CARD and Host contains
four buffers, one each for transmission and receiving for both channels, each buffer is 4,096 bytes. All flags are
assumed to be initialized to zero and will remain unchanged unless specifically called out below. In the tables
below, an X is defined to be “don’t care” for the receiving device.

1. The Host brings RESET inactive. The Host SHALL bring its HR flag active within 1 second. It
SHOULD be noted that it is expected for the Host to be fully operational prior to bringing RESET
inactive.

Table 7.6–27 - Buffer 1

 Bit 7 6 5 4 3 2 1 0

Query X HR = 1 EC = X L = X F = X DA = 0 ER = 0 X
Length
MSB 0 0 0 0 0 0 0 0 Host
Length
LSB 0 0 0 0 0 0 0 0

Query X CR = 0 EC = X L = X F = X DA = 0 ER = 0 X
Length
MSB X X X X X X X X M-CARD
Length
LSB X X X X X X X X

2. The M-CARD brings its CR flag active within 5 seconds.

Table 7.6–28 - Buffer 2

 Bit 7 6 5 4 3 2 1 0

Query X HR = 1 EC = X L = X F = X DA = 0 ER = 0 X
Length
MSB 0 0 0 0 0 0 0 0 Host
Length
LSB 0 0 0 0 0 0 0 0

Query X CR = 1 EC = X L = X F = X DA = 0 ER = 0 X
Length
MSB X X X X X X X X M-CARD
Length
LSB X X X X X X X X

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 83

3. The M-CARD loads its open_session_request SPDU to open a session to the Host's resource manager
resource into its command channel output buffer.

4. The M-CARD sets its DA flag and clears its EC flag on the next Host query. Since there are 6 bytes in
the open_session_request, it will set the length to 0x0006. The Host will read the 2nd and 3rd bytes of
data from the M-CARD. The Host SHALL then clock in 6 data bytes from the M-CARD.

Table 7.6–29 - Buffer 3

 Bit 7 6 5 4 3 2 1 0

Query X HR = 1 EC = X L = X F = X DA = 0 ER = 0 X
Length
MSB 0 0 0 0 0 0 0 0 Host
Length
LSB 0 0 0 0 0 0 0 0

Query X CR = 1 EC = 0 L = 1 F = 1 DA = 1 ER = 0 X
Length
MSB 0 0 0 0 0 0 0 0 M-CARD
Length
LSB 0 0 0 0 0 1 1 0

5. The Host reads the value in its command channel input buffer. The Host then responds by putting its
open_session_response SPDU into its command channel output buffer. If the time to process this is
significant, then the Host MAY clear its HR flag until it is ready to send/receive more data.

6. The Host then sets its DA flag and HR flag, and clears its EC flag on the next Host query. The 2nd and
3rd bytes contain the length of the data, which will be 0x0009 for the open_session_response SPDU.
The Host will then clock out all data in its command channel output buffer. The M-CARD will clock
this data into its command channel receive buffer.

Table 7.6–30 - Buffer 4

 Bit 7 6 5 4 3 2 1 0

Query X HR = 1 EC = 0 L = 1 F = 1 DA = 1 ER = 0 X
Length
MSB 0 0 0 0 0 0 0 0 Host
Length
LSB 0 0 0 0 1 0 0 1

Query X CR = 1 EC = X L = X F = X DA = 0 ER = 0 X
Length
MSB 0 0 0 0 0 0 0 0 M-CARD
Length
LSB 0 0 0 0 0 0 0 0

7. The M-CARD then clears its ready flag, CR, while it processes the data in its buffer.

8. Now that the resource manager session is open, the M-CARD will now load the profile_inq() APDU
into its command channel output buffer and then bring the CR and DA flags active. From here, it will
continue with the initialization procedure described in Sections 7.6.3.11.8 through 7.6.3.18.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

84 CableLabs® 8/03/06

X
H

R
EC

L
F

D
A

ER
X

D
7

D
6

X
EC

L
F

D
A

ER
X

D
7

D
6

PS

D
5

D
4

D
3

D
2

D
1

D
0

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

D
7

D
6

SC
LK

SC
TL

SH
D

SP
D

Le
ng

th
C

on
tro

l

D
5

D
4

D
3

D
2

D
1

D
0

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

D
7

D
6

D
at

a

Le
ng

th
 M

SB
Le

ng
th

 L
SB

PR

Figure 7.6-27 - M-Mode Serial Interface Protocol Diagram

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 85

8 COPY PROTECTION

Copy protection SHALL be provided for content marked with a non-zero EMI delivered in MPEG transport streams
flowing from the Card to the Host. Such protection, including scrambling of content from Card to Host and
authenticated delivery of messages through the CPU interface for permitted use of ‘content marked with a non-zero
EMI, is defined in OpenCable CableCARD Copy Protection 2.0 Specification [CCCP2].

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

86 CableLabs® 8/03/06

9 COMMAND CHANNEL OPERATION

The Command Channel is the control interface between the Card and the Host. S-Mode and M-Mode Command
Channel (also known as Data Channel) operation employ identical Session Resource and Application layers.

S-Mode SHALL use the Link, and Transport layers as defined in Sections 5 and 7 of this document.

M-Mode, The Transport Layer as defined for S-Mode operation is not used, and the Link Layer Operation is
implemented using the F and L bits in the Interface Query Byte. The Interface Query Byte functionality is further
defined in Section 7.6.2.2.

9.1 Session Layer
The session layer provides a mechanism for establishing communications between applications on the Card and
resources on the Host.

9.1.1 S-Mode

The Session Layer provides the mechanism by which applications communicate with and make use of resources.
The resource is a mechanism for encapsulating functionality at the Application Layer and is described in
Section 9.3.

Resources vary in the number of simultaneous sessions they can support. Some resources support only one. If a
second application tries to request a session to such a resource already in use then it will receive a 'resource busy'
reply. Other resources can support more than one simultaneous session, in which case resource requests will be
honored up to some limit defined by the resource. An example of the latter would be the display resource, which in
some Host implementations may be able to support simultaneous displays in different windows.

9.1.2 M-Mode

All sessions SHALL be opened by the Card applications. All resources defined by this specification, by definition,
SHALL be resident in the Host.

9.1.3 Resources with Multiple Sessions

Some resources MAY have multiple sessions so a method of identifying these is required. The session layer allows
for this.

9.1.4 SPDU Structure

The session layer uses a Session Protocol Data Unit (SPDU) structure to exchange data at session level either from
the Host to the Card or from the Card to the Host. The general form of the SPDU structure is made of two parts, a
mandatory session header, consisting of a tag value, a length field and the session object value, and the conditional
body of variable length.

spdu_tag length_field sess_obj_value apdu

Figure 9.1-1 - SPDU Structure

The SPDU is made of two parts:

• A mandatory session header made of a Tag value spdu_tag, a length_field coding the length of the session
object value field and a session object value. Note that the length field does not include the length of any
following APDUs.

• A conditional body of variable length which contains a APDU. (see application layer). The presence of the
body depends on the session header.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 87

Table 9.1–1 - SPDU Structure Syntax

Syntax No. of Bits Mnemonic
SPDU() {

spdu_tag 8 uimsbf
length_field()
for (i=0; i<length_value; i++) {

session_object_value_byte 8 uimsbf
}
for (i=0; i<N; i++) {

data_byte 8 uimsbf
}

}

spdu_tag One of the values listed in Table 9.1–7.

N Variable, depending on the specific spdu_tag.
A SPDU is transported in the data field of one TPDU.

Only one SPDU header is followed by a data field - the session_number object - which is always followed by a
SPDU body containing one APDU.

A SPDU is transported in the data field of one or several TPDU. See TPDU description of each physical module
implementation for more information.

9.1.4.1 Open Session Request (open_session_request)

This object is issued by the Card to the Host in order to request the opening of a session between the device and a
specific resource provided by the Host. The resource_identifier SHALL match, in both class and type, to that of a
resource that the Host has already declared as available. If the requested version number is zero, the Host SHALL
use the highest version of the resource it supports. Else, if the requested version number is less than or equal to the
version number of the resource that the Host has declared, for the Host device certified against the Host1.0-CFR-I16
or earlier specification, the Host SHOULD use the resource with the version number requested by the Card. For
any device certified against the Host2.0-CFR-I01 or later specification, the Host SHALL use the resource with the
current version number requested by the Card. If the requested version number is higher than the version number
declared by the Host, the Host SHALL refuse the request with the appropriate return code.

Table 9.1–2 - open_session_request() Syntax

Syntax No. of Bits Mnemonic
open_session_request() {

open_session_request_tag 8 uimsbf
length_field() /* always equal to 0x04 */
resource_identifier()

}

open_session_request_tag 0x91

resource_identifier See Table 9.3–2.

9.1.4.2 Open Session Response (open_session_response)

This open_session_response SPDU is issued by the Host to the Card in order to allocate a session number or inform
the Card that its request could not be met.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

88 CableLabs® 8/03/06

Table 9.1–3 - open_session_response() Syntax

Syntax No. of Bits Mnemonic
open_session_response() {

open_session_response_tag 8 uimsbf
length_field() /* always equal to 0x07 */
session_status 8 uimsbf
resource_identifier()
session_nb 16 uimsbf

}

open_session_response_tag 0x92

session_status Status of the open session request.
 0x00 Session is opened
 0xF0 Session not opened – resource non-existent or not supported
 0xF1 Session not opened – resource exists but unavailable
 0xF2 Session not opened – resource exists but version lower than requested
 0xF3 Session not opened – resource busy
 0x01-0xEF Reserved
 0xF4-0xFF Reserved
resource_identifier See Table 9.3–2 for description. The Host returns the actual resource identifier

of the resource requested with the current version number. If the session_status
response is 0xF0, ‘resource non-existent’, then the resource identifier field
SHALL be identical to that supplied in the open_request SPDU.

session_nb A 16-bit integer number allocated by the Host for the requested session. A
value of 0x00 is reserved and SHALL NOT be used. The session_nb SHALL
be used for all subsequent exchanges of APDUs between the Card and the Host
until the session is closed. When the session could not be opened
(session_status ≠ 0x00), this value has no meaning.

9.1.4.3 Close Session Request (close_session_request)

The close_session_request() SPDU MAY be issued by the Host or the Card to close a session.

Table 9.1–4 - close_session_request() Syntax

Syntax No. of Bits Mnemonic
close_session_request() {

close_session_request_tag 8 uimsbf
length_field() /* always equal to 0x02 */
session_nb 16 uimsbf

}

close_session_request_tag 0x95

session_nb The 16-bit integer value assigned to the session.

9.1.4.4 Close Session Response (close_session_response)

The Host or Card SHALL issue the close_session_response SPDU after receiving a close_session_request SPDU.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 89

Table 9.1–5 - close_session_response() Syntax

Syntax No. of Bits Mnemonic
close_session_response() {

close_session_response_tag 8 uimsbf
length_field() /* always equal to 0x03 */
session_status 8 uimsbf
session_nb 16 uimsbf

}

close_session_response_tag 0x96

session_status Status of the close session request.
 0x00 Session is closed as required
 0xF0 session_nb in the request is not allocated
 0x01-0xEF Reserved
 0xF1-0xFF Reserved
session_nb The 16-bit integer value assigned to the session.

9.1.4.5 Session Number (session_number)

The session_number SPDU SHALL always precede a body of the SPDU containing an APDU.

Table 9.1–6 - session_number() Syntax

Syntax No. of Bits Mnemonic
session_number() {

session_number_tag 8 uimsbf
length_field() /* always equal to 0x02 */
session_nb 16 uimsbf

}

session_number_tag 0x90

session_nb The 16-bit integer value assigned to the session.

9.1.4.6 Summary of Session Tags (spdu_tag)

Table 9.1–7 - Summary of SPDU Tags

spdu_tag tag value Direction
Host ↔ Card

open_session_request 0x91 ←
open_session_response 0x92 →
create_session 0x93 →
create_session_response 0x94 ←
close_session_request 0x95 ↔
close_session_response 0x96 ↔
session_number 0x90 ↔

All other values are reserved.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

90 CableLabs® 8/03/06

9.2 Application Layer
The application layer implements a set of protocols based upon the concept of a resource. A resource defines a unit
of functionality which is available to applications running on a Card. Each resource supports a set of objects and a
protocol for interchanging them to use the resource. Communication with a resource is by means of a session
created to that particular resource.

Resources are provided by the Host. Resources are used by an application creating a session to a resource. By an
initialization process carried out by the Resource Manager, the Host identifies all available resources and can
complete the session. Once this session has been created the application can then use the resource by an exchange
of objects according to the defined protocol.

By definition, applications reside on the Card and resources reside on the Host.

9.2.1 Resource Identifier Structure

A resource identifier consists of 4 octets. The two most significant bits of the first octet indicate whether the
resource is public or private. Values of 0, 1, and 2 indicate a public resource. A value of 3 indicates a private
resource.

Public resource is divided into three components: resource class, resource type, and resource version. Resource
class defines a set of objects and a protocol for using them. Resource type defines distinct resource units within a
class. All resource types within a class use the same objects and protocol, but offer different services or are
different instances of the same service. Resource version allows the Host to identify the latest version (highest
version number) of a resource where more than one of the same class and type are present. This allows updated or
enhanced resource to be supplied on a Card to supersede existing resources in the Host. Resources with a higher
version number SHALL be backward compatible with previous versions, so that applications requesting a previous
version will have a resource with expected behavior.

Public resource classes have values allocated in the range 1 to 49150, treating the resource_id_type field as the most
significant part of resource_class. Value 0 is reserved. The maximum (all-ones) value of all fields is reserved.
Private resources are identified by the private_resource_definer, defined to be the CHICA-assigned manufacturer
number (see [CCCP2]). Each private resource definer can define the structure and content of the
private_resource_identity field in any way except that the maximum (all-ones) value is reserved.

Table 9.2–1 - Public Resource Identifier

Bit
31 24 23 16 15 6 5 0
type resource_class resource_type resource_version

Table 9.2–2 - Private Resource Identifier

Bit
31 24 23 1

6
1
5

 8 7 0

3 private_resource_definer private_resource_identity

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 91

Table 9.2–3 - resource_identifier() Syntax

Syntax No. of Bits Mnemonic
resource_identifier() {

resource_id_type 2 uimsbf
if (resource_id_type != 0x3) {

resource_class 14 uimsbf
resource_type 10 uimsbf
resource_version 6 uimsbf

}
else {

private_resource_definer 10 uimsbf
private_resource_identity 20 uimsbf

}
}

These are the two types of application layer entity that can reside on a Card. Applications make use of resources to
perform tasks for the user of the Host. Resource providers provide resources additional to those available directly in
the Host, or a newer version of a resource replacing one previously provided by the Host. To avoid deadlock
problems and complexities of initialization resource providers SHALL NOT be dependent on the presence of any
other resources, except the Resource Manager, to provide the resources they offer.

9.3 APDUs
All protocols in the Application Layer use a common Application Protocol Data Unit (APDU) structure to send
application data between Host and the Card. The APDU is made up of two parts, a mandatory header, consisting of
a the apdu_tag value and a length field coding the length of the following data field and the conditional body of
variable length.

 Header body
apdu_tag length_field [data field]

Figure 9.3-1 - APDU Structure

Table 9.3–1 - APDU Structure Syntax

Syntax No. of Bits Mnemonic
APDU() {

apdu_tag 24 uimsbf
length_field()
for (i=0; i<length_value; i++) {

data_byte 8 uimsbf
}

}

Chaining of APDUs SHALL NOT be supported.

Table 9.3–2 is a summary of all of the supported Resource Identifiers.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

92 CableLabs® 8/03/06

Table 9.3–2 - Resource Identifier Values

Resource Class Type Version Resource identifier
Resource Manager 1 1 1 0x00010041
Application Information 2 2 1 0x00020081
Conditional Access Support 3 1 2 0x00030042
Conditional Access Support* 3 2 1 0x00030081
Host Control 32 1 3 0x00200043
Host Control* 32 2 1 0x00200081
System Time 36 1 1 0x00240041
MMI 64 2 1 0x00400081
Low Speed Communication2 96 321 3 0x00605043
Low Speed Communication2 96 513 3 0x00608043
Homing1 17 1 2 0x00110042
Copy Protection 176 3 1 0x00B000C1
Copy Protection* 176 4 2 0x00B00102
Specific Application Support 144 1 2 0x00900042
Generic Feature Control 42 1 1 0x002A0041
Extended Channel 160 1 1 0x00A00041
Extended Channel*** 160 1 2 0x00A00042
Extended Channel*** 160 1 3 0x00A00043
Extended Channel*** 160 1 4 0x00A00044
Extended Channel 160 1 5 0x00A00045
Generic IPPV Support3 128 2 1 0x00800081
Generic Diagnostic Support 260 1 2 0x01040042
Generic Diagnostic Support* 260 2 1 0x01040081
System Control4 43 1 1 0x002B0041
System Control*** 43 1 2 0x002B0042
System Control*** 43 1 3 0x002B0043
System Control 43 2 1 0x002B0081
CARD RES* 38 3 1 0x002600C1
DSG**** 4 1 1 0x00040041
Reserved** 177 1 1 0x00B10041
Notes:
*For the Card operating in M-Mode.
**Reserved.
***These versions have been deprecated and the functionality moved to the DSG resource.
****This mode will only be implemented on M-Cards.
1. The Homing resource is defined in 9.18.4.
2. The Resource identifier delivered by a Host SHALL be either 0x00605043 for a Host device with Cable Return Channel,

or 0x00608043 for a Host with a Host Modem (e.g., DOCSIS). If no Low Speed Communication Resource Identifier
reported by the Host then the Host device is assumed to be a FDC only. The Card MAY utilize the presence of this
resource identifier as a means to identify what type of Cable Return Channel is supported by the Host.

3. If a device manufacturer opts to implement an optional resource on a device, then the resource SHALL support the
baseline resource ID.

4. A System Control Resource having a Resource Identifier value equal to 0x002B0041 SHALL be used by the S-Card or
M-Card operating in S-Mode only.

The coding of the apdu_tag follows the ASN.1 rules. Each apdu_tag is coded on three bytes. Among the 24 bits of
each apdu_tag, 10 are fixed by the ASN.1 rules as described in Figure 9.3-2. Only primitive tags are used.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 93

Byte 1
b24 b17

Byte 2
b16 b9

Byte 3
b8 b1

1 0 0 1 1 1 1 1 1 x x x x x x x 0 x x x x x x x

Figure 9.3-2 - Primitive Tag Coding

Table 9.3–3 is a summary of all of the supported APDUs.

Table 9.3–3 - Application Object Tag Values

apdu_tag Tag value Resource Direction
Host ↔ Card

profile_inq 0x9F8010 Resource Manager ↔
profile_reply 0x9F8011 Resource Manager ↔
profile_changed 0x9F8012 Resource Manager ↔
application_info_req 0x9F8020 Application Info →
application_info_cnf 0x9F8021 Application Info ←
server_query 0x9F8022 Application Info →
server_reply 0x9F8023 Application Info ←
ca_info_inq 0x9F8030 CA Support →
ca_info 0x9F8031 CA Support ←
ca_pmt 0x9F8032 CA Support →
ca_pmt_reply 0x9F8033 CA Support ←
ca_update 0x9F8034 CA Support ←
oob_tx_tune_req 0x9F8404 Host Control ←
oob_tx_tune_cnf 0x9F8405 Host Control →
oob_rx_tune_req 0x9F8406 Host Control ←
oob_rx_tune_cnf 0x9F8407 Host Control →
inband_tune_req 0x9F8408 Host Control ←
inband_tune_cnf 0x9F8409 Host Control →
system_time_inq 0x9F8442 System Time ←
system_time 0x9F8443 System Time →
open_mmi_req 0x9F8820 MMI ←
open_mmi_cnf 0x9F8821 MMI →
close_mmi_req 0x9F8822 MMI ←
close_mmi_cnf 0x9F8823 MMI →
comms_cmd* 0x9F8C00 Low speed comms. ←
connection_descriptor* 0x9F8C01 Low speed comms. ←
comms_reply* 0x9F8C02 Low speed comms. →
comms_send_last* 0x9F8C03 Low speed comms. ←
comms_send_more* 0x9F8C04 Low speed comms. ←
comms_rcv_last* 0x9F8C05 Low speed comms. →
comms_rcv_more* 0x9F8C06 Low speed comms. →
 Host

modem
Card

Modem
new_flow_req 0x9F8E00 Extended Channel

Support
↔ →

new_flow_cnf 0x9F8E01 Extended Channel
Support

↔ ←

delete_flow_req 0x9F8E02 Extended Channel
Support

↔ →

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

94 CableLabs® 8/03/06

apdu_tag Tag value Resource Direction
Host ↔ Card

delete_flow_cnf 0x9F8E03 Extended Channel
Support

↔ ←

lost_flow_ind 0x9F8E04 Extended Channel
Support

↔ ←

lost_flow_cnf 0x9F8E05 Extended Channel
Support

↔ →

inquire_DSG_mode*** 0x9F8E06 Extended Channel
Support

→ N/A

set_DSG_mode*** 0x9F8E07 Extended Channel
Support

← N/A

DSG_error*** 0x9F8E08 Extended Channel
Support

← N/A

dsg_message*** 0x9F8E09 Extended Channel
Support

→ N/A

configure_advanced_DSG*** 0x9F8E0A Extended Channel
Support

← N/A

send_DCD_info*** 0x9F8E0B Extended Channel
Support

→ N/A

Reserved 0x9F8F00 –
0x9F8F07

Generic IPPV Support

inquire_DSG_mode 0x9F9100 DSG → N/A
set_DSG_mode 0x9F9101 DSG ← N/A
DSG_error 0x9F9102 DSG ← N/A
DSG_message 0x9F9103 DSG → N/A
DSG_directory 0x9F9104 DSG ← N/A
send_DCD_info 0x9F9105 DSG → N/A
feature_list_req 0x9F9802 Generic Feature Control ↔
feature_list 0x9F9803 Generic Feature Control ↔
feature_list_cnf 0x9F9804 Generic Feature Control ↔
feature_list_changed 0x9F9805 Generic Feature Control ↔
feature_parameters_req 0x9F9806 Generic Feature Control ←
feature_parameters 0x9F9807 Generic Feature Control ↔
features_parameters_cnf 0x9F9808 Generic Feature Control ↔
open_homing 0x9F9990 Homing →
homing_cancelled 0x9F9991 Homing →
open_homing_reply 0x9F9992 Homing ←
homing_active 0x9F9993 Homing →
homing_complete 0x9F9994 Homing ←
firmware_upgrade 0x9F9995 Homing ←
firmware_upgrade_reply 0x9F9996 Homing →
firmware_upgrade_complete 0x9F9997 Homing ←
SAS_connect_rqst 0x9F9A00 Specific Application

Support
→

SAS_connect_cnf 0x9F9A01 Specific Application
Support

←

SAS_data_rqst 0x9F9A02 Specific Application
Support

↔

SAS_data_av 0x9F9A03 Specific Application
Support

↔

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 95

apdu_tag Tag value Resource Direction
Host ↔ Card

SAS_data_cnf 0x9F9A04 Specific Application
Support

↔

SAS_data_query 0x9F9A05 Specific Application
Support

↔

SAS_data_reply 0x9F9A06 Specific Application
Support

↔

SAS_async_msg() 0x9F9A07 Specific Application
Support

↔

stream_profile() 0x9FA010 CARD RES ←
stream_profile_cnf() 0x9FA011 CARD RES →
program_profile() 0x9FA012 CARD RES ←
program_profile_cnf() 0x9FA013 CARD RES →
es_profile() 0x9FA014 CARD RES ←
es_profile_cnf() 0x9FA015 CARD RES →
request_pids() 0x9FA016 CARD RES →
request_pids_cnf() 0x9FA017 CARD RES ←
asd_registration_req ** 0x9FA200 Authorized Service

Domain
→

asd_challenge** 0x9FA201 Authorized Service
Domain

←

asd_challenge_rsp** 0x9FA202 Authorized Service
Domain

→

asd_registration_grant** 0x9FA203 Authorized Service
Domain

←

asd_dvr_record_req** 0x9FA204 Authorized Service
Domain

→

asd_dvr_record_reply** 0x9FA205 Authorized Service
Domain

←

asd_dvr_playback_req** 0x9FA206 Authorized Service
Domain

→

asd_dvr_playback_reply** 0x9FA207 Authorized Service
Domain

←

asd_dvr_release_req** 0x9FA208 Authorized Service
Domain

→

asd_dvr_release_reply** 0x9FA209 Authorized Service
Domain

←

asd_server_playback_req** 0x9FA20A Authorized Service
Domain

→

asd_server_playback_reply** 0x9FA20B Authorized Service
Domain

←

asd_client_playback_req** 0x9FA20C Authorized Service
Domain

→

asd_client_playback_reply** 0x9FA20D Authorized Service
Domain

←

host_info_request 0x9F9C00 System Control ←
host_info_response 0x9F9C01 System Control →
code_version_table 0x9F9C02 System Control ←
code_version_table_reply 0x9F9C03 System Control →
host_download_control 0x9F9C04 System Control →
code_version_table 0x9F9C05 System Control ←

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

96 CableLabs® 8/03/06

apdu_tag Tag value Resource Direction
Host ↔ Card

diagnostic_req 0x9FDF00 Generic Diagnostic
Support

←

diagnostic_cnf 0x9FDF01 Generic Diagnostic
Support

→

* Messages defined in EIA 679-B Part B [NRSSB].
**Reserved.
***Deprecated.

For Transportation of APDU within SPDU, Only a single APDU SHALL be supported in the body of an SPDU.

9.3.1 Interface Resource Loading

Table 9.3–4 - Host-Card Interface Resource Loading

Item Name
Maximum

sessions at
one time

Closes Resource
Location

1 Transport Connection ID 1 No Host creates TC_ID

2 Sessions total (sum of items 3-16) 128 N/A N/A

3 Resource Manager 32 No Host

4 MMI 1 No Host

5 Application Info 1 No Host

6 Low Speed Communication 1 Yes Host

7 Conditional Access Support 1 No Host

8 Copy Protection 1 No Host

9 Host Control 1 No Host

10 Extended Channel Support 2 No Host

11 Generic IPPV Support 1 Yes Host

12 Specific Application Support 32 Yes Host

13 Generic Feature Control 1 No Host

14 Homing 1 Yes Host

15 Generic Diagnostic Support 1 No Host

16 System Time 1 Yes Host

17 System Control 1 No Host

18 CARD RES (Card Resource) 1 No Host

19 Authorized Service Domain 1 No Host

NOTES:

A maximum of one Generic Diagnostic Support resource may be open at a time.

After buffer negotiation, the Host will create a transport connection. The Card will ignore the t_c_id value in the
link layer when there is no transport connection established.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 97

In S-Mode, only one program may be descrambled at a time, hence only one conditional access support session
SHALL be opened. The conditional access session does not close.

In M-Mode, one or more programs may be descrambled at a time, only one conditional access support session
SHALL be opened. The conditional access session does not close.

Only one copy protection session SHALL be open at a time. The copy protection session does not close.

Two extended channel sessions MAY be open at a time, but only when the Host has modem capability (either
phone, DOCSIS, or other); otherwise only one extended channel session MAY be open. The extended channel
session does not close.

Only one host control session SHALL be open at a time. The host control session does not close.

A maximum of one Generic IPPV session MAY be open at a time.

A maximum of one homing session MAY be open at a time.

A maximum of one system time session MAY be open at a time.

The Card SHALL limit the resource to the values defined in Table 9.3–2. The Host SHALL at a minimum support
the number of resources defined in Table 9.3–2.

9.4 Resource Manager
The Resource Manager is a resource provided by the Host. There is only one type in the class. A maximum of 32
sessions SHALL be supported. It controls the acquisition and provision of resources to all applications. A
discovery mechanism exists for the Card to determine which resources as well as the versions are supported on the
Host.

It SHALL be mandatory that the first session opened is the Resource Manager. After any Resource Manager
session is open, the Host SHALL issue a profile_inq() APDU to the Card. After receiving any profile_inq() APDU
from the Host, the Card SHALL respond with a profile_reply() APDU listing all supported resources. After the
initial reception of the Card’s profile_reply(), the Host SHALL then send a profile_changed() APDU to the Card.
The Card SHALL respond with a profile_inq() APDU. The Host SHALL respond to any profile_inq() APDU
received from the Card with the profile_reply() APDU. Either the Host or the Card MAY issue a profile_inq()
APDU at any time, and the Card or Host respectively, SHALL respond with a profile_reply() APDU.

In the rare event that a resource is modified on the Host, the Host SHALL issue a profile_changed() APDU to the
Card. The Card SHALL then issue a profile_inq() APDU to the Host. The Host SHALL then issue the
profile_reply() APDU. It SHALL be the Card’s responsibility to determine if a resource has been modified such
that the session should be closed and reopened.

Table 9.4–1 - Resource Manager Resource Identifier

Resource Mode Class Type Version Identifier
(hex)

Resource Manager S-Mode/M-Mode 1 1 1 0x00010041

The Resource Manager includes three APDUs as described in the following table:

Table 9.4–2 - Resource Manager APDU List

APDU Name Tag Value Resource Direction
Host ↔ Card

profile_inq() 0x9F8010 Resource Manager ↔
profile_reply() 0x9F8011 Resource Manager ↔
profile_changed() 0x9F8012 Resource Manager ↔

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

98 CableLabs® 8/03/06

9.4.1 profile_inq()

The profile_inq() APDU is issued by the Card to request the Host to transmit its available resources in the
profile_reply() APDU.

The profile_inq() APDU is also issued by the Host to request the Card to transmit its supported resources in the
profile_reply() APDU.

Table 9.4–3 - profile_inq() APDU Syntax

Syntax No. of Bits Mnemonic
profile_inq() {

profile_inq_tag 24 uimsbf
length_field() /* always = 0x00 */

}

profile_inq_tag 0x9F8010

9.4.2 profile_reply()

The profile_reply() APDU is issued by the Host in response to the profile_inq() APDU from the Card.

The profile_reply() APDU is also issued by the Card in response to the profile_inq() APDU from the Host.

Table 9.4–4 - profile_reply() APDU Syntax

Syntax No. of Bits Mnemonic
profile_reply() {

profile_reply_tag 24 uimsbf
length_field()
for (i=0; i<N; i++) {

resource_identifier()
}

}

profile_reply_tag 0x9F8011

N length divided by 4

9.4.3 profile_changed()

The profile_changed() APDU is transmitted to the Host if the value of any resource identifier has changed.

The profile_changed () APDU is also transmitted to the Card if the value of any resource identifier has changed.

Table 9.4–5 - profile_changed() APDU Syntax

Syntax No. of Bits Mnemonic
profile_changed() {

profile_changed_tag 24 uimsbf
length_field() /* always = 0x00 */

}

profile_changed_tag 0x9F8012

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 99

9.5 Application Information
The Application Information resource resides in the Host. The Card SHALL only open one session to it after it has
completed the profile inquiry operation with the Resource Manager resource.

The Application Information resource provides:

• Support for the Host to expose its display characteristics to the Card

• Support for the Card to expose its applications to the Host

• Support for the Card to deliver HTML pages to the Host

The Application Information resource has been changed to type 2 to reflect the changes listed in this section as
compared to [NRSSB]. (The Card is not required to support type 1.) During initialization, the Card opens a session
to the Application Information resource on the Host. This session SHALL remain open during normal operation.

Table 9.5–1 - Application Information Resource Identifier

Resource Mode Class Type Version Identifier
(hex)

Application Info S-Mode/M-Mode 2 2 1 0x00020081

The Application Information resource includes four APDUs as described in Table 9.5–2.

Table 9.5–2 - Application Information APDU List

APDU Name Tag Value Resource Direction
Host ↔ Card

application_info_req() 0x9F8020 Application Info →
application_info_cnf() 0x9F8021 Application Info ←
server_query() 0x9F8022 Application Info →
server_reply() 0x9F8023 Application Info ←

The method for initiating an application is beyond the scope of this document.

9.5.1 application_info_req()

After the Card has opened the Application Information resource, the Host SHALL send an application_info_req()
APDU to the Card. This SHALL include the display capabilities of the Host. The Card SHALL reply with an
application_info_cnf() APDU to describe its support applications. The Host MAY send this APDU anytime later
to which the Card SHALL reply.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

100 CableLabs® 8/03/06

Table 9.5–3 - application_info_req() APDU Syntax

Syntax No. of Bits Mnemonic
application_info_req() {

application_info_req_tag 24 uimsbf
length_field()
display_rows 16 uimsbf
display_columns 16 uimsbf
vertical_scrolling 8 uimsbf
horizontal_scrolling 8 uimsbf
display_type_support 8 uimsbf
data_entry_support 8 uimsbf
HTML_support 8 uimsbf
if (HTML_support == 1) {

link_support 8 uimsbf
form_support 8 uimsbf
table_support 8 uimsbf
list_support 8 uimsbf
image_support 8 uimsbf

}
}

application_info_req_tag 0x9F8020

display_rows Defines the number of rows the Host device can support. If the Host supports
more than 255, set this value equal to 0xFF.

Display_columns Defines the number of columns the Host device can support. If the Host
supports more than 255, set this value equal to 0xFF.

Vertical_scrolling Defines if the Host supports vertical scrolling. Default value is 0.
 0x00 Vertical scrolling not supported
 0x01 Vertical scrolling supported
 0x02-0xFF Reserved
horizontal_scrolling Defines if the Host supports horizontal scrolling. Default value is 0.
 0x00 Horizontal scrolling not supported
 0x01 Horizontal scrolling supported
 0x02-0xFF Reserved
display_type_support Defines the window support capability of the Host.
 0x00 Full screen. The Host supports full screen windows for MMI screens.
 0x01 Overlay. The Host supports Overlay Windows for MMI screens.
 0x02-0x6F-Multiple windows. Indicates that the Host supports multiple

simultaneous MMI windows. The value equals the maximum number
of simultaneous open windows the Host can support.

 0x70-0xFF Reserved
 This field defines the type of windowing the Host supports, and if the Host

supports multiple windows, the number of simultaneous windows the Host
display application can manage.

 If the Host supports the Full Screen Window Type and if that Window Type is
requested by the Card via the open_mmi_req() APDU, the Host SHALL present
the MMI dialog in an opaque window.

 If the Host supports the Overlay Window Type and if that Window Type is
requested by the Card via the open_mmi_req() APDU, the Host SHALL present

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 101

the MMI dialog in an opaque window which is large enough to contain the MMI
message but may not fill the entire viewable area.

 If the Host supports the Multiple Windows Type and if that Window Type is
requested by the Card via the open_mmi_req() APDU, the Host SHALL present
each subsequent MMI dialog, up to the maximum number conveyed, in an
Overlay Window. The Host SHALL support a method for navigating between
the different windows.

Data_entry_support Defines the preferred data entry capability of the Host.
 0x00 None
 0x01 Last/Next
 0x02 Numeric Pad
 0x03 Alpha keyboard with mouse
 0x04-0xFF Reserved
HTML_support Defines the HTML support capability of the Host. All Hosts SHALL support at

a minimum the Baseline HTML profile. The Baseline HTML profile is defined
in Annex A.

 0x00 Baseline Profile
 0x01 Custom Profile
 0x02 HTML 3.2
 0x03 XHTML 1.0
 0x04-0xFF Reserved
link_support Defines whether the Host can support single or multiple links.
 0x00 One link
 0x01 Multiple links
 0x02-0xFF Reserved
form_support Defines the Form support capability of the Host.
 0x00 None
 0x01 HTML 3.2 w/o POST method
 0x02 HTML 3.2
 0x03-0xFF Reserved
table_support Defines the Table support capability of the Host.
 0x00 None
 0x01 HTML 3.2
 0x02-0xFF Reserved
list_support Defines the List support capability of the Host
 0x00 None
 0x01 HTML 3.2 w/o Descriptive Lists
 0x02 HTML 3.2
 0x03-0xFF Reserved
image_support Defines the Image capability of the Host
 0x00 None
 0x01 HTML 3.2 – PNG Picture under RGB w/o resizing
 0x02 HTML 3.2
 0x03-0xFF Reserved

9.5.2 application_info_cnf()

The Card SHALL transmit the application_info_cnf() APDU after receiving an application_info_req() from the
Host.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

102 CableLabs® 8/03/06

Table 9.5–4 - application_info_cnf() APDU Syntax

Syntax No. of Bits Mnemonic
application_info_cnf() {

application_info_cnf_tag 24 uimsbf
length_field()
CableCARD_manufacturer_id 16 uimsbf
CableCARD_version_number 16 uimsbf
number_of_applications 8 uimsbf
for (i=0; i<number_of_applications; i++) {

application_type 8 uimsbf
application_version_number 16 uimsbf
application_name_length
for (j=0; j<application_name_length; j++) {

8 uimsbf

application_name_byte 8 uimsbf
}
application_url_length 8 uimsbf
for (j=0; j<application_url_length; j++) {

application_url_byte 8 uimsbf
}

}

application_info_cnf_tag 0x9F8021

CableCARD_manufacturer_id The first byte specifies the Card manufacturer while the second byte is defined
by the Card manufacturer to privately identify product generation and
derivatives.

 0x00XX Motorola
 0x01XX Scientific-Atlanta
 0x02XX SCM Microsystems
 0x0300-0xFFFF Reserved for future manufacturers
manufacturer_version_number Privately defined by the Card manufacturer.

Number_of_applications Number of applications in the following for loop.

Application_type Type of application.
 0x00 Conditional access
 0x01 CableCARD binding information application
 0x02 IP service
 0x03 Network interface [SCTE55-2]
 0x04 Network interface [SCTE55-1]
 0x05 Copy protection application
 0x06 Diagnostic
 0x07 Undesignated
 0v08 Network Interface (DSG)
 0x09-0xFF Reserved for future applications
application_version_number Defined by the Card application supplier.

 The Card SHALL upgrade the application_version_number each time the Card
application software is modified according to the Card Firmware Upgrade Host
Interface. See Section 9.18 of this document.

Application_name_length Length of the application name in the following for loop. The maximum value
is 32. This value SHALL be equal to 0 for applications that do not have an
MMI interface.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 103

Application_name_byte The commercial name of the application specified as a text string in ASCII
format. The Host SHALL replace the default generic identifier of the Card’s
application with the application name. The application name, when selected by
the user, triggers a Host initialized MMI dialog.

 The Host SHALL be capable of displaying at least eight different Card
application name strings in its top menu. The application name length SHALL
be limited to 32 characters.

Application_url_length Length of the application url in the following for loop.

Application_url_byte Defines the URL of the Card application’s top-level HTML page in the Card
memory. The application URL MAY or MAY NOT be displayed in the Host
top menu. The Host SHALL use the application URL in a server_query()
APDU to initialize an MMI dialog with the Card application, when an object
identified by either the application name or the application URL is selected in
the Host menu.

9.5.3 server_query()

The Host SHALL send a server_query() APDU to the Card to request the information in the Card file server system
pointed by a specific URL. The URL defines the location of the data that the Host is requesting. Upon receipt of
the URL, the Card locates the requested data and provides it back to the Host in the server_reply() APDU. The
Host SHALL process and display the data returned in the server_reply() APDU in a timely manner.

Table 9.5–5 - server_query() APDU Syntax

Syntax No. of Bits Mnemonic
server_query() {

server_query_tag 24 uimsbf
length_field()
transaction_number 8 uimsbf
header_length 16 uimsbf
for (i=0; i<header_length; i++) {

header_byte 8 uimsbf
}
url_length 16 uimsbf
for (i=0; i<url_length; i++) {

url_byte 8 uimsbf
}

}

server_query_tag 0x9F8022

transaction_number A number supplied by the Host issued from an 8-bit cyclic counter that
identifies each server_query() APDU and allows the Host to route the
server_reply to the correct MMI dialog

header_length The number of header bytes in the following for loop.

Header_byte Each header_byte is an octet of an optional parameter that uses the same format
as the HTTP/1.1 request header to pass additional parameters related to the
request, like browser version, accepted mime types, etc. A Host not supporting
headers SHALL set header_length to 0x00. The Card MAY also ignore this
parameter.

url_length The number of URL bytes in the following for loop.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

104 CableLabs® 8/03/06

url_byte Each url_byte is an octet of a parameter that defines a protocol, domain, and
location for the transfer of data. For the purposes of an application running on a
Card, the URL SHALL allow the transfer of a file of data from the Card to the
Host.

The access indicator is “CableCARD”.

The second part of the URL is the Host. The convention for “current server” (i.e., the server that generated the
current page) can be used and is indicated by an empty Host.

The third part of the URL is the file location. This is indicated by a hierarchical directory/file path.

For example, in order to request the file menu.html from the directory/apps/user/program_guide on the Card, the
properly constructed URL would be:

CableCARD///apps/user/program_guide/menu.html

If, after receiving a server_reply from the Card, the Host has data that it wants to send to the Card, the Host can do
so through a server_query. In this case, the last part of the URL contains a list of name-value pairs separated by
“&”. This list is preceded by “?”. A properly constructed URL would be:

CableCARD///path/file?name1=value1&name2=value2&...

Such a URL sent to an application on the Card as a response to a server_reply would cause the name-value pairs to
be processed by the application. Data entered and selected by the Host MAY be sent to the Card through the use of
these name-value pairs as part of the URL in a server_query() APDU.

9.5.4 server_reply()

The server_reply() is issued by the Card in response to a server_query() from the Host.

Table 9.5–6 - server_reply() APDU Syntax

Syntax No. of Bits Mnemonic
server_reply() {

server_reply_tag 24 uimsbf
length_field()
transaction_number 8 uimsbf
file_status 8 uimsbf
header_length 16 uimsbf
for (i=0; i<header_length; i++) {

header_byte 8 uimsbf
}
file_length 16 uimsbf
for (i=0; i<url_length; i++) {

file_byte 8 uimsbf
}

}

server_reply_tag 0x9F8023

transaction_number A number supplied by the Host issued from an 8-bit cyclic counter that
identifies each server_query() APDU and allows the Host to route the
server_reply to the correct MMI dialog.

File_status Notifies the Host of the status of the requested file.
 0x00 OK
 0x01 URL not found
 0x02 URL access not granted
 0x03-0xFF Reserved

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 105

header_length The number of header bytes in the following for loop.

Header_byte Each header_byte is an octet of an optional parameter that uses the same format
as the HTTP/1.1 request header to pass additional parameters related to the
request, like browser version, accepted mime types, etc. A Host not supporting
headers SHALL set header_length to 0x00. The Card MAY also ignore this
parameter.

File_length The number of bytes in the following for loop.

File_byte The requested URL file. A server reply object with file_length equals to 0 will
be interpreted as a null file.

9.6 Low Speed Communication
The Low Speed Communication resource is used to support the identification of the Forward Data Channel (FDC),
the Reverse Data Channel (RDC), and any type of Host modem implementations. The Low Speed Communication
resource is not a means for passing upstream/downstream OOB data to/from the Card via the CHI. All downstream
OOB data SHALL be passed directly to/from the Card via the OOB Interface.

Table 9.6–1 - A Low Speed Communication Resource

Resource Mode Class Type Version Identifier
(hex)

Low_Speed_Communication
(Cable Return)

S-Mode/M-Mode 96 321 3 0x00605043

Low_Speed_Communicati
on (DOCSIS Modem)

S-Mode/M-Mode 96 513 3 0x00608043

The Low_Speed_Communication Identifier SHALL be either 0x00605043 for a Host device with Cable Return
Channel, (e.g., SCTE 55-1 or SCTE 55-2) or 0x00608043 for a Host with a Host Modem (e.g., DOCSIS).

A Host that has a DOCSIS Cable Modem but does not have an SCTE 55 transmitter is not supported and SHALL
NOT report a Low Speed Communication identifier of either 0x00605043 or 0x00608043.

The following table summarizes this operation:

Table 9.6–2 - Low-Speed Communication Resource ID Reporting Matrix

SCTE 55
Receiver (FDC)

SCTE 55
Transmitter (RDC)

DOCSIS Cable
Modem

Low Speed Communication
Resource ID

Yes No No None
Yes No1 Yes None
Yes Yes No 0x00605043
Yes Yes Yes 0x00608043

9.7 CA Support
This resource provides a set of objects to support Conditional Access applications. The Card will open a single
session after the Application Information session initialization has completed. Like the resource manager, it is
provided only by the Host and SHALL limit the session to one. The Host sends a CA Info inquiry object to the
application, which responds by returning a CA Info object with the appropriate information. This session is then
kept open for periodic operation of the protocol associated with the CA PMT and CA PMT Reply objects.

1 This variation is not permitted.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

106 CableLabs® 8/03/06

In the case of multiple transport streams, there is a local transport stream ID (LTSID) included in the APDU. The
Host will then send a ca_info_inquiry()APDU to the Card, which will respond by returning a ca_info()APDU with
the appropriate information. The session SHALL be kept open. The Resource Type has been changed to indicate
that the resource has been modified.

The Conditional Access Support resource SHALL be implemented in its entirety, with the following additions:

The Card SHALL inform the Host of changes in CA states by sending the ca_update() APDU defined below. A
new version of the CA resource on the Host SHALL process the ca_update() APDU.

This APDU is modified from the PCMCIA Card to support the local transport stream ID (LTSID).

In M-Mode, each transport stream SHALL be controlled by the ca_pmt() APDU with the associated transport
stream id (LTSID). It is the Host’s responsibility to manage the PID/program resources in the Card. The Host
receives this information utilizing the stream_profile() APDU, how many programs via program_profile() APDU,
and how many elementary streams via es_profile() APDU as defined in Section 9.12. If the Host performs any
filtering of elementary streams, it SHALL utilize the, request_pids() and request_pids_cnf() APDUs as defined in
Section 9.12.

Table 9.7–1 - C A Support Resource

Resource Mode Class Type Version Identifier (hex)
CA Support S-Mode 3 1 2 0x00030042
CA Support M-Mode 3 2 1 0x00030081

The CA support resource consists of 5 APDUs for the S-Mode and the M-Mode.

Table 9.7–2 - CA Support APDUs

APDU Name Tag Value Resource Direction
Host ↔ CableCARD

ca_info_inquiry() 0x9F8030 CA Support →
ca_info() 0x9F8031 CA Support ←
ca_pmt() 0x9F8032 CA Support →
ca_pmt_reply() 0x9F8033 CA Support ←
ca_update() 0x9F8034 CA Support ←

9.7.1 ca_info_inquiry

The ca_info_inquiry() APDU is transmitted by the Host to the Card after the CA session is opened.

Table 9.7–3 - ca_info_inquiry() APDU Syntax

Syntax No. of Bits Mnemonic
ca_info_inquiry() {

ca_info_inquiry_tag 24 uimsbf
length_field() /* always = 0 */

}

ca_info_inquiry_tag 0x9F8030

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 107

9.7.2 ca_info

After the Card receives a ca_info_inquiry() APDU, it SHALL respond with the ca_info() APDU with the
appropriate CA_system_id.

Table 9.7–4 - ca_info() APDU Syntax

Syntax No. of Bits Mnemonic
ca_info() {

ca_info_tag 24 uimsbf
length_field()
for (i=0; i<N ;i++) {

CA_system_id 16 uimsbf
}

}

ca_info_tag 0x9F8031

CA_system_id CA system Ids supported by the Card.

9.7.3 ca_pmt

The ca_pmt() APDU consists of information extracted from the Program Map Table (PMT) in the PSI information
by the Host and sent to the Card. This information contains all the control information to allow the Card to filter the
ECMs itself and to make itself the correct assignment of an ECM stream with a scrambled component.

The ca_pmt() APDU contains all the CA_descriptors of the selected program. If several programs on the transport
stream are selected, the Host sends all the ca_pmt() APDUs to the Card. The ca_pmt() APDU only contains CA
descriptors. All other descriptors SHALL be ignored by the Host.

The CA_descriptor after the current_next_indicator is at the program level and is valid for all elementary
components of the program. The CA descriptor(s) at elementary stream level is (are) valid for the elementary
stream only. If, for one elementary stream, CA descriptor(s) exist at program level and at elementary stream level,
only the CA descriptors at elementary stream level are taken into account.

The Host SHALL send a new ca_pmt() APDU when:

• the user selects a different program

• the version number changes

• the current next indicator changes

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

108 CableLabs® 8/03/06

Table 9.7–5 - S-Mode ca_pmt() APDU Syntax (Resource Type 1 Version 2)

Syntax No. of Bits Mnemonic
ca_pmt() {

ca_pmt_tag 24 uimsbf
length_field()
ca_pmt_list_management 8 uimsbf

 program_number 16 uimsbf
reserved 2 bslbf
version_number 5 uimsbf
current_next_indicator 1 bslbf
reserved 4 bslbf
program_info_length 12 uimsbf
if (program_info_length != 0) {

ca_pmt_cmd_id 8 uimsbf
for (i=0; i<N; i++) {

CA_descriptor() /* program level */
}

}
for (i=0; i<N1; i++) {

stream_type 8 uimsbf
reserved 3 bslbf
elementary_PID /* elementary stream PID*/ 13 uimsbf
reserved 4 bslbf
ES_info_length 12 uimsbf
if (ES_info_length != 0) {

ca_pmt_cmd_id /* at ES level */ 8 uimsbf
for (i=0; i<N2; i++) {

CA_descriptor() /* ES level */
}

}
}

}

ca_pmt_tag 0x9F8032

ca_pmt_list_management Indicates whether a single program is selected or a list of multiple programs on
the transport stream.

 0x00 more – Indicates that the ca_pmt is neither the first nor the last one on
the list.

 0x01 first – The ca_pmt is the first of a new list of more than one ca_pmt()
APDU. All previously selected programs are being replaced by the
programs of the new list.

 0x02 last – The ca_pmt is the last on the list.
 0x03 only – The ca_pmt is the only one on the list.
 0x04 add – This ca_pmt is being added to an existing list, that is, a new

program has been selected by the user but all previously selected
programs remain selected. If the program_number has already been
received this the action is identical to “update”.

 0x05 update – The ca_pmt is already on the list but either the version
number or the curent_next_indicator has changed.

 0x06-0xFF Reserved
program_number The MPEG program number as defined in [ISO13818-1].

version_number The MPEG version number as defined in [ISO13818-1].

current_next_indicator The MPEG current/next indicator as defined in [ISO13818-1].

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 109

program_info_length Number of bytes in the program_info field.

ca_pmt_cmd_id This parameter indicates what response is required from the application to a
ca_pmt() APDU.

 0x00 Reserved
 0x01 ok_descrambling – The Host does not expect an answer to the ca_pmt()

APDU and the CableCARD device can start descrambling the program
or start an MMI dialog immediately.

 0x02 ok_mmi – The application can start a MMI dialog but SHALL NOT
start descrambling before reception of a new ca_pmt() APDU with
ca_pmt_cmd_id set to “ok_descrambling”. In this case, the Host
SHALL guarantee that a MMI session can be opened by the
CableCARD device.

 0x03 query – The Host expects to receive a ca_pmt_reply() APDU. The
Card SHALL NOT start descrambling or start an MMI dialog before
reception of a new ca_pmt() APDU with ca_pmt_cmd_id set to either
“ok_descrambling” or “ok_mmi”.

 0x04 not selected – Indicates to the CableCARD device that the Host no
longer requires that the CableCARD device attempt to descramble the
service. The CableCARD device SHALL close any MMI dialog it has
opened.

 0x05-0xFF Reserved
ca_descriptor The MPEG CA descriptor as defined in [ISO13818-1].

stream_type The MPEG stream type as defined in [ISO13818-1].

elementary_PID The MPEG elementary PID as defined in [ISO13818-1].

ES_info_length Number of bytes in the elementary stream information section.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

110 CableLabs® 8/03/06

Table 9.7–6 - M-Mode ca_pmt() APDU Syntax (Resource Type 2 Version 1)

Syntax No. of Bits Mnemonic
ca_pmt() {

ca_pmt_tag 24 uimsbf
length_field()
program_index 8 uimsbf
transaction_id 8 uimsbf
ltsid 8 uimsbf

 program_number 16 uimsbf
 source_id 16 uimsbf
 ca_pmt_cmd_id 8 uimsbf

reserved 4 bslbf
program_info_length 12 uimsbf
if (program_info_length != 0) {

CA_descriptor() /* program level */
}

}
for (i=0; i<N1; i++) {

stream_type 8 uimsbf
reserved 3 bslbf
elementary_PID /* elementary stream PID*/ 13 uimsbf
reserved 4 bslbf
ES_info_length 12 uimsbf
if (ES_info_length != 0) {

ca_pmt_cmd_id /* at ES level
for (i=0; i<N2; i++) {
CA_descriptor() /* ES level */

8 uimsbf

}
}

}
}

ca_pmt_tag 0x9F8032

program_index Program index values range from 0 to max_programs-1, where max_programs
is the value returned by M-CARD in the program_profile().

transaction_id An 8-bit value, generated by the Host, that will be returned in the corresponding
ca_pmt_reply() and/or ca_update() from the M-CARD. The transaction_id
allows the Host to match the M-CARD’s replies with the corresponding
requests. The Host should increment the value, modulo 255, with every
message it sends. A separate transaction_id counter SHALL be maintained for
each program index, so that the transaction_ids increment independently for
each index.

ltsid Local Transport Stream ID. Required when the M-CARD is present and
operating in Multi-Stream Mode.

program_number The MPEG program number as defined in [ISO13818-1].

source_id The source ID as defined in [SCTE65].

ca_pmt_cmd_id This parameter indicates what response is required from the application to a
ca_pmt() APDU.

 0x00 Reserved
 0x01 ok_descrambling – The Host does not expect an answer to the

ca_pmt() APDU and the Card can start descrambling the program or
start an MMI dialog immediately.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 111

 0x02 ok_mmi – The application can start a MMI dialog but SHALL NOT
start descrambling before reception of a new ca_pmt() APDU with
ca_pmt_cmd_id set to “ok_descrambling”. In this case, the Host
SHALL guarantee that a MMI session can be opened by the Card.

 0x03 query – The Host expects to receive a ca_pmt_reply() APDU. The
Card SHALL NOT start descrambling or start an MMI dialog before
reception of a new ca_pmt() APDU with ca_pmt_cmd_id set to either
“ok_descrambling” or “ok_mmi”.

 0x04 not selected – Indicates to the Card that the Host no longer requires that
the Card attempt to descramble the service. The Card SHALL close
any MMI dialog it has opened.

 0x05-0xFF Reserved
ca_descriptor The MPEG CA descriptor as defined in [ISO13818-1].

stream_type The MPEG stream type as defined in [ISO13818-1].

elementary_PID The MPEG elementary PID as defined in [ISO13818-1].

ES_info_length Number of bytes in the elementary stream information section.

9.7.3.1 M-Mode Processing Rules for ca_pmt()

The Host SHALL send a new ca_pmt() APDU when:

• The user selects a different program

• The version number changes

• The current next indicator changes

The ca_pmt() APDU consists of entitlement control information extracted from the Program Map Table (PMT) by
the Host and sent to the M-CARD. This control information allows the M-CARD to locate and filter Entitlement
Control Message (ECM) streams, and assign the correct ECM stream to each scrambled component.

The ca_pmt() APDU contains CA_descriptors from the PMT of a selected program. If several programs are
selected, then the Host SHALL send a ca_pmt() APDU for each program to the M-CARD. The Host SHALL only
include CA descriptors in the ca_pmt, and SHALL NOT include any other descriptors from the PMT.

CA descriptors may be included in the ca_pmt() at the program level and at the elementary stream level. The
OCHD2 SHALL apply program level CA descriptors to all elementary streams that have no elementary stream level
CA descriptor. When a CA descriptor is present at the elementary stream level, the OCHD2 SHALL apply the CA
descriptor to the elementary streams.

The CA descriptors in the PMT are provided by the conditional access system to inform the M-CARD of which PID
stream carries the Entitlement Control Messages associated with each program or elementary stream. The Host
MAY elect to use some or all of the CA descriptors included in an individual program’s PMT to query or request
descrambling of that program. However, the CA descriptors in the ca_pmt() SHALL always appear at the same
program and elementary stream levels as they originally appeared in the program’s PMT. Therefore, program level
CA descriptors from a program’s PMT SHALL continue to be provided at the program level in the ca_pmt(), and
SHALL NOT be replicated at the elementary stream level, even if the Host elects to only request decryption of
individual streams from that program.

The program_index tracks the program number and LTSID assigned to a particular CA resource in the M-CARD.
The program_index SHALL be carried in the ca_pmt() to allow the M-CARD to maintain a similar index table to
track the assignments that it receives from the Host. The assignments to each program_index SHALL be updated
as old programs are replaced by new programs, thereby maintaining the total number of active programs within the
M-CARD’s limitations.

The figure below shows an example of Program Index Table for a Host and M-CARD with the ability to decrypt
only two programs. The Program Index Tables track the Host’s assignments of the programs that the M-CARD is
to decrypt.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

112 CableLabs® 8/03/06

M-CARD Program Index Table

Host Program Index Table
Program

Index
Trans-

action ID ltsid
Program
Number

Source
ID

ca_pmt_
cmd_id

Elementary
Streams

0 19 15 2 1B1 1 51, 52, 53
1 72 90 3 4A8 1 90, 91

Program
Index

Trans-
action ID ltsid

Program
Number

Source
ID

ca_pmt_
cmd_id

Elementary
Streams

0 19 15 2 1B1 1 51, 52, 53
1 72 90 3 4A8 1 90, 91

Figure 9.7-1 - Program Index Table 1

The next figure shows that the Host has made a change to the Program Index 0, to query the M-CARD about a new
program. The transaction_ID is incremented, and the query command is passed through a new ca_pmt(), which
updates the M-CARD’s Program Index 0. The M-CARD would then reassign its CA resource to evaluate the
Host’s query, and prepare a ca_pmt_reply(). The ca_pmt_reply() would include the same transaction_id that the
Host assigned to the ca_pmt(), and the program index, to uniquely identify the reply.

ca-pmt
program_index = 0
transaction_id = 20
ltsid = 5F
program_number = 5
source_id = 8BA
ca_pmt_cmd_id = 3

Host Program Index Table

M-CARD Program Index Table

Program
Index

Trans-
action ID ltsid

Program
Number

Source
ID

ca_pmt_
cmd_id

Elementary
Streams

0 20 5F 5 8BA 3 100, 101
1 72 90 3 4A8 1 90, 91

Program
Index

Trans-
action ID ltsid

Program
Number

Source
ID

ca_pmt_
cmd_id

Elementary
Streams

0 20 5F 5 8BA 3 100, 101
1 72 90 3 4A8 1 90, 91

Figure 9.7-2 - Program Index Table 2

The M-CARD SHALL NOT begin descrambling the new program on the basis of a query, even if it replies that
descrambling is possible. The final figure shows the Host following up with another ca_pmt(), focused on the
same program_index, with an ok_descrambling command and new transaction_ID. The M-CARD will update its
index accordingly and begin to descramble the program.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 113

ca-pmt
program_index = 0
transaction_id = 21
ltsid = 5F
program_number = 5
source_id = 8BA
ca_pmt_cmd_id = 1

Host Program Index Table

M-CARD Program Index Table

Program
Index

Trans-
action ID ltsid

Program
Number

Source
ID

ca_pmt_
cmd_id

Elementary
Streams

0 21 5F 5 8BA 1 100, 101
1 72 90 3 4A8 1 90, 91

Program
Index

Trans-
action ID ltsid

Program
Number

Source
ID

ca_pmt_
cmd_id

Elementary
Streams

0 21 5F 5 8BA 1 100, 101
1 72 90 3 4A8 1 90, 91

Figure 9.7-3 - Program Index Table 3

The M-CARD SHALL treat the arrival of each ca_pmt() as a new program request, which is either an additional
program request, or a replacement for an existing request.

When a ca_pmt() arrives, the M-CARD SHALL allocate the necessary CA resources and assign them to the
program index designated in the ca_pmt. If resources have previously been assigned to this program index, then
the former allocations SHALL be released and new allocations made to reflect the contents of the new ca_pmt().
Therefore, only a single ca_pmt() will be needed to initiate a complete transition between program assignments and
maintain synchronization of resource allocations between the Host and M-CARD.

The Host SHALL assign a transaction_id to each ca_pmt(). The Host SHALL increment the transaction_id with
every ca_pmt it sends. The Host SHALL maintain a separate transaction_id counter for each program index, so
that the transaction_ids increment independently for each index.

The M-CARD SHALL use the transaction_id from the ca_pmt in any replies or updates it sends regarding that
ca_pmt(). This allows the host to match the M-CARD’s messages with the corresponding ca_pmt(). Obsolete
replies or updates may then be discarded.

In the case where the Host has not yet acquired the Source ID, the Host MAY set this value to 0 until the Source ID
information is available, then the Host SHALL replace the previously set value of 0 to that of the received value.

9.7.4 ca_pmt_reply

The ca_pmt_reply() SHALL be sent by the Card to the Host after receiving a ca_pmt() APDU with the
ca_pmt_cmd_id set to “query”. It may also be sent after reception of a CA PMT object with the ca_pmt_cmd_id set
to 'ok_mmi' in order to indicate to the Host the result of the MMI dialogue ('descrambling_possible' if the user has
purchased, 'descrambling not possible (because no entitlement)' if the user has not purchased).

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

114 CableLabs® 8/03/06

Table 9.7–7 - S-Mode ca_pmt_reply() APDU Syntax (Resource Type 1 Version 2)

Syntax No. of Bits Mnemonic
ca_pmt_reply() {

ca_pmt_reply_tag 24 uimsbf
length_field()

 program_number 16 uimsbf
reserved 2 bslbf
version_number 5 uimsbf
current_next_indicator 1 bslbf
CA_enable_flag 1 bslbf
if (CA_enable_flag == 1) {

CA_enable /* program level */ 7 uimsbf
}
else {

reserved 7 uimsbf
}
for (i=0; i<N1; i++) {

reserved 3 bslbf
elementary_PID /* elementary stream PID*/ 13 uimsbf
CA_enable_flag 1 bslbf
if (CA_enable_flag == 1) {

CA_enable /* elementary stream level*/ 7 uimsbf
}
else {

reserved 7 uimsbf
}

}
}

ca_pmt_reply_tag 0x9F8033

program_number The MPEG program number as defined in [ISO13818-1].

version_number The MPEG version number as defined in [ISO13818-1].

current_next_indicator The MPEG current/next indicator as defined in [ISO13818-1].

elementary_PID The MPEG elementary PID as defined in [ISO13818-1].

ca_enable Indicates whether the Card is able to perform the descrambling operation
requested in the ca_pmt() APDU.

 0x00 Reserved
 0x01 Descrambling possible with no extra conditions.
 0x02 Descrambling possible under conditions (purchase dialog). The Card

has to enter a purchase dialog with the user before being able to
descramble.

 0x03 Descrambling possible under conditions (technical dialog). The Card
has to enter a technical dialog with the user before being able to
descramble (e.g., request fewer elementary streams because the
descrambling capabilities are limited).

 0x04-0x70 Reserved
 0x71 Descrambling not possible (no entitlement). The selected program is

not entitled and is not available for purchase.
 0x72 Reserved
 0x73 Descrambling not possible (technical reasons); for example, if all the

elementary streams capable are being used.
 0x74-0xFF Reserved

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 115

The syntax contains one possible ca_enable at program level and, for each elementary stream, one possible
ca_enable at elementary stream level.

• When both are present, only ca_enable at ES level applies for that elementary stream

• When none is present, the Host does not interpret the ca_pmt_reply object.

The Card SHALL implement its CA application such that when ca_enable is present in ca_pmt_reply() both at
program level and elementary stream level, only the ca_enable at ES level applies for that elementary stream
SHALL be applicable to a Card in a network that supports different authorizations at program level and elementary
stream level.

Table 9.7–8 - M-Mode ca_pmt_reply() APDU Syntax (Resource Type 2 Version 1)

Syntax No. of Bits Mnemonic
ca_pmt_reply() {

ca_pmt_reply_tag 24 uimsbf
length_field()
program_index 8 uimsbf
transaction_id 8 uimsbf
ltsid 8 uimsbf

 program_number 16 uimsbf
 source_id 16 uimsbf

CA_enable_flag 1 bslbf
if (CA_enable_flag == 1) {

CA_enable /* program level */ 7 uimsbf
}
else {

reserved 7 uimsbf
}
for (i=0; i<N1; i++) {

reserved 3 bslbf
elementary_PID /* elementary stream PID*/ 13 uimsbf
CA_enable_flag 1 bslbf
if (CA_enable_flag == 1) {

CA_enable /* elementary stream level*/ 7 uimsbf
}
else {

reserved 7 uimsbf
}

}
}

ca_pmt_reply_tag 0x9F8033

program_index The same program index that was used in the original ca_pmt. The combination
of transaction_id and program_index uniquely identifies this update.

transaction_id The same 8-bit transaction_id that was used in the original ca_pmt.

ltsid Local Transport Stream ID. Required when the M-CARD is present and
operating in M-Mode.

program_number The MPEG program number as defined in [ISO13818-1].

source_id The source ID as defined in [SCTE65].

elementary_PID The MPEG elementary PID as defined in [ISO13818-1].

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

116 CableLabs® 8/03/06

ca_enable Indicates whether the Card is able to perform the descrambling operation
requested in the ca_pmt() APDU.

 0x00 Reserved
 0x01 Descrambling possible with no extra conditions.
 0x02 Descrambling possible under conditions (purchase dialog). The Card

has to enter a purchase dialog with the user before being able to
descramble.

 0x03 Descrambling possible under conditions (technical dialog). The Card
has to enter a technical dialog with the user before being able to
descramble (e.g., request fewer elementary streams because the
descrambling capabilities are limited).

 0x04-0x70 Reserved
 0x71 Descrambling not possible (no entitlement). The selected program is

not entitled and is not available for purchase.
 0x72 Reserved
 0x73 Descrambling not possible (technical reasons), for example if all the

elementary streams capable are being used.
 0x74-0xFF Reserved

9.7.5 ca_update

The Card SHALL use the ca_update() APDU to inform the Host when CA information for the currently tuned
program has changed. Note that ca_update() SHALL always reference the service to which the Host is currently
tuned. This is the last service for which a ca_pmt() APDU was sent from the Host to the Card that was not a query.

Table 9.7–9 - S-Mode ca_update() APDU Syntax (Resource Type 1 Version 2)

Syntax No. of Bits Mnemonic
ca_update() {

ca_update_tag 24 uimsbf
length_field()

 program_number 16 uimsbf
reserved 2 bslbf
version_number 5 uimsbf
current_next_indicator 1 bslbf
CA_enable_flag 1 bslbf
if (CA_enable_flag == 1) {

CA_enable /* program level */ 7 uimsbf
}
else {

reserved 7 uimsbf
}
for (i=0; i<N1; i++) {

reserved 3 bslbf
elementary_PID /* elementary stream PID*/ 13 uimsbf
CA_enable_flag 1 bslbf
if (CA_enable_flag == 1) {

CA_enable /* elementary stream level*/ 7 uimsbf
}
else {

reserved 7 uimsbf
}

}
}

ca_update_tag 0x9F8034

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 117

program_number The MPEG program number as defined in [ISO13818-1].

version_number The MPEG version number as defined in [ISO13818-1].

current_next_indicator The MPEG current/next indicator as defined in [ISO13818-1].

elementary_PID The MPEG elementary PID as defined in [ISO13818-1].

ca_enable Indicates whether the Card is able to perform the descrambling operation
requested in the ca_pmt() APDU.

 0x00 Reserved
 0x01 Descrambling possible with no extra conditions.
 0x02 Descrambling possible under conditions (purchase dialog). The Card

has to enter a purchase dialog with the user before being able to
descramble.

 0x03 Descrambling possible under conditions (technical dialog). The Card
has to enter a technical dialog with the user before being able to
descramble (e.g., request fewer elementary streams because the
descrambling capabilities are limited).

 0x04-0x70 Reserved
 0x71 Descrambling not possible (no entitlement). The selected program is

not entitled and is not available for purchase.
 0x72 Reserved
 0x73 Descrambling not possible (technical reasons), for example if all the

elementary streams capable are being used.
 0x74-0xFF Reserved

Table 9.7–10 - M-Mode ca_update() APDU Syntax (Resource Type 2 Version 1)

Syntax No. of Bits Mnemonic
ca_update() {

ca_update_tag 24 uimsbf
length_field()
program_index 8 uimsbf
transaction_id 8 uimsbf
ltsid 8 uimsbf

 program_number 16 uimsbf
 source_id 16 uimsbf

CA_enable_flag 1 bslbf
if (CA_enable_flag == 1) {

CA_enable /* program level */ 7 uimsbf
}
else {

reserved 7 uimsbf
}
for (i=0; i<N1; i++) {

reserved 3 bslbf
elementary_PID /* elementary stream PID*/ 13 uimsbf
CA_enable_flag 1 bslbf
if (CA_enable_flag == 1) {

CA_enable /* elementary stream level*/ 7 uimsbf
}
else {

reserved 7 uimsbf
}

}
}

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

118 CableLabs® 8/03/06

ca_update_tag 0x9F8034

program_index The same program index that was used in the original ca_pmt. The combination
of transaction_id and program_index uniquely identifies this update.

transaction_id The same 8-bit transaction_id that was used in the original ca_pmt.

ltsid Local Transport Stream ID. Required when the M-CARD is present, and
operating in M-Mode.

program_number The MPEG program number as defined in [ISO13818-1].

source_id The source ID as defined in [SCTE65].

elementary_PID The MPEG elementary PID as defined in [ISO13818-1].

ca_enable Indicates whether the Card is able to perform the descrambling operation
requested in the ca_pmt() APDU.

 0x00 Reserved
 0x01 Descrambling possible with no extra conditions.
 0x02 Descrambling possible under conditions (purchase dialog). The Card

has to enter a purchase dialog with the user before being able to
descramble.

 0x03 Descrambling possible under conditions (technical dialog). The Card
has to enter a technical dialog with the user before being able to
descramble (e.g., request fewer elementary streams because the
descrambling capabilities are limited).

 0x04-0x70 Reserved
 0x71 Descrambling not possible (no entitlement). The selected program is

not entitled and is not available for purchase.
 0x72 Reserved
 0x73 Descrambling not possible (technical reasons); for example, if all the

elementary streams capable are being used.
 0x74-0xFF Reserved

The different APDU tag prevents any confusion between ca_pmt_reply() and ca_update() APDUs during ca_pmt
(query)()/ca_pmt_reply() exchanges. The ca_pmt(query)() is sent by the Host to determine which conditional
access resource can decrypt the specified service when more than one conditional access resource is present. The
reader should note that some conditional access implementations may send a CA_PMT (query) each time a service
is tuned and with only one Card installed in the Host. This is done to determine if the currently tuned service can be
descrambled by the Card. The Card may respond with a ca_pmt_reply() specifying “descrambling possible” or
“descrambling not possible”. The Host would respond to a ca_pmt_reply() (descrambling_possible) with a
CA_PMT (ok_descrambling) to the Card.

The syntax contains one possible ca_enable at program level and, for each elementary stream, one possible
ca_enable at elementary stream level.

When both are present, only ca_enable at ES level applies for that elementary stream.

When none is present, the Host does not interpret the ca_pmt_reply() object.

9.8 Host Control
This resource allows the Card to set up the Host OOB RF receiver and transmitter, if available, and to allow the
Card the capability to tune the Host’s FAT tuner under certain conditions defined by the Homing resource. Unless a
session to the Homing resource has been opened and the Card granted access to the FAT tuner, or if the Host is in
the standby state and allows the Card access to the tuner (the Host MAY or MAY NOT allow this), the Host
SHOULD NOT grant any request by the Card to tune the FAT tuner. Only one session SHALL be opened. This
M-CARD Resource operating in M-Mode has been modified from a Card operating in the S-Mode. The resource
Type value has been changed to indicate the modified resource.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 119

Table 9.8–1 - Host Control Support Resource

Resource Mode Class Type Version Identifier (hex)
Host Control S-Mode 32 1 3 0x00200043
Host Control M-Mode 32 2 1 0x00200081

The Card will have the Host Control resource open for control of the OOB receiver and transmitter and SHALL
leave it open independent of the operation of the Homing resource.

The creation of the specification application resource includes the following objects:

The Host Control resource consists of 6 APDUs.

Table 9.8–2 - Host Control Support APDUs

APDU Name Tag Value Resource Direction
Host ↔ CableCARD

OOB_TX_tune_req() 0x9F8404 Host Control ←
OOB_TX_tune_cnf() 0x9F8405 Host Control →
OOB_RX_tune_req() 0x9F8406 Host Control ←
OOB_RX_tune_cnf() 0x9F8407 Host Control →
inband_tune_req() 0x9F8408 Host Control ←
inband_tune_cnf() 0x9F8409 Host Control →

9.8.1 OOB_TX_tune_req

If the DSG option is not selected, the Card SHALL use the OOB_TX_tune_req() APDU to set up the Host’s RF
transmitter.

Table 9.8–3 - OOB_TX_tune_req() APDU Syntax

Syntax No. of Bits Mnemonic
OOB_TX_tune_req() {

OOB_TX_tune_req_tag 24 uimsbf
Length_field()
RF_TX_frequency_value 16 uimsbf
RF_TX_power_level 8 uimsbf
RF_TX_rate_value 8 uimsbf

}

OOB_TX_tune_req_tag 0x9F8404

RF_TX_frequency_value This field defines the frequency of the RF transmitter, in kHz.

RF_TX_power_level This value defines the power level of the RF transmitter, in units of 0.5 dBmV.
The value 0x00 SHALL correspond to an output level of 0 dBmV.

RF_TX_rate_value This value defines the bit rate of the RF transmitter. The format and values are
defined in Table 9.8–6.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

120 CableLabs® 8/03/06

Table 9.8–4 - RF TX Frequency Value

Bit 7 6 5 4 3 2 1 0
 Frequency (MS)
 Frequency (LS)

RF_TX_frequency_value This field defines the frequency of the RF Transmitter, in kHz.

Table 9.8–5 - RF TX Power Level

Bit 7 6 5 4 3 2 1 0
 RF Power Level

RF_TX_power_level Power level of the RF Transmitter, in units of 0.5dBmV. The value 0x00

SHALL correspond to an output level of 0 dBmV.

Table 9.8–6 - RF TX Rate Value

Bit 7 6 5 4 3 2 1 0
 Rate Reserved

RF_TX_rate_value

Rate – Bit rate. 00b = 256 kbps
 01b = Reserved
 10b = 1544 kbps
 11b = 3088 kbps

9.8.2 OOB_TX_tune_cnf

Upon reception of an OOB_TX_tune_req() APDU and tuning the transmitter, the Host SHALL send the
OOB_TX_tune_cnf() APDU to the Card.

Table 9.8–7 - OOB_TX_tune_cnf() APDU Syntax

Syntax No. of Bits Mnemonic
OOB_TX_tune_cnf() {

OOB_TX_tune_cnf_tag 24 uimsbf
length_field()
status_field 8 uimsbf

}

OOB_TX_tune_cnf_tag 0x9F8405

status_field This field returns the status of the OOB_TX_tune_req(). If the request was
granted and the RF Transmitter set to the desired configuration, Status_field
will be set to 0x00. If the Host is a unidirectional Host, Status_field SHALL be
set to 0x01; the Card SHALL NOT attempt to perform RF transmit operations
after receiving an OOB_TX_tune_cnf() with Status_field set to 0x01. If any of
the parameters passed to the Host are outside of the Host’s tuning rate, then the
Host SHALL transmit the OOB_TX_tune_cnf() with Status_field set to 0x03.
Otherwise Status_field will be set to one of the following values:

 0x00 Tuning granted
 0x01 Tuning denied – RF transmitter no physically available
 0x02 Tuning denied – RF transmitter busy
 0x03 Tuning denied – Invalid parameters
 0x04 Tuning denied – Other reasons

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 121

 0x05-0xFF Reserved

9.8.3 OOB_RX_tune_req

If the DSG option is not selected, the Card SHALL use the OOB_RX_tune_req() APDU to set up the Host’s RF
receiver.

Table 9.8–8 - OOB_RX_tune_req() APDU Syntax

Syntax No. of Bits Mnemonic
OOB_RX_tune_req() {

OOB_RX_tune_req_tag 24 uimsbf
length_field()
RF_RX_frequency_value 16 uimsbf
RF_RX_data_rate 8 uimsbf

}

OOB_RX_tune_req_tag 0x9F8406

RF_RX_frequency_value This field defines the frequency of the RF receiver.
(Frequency = value * 0.05 + 50 MHz.). The format is defined in Table 9.8–9.

Table 9.8–9 - RF RX Frequency Value

Bit 7 6 5 4 3 2 1 0
 0 0 0 0 0 Value (MS)
 Value (LS)

RF_RX_data_rate This value defines the bit rate and spectral inversion of the RF transmitter. The
format is defined in Table 9.8–10.

 The following is the definition of the bit rate.
 00b 2,048 kbps
 01b 2,048 kbps
 10b 1,544 kbps
 11b 3,088 kbps
 The following is the definition of the Spectral Inversion (SPEC).
 0 Spectrum is non-inverted
 1 Spectrum is inverted

Table 9.8–10 - OOB Transmit Rate Format

Bit 7 6 5 4 3 2 1 0
 Rate SPEC

9.8.4 OOB_RX_tune_cnf

Upon reception of an OOB_RX_tune_req() APDU and tuning the RF receiver, the Host SHALL send the
OOB_RX_tune_cnf() APDU to the Card. The OOB_RX_tune_cnf() APDU SHALL only be transmitted after
either the requested frequency has been tuned and acquired (“tune time”), or 500 msec has elapsed since receiving
the request, whichever comes first.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

122 CableLabs® 8/03/06

Table 9.8–11 - OOB_RX_tune_cnf() APDU Syntax

Syntax No. of Bits Mnemonic
OOB_RX_tune_cnf() {

OOB_RX_tune_cnf_tag 24 uimsbf
length_field()
status_field 8 uimsbf

}

OOB_RX_tune_cnf_tag 0x9F8407

status_field Returns the status of the RF receiver. The following values are to be used:
 0x00 Tuning granted
 0x01 Tuning denied – RF receiver not physically available
 0x02 Tuning denied – RF receiver busy
 0x03 Tuning denied – Invalid parameters
 0x04 Tuning denied – Other reasons
 0x05-0xFF Reserved

9.8.5 inband_tune_req

The inband_tune_req() APDU allows for the Card to request the Host to tune the inband QAM tuner. The APDU
will allow support for tuning to a source_id or a frequency with the modulation type.

Table 9.8–12 - inband_tune_req() APDU Syntax

Syntax No. of Bits Mnemonic
inband_tune_req() {

inband_tune_req_tag 24 uimsbf
length_field()
tune_type 8 uimsbf
if (tune_type == 0x00) {

source_id 16 uimsbf
}
else if (tune_type == 0x01) {

tune_frequency_value 16 uimsbf
modulation_value 8 uimsbf

}
}

inband_tune_req_tag 0x9F8408

tune_type Determines whether to use the source ID value or the frequency and modulation
values.

 0x00 Source ID
 0x01 Frequency
 0x02-0xFF Reserved
source_id When tune_type = 0x00, the source_id is a 16 bit unsigned integer in the range

of 0x0000 to 0xFFFF that identifies the programming source associated with the
virtual channel on a system wide basis. In this context, a source is one specific
source of video, text, data, or audio programming. For the purposes of
referencing virtual channels to the program guide database, each such program
source is associated with a unique value of source_id. The source_id itself may
appear in an IPG database, where it tags entries to associate them with specific

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 123

services. The value zero for source_id, if used, SHALL indicate the channel is
not associated with a source_id.

Tune_frequency_value When tune_type = 0x01, tune_frequency_value contains the frequency for the
Host to tune. The frequency is calculated by multiplying tune_frequency_value
by 0x0.05 MHz (50 kHz resolution). The format is defined in Table 9.8–13.

Table 9.8–13 - Tune Frequency Value

Bit 7 6 5 4 3 2 1 0
MSB Value (MS)
LSB Value (LS)

modulation_value When tune_type = 0x01, modulation value sets the type of modulation for the
inband tuner.

 0x00 64QAM
 0x01 256QAM
 0x02-0xFF Reserved

9.8.6 inband_tune_cnf

When the Host receives an inband_tune_req() APDU, it SHALL respond with the following APDU.

Table 9.8–14 - S-Mode - inband_tune_cnf() APDU Syntax (Resource Type 1 Version 3)

Syntax No. of Bits Mnemonic
inband_tuning_cnf() {

inband_tuning_cnf_tag 24 uimsbf
length_field()
tune_status 8 uimsbf

}

inband_tuning_cnf_tag 0x9F8409

tune_status The Host’s response to the inband_tuning_req() APDU.
 0x00 Tuning accepted
 0x01 Invalid frequency (Host does not support this frequency)
 0x02 Invalid modulation (Host does not support this modulation type)
 0x03 Hardware failure (Host has hardware failure)
 0x04 Tuner busy (Host is not relinquishing control of inband tuner)
 0x05-0xFF Reserved

Table 9.8–15 - M-Mode - inband_tune_cnf() APDU Syntax (Resource Type 1 Version 3)

Syntax No. of Bits Mnemonic
inband_tuning_cnf() {
inband_tuning_cnf_tag 24 uimsbf

length_field()
ltsid 8 uimsbf
tune_status 8 uimsbf

}

inband_tuning_cnf_tag 0x9F8409

ltsid Local Transport Stream ID. Utilized when the M-CARD is present, and
operating in M-Mode.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

124 CableLabs® 8/03/06

Tune_status The Host’s response to the inband_tuning_req() APDU.
 0x00 Tuning accepted
 0x01 Invalid frequency (Host does not support this frequency)
 0x02 Invalid modulation (Host does not support this modulation type)
 0x03 Hardware failure (Host has hardware failure)
 0x04 Tuner busy (Host is not relinquishing control of inband tuner)
 0x05-0xFF Reserved

9.9 Generic IPPV Support
The CableCARD Interface support of the Generic IPPV resource is deprecated. If supported, it SHALL comply
with Section 8.10 of ANSI/SCTE 28.

9.10 System Time
The system time resource is supplied by the Host and only one session is supported. The Card creates a session to
the resource and then inquires the current time with a system_time_inq() APDU. If response_interval is zero, the
response is a single system_time() APDU immediately. If response_interval is non-zero, the response is a
system_time() APDU, immediately followed by further system_time() APDUs, every response_interval seconds.
This resource has been modified from the one in [NRSSB]. The Type value has been changed to indicate the
modified resource.

Table 9.10–1 - System Time Support Resource

Resource Mode Class Type Version Identifier
(hex)

System Time S-Mode/M-Mode 36 1 1 0x00240041

The System Time resource consists of 2 APDUs.

Table 9.10–2 - System Time Support APDUs

APDU Name Tag Value Resource Direction
Host ↔ CableCARD

system_time_inq 0x9F8442 System Time ←
system_time 0x9F8443 System Time →

9.10.1 system_time_inq

The Card transmits the system_time_inq to the Host.

Table 9.10–3 - Transmission of system_time_inq

Syntax No. of Bits Mnemonic
system_time_inq () {

system_time_inq_tag 24 uimsbf
length_field()
response_interval 8 uimsbf

}

system_time_inq_tag 0x9F8442

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 125

response_interval How often, in seconds, the Host SHOULD transmit the system_time() APDU to
the Card, starting immediately. A value of 0x00 means that only a single
system_time() APDU is to be transmitted, immediately.

9.10.2 system_time

The system_time() APDU is transmitted from the Host to the Card in response to the system_time_inq() APDU and
then, for non-zero response_interval values, every response_interval seconds.

Table 9.10–4 - system_time APDU

Syntax No. of Bits Mnemonic
system_time() {

system_time_tag 24 uimsbf
length_field()
system_time 32 uimsbf
GPS_UTC_offset 8 uimsbf

system_time_tag 0x9F8443

system_time A 32-bit unsigned integer quantity representing the current system time as the
number of seconds since 12 AM, January 6, 1980, UTC.

GPS_UTC_offset An 8-bit unsigned integer that defines the current offset in whole seconds
between GPS and UTC time standards. To convert GPS time to UTC, the
GPS_UTC_offset is subtracted from GPS time. Whenever the International
Bureau of Weights and Measures decides that the current offset is too far in
error, an additional leap second MAY be added (or subtracted), and the
GPS_UTC_offset will reflect that change.

9.11 Man-Machine Interface (MMI)
The Man-Machine Interface (MMI) resource resides in the Host. The Card SHALL only open one session to this
resource if it wants to initialize one or more MMI dialogs. This session SHALL remain open during normal
operation.

The MMI resource provides the following:

• Support to the Card to open an MMI dialog

• Support to the Host to confirm that the MMI dialog has been opened

• Support to the Card to close the MMI dialog it opened

• Support to the Host to confirm that the MMI dialog has been closed either upon Host or Card request

The Man-Machine Interface resource has been changed to type 2 to reflect the changes listed in this section
compared to EIA-679-B.

When the Host is operating in M-Mode, and receives the open_mmi_req() APDU, the Host will display in a
broadcast form the MMI dialog on all of the outputs. When the Host receives a close_mmi_cnf() the Host will close
all MMI dialog messages it opened. If the Host sends the open_mmi_req(), for support of Host diagnostics, the
Host will use the dialog number to track what output the MMI dialog will be exchanged with.

Table 9.11–1 - MMI Support Resource

Resource Mode Class Type Version Identifier (hex)
MMI S-Mode/M-Mode 64 2 1 0x00400081

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

126 CableLabs® 8/03/06

The MMI resource consists of 4 APDUs.

Table 9.11–2 - MMI Support APDUs

APDU Name Tag Value Resource Direction
Host ↔ CableCARD

open_mmi_req() 0x9F8820 MMI ←
open_mmi_cnf() 0x9F8821 MMI →
close_mmi_req() 0x9F8822 MMI ←
close_mmi_cnf() 0x9F8823 MMI →

9.11.1 open_mmi_req

The Card SHALL send an open_mmi_req() APDU to the Host when it wants to initialize an MMI dialog. For a
Host that supports more than one MMI dialog at the same time (multiple windows), the Card MAY send another
open_mmi_req() APDU before it closes the previous one.

Table 9.11–3 - open_mmi_req()

Syntax No. of Bits Mnemonic
open_mmi_req() {

open_mmi_req_tag 24 uimsbf
length_field()
display_type 8 uimsbf
url_length 16 uimsbf
for (i=0; i<url_length; i++) {

url_byte 8 uimsbf
}

}

open_mmi_req_tag 0x9F8820

display_type Describes how the MMI dialog SHOULD take place. For a Host that supports
more than one MMI dialog at the same time, the new MMI dialog can be in the
current window or in a new one. One resource class is provided. It supports
display and keypad instructions to the user. Note that the Host indicates to the
Card which Display Types it supports via the Application Info Resource.

 0x00 Full screen
 0x01 Overlay
 0x02 New window
 0x03-0xFF Reserved
url_length Number of bytes in the following loop.

url_byte Each url_byte is one octet of a parameter that points to a HTML page in the
Card and that needs to be queried by the Host using the server_query() APDU
(Application Info resource) when the MMI dialog is opened.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 127

9.11.2 open_mmi_cnf

After receiving an open_mmi_req() APDU from the Card, the Host SHALL reply with an open_mmi_cnf() APDU
to confirm the status of the request. When the Host is operating in M-Mode, the Host SHALL open the MMI dialog
on all of its outputs.

Table 9.11–4 - open_mmi_cnf

Syntax No. of Bits Mnemonic
open_mmi_cnf() {

open_mmi_cnf_tag 24 uimsbf
length_field()
dialog_number 8 uimsbf
open_status 8 uimsbf

}

open_mmi_cnf_tag 0x9F8821

dialog_number A number supplied by the Host issued from an 8-bit cyclic counter that uniquely
identifies each open_mmi_cnf() APDU and allows the Card to close the
associated MMI dialog.

open_status The status of the requested MMI dialog defined as follows:
 0x00 OK- Dialog opened
 0x01 Request denied – Host busy
 0x02 Request denied – Display type not supported
 0x03 Request denied – No video signal
 0x04 Request denied – No more windows available
 0x05-0xFF Reserved

9.11.3 close_mmi_req

The Card SHALL send a close_mmi_req() APDU to the Host to close a MMI dialog previously opened with an
open_mmi_req() APDU.

Table 9.11–5 - close_mmi_req

Syntax No. of Bits Mnemonic
close_mmi_req() {

close_mmi_req_tag 24 uimsbf
length_field()
dialog_number 8 uimsbf

}

close_mmi_req_tag 0x9F8822

dialog_number The number of the MMI dialog assigned by the Host in the open_mmi_cnf() APDU.

9.11.4 close_mmi_cnf

After receiving a close_mmi_req() APDU from the Card, the Host SHALL reply with a close_mmi_cnf() APDU to
confirm the status of the close operation. The Host MAY send a close_mmi_cnf() APDU without the Card having
sent a close_mmi_req() APDU to inform the Card about a close operation performed by the Host (e.g., the
subscriber closes the window). When the Card is operating in M-Mode, the Host SHALL close all MMI dialog
messages it opened on all of its outputs, corresponding to the specific dialog_number.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

128 CableLabs® 8/03/06

Table 9.11–6 - close_mmi_cnf

Syntax No. of Bits Mnemonic
close_mmi_cnf() {

close_mmi_cnf_tag 24 uimsbf
length_field()
dialog_number 8 uimsbf

}

close_mmi_cnf_tag 0x9F8823

dialog_number The number of the MMI dialog received in the close_mmi_req() APDU.

9.12 M-Mode Device Capability Discovery
The M-CARD when operating in M-Mode SHALL indicate to the Host what its multi-stream capabilities are. It
SHALL communicate the maximum number of transport streams it supports via the stream_profile() APDU, how
many programs via program_profile() APDU, and how many elementary streams via es_profile() APDU. The Host
SHALL reply in each case with an appropriate confirmation APDU.

The maximum number of elementary streams does not include those PIDs which are consumed internally by the
Card for internal Card applications. This number refers only to PIDs of programs that are consumed by the Host for
viewing or storage. If the Card requires additional PIDs for internal consumption, they are not to be included in this
number.

The Card SHALL inform the Host which PIDs it requires through the CableCARD Capability Discovery resource,
CARD RES, and the Host SHALL NOT remove those PIDs from each transport stream. Since the PIDs that the
Card requires MAY change, the Host SHALL be ready to receive the request_pids_cnf() APDU at any time and the
Host SHALL respond accordingly to those updates. The Card MAY request a maximum of 8 non-program PIDs
be transmitted to it per LTSID for internal consumption.

In the event that the Card is unable to meet the stream, program, or PID processing requirements that a user has
requested, it SHALL be the Host’s responsibility to notify the user.

When Operating in M-Mode, the Host is responsible for controlling the data through the CHI such that the data rate
does not exceed the interface maximum. The Host MAY perform this by removing selected packets from the
outgoing multiplexed transport stream with PIDs that are not used in order to have sufficient bandwidth for the
CHI.

Table 9.12–1 - CableCARD Device Resources Resource

Resource Mode Class Type Version Identifier (hex)
CARD RES M-Mode 38 3 1 0x002600C1

The Card Resources resource consists of 8 APDUs.

Table 9.12–2 - CableCARD Resources Support APDUs

APDU Name Tag Value Resource Direction
Host ↔ Card

stream_profile() 0x9FA010 CARD RES ←
stream_profile_cnf() 0x9FA011 CARD RES →
program_profile() 0x9FA012 CARD RES ←
program_profile_cnf() 0x9FA013 CARD RES →

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 129

APDU Name Tag Value Resource Direction
Host ↔ Card

es_profile() 0x9FA014 CARD RES ←
es_profile_cnf() 0x9FA015 CARD RES →
request_pids() 0x9FA016 CARD RES →
request_pids_cnf() 0x9FA017 CARD RES ←

9.12.1 stream_profile APDU

After the Card capability discovery session is established, the Card SHALL transmit the stream_profile() APDU to
the Host. This includes the maximum number of streams that the Card can support.

Table 9.12–3 - stream_profile APDU Syntax

Syntax # of bits Mnemonic
stream_profile() {

stream_profile_tag
length_field()
max_number_of_streams

}

24

8

uimsbf

uimsbf

stream_profile_tag Value = 0x9FA010

max_number_of_streams The maximum number of unique MPEG transport streams input into the Card
from the Host that the Card Operating in M-Mode can manage. The value
SHALL be greater than three.

9.12.2 stream_profile_cnf APDU

When the Host receives the stream_profile() APDU from the Card, it SHALL respond with the following APDU.

Table 9.12–4 - stream_profile_cnf APDU

Syntax # of bits Mnemonic
stream_profile_cnf() {

stream_profile_cnf_tag
length_field()
number_of_streams_used

}

24

8

uimsbf

uimsbf

stream_profile_cnf_tag Value = 0x9FA011

number_of_streams_used The number of unique MPEG transport streams that the Host will be sending to
the Card simultaneously.

9.12.3 program_profile APDU

After the Card capability discovery session is established, the Card SHALL transmit the program_profile() APDU
to the Host. This includes the maximum number of simultaneous programs, summed across all transport streams
that the Card’s CA system can simultaneously decrypt.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

130 CableLabs® 8/03/06

Table 9.12–5 - program_profile APDU

Syntax # of bits Mnemonic
program_profile() {

program_profile_tag
length_field()
max_number_of_programs

}

24

8

uimsbf

uimsbf

program_profile_tag Value = 0x9FA012

max_number_of_programs The maximum number of programs that the Card’s CA system can
simultaneously decrypt SHALL be greater than or equal to four.

9.12.4 program_profile_cnf APDU

When the Host receives the program_profile() APDU from the Card, it SHALL respond with the following APDU.

Table 9.12–6 - program_profile_cnf APDU

Syntax # of bits Mnemonic
program_profile_cnf() {

program_profile_cnf_tag
length_field()

}

24

uimsbf

program_profile_cnf_tag Value = 0x9FA013

9.12.5 es_profile APDU

After the Card capability discovery session is established, the Card SHALL transmit the es_profile() APDU to the
Host. This includes the maximum number of simultaneous elementary streams, summed across all transport
streams that the Card can support.

This maximum number does not include those PIDs which are consumed internally by the Card for internal Card
applications. This number refers only to PIDs of programs that are consumed by the Host for viewing or storage. If
the Card requires additional PIDs for internal consumption, they are not to be included in this number.

Table 9.12–7 - es_profile APDU Syntax

Syntax # of bits Mnemonic
es_profile() {

es_profile_tag
length_field()
max_number_of_es

}

24

8

uimsbf

uimsbf

es_profile_tag Value = 0x9FA014

max_number_of_es The maximum number of elementary streams that the Card operating in M-
Mode can manage SHALL be greater than or equal to sixteen (16).

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 131

9.12.6 es_profile_cnf APDU

When the Host receives the es_profile() APDU from the Card, it SHALL respond with the following APDU.

Table 9.12–8 - es_profile_cnf APDU Syntax

Syntax # of bits Mnemonic
es_profile_cnf() {

es_profile_cnf_tag
length_field()

}

24

uimsbf

es_profile_cnf_tag Value = 0x9FA015

9.12.7 request_pids APDU

If the Host has to perform filtering (removing transport packets corresponding to PIDs that it does not need) to keep
the bandwidth below the maximum of the interface, the Host SHALL ask the Card for the non-program PIDs that it
must receive and therefore the Host SHALL NOT filter. The request_pids() APDU SHALL be used by the Host to
request a list of non-program PIDs that SHALL NOT be filtered.

Table 9.12–9 - request_pids APDU

Syntax # of bits Mnemonic
request_pids() {

request_pids_tag
length_field()
ltsid
pid_filtering_status

}

24

8
8

uimsbf

uimsbf
uimsbf

request_pids_tag Value = 0x9FA016

ltsid Local Transport Stream ID. Only required when the M-CARD is present and
operating in M-Mode.

pid_filtering_status 0x00 Host not filtering PIDs
 0x01 Host filtering PIDs
 0x02-FF Reserved

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

132 CableLabs® 8/03/06

9.12.8 request_pids_cnf APDU

The Card SHALL respond to the request_pids() APDU command by sending the request_pids_cnf() APDU when
the Host is filtering PIDs with the non-program PIDs it requires. The Card MAY send this APDU at any time.
This list is absolute and SHALL always include all non-program PIDs that the Card requires for a given transport
stream.

Table 9.12–10 - request_pids_cnf APDU

Syntax # of bits Mnemonic
request_pids_cnf() {

request_pids_cnf_tag
length_field()
ltsid
number_of_pids
for (i=0; i<number_of_pids; i++) {

zero
pid

}

24

8
8

3
13

uimsbf

uimsbf
uimsbf

uimsbf
uimsbf

request_pids_cnf_tag Value = 0x9FA017

ltsid Local Transport Stream ID. Only required when the M-CARD is present, and
operating in M-Mode.

number_of_pids Number of non-program PIDs required; maximum is 8

zero 3 bits of zero

pid PID value

9.13 Copy Protection
A Copy Protection Resource SHALL be opened as defined in Table 9.13–1 and SHALL comply to the interface
requirement specifications as defined in the OC-SP-CCCP2.0 document [CCCP2].

Table 9.13–1 - CableCARD Copy Protection Resource

Resource Mode Class Type Version Identifier (hex)
Copy Protection S-Mode 176 3 1 0x00B000C1
Copy Protection M-Mode 176 4 2 0x00B00102

9.14 Extended Channel Support
For purposes of the Extended Channel, the Card or the Host that provides the physical communications link to the
headend is referred to as the “link device”. The Card is the link device for the QPSK modem, and the Host is the
link device for the Embedded Cable Modem (eCM).

The Extended Channel Support resource SHALL be created to register the applications that expect to send and
receive data to and from the Extended Channel.

All Hosts are required to provide the hardware necessary to support a QPSK downstream (FDC) channel for the
Card. Host 2.0 devices are required to incorporate a QPSK upstream (RDC) channel for the Card and a DOCSIS
embedded Cable Modem (eCM) for bidirectional IP support. The eCM is required to support the DOCSIS Set-top
Gateway (DSG) function. There are four types of flows on the extended channel: MPEG, IP, Socket, and DSG.
When in SCTE 55 mode or basic DSG mode, the Card SHALL forward MPEG data to the Host as appropriate
through one or more data flows requested by the Host. In some cases, the Card will terminate data received on the

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 133

QPSK downstream FDC channel or the DSG flows for its own use (e.g., EMMs). In other cases, it MAY perform a
filtering function and discard data known to be of no interest to the Host.

Supported system architectures imply three different ways of using the Extended Channel Support resource:

• The application is in the Host and the data is transferred to/from the headend via the QPSK modem.

• The application is in the Card and the data is transferred to/from the headend via the Host’s eCM.

• The application is in the Host and the data is transferred to/from the headend via the Host’s eCM. For example,
in DSG mode, SI data is transferred from the eCM to the Card and then from the Card to the Host in an MPEG
section flow (as explained in Section 9.14.1).

Version 1 of this resource is required for Hosts that do not have an embedded High Speed Host (DOCSIS) Modem.
Version 5 of this resource adds service_type = 0x04 to the new_flow_req() APDU.

Table 9.14–1 - Extended Channel Support Resource

Resource Mode Class Type Version Identifier (hex)
Extended Channel Support S-Mode/M-Mode 160 1 1 0x00A00041
Extended Channel Support S-Mode/M-Mode 160 1 5 0x00A00045

NOTE: Versions 2, 3, and 4 of this resource have been deprecated and should not be implemented in new devices.

The APDU messages are as follows:

Table 9.14–2 - Extended Channel Support APDUs

Direction
Host ↔ Card

APDU Name Tag Value Resource
Host

modem
Card

modem

new_flow_req() 0x9F8E00 Extended Channel Support ↔ →
new_flow_cnf() 0x9F8E01 Extended Channel Support ↔ ←
delete_flow_req() 0x9F8E02 Extended Channel Support ↔ →
delete_flow_cnf() 0x9F8E03 Extended Channel Support ↔ ←
lost_flow_ind() 0x9F8E04 Extended Channel Support ↔ ←
lost_flow_cnf() 0x9F8E05 Extended Channel Support ↔ →

NOTE: The DSG-related APDUs have been removed from this resource and their definitions moved to Annex F for
reference.

9.14.1 new_flow_req APDU

To register a new flow, the device requesting the flow SHALL use the new_flow_req() APDU. See Table 9.14–3.

Any device opening a flow that is listed as N/A or not listed in the table (such as the Card requesting an IP_U flow
when in QPSK mode) will receive a status_field = 0x02, service type not available.

For the case where the Card is going to operate in DSG mode (i.e., the operational_mode parameter in the
set_DSG_mode() APDU will not be equal to 0x00), the Card requests to open a single flow with DSG as the
service_type.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

134 CableLabs® 8/03/06

For the case when the Host is not in Advanced DSG mode, the Host SHALL open an MPEG section flow with the
SI_Base PID (0x1FFC) to the Card for reception of. SCTE 65 SI messages, SCTE 18 EAS messages, CVTs and
OCAP XAITs.

If the Host is in Advanced DSG mode and makes a request to open an MPEG flow to PID 0x1FFC, the Card MAY
deny the request.

The service types available are MPEG section, IP unicast, IP multicast, Socket, and DSG.

Conformance to this specification requires the Host and the Card to comply with the following requirements:

• The devices on either side of the CHI SHALL support at least six concurrent MPEG section service_type
flows.

• The devices on either side of the CHI SHALL support at least eight Socket service_type flows.

• The devices on either side of the CHI MAY support concurrent IP unicast and socket service_type flows.

• The devices on either side of the CHI SHALL support one DSG service_type flow.

• The devices on either side of the CHI SHALL support at least one IP Unicast (IP_U) service_type flow,
providing support for both UDP and TCP protocols.

• The devices on either side of the CHI are required to support only one outstanding new_flow_req() transaction
at a time. The device receiving the request for a new flow SHALL send a new_flow_cnf() with a Status_field
of 0x04 (Network Busy) when additional new_flow_req() messages are received and one is pending.

The following are different types of service flows used by the devices on either side of the CHI:

MPEG section – This service type is applicable only for flows between the Card and the Host. The requested
MPEG service flow across the extended channel SHALL be in the form of MPEG table sections (both long and
short form). This type of flow is unidirectional, from Card to Host only. The value of the section length field in
these sections across the extended channel SHALL NOT exceed 4,093 bytes.

When the table section is in long form (as indicated by the section_syntax_indicator flag set to “1”), a 32-bit CRC is
present. The 32-bit CRC is also present in short-form sections (as indicated by the section syntax indicator flag set
to “0”) carried in the SI_base_PID (0x1FFC). For MPEG table sections in which an MPEG-2 CRC is known to be
present, the Card SHALL verify the integrity of the table section using the 32-bit CRC at the table section level, or a
32-bit CRC at another protocol layer. Only MPEG long-form messages that pass the CRC check SHALL be
forwarded to the Host. The Card SHALL discard MPEG table sections that are incomplete or fail the CRC check.

The 32-bit CRC MAY be present in short-form sections associated with PID values other than the SI_base_PID
(0x1FFC) and the Card MAY send these sections to the Host without any checks. The Host SHALL be
responsible for validation of short-form MPEG sections.

IP Unicast – This service type applies both for flows between the Card and an eCM in the Host (DSG mode), and
between the Host and an SCTE 55 modem in the Card (SCTE 55 mode). The requested flow will be in the form of
IP packets addressed to or from the Card's IP address when in DSG mode, and to or from the Host's IP address
when in SCTE 55 mode. The IP Unicast flow MAY be bidirectional. The maximum total length of any IP packet
in SCTE 55 mode SHALL be 1,500 bytes. With respect to DSG mode, the requested flow from the Card to the
Host is expected to be in the form of IP packets addressed to the applicable destination IP address as determined by
the Card. The requested flow from the Host to the Card in DSG mode is expected to be in the form of IP packets
addressed to the IP address of the Card. The maximum total length of any IP packet initiated by the Card in DSG
mode SHALL be the DOCSIS maximum transmission unit (MTU), which is 1500 bytes. The DOCSIS MTU
SHALL be relayed to the Card via the new_flow_conf() APDU.

IP Multicast – This service type is applicable both for flows between the Card and a modem in the Host, and for
the Host and a modem in the Card. The requested flows will be in the form of multicast IP packets addressed to the
multicast_group_ID assigned IP address. This type of flow is unidirectional, from link device to non-line device.
The maximum total length of any IP packet is expected to be 1,500 bytes.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 135

DSG – This service type applies to unidirectional flows of data from the Host to the Card. This type of flow is
unidirectional, from Host to Card only.

Socket – This service type is only applicable when the Host and Card are in DSG mode.

Table 9.14–3 - new_flow_req APDU Syntax

Syntax No. of Bits Mnemonic
new_flow_req() {

new_flow_req_tag 24 uimsbf
length_field()
service_type 8 uimsbf
if (service_type == 00) { /* MPEG section */

Reserved 3 bslbf
PID 13 uimsbf

}
if (service_type == 01) { /* IP unicast */

MAC_address 48 uimsbf
option_field_length 8 uimsbf
for (i=0; i<option_field_length; i++) {

option_byte 8 uimsbf
}

}
if (service_type == 02) { /* IP multicast */

Reserved 4 bslbf
multicast_group_ID 28 uimsbf
}

if(service_type == 04) { /* Socket*/
protocol_flag 8 uimsbf
local_port_number 16 uimsbf
remote_port_number 16 uimsbf
remote_address_type 8 uimsbf
if(remote_address_type==0x00) {

name_length 8 uimsbf
 for(int i=0;i<name_length;++i)
name_byte 8 uimsbf
 if(remote_address_type == 0x01)
 ipv4_address 32 uimsbf
 if(remote_address_type == 0x02)
 ipv6_address 128 uimsbf

connection_timeout 8 uimsbf
}

new_flow_req_tag 0x9F8E00

service_type Defines the type of requested service.
 0x00 MPEG section
 0x01 IP unicast (IP_U)
 0x02 IP multicast (IP_M)
 0x03 DSG
 0x04 Socket
 0x05-0xFF Reserved
PID The 13-bit MPEG-2 Packet Identifier associated with the flow request. The

Card SHALL be responsible for filtering the MPEG-2 transport stream and
delivering only MPEG table sections delivered on transport packets with the
given value of PID.

MAC_address The 48-bit MAC address of the entity requesting the unicast IP flow.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

136 CableLabs® 8/03/06

option_field_length The number of bytes in the following for loop.

option_byte These bytes correspond to the options field of a DHCP message. One or more
DHCP options per [RFC2132] MAY be included. The “end option” (code
255) SHALL NOT be used, so that the entity granting the IP flow request MAY
append zero or more additional option fields before delivering the request to the
server.

multicast_group_ID The multicast group ID associated with the flow request. The modem function
SHALL be responsible for filtering arriving multicast IP packets and delivering
only packets matching the given multicast_group_ID address.

protocol_flag The type of socket flow requested.
 00 UDP – instructs the host to establish a UDP socket for the Card to use

to pass traffic on this flow.
 01 TCP – instructs the host to establish a TCP socket for the Card to use

to pass traffic on this flow.
local_port_number The local port number for a socket connection. This field MAY be 0.

remote_port_number The port number of the socket on the remote Host.

remote_address_type The remote Host’s IP address format.
 00 name – DNS will be required to look up the remote Host’s IP address
 01 ipv4 – 32-bit IPv4 address
 02 ipv6 – 128-bit IPv6 address
name_length The number of bytes in the following for loop.

name_byte These bytes specify the remote Host’s name in ASCII format. This field may
specify either a Host name or a fully qualified domain name.

remote_IP_address The IP address of the remote Host. This address is in standard network-byte
order so the higher order bits are sent first.

connection_timeout Number of seconds the Host will attempt to establish a TCP connection.

9.14.1.1 new_flow_req IP Unicast DSG Mode Details

When the Host is configured for DSG mode, the Host and Card will interact as defined within this section:

• If the Card requires two-way communications in DSG mode, then the Card SHALL request a new IP Unicast
flow using the new_flow_request() APDU.

• When requesting the new flow, the Card SHALL at a minimum supply the Vendor Specific Options defined in
Table 9.14–4 and provide the MAC address of the Card in the MAC_address field.

• The CARD SHALL implement the DHCP Vendor Specific Information Option (option 43) and Vendor Class
Identifier Option (option 60) as specified in Table 9.14–4 and Table 9.14–5.

Table 9.14–4 - Card DHCP Vendor Specific Information (Option 43) Sub-option Encoding

Sub-option Value Description

1 “<null>” The request sub-option vector is a list of sub-
options (within option 43) to be returned to client
by the server upon reply to the request. None
defined.

2 “CARD” Device type of the entity making the DHCP
request.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 137

Sub-option Value Description

3 “ECM:ESTB:CARD” Indicates that a Card is making a request via the
eCM’s DOCSIS return channel

4 “<device serial number>” Serial Number of Card. If Serial Number is not
available, then other unique identifier (other than
MAC Address) may be utilized

5 “<hardware version number>“ Hardware version number of Card
6 “<firmware version number>“ Firmware version number of Card
7 “<boot ROM version number>“ Boot ROM version number of Card
8 e.g., “0204DF” A 6-octet, hexadecimal-ASCII encoded, vendor-

specific Organization Unique Identifier (OUI) that
may match the OUI in the eCM’s MAC address.

9 e.g., “XYZ-CARD-001” Vendor model number of Card
51 e.g., “XYZ Corporation” Vendor name
52 “yyyyyy” Card capability using the encoding format per

DOCSIS specification. Since there is no
standard/required capability identification,
Conditional Access vendor must provide
documentation on the supported capability.

53 e.g., “000-01234-56789-000”
(example is unit address of Motorola
Card)

Conditional Access Vendor specific device
identification

54 e.g., “00AA11BB22CC33DD” 64 bit CARD_ID as specified in the Card X.509
certificate

Table 9.14–5 - Card DHCP Vendor Class Identifier (Option 60) Encoding

Option Value Description

60 “OpenCable2.0” OpenCable Version

9.14.2 new_flow_cnf APDU

The Host or Card SHALL return a new_flow_cnf() APDU after receiving a new_flow_req() APDU.

The Host and Card are required to support only one outstanding new_flow_req transaction at a time. If an
additional new_flow_req() APDU is received while one is being processed, the recipient, either the Host or the
Card, SHALL send a new_flow_cnf() APDU with a status field of 0x04 (Network Busy).

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

138 CableLabs® 8/03/06

Table 9.14–6 - new_flow_cnf APDU Syntax

Syntax No. of Bits Mnemonic
new_flow_cnf() {

new_flow_cnf_tag 24 uimsbf
length_field()
status_field 8 uimsbf
flows_remaining 8 uimsbf
if (status_field == 0x00) {

flow_id 24 uimsbf
service_type 8 uimsbf
if (service_type == IP_U) {

IP_address 32 uimsbf
flow_type 8 uimsbf
flags 3 uimsbf
max_pdu_size 13 uimsbf
option_field_length 8 uimsbf
for (i=0; i<option_field_length; i++) {

option_byte 8 uimsbf
}
if (service_type == Socket) {
 reserved 3 uimsbf
 max_pdu_size 13 uimsbf
}

}
}

new_flow_cnf_tag 0x9F8E01

status_field Returns the status of the new_flow_req.
 0x00 Request granted, new flow created
 0x01 Request denied, number of flows exceeded
 0x02 Request denied, service_type not available
 0x03 Request denied, network unavailable or not responding
 0x04 Request denied, network busy
 0x05 Request denied – MAC address not accepted
 0x06 Request denied, DNS not supported
 0x07 Request denied, DNS lookup failed
 0x08 Request denied, local port already in use or invalid
 0x09 Request denied, could not establish TCP connection
 0x0A Request denied, IPv6 not supported
 0x0B-0xFF Reserved
flows_remaining The number of additional flows of the same service_type that can be supported.

The value 0x00 indicates that no additional flows beyond the one currently
requested can be supported.

flow_id The unique flow identifier for this application’s data flow. To avoid conflicts
between the assignment of flow_ids between the Card and the Host, the Card
SHALL assign flow_ids in the range of 0x000001 to 0x7FFFFF, and the Host
SHALL assign flow_ids in the range of 0x800000 to 0xFFFFFF. The flow_id
value of 0x000000 is reserved and SHALL NOT be assigned.

service_type The requested service_type received in the new_flow_req() APDU.

IP_address The 32-bit IP address associated with the requested flow.

flow_type This field is not supported in any version of the extended channel resource.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 139

flags A 3-bit field that contains information, as defined below, pertaining to
limitations associated with the interactive network. Additional detail is provided
in Table 9.14–7.

 Bit 0 no_frag
 bits 2:1 reserved

Table 9.14–7 - Flag field definitions

BITS

2 1 0

reserved no_frag

no_frag A 1-bit Boolean that designates if the network supports fragmentation. A value
of 02 indicates that fragmentation is supported. A value of 12 indicated that
fragmentation is not supported.

max_pdu_size A 13-bit unsigned integer number that designates the maximum PDU length that
MAY be transmitted across the interface.

option_field_length An 8-bit unsigned integer number that represents the number of bytes of option
field data to follow.

option_byte These bytes correspond to the options requested in the new_flow_req()
message. The format of the field is as defined in [RFC2132]. The end option
(code 255) SHALL NOT be used.

9.14.3 delete_flow_req APDU

The application SHALL use the delete_flow_req() APDU to delete a registered data flow.

Table 9.14–8 - delete_flow_req APDU Syntax

Syntax No. of Bits Mnemonic
delete_flow_req() {

delete_flow_req_tag 24 uimsbf
length_field()
flow_id 24 uimsbf

}

delete_flow_req_tag 0x9F8E02

flow_id The flow identifier for the flow to be deleted.

9.14.4 delete_flow_cnf APDU

When the link device receives a delete_flow_req() APDU, it SHALL respond with the delete_flow_cnf() APDU.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

140 CableLabs® 8/03/06

Table 9.14–9 - delete_flow_cnf APDU Syntax

Syntax No. of Bits Mnemonic
delete_flow_cnf() {
delete_flow_cnf_tag 24 uimsbf
length_field()
flow_id
status_field

24
8

uimsbf
uimsbf

}

delete_flow_cnf_tag 0x9F8E03

flow_id The flow identifier for the flow to be deleted.

status_field Returns the status of the delete_flow_req() APDU.
 0x00 Request granted, flow deleted
 0x01 Reserved
 0x02 Reserved
 0x03 Request denied, network unavailable or not responding
 0x04 Request denied, network busy
 0x05 Request denied, flow_id does not exist
 0x06 Request denied, not authorized
 0x07-0xFF Reserved

9.14.5 lost_flow_ind APDU

A link device SHALL indicate that a registered data flow has been lost by issuing the lost_flow_ind() APDU.

Table 9.14–10 - lost_flow_ind APDU Syntax

Syntax No. of Bits Mnemonic
lost_flow_ind() {

lost_flow_ind_tag 24 uimsbf
length_field()
flow_id 24 uimsbf
reason_field 8 uimsbf

}

lost_flow_ind_tag 0x9F8E04

flow_id The flow identifier for the flow that has been lost.

reason_field Returns the reason the flow was lost.
 0x00 Unknown or unspecified reason
 0x01 IP address expiration
 0x02 Network down or busy
 0x03 Lost or revoked authorization
 0x04 Remote TCP socket closed
 0x05 Socket read error
 0x06 Socket write error
 0x07-0xFF Reserved

9.14.6 lost_flow_cnf APDU

The application SHALL respond with the lost_flow_cnf() APDU when a lost_flow_ind() APDU is received.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 141

Table 9.14–11 - lost_flow_cnf APDU Syntax

Syntax No. of Bits Mnemonic
lost_flow_cnf() {

lost_flow_cnf_tag 24 uimsbf
length_field()
flow_id 24 uimsbf
status_field 8 uimsbf

}

lost_flow_cnf_tag 0x9F8E05

flow_id The flow identifier for the flow that has been lost.

status_field Returns the status of the lost_flow_ind() APDU.
 0x00 Indication acknowledged
 0x01-0xFF Reserved

9.15 Generic Feature Control
The Generic Feature Control resource enables the Host device to receive control of features, which are considered
generic to Host devices. There are three aims to this resource: 1) to provide control of features that subscribers do
not desire to set themselves, 2) to provide the ability to inhibit subscriber control and only allow headend control,
and 3) to provide a mechanism in which a Card or Host device can be staged to a known value.

A resource is created which resides in the Host called the Generic Feature Control resource. If the Host reports this
resource to the Card, the Card SHALL open only one session to the Host and SHOULD never close the session.

9.15.1 Parameter Storage

9.15.1.1 Host

The Host MAY provide non-volatile storage for the parameters associated with generic features on a parameter-by-
parameter basis. These parameters SHALL be stored in the Host.

9.15.1.2 CableCARD Device

There is no requirement for the Card to store the generic feature’s parameters although there is no requirement that
it cannot.

9.15.2 Parameter Operation

9.15.2.1 Feature List Exchange

Immediately after the session to the Generic Feature Control resource has been established, the Card SHALL query
the Host to determine which generic features are supported in the Host (feature_list_req). After the Card receives
the generic feature list from the Host (feature_list), the Card SHALL send its confirmation of the feature list to the
Host (feature_list_cnf). The Host SHALL then query the Card to determine which generic features are supported
in the Card and the headend (feature_list_req). The Card SHALL send its feature list to the Host (feature_list) to
which the Host SHALL send its confirmation (feature_list_cnf). This is called the generic feature list exchange.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

142 CableLabs® 8/03/06

Host Card Headend

open_session_request

open_session_response

feature_list_req

feature_list

feature_list_cnf

feature_list_req

feature_list

feature_list_cnf

Figure 9.15-1 - Generic Feature List Exchange

If the generic feature list on the Host or the Card changes, then the changed device SHALL send a
feature_list_changed() APDU to the other device. The other device SHALL then perform the generic feature list
exchange to obtain the new list.

Host Card Headend

feature_list_changed

feature_list_req

feature_list

feature_list_cnf

Figure 9.15-2 - Card Feature List Change

Host Card Headend

feature_list_changed

feature_list_req

feature_list

feature_list_cnf

Figure 9.15-3 - Host Feature List Change

9.15.2.2 Host to CableCARD Device Transfer

After the feature exchange has occurred, the Card MAY request the Host to send its feature parameters
(feature_parameters_req). After any request, the Host SHALL send to the Card, the parameters for all the generic
features in the Host’s generic feature list (feature_parameters). The Card SHALL reply with the confirmation
(feature_parameters_cnf). The Card MAY utilize these generic feature parameters, transfer them to the headend, or
ignore them.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 143

Host Card Headend

feature_parameters_req

feature_parameters

feature_parameters_cnf

Figure 9.15-4 - Host to CableCARD Device Feature Parameters

When any of the parameters of the generic features that are in the Card generic feature list are changed in the Host,
for whatever reason, the Host SHALL transmit these new parameters to the Card (feature_parameters). The Card
SHALL reply with the confirmation (feature_parameters_cnf).

Host Card Headend

feature_parameters

feature_parameters_cnf

Figure 9.15-5 - Host Parameter Update

The Card MAY request, at any time the session is open and the generic feature list exchange has occurred, the
current parameters in the Host. The Card SHALL do this by sending a feature_parameters_request() APDU.

9.15.2.3 Headend to Host

It is not intended that the headend would transmit all the generic feature’s parameters cyclically. Most of the
parameters would only be transmitted once at the request of the user or for staging of the device. The generic
feature’s parameters, which MAY need to be sent cyclically, are the RF output channel, time zone, daylight savings,
and rating region. The headend MAY send all or just some of the parameters.

The method in which the Card receives the generic feature’s parameters is proprietary to the Card manufacturer.

After the session has been established, when the Card receives a message from the headend containing generic
feature parameters, the Card SHALL transfer this information to the Host (feature_parameters). The Host SHALL
replace its parameters with the values in the APDU. If the Card utilizes the parameters, it SHALL replace its
internal parameters with the values in the message from the headend. The Host SHALL respond with the
confirmation (feature_parameters_cnf). The Host MAY receive parameters for generic features, which it does not
support. The Host SHALL ignore any generic feature parameters that it does not implement.

Host Card Headend

feature_parameters

feature_parameters_cnf

proprietary generic feature control
message

Figure 9.15-6 - Headend to Host Feature Parameters

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

144 CableLabs® 8/03/06

9.15.3 Generic Feature Control Resource Identifier

The following resource identifier SHALL be utilized for Generic Feature Control.

Table 9.15–1 - Generic Feature Control Resource

Resource Mode Class Type Version Identifier (hex)
Generic Feature Control S-Mode/M-Mode 42 1 1 0x002A0041

9.15.4 Feature ID

Each generic feature SHALL have a unique ID assigned to it. This ID is the same for all APDUs. The following is
a list of the features and their assigned feature ID.

Table 9.15–2 - Feature Ids

Feature ID Feature

0x00 Reserved
0x01 RF Output Channel
0x02 Parental Control PIN
0x03 Parental Control Settings
0x04 IPPV PIN
0x05 Time Zone
0x06 Daylight Savings Control
0x07 AC Outlet
0x08 Language
0x09 Rating Region
0x0A Reset PINS
0x0B Cable URL
0x0C EAS location code
0x0D-0x6F Reserved for future use
0x70-0xFF Reserved for proprietary use

9.15.5 Generic Feature Control APDUs

The Generic Feature Control resource consists of the following 7 APDUs.

Table 9.15–3 - Generic Feature Control APDUs

APDU Name Tag Value Resource Direction
Host ↔ Card

feature_list_req 0x9F9802 Generic Feature Control ↔
feature_list() 0x9F9803 Generic Feature Control ↔
feature_list_cnf() 0x9F9804 Generic Feature Control ↔
feature_list_changed() 0x9F9805 Generic Feature Control ↔
feature_parameters_req() 0x9F9806 Generic Feature Control ←

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 145

APDU Name Tag Value Resource Direction
Host ↔ Card

feature_parameters() 0x9F9807 Generic Feature Control ↔
feature_parameters_cnf() 0x9F9808 Generic Feature Control ↔

9.15.5.1 feature_list_req APDU

The Host SHALL send this APDU to the Card and the Card SHALL send this APDU to the Host to query the
generic features that are supported.

Table 9.15–4 - feature_list_req APDU Syntax

Syntax No. of Bits Mnemonic
feature_list_req() {

feature_list_req_tag 24 uimsbf
length_field()

}

feature_list_req_tag 0x9F9802

9.15.5.2 feature_list APDU

After receiving the feature_list_req() APDU, the Host or Card SHALL transmit the feature_list() APDU to the
Card or Host, which lists the generic features that are supported by the Card or Host.

Table 9.15–5 - feature_list APDU Syntax

Syntax No. of Bits Mnemonic
feature_list() {

feature_list_tag 24 uimsbf
length_field()
number_of_features 8 uimsbf
for (i=0; i<number_of_features; i++) {

feature_id 8 uimsbf
}

}

feature_list_tag 0x9F9803

number_of_features Number of features to report

feature_id Assigned feature ID number (See Table 9.15–2).

9.15.5.3 feature_list_cnf APDU

After receiving the feature_list() APDU, the Host or Card SHALL respond with the feature_list_cnf() APDU.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

146 CableLabs® 8/03/06

Table 9.15–6 - feature_list_cnf APDU Syntax

Syntax No. of Bits Mnemonic
feature_list_cnf() {

feature_list_cnf_tag 24 uimsbf
length_field()

}

feature_list_cnf_tag 0x9F9804

9.15.5.4 feature_list_changed APDU

The Host or the Card SHALL send the feature_list_changed() APDU to inform the Card or Host that its feature list
has changed.

Table 9.15–7 - feature_list_changed APDU Syntax

Syntax No. of Bits Mnemonic
feature_list_changed() {

feature_list_changed_tag 24 uimsbf
length_field()

}

feature_list_changed_tag 0x9F9805

9.15.5.5 feature_parameters_req APDU

After the feature list exchange has occurred, the Card MAY, at any time, send the feature_parameters_req() APDU
to the Host. The Host SHALL NOT send this APDU to the Card.

Table 9.15–8 - feature_parameters_req APDU Syntax

Syntax No. of Bits Mnemonic
feature_paramters_req() {

feature_paramters_req_tag 24 uimsbf
length_field()

}

feature_parameters_req_tag 0x9F9806

9.15.5.6 feature_parameters APDU

The Host SHALL send the feature_parameters APDU with its feature list to the Card after receiving a
feature_parameters_req() APDU, or when any of the parameters in the Host’s generic feature list are modified,
except if the change is the result of receiving a feature_parameters() APDU from the Card. The Card MAY ignore
any feature parameters, which it does not support.

The Card MAY send the feature_parameters() APDU at any time in response to a message it receives from the
headend.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 147

Table 9.15–9 - feature_parameters APDU Syntax

Syntax No. of Bits Mnemonic
feature_parameters() {

feature_parameters_tag 24 uimsbf
length_field()
number_of_features 8 uimsbf
for (i=0; i<number_of_features; i++) {

feature_id 8 uimsbf
if (feature_id == 0x01) {

rf_output_channel()
}
if (feature_id == 0x02) {

p_c_pin()
}
if (feature_id == 0x03) {

p_c_settings()
}
if (feature_id == 0x04) {

ippv_pin()
}
if (feature_id == 0x05) {

time_zone()
}
if (feature_id == 0x06) {

daylight_savings()
}
if (feature_id == 0x07) {

ac_outlet()
}
if (feature_id == 0x08) {

language()
}
if (feature_id == 0x09) {

rating_region()
}
if (feature_id == 0x0A) {

reset_pin()
}
if (feature_id == 0x0B) {

cable_urls()
}
if (feature_id == 0x0C) {

EA_location_code()
}

}
}

feature_parameters_tag 0x9F9807

number_of_features Number of features to report

feature_id Assigned feature ID number (see Table 9.15–2)

rf_output_channel RF output channel

p_c_pin Parental Control PIN parameter

p_c_settings Parental Control Settings parameter

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

148 CableLabs® 8/03/06

ippv_pin IPPV PIN parameter

time_zone Time Zone parameter

 This feature is only utilized if the cable system crosses time zones.

daylight_savings Daylight Savings parameter

 This feature is only utilized if the cable system encompasses both areas, which
recognize daylight savings and those which do not.

ac_outlet AC Outlet parameter

language Language parameter

rating_region Rating Region parameter

reset_pin Reset PINs

cable_urls URL list

ea_location_code EAS location code

9.15.5.7 Feature Parameters Confirmation

Each generic feature will have a parameter definition uniquely assigned. These parameters will be consistent for all
APDUs. The following sections define these parameters if the specified features are implemented.

When the Card or Host receives the feature_parameter() APDU, it SHALL respond with the feature parameters
confirmation APDU.

Table 9.15–10 - Feature Parameters Confirm Object Syntax

Syntax # of bits Mnemonic
Feature_parameters_cnf() {
 feature_parameters_cnf_tag
 length_field()
 number_of_features
 for(i=0; i<number_of_features; i++){
 feature_id
 status
 }
}

24

8

8
8

uimsbf

uimsbf

uimsbf
uimsbf

feature_parameters_tag Value = 0x9F9808

number_of_features Number of features to report

feature_ID Assigned feature ID number as defined in Table 9.15–2

status Status of feature parameter
 0x00 Accepted
 0x01 Denied – feature not supported
 0x02 Denied – invalid parameter
 0x03 Denied – other reason
 0x04-0xFF Reserved

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 149

9.15.5.7.1 rf_output_channel

Table 9.15–11 - rf_output_channel

Syntax No. of Bits Mnemonic

rf_output_channel() {
output_channel 8 uimsbf
output_channel_ui 8 uimsbf

}

output_channel RF output channel. The Host SHALL ignore any value that it cannot
accommodate and will use its previous value.

Output_channel_ui Enable RF output channel user interface. If disabled, the Host SHALL disable
the user from changing the RF output channel.

 00 Reserved
 01 Enable RF output channel user interface
 02 Disable RF output channel user interface
 03-0xFF Reserved

9.15.5.7.2 p_c_pin

Table 9.15–12 - p_c_pin

Syntax No. of Bits Mnemonic
p_c_pin () {

p_c_pin_length 8 uimsbf
for (i=0; i<p_c_pin_length; i++) {

p_c_pin_chr 8 uimsbf
}

}

p_c_pin_length Length of the parental control PIN. Maximum length is 255 bytes.

p_c_pin_chr Parental control PIN character. The value is coded as defined in [ISO10646-1]. The first
character received is the first character entered by the user.

9.15.5.7.3 p_c_settings

Table 9.15–13 - p_c_settings

Syntax No. of Bits Mnemonic
p_c_settings() {

p_c_factory_reset 8 uimsbf
p_c_channel_count 16 uimsbf
for (i=0; i<p_c_channel_count; i++) {

reserved 4 ‘1111’
major_channel_number 10 uimsbf
minor_channel_number 10 uimsbf

}
}

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

150 CableLabs® 8/03/06

p_c_factory_reset Perform factory reset on parental control feature.
 0x00-0xA6 No factory reset.
 0xA7 Perform factory reset.
 0xA8-0xFF Reserved
p_c_channel_count Number of virtual channels to place under parental control

major_channel_number For two-part channel numbers, this is the major number for a virtual channel to
place under parental control. For one-part channel numbers, this is the higher
10 bits of the channel number for a virtual channel to place under parental
control. Both two-part and one-part channel numbers SHALL be as defined in
[SCTE65].

minor_channel_number For two-part channel numbers, this is the minor number for a virtual channel to
place under parental control. For one-part channel numbers, this is the lower 10
bits of the channel number for a virtual channel to place under parental control.
Both two-part and one-part channel numbers SHALL be as defined in
[SCTE65].

9.15.5.7.4 purchase_pin

Table 9.15–14 - purchase_pin

Syntax No. of Bits Mnemonic
purchase_pin() {

purchase_pin_length 8 uimsbf
for (i=0; i<purchase_pin_length; i++) {

purchase_pin_chr 8 uimsbf
}

}

purchase_pin_length Length of the Purchase PIN. Maximum length is 255 bytes.

purchase_pin_chr Purchase PIN character. The value is coded as defined in [ISO10646-1]. The
first character received is the first character entered by the user.

9.15.5.7.5 time_zone

Table 9.15–15 - time_zone

Syntax No. of Bits Mnemonic
time_zone() {

time_zone_offset 16 tcimsbf
}

time_zone_offset Two’s complement integer offset, in number of minutes, from UTC. The value
represented SHALL be in the range of –12 to +12 hours. This is intended for
systems which cross time zones.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 151

9.15.5.7.6 daylight_savings

Table 9.15–16 - daylight_savings

Syntax No. of Bits Mnemonic
daylight_savings() {

daylight_savings_control 8 uimsbf
}

daylight_savings_control Daylight savings time control
 0x00 Ignore this field
 0x01 Do not use daylight savings time
 0x02 Use daylight savings
 0x03-0xFF Reserved

9.15.5.7.7 ac_outlet

Table 9.15–17 - ac_outlet

Syntax No. of Bits Mnemonic
ac_outlet() {

ac_outlet_control 8 uimsbf
}

ac_outlet_control AC outlet control
 0x00 Use user setting
 0x01 Switched AC outlet
 0x02 Unswitched AC outlet (always on)
 0x03-0xFF Reserved

9.15.5.7.8 language

Table 9.15–18 - language

Syntax No. of Bits Mnemonic
language() {

language_control 24 uimsbf
}

language_control [ISO639-1]: 2002 Codes for the representation of names of Languages – Part 1: Alpha-2
code, and [ISO639-2]: 2002 Codes for the representation of names of Languages – Part
1: Alpha-3 code.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

152 CableLabs® 8/03/06

9.15.5.7.9 rating_region

Table 9.15–19 - rating_region

Syntax No. of Bits Mnemonic
rating_region() {

rating_region_setting 8 uimsbf
}

rating_region_setting The 8-bit unsigned integer defined in [SCTE65] that defines the rating region in
which the Host resides.

 0x00 Forbidden
 0x01 United States (50 states + possessions)
 0x02 Canada
 0x03-0xFF Reserved

9.15.5.7.10 reset_pin

Table 9.15–20 - reset_pin

Syntax No. of Bits Mnemonic
reset_pin() {

reset_pin_control 8 uimsbf
}

reset_pin_control Defines the control of resetting PIN(s). The reset value is defined by the
manufacturer and is not covered in this document.

 0x00 Do not reset any PIN
 0x01 Reset parental control PIN
 0x02 Reset purchase PIN
 0x03 Reset both parental control and purchase PINs
 0x04-0xFF Reserved

9.15.5.7.11 cable_urls

Table 9.15–21 - cable_urls

Syntax No. of Bits Mnemonic
cable_urls() {

number_of_urls 8 uimsbf
for (i=0; i<number_of_urls; i++) {

url_type 8 uimsbf
url_length 8 uimsbf
for (j=0; j<url_length; j++) {

url_char 8 uimsbf
}

}
}

number_of_urls Number of URLs defined; used in the following for loop:

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 153

url_type Type of URL
 0x00 Undefined
 0x01 Web portal URL
 0x02 EPG URL
 0x03 VOD URL
 0x04-0xFF Reserved
url_length Length of the URL. Used in the following for loop. The maximum length is

255 bytes.

url_char A URL character. The restricted set of characters and generic syntax defined in
[RFC2396], “Uniform Resource Identifier (URI): Generic Syntax”, SHALL be
used.

9.15.5.7.12 EA_location_code

Table 9.15–22 - EA_location_code

Syntax No. of Bits Mnemonic
EA_location_code() {

state_code 8 uimsbf
county_subdivision 4 uimsbf
reserved 2 ‘11’
county_code 10 uimsbf

}

state_code As defined in [J042]

county_subdivision As defined in [J042]

county_code As defined in [J042]

9.16 Generic Diagnostic Support
The Generic Diagnostic Support resource enables the Card to request that the Host perform a diagnostic and report
the status/result of the request to the Card. The Card MAY then use the diagnostic information to report diagnostics
to the headend or the OSD diagnostic application. If the Card attempts to open a diagnostic support session, and
the Host replies that the Generic Diagnostic Support is unavailable, the Card SHALL NOT request any diagnostic
information from the Host.

The Card MAY request that the Host perform a diagnostic and report the status/result in response to a headend OOB
message, or a SNMP message request to perform a diagnostic that is supported exclusively on the Host.

For M-Mode, this resource has been modified from Type 1. Type 2 of this Resource allows for receiving transport
stream information from a specific transport stream identified by the Local Transport Stream Identifier (LTSID).

If a Host does support Type 1 of this APDU, the information returned SHALL only be for the primary transport
stream (LTSID = 0x01).

Table 9.16–1 - Generic Diagnostic Support Resource

Resource Mode Class Type Version Identifier (hex)
Generic Diagnostic
Support

S-Mode 260 1 2 0x01040042

Generic Diagnostic
Support

M-Mode 260 2 1 0x01040081

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

154 CableLabs® 8/03/06

The Generic Diagnostic Support resource is made up of the following 2 APDUs.

Table 9.16–2 - Generic Diagnostic Support APDUs

APDU Name Tag Value Resource
Direction
Host ↔

CableCARD

diagnostic_req() 0x9FDF00 Generic Diagnostic Support ←
diagnostic_cnf() 0x9FDF01 Generic Diagnostic Support →

The following values SHALL be used as the diagnostic_id.

Table 9.16–3 - Diagnostic Ids

Diagnostic Value

Host memory allocation 0x00
Application version number 0x01
Firmware version 0x02
MAC address 0x03
FAT status 0x04
FDC status 0x05
Current Channel Report 0x06
1394 Port 0x07
DVI_status 0x08
eCM 0x09
HDMI Port Status 0x0A
RDC status 0x0B
OCHD2 Network Address 0x0C
Home Networking Status 0x0D
Host Information 0x0E
Reserved 0x0F-0xFF

9.16.1 diagnostic_req APDU

The Card’s diagnostic application SHALL use the diagnostic_req() APDU to request the Host to perform a specific
set of diagnostic functions and report the result/status of the diagnostics to the Card’s diagnostic application.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 155

Table 9.16–4 - S-Mode - diagnostic_req APDU Syntax (Version 2)

Syntax No. of Bits Mnemonic
diagnostic_req() {

diagnostic_req_tag 24 uimsbf
length_field()
number_of_diag 8 uimsbf
for (i=0; i<number_of_diag; i++) {

diagnostic_id 8 uimsbf
}

}

diagnostic_req_tag 0x9FDF00

number_of_diag This field indicates the total number of self-diagnostics being requested.

diagnostic_id This field is a unique ID assigned to a particular diagnostic. These values are defined in
Table 9.16–3.

Table 9.16–5 - M-Mode - diagnostic_req APDU Syntax (Version 1)

Syntax No. of Bits Mnemonic
diagnostic_req() {

diagnostic_req_tag 24 uimsbf
length_field()
number_of_diag 8 uimsbf
for (i=0; i<number_of_diag; i++) {

diagnostic_id 8 uimsbf
ltsid 8 uimsbf

}
}

diagnostic_req_tag 0x9FDF00

number_of_diag This field indicates the total number of self-diagnostics being requested.

diagnostic_id This field is a unique ID assigned to a particular diagnostic. These values are defined in
Table 9.16–3.

ltsid Local Transport Stream ID. Only required when the M-CARD is present, and operating
in M-Mode. For parameters where this has no meaning, the value SHALL be 0x00.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

156 CableLabs® 8/03/06

9.16.2 diagnostic_cnf APDU

The Host SHALL transmit the diagnostic_cnf() APDU after reception of the diagnostic_req() APDU and the Host
has completed any tests required to report the result/status. When there are multiple instances of a report, each
report SHALL be transmitted with the same diagnostic ID. In this case, the number_of_diag value will be different
than the one in the diagnostic_req() APDU.

Table 9.16–6 - S-Mode - diagnostic_cnf APDU Syntax (Type 1, Version 2)

Syntax No. of Bits Mnemonic
diagnostic_cnf() {

diagnostic_cnf_tag 24 uimsbf
length_field()
number_of_diag 8 uimsbf
for (i=o; i<number_of_diag; i++) {

diagnostic_id 8 uimsbf
status_field 8 uimsbf
if (status_field == 0x00) {

if (diagnostic_id == 0x00) {
memory_report()

}
if (diagnostic_id == 0x01) {

software_ver_report()
}
if (diagnostic_id == 0x02) {

firmware_ver_report()
}
if (diagnostic_id == 0x03) {

MAC_address_report()
}
if (diagnostic_id == 0x04) {

FAT_status_report()
}
if (diagnostic_id == 0x05) {

FDC_status_report()
}
if (diagnostic_id == 0x06) {

current_channel_report()
}
if (diagnostic_id == 0x07) {

1394_port_report()
}
if (diagnostic_id == 0x08) {
 DVI_status report()
}
if (diagnostic_id == 0x09) {
 eCM_status_report()
}
if (diagnostic_id == 0x0A) {
 HDMI_port_status_report()
}
if (diagnostic_id == 0x0B) {
 RDC_status_report()
}
if (diagnostic_id == 0x0C) {
 net_address_report()
}
if (diagnostic_id == 0x0D) {
 home_network_report()

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 157

Syntax No. of Bits Mnemonic
}
if (diagnostic_id == 0x0E) {
 host_information_report()
}

}
}

diagnostic_cnf_tag 0x9FDF01

number_of_diag This field indicates the total number of self-diagnostics being requested.

diagnostic_id This field is a unique ID assigned to a particular diagnostic. These values are defined in
Table 9.16–3.

status_field Status of the requested diagnostic. See Table 9.16–8.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

158 CableLabs® 8/03/06

Table 9.16–7 - M-Mode - diagnostic_cnf APDU Syntax (Type 2, Version 1)

Syntax No. of Bits Mnemonic
diagnostic_cnf() {

diagnostic_cnf_tag 24 uimsbf
length_field()
number_of_diag 8 uimsbf
for (i=o; i<number_of_diag; i++) {

diagnostic_id 8 uimsbf
ltsid 8 uimsbf
status_field 8 uimsbf
if (status_field == 0x00) {

if (diagnostic_id == 0x00) {
memory_report()

}
if (diagnostic_id == 0x01) {

software_ver_report()
}
if (diagnostic_id == 0x02) {

firmware_ver_report()
}
if (diagnostic_id == 0x03) {

MAC_address_report()
}
if (diagnostic_id == 0x04) {

FAT_status_report()
}
if (diagnostic_id == 0x05) {

FDC_status_report()
}
if (diagnostic_id == 0x06) {

current_channel_report()
}
if (diagnostic_id == 0x07) {

1394_port_report()
}
if (diagnostic_id == 0x08) {
 DVI_status()
}
if (diagnostic_id == 0x09) {
 eCM_status report()
}
if (diagnostic_id == 0x0A) {
 HDMI_port_status_report()
}
if (diagnostic_id == 0x0B) {
 RDC_status_report()
}
if (diagnostic_id == 0x0C) {
 net_address_report()
}
if (diagnostic_id == 0x0D) {
 home_network_report()
}
if (diagnostic_id == 0x0E) {
 host_information_report ()
}

}
}

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 159

diagnostic_cnf_tag 0x9FDF01

number_of_diag This field indicates the total number of self-diagnostics being requested.

diagnostic_id This field is a unique ID assigned to a particular diagnostic. These values are defined in
Table 9.16–3.

ltsid Local Transport Stream ID. Only required when the Card is present, and operating in M-
Mode. For parameters where this has no meaning, the value SHALL be 0x00.

status_field Status of the requested diagnostic. See Table 9.16–8.

Table 9.16–8 - Table Status Field Values

Bit Value (Hex) Status_field

0x00 Diagnostic Granted
0x01 Diagnostic Denied – Feature not Implemented
0x02 Diagnostic Denied – Device Busy
0x03 Diagnostic Denied – Other reasons
0x04-0xFF Reserved for future use

For Diagnostic_id values from 0x0F to 0xFF, a Status_field value of 0x01 SHALL be returned.

9.16.3 Diagnostic Report Definition

Each applicable diagnostic SHALL consist of a set of diagnostic reports that SHALL contain a specific set of
parameters applicable to the requested diagnostic. The following sections define these reports and their associated
parameters.

9.16.3.1 memory_report

Memory reports SHALL contain the memory parameters associated with the Host.

Table 9.16–9 - memory_report

Syntax No. of Bits Mnemonic
memory_report() {

number_of_memory 8 uimsbf
if (i=0; i<number_of_memory; i++) {

memory_type 8 uimsbf
memory_size 32 uimsbf

}
}

number_of_memory The number of memory types being reported in this message.

memory_type Designates the type of memory that is being reported.
 0x00 ROM
 0x01 DRAM
 0x02 SRAM
 0x03 Flash
 0x04 NVM
 0x05 Internal Hard drive, no DRM (Digital Rights Management) support

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

160 CableLabs® 8/03/06

 0x06 Video memory
 0x07 Other memory
 0x08 Internal Hard Drive, DRM support
 0x09 External Hard Drive, no DRM support
 0x0A External Hard Drive, DRM support
 0x0B Optical media, no DRM support
 0x0C Optical media, DRM support
 0x0D-0xFF Reserved
memory_size Designates the physical size of the specified memory type. The units are

kilobytes, defined to be 1,024 bytes.

9.16.3.2 software_ver_report

Software version reports SHALL contain the software version parameters associated with the Host.

Table 9.16–10 - software_ver_report

Syntax No. of Bits Mnemonic
software_ver_report() {

number_of_applications 8 uimsbf
for (i=0; i<number_of_applications; i++) {

application_version_number 16 uimsbf
application_status_flag 8 uimsbf
application_name_length 8 uimsbf
for (j=0; j<application_name_length; j++) {

application_name_byte 8 uimsbf
}
application_sign_length 8 uimsbf
for (j=0; j<application_sign_length) j++) {

application_sign_byte 8 uimsbf
}

}
}

number_of_applications Total number of applications contained with the report.

application_version_number 16-bit version number of the application.

application_status_flag Status of the software, either active, inactive or downloading.
 0x00 Active
 0x01 Inactive
 0x02 Downloading
 0x03-0xFF Reserved
application_name_length Designates the number of characters required to define the applications name.

application_name_byte ASCII character, 8-bits per character, a string that identifies the application.

application_sign_length Designates the number of characters required to define the application signature.

application_sign_byte ASCII character, 8-bits per character, a string that identifies the application
signature.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 161

9.16.3.3 firmware_ver_report

Firmware version reports SHALL contain the firmware version parameters associated with the Host.

Table 9.16–11 - firmware_ver_report

Syntax No. of Bits Mnemonic
firmware_ver_report() {

firmware_version 16 uimsbf
firmware_date{

firmware_year 16 uimsbf
firmware_month 8 uimsbf
firmware_day 8 uimsbf

}

firmware_version 16-bit version number of the firmware.

firmware_year 16-bit designation of the firmware’s year.

firmware_month 8-bit numerical representation of the firmware’s month.

firmware_day 8-bit numerical representation of the firmware’s day.

9.16.3.4 MAC_address_report

The MAC address report SHALL contain the MAC address parameters associated with the Host.

Table 9.16–12 - MAC_address_report

Syntax No. of Bits Mnemonic
MAC_address_report() {

number_of_addresses 8 uimsbf
for (i=0; i<number_of_addresses; i++) {

MAC_address_type 8 uimsbf
number_of_bytes 8 uimsbf
for (j=0; j<number_of_bytes; j++) {

MAC_address_byte 8 uimsbf
}

}
}

number_of_addresses Total number of MAC addresses contained in the report.

MAC_address_type Type of device associated with reported MAC address.
 0x00 No addressable device available
 0x01 Host
 0x02 1394 port
 0x03 Reserved
 0x04 DOCSIS
 0x05 Reserved
 0x06-0xFF Reserved
number_of_bytes The total number of bytes required for the MAC address.

MAC_address_byte One of a number of bytes that constitute the Media Access Control (MAC)
address of the Host device. Each byte represents 2 hexadecimal values (xx) in
the range of 0x00 to 0xFF.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

162 CableLabs® 8/03/06

9.16.3.5 FAT_status_report

In response to a FAT status report request, the Host SHALL reply with a FAT_status_report, unless an error has
occurred. If a Host contains multiple FAT tuners, then the Host SHALL send multiple FAT_status_report, one for
each tuner.

Table 9.16–13 - FAT_status_report

Syntax No. of Bits Mnemonic
FAT_status_report() {

reserved 4 ‘1111’
PCR_lock 1 bslbf
modulation_mode 2 bslbf
carrier_lock_status 1 bslbf
SNR 16 tcimsbf
signal_level 16 tcimsbf

}

PCR_lock Indicates if the FAT channel receiver is locked to the currently tuned channel.
(NOTE: Not valid if modulation_mode == 00b OR modulation_mode == 0b11)

 0b Not locked
 1b Locked
modulation_mode Indicates if the current forward transport is analog, QAM-64, or QAM-256
 00b Analog
 01b QAM64
 10b QAM256
 11b Other
carrier_lock_status Indicates if the current carrier is locked or not locked. (NOTE: Not valid if

modulation_mode == 00b OR modulation_mode == 0b11)
 0b Not locked
 1b Locked
SNR Numerical representation of the signal to noise ratio in tenths of a dB. (NOTE:

Not valid if modulation_mode == 00b OR modulation_mode == 0b11)

signal_level Numerical representation of the signal level in tenths of a dBmV. NOTE: For
modulation_mode == 00b, use peak signal level. All others use average signal
level.

9.16.3.6 FDC_status_report

In response to a FDC status report request, the Host SHALL reply with a FDC status report, unless an error has
occurred.

Table 9.16–14 - FDC_status_report

Syntax No. of Bits Mnemonic
FDC_report() {

FDC_center_freq 16 uimsbf
reserved 6 ‘111111’
carrier_lock_status 1 bslbf
reserved 1 bslbf

}

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 163

FDC_center_freq Indicates the frequency of the FDC center frequency, in MHz. (Frequency = value *
0.05 + 50 MHz).

Table 9.16–15 - FDC Center Frequency Value

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Frequency (MS) Frequency (LS)

carrier_lock_status Indicates if the current carrier is locked or not locked.
 0b Not locked
 1b Locked

9.16.3.7 current_channel_report

In response to a Current Channel report request, the Host SHALL reply with a current_channel report, unless an
error has occurred. If a Host contains multiple FAT tuners, then the Host SHALL send multiple current_channel
reports, one for each tuner.

Table 9.16–16 - current_channel_report

Syntax No. of Bits Mnemonic
current_channel_() {

Reserved 2 ‘11’
channel_type 1 bslbf
authorization_flag 1 bslbf
purchasable_flag 1 bslbf
purchased_flag 1 bslbf
preview_flag 1 bslbf
parental_control_flag 1 bslbf
current_channel 16 uimsbf

}

channel_type Indicates if the channel is analog or digital.
 0b Analog
 1b Digital
authorization_flag Indicates if the Host is authorized for the currently tuned channel.
 0b Not authorized
 1b Authorized
purchasable_flag Indicates if the currently tuned channel MAY be purchased.
 0b Not purchasable
 1b Purchasable
purchased_flag Indicates if the currently tuned channel has been purchased.
 0b Not purchased
 1b Purchased
preview_flag Indicates if the currently tuned channel is in preview mode.
 0b Not in preview mode
 1b In preview mode
parental_control_flag Indicates if the currently tuned channel is under parental control.
 0b Channel is not blocked
 1b Channel is blocked

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

164 CableLabs® 8/03/06

current_channel Indicates the numerical representation of the currently tuned channel. If a tuner
is not being utilized, then it SHALL return 0xFFFF.

9.16.3.8 1394_port_report

In response to a 1394 Port report request, the Host SHALL reply with a 1394_port_report, unless an error has
occurred.

Table 9.16–17 - 1394_port_report

Syntax No. of Bits Mnemonic
1394_port_report() {

reserved 3 ‘111’
loop_status 1 bslbf
root_status 1 bslbf
cycle_master_status 1 bslbf
host_a/d_source_selection_status 1 bslbf
port_1_connection_status 1 bslbf
port_2_connection_status 1 bslbf
total_number_of_nodes 16 uimsbf
number_of_connected_devices 8 uimsbf
for (i=0;
i<number_of_connected_devices; i++) {

device_subunit_type 5 uimsbf
device_a/d_source_selection_status 1 bslbf
reserved 2 ‘11’
eui_64 64 uimsbf

}
}

loop_status Indicates if a loop exists on the 1394 bus.
 0b No loop exists
 1b Loop exists
root_status Indicates if the Host device is the root node on the 1394 bus.
 0b Not root
 1b Is root
cycle_master_status Indicates if the Host device is the cycle master node on the 1394 bus.
 0b Not cycle master
 1b Is cycle master
host_device_a/d_source_selection_status Indicates if the Host supports A/D source selection function.
 0b Not Supported
 1b Supported
port_1_connection_status Indicates if port 1 of the 1394 PHY is connected to a 1394 bus.
 0b Not connected
 1b Connected
port_2_connection_status Indicates if port 2 of the 1394 PHY is connected to a 1394 bus.
 0b Not connected
 1b Connected
total_number_of_nodes Indicates the total number of nodes connected to the 1394 bus. A maximum of

65,535 nodes MAY exist, excluding the Host (a maximum of 64 nodes with a
maximum of 1,024).

number_of_connected_devices Total number of sink devices connected to the Host via IEEE-1394.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 165

device_subunit_type Subunit type of device connected to the Host, where subunit type encodes are as
defined via the 1394TA:

 0x00 Monitor
 0x01 Audio
 0x02 Printer
 0x03 Disc
 0x04 Tape Recorder/Player
 0x05 Tuner
 0x06 CA
 0x07 Camera
 0x08 Reserved
 0x09 Panel
 0x0A Bulletin Board
 0x0B Camera Storage
 0x0C-0x1B Reserved
 0x1C Vendor Unique
 0x1D Reserved
 0x1E Subunit_type extended to next byte
 0x1F Unit
device_a/d_source_selection_status Indicates if the device supports A/D source selection function.
 0b Not Supported
 1b Supported
eui_64 64-bit Extended Unique Identifier (a.k.a. Global Identifier) of the device.

9.16.3.9 DVI Status Report

In response to a DVI Status Report request, the Host SHALL reply with a DVI Status Report, unless an error has
occurred. NOTE: A Host SHALL always respond if it has a DVI connector, even if an HDMI device is connected
through the DVI connector. If a Host does not have a DVI connector, it SHALL NOT respond to the DVI Status
Report Request, even if a DVI device is connected through an HDMI connector.

Table 9.16–18 - DVI Status Report Syntax

Syntax # of bits Mnemonic
DVI_status_report() {

reserved 3 ‘111’
connection_status 2 bslbf
host_HDCP_status 1 bslbf
device_HDCP_status 2 bslbf
video_format
{

horizontal_lines 16 uimsbf
vertical_lines 16 uimsbf
frame_rate 8 uimsbf
aspect_ratio 2 bslbf
prog_inter_type 1 bslbf
reserved 5 bslbf

}
}

connection_status Indicates if a connection exists on the DVI port
 00b No connection exists
 01b Device connected – not repeater
 10b Device connected – repeater

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

166 CableLabs® 8/03/06

 11b Reserved
host_HDCP_status Indicates if HDCP is enabled on the DVI link
 0b Not enabled
 1b Enabled
device_HDCP_status Indicates the connected device’s HDCP status (valid only when

connection_status is not equal to 002).
 00b Non HDCP device
 01b Compliant HDCP device
 10b Revoked HDCP device
 11b Reserved
video_format Indicates the current video format utilized on the DVI port as defined in the

following fields:

horizontal_lines Indicates the number of horizontal lines associated with the video format on the
DVI link.

vertical_lines Indicates the number of vertical lines associated with the video format on the
DVI link.

frame_rate Indicates the frame rate associated with the video format on the DVI link as
defined in the following table.

Table 9.16–19 - Frame Rate Associated With the Video Format On the DVI Link

Frame Rate Code Frame Rate

01 23.976 Hz
02 24 Hz
04 29.97 Hz
05 30 Hz
07 59.94 Hz
08 60 Hz

aspect_ratio Indicates the aspect ratio associated with the video format on the DVI link as
defined in the following table:

Table 9.16–20 - Aspect Ratio Associated With the Video Format On the DVI Link

Bit Value Video Format

00 4:3
01 16:9
10 Reserved
11 Reserved

prog_inter_type Indicates if the video is progressive or interlaced on the DVI link,
 0b Interlaced
 1b Progressive

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 167

9.16.3.10 eCM Status Report

In response to an embedded cable modem status request report, the Host SHALL reply with an eCM status report,
unless an error has occurred.

Table 9.16–21 - eCMStatus Report Syntax

Syntax # of bits Mnemonic
eCM_status_report() {

downstream_center_freq 16 uimsbf
downstream_power_level 16 tcimsbf
downstream_carrier_lock_status 1 bslbf
reserved 2 "11"
channel_s-cdma_status 2 bslbf
upstream_modulation_type 3 bslbf
upstream_xmt_center_freq 16 uimsbf
upstream_power_level 16 tcimsbf
upstream_symbol_rate 8 uimsbf

}

downstream_center_freq Indicates the frequency of the FDC center frequency, in MHz
(Frequency = value * 0.05 + 50 MHz).

Table 9.16–22 - Downstream Center Frequency Value

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Frequency (MS) Frequency (LS)

downstream_power_level Numerical representation of the signal level in tenths of a dBmV.

downstream carrier_lock_status Indicates if the current carrier is locked or not locked.
 0b Not locked
 1b Locked
channel_s-cdma_status Channel S-CDMA status
00b Channel is not S-CDMA
01b Channel is S-CDMA, TCM encoding
10b Channel is S-CDMA, TDMA encoding
11b Channel is S-CDMA, other encoding
upstream_modulation_type Indicates the current upstream modulation type.
000b QPSK
001b 16-QAM
010b 32-QAM
011b 64-QAM
100b 128-QAM
101b 256-QAM
110b 512-QAM
111b Other
upstream_xmt__center_freq Indicates the frequency of the RDC center frequency, in MHz

(Frequency = value * 0.05 + 5 MHz).

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

168 CableLabs® 8/03/06

Table 9.16–23 - Upstream Transmit Center Frequency Value

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Frequency (MS) Frequency (LS)

upstream_power_level Numerical representation of the signal level in dBmV.

upstream_symbol_rate Numerical representation of the symbol rate as defined below.
 0x00 0.16 Msps
 0x01 0.32 Msps
 0x02 0.64 Msps
 0x03 1.28 Msps
 0x04 2.56 Msps
 0x05 5/12 Msps
 0x06 - 0xFF Reserved
upstream_modulation_type Indicates the current modulation type.
 0b QPSK
 1b 16QAM

9.16.3.11 HDMI Port Status Report

In response to a HDMI Status Report request, the Host SHALL reply with a HDMI Status Report, unless an error
has occurred. NOTE: A Host SHALL always respond if it has an HDMI connector, even if a DVI device is
connected through the HDMI connector. If a Host does not have an HDMI connector, it SHALL NOT respond to
the HDMI Status Report Request, even if an HDMI device is connected through a DVI connector.

Table 9.16–24 - HDMI Status Report Syntax

Syntax # of bits Mnemonic
HDMI_status_report() {

device_type 1 bslbf
color_space 2 bslbf
connection_status 2 bslbf
host_HDCP_status 1 bslbf
device_HDCP_status 2 bslbf
video_format
{

horizontal_lines 16 uimsbf
vertical_lines 16 uimsbf
frame_rate 8 uimsbf
aspect_ratio 2 bslbf
prog_inter_type 1 bslbf
reserved 5 bslbf

}
audio_format
{

audio_sample_size 2 bslbf
audio_format 3 bslbf
audio_sample_freq 3 bslbf

}
}

device_type Indicates whether the device is DVI or HDM
 0b Device connected through HDMI connector uses DVI
 1b Device connected through HDMI connector uses HDMI

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 169

color_space Indicates the color space utilized (valid when connection_status does not equal
0 AND device_type is equal to 0b1)

 00b RGB
 01b YCC422
 10b YCC444
 11b Reserved
connection_status Indicates if a connection exists on the HDMI port
 00b No connection exists
 01b Device connected, no repeater
 10b Device connected, with repeater
 11b Reserved
host_HDCP_status Indicates if HDCP is enabled on the HDMI link
 0b Not enabled
 1b Enabled.
device_HDCP_status Indicates the connected device’s HDCP status (valid only when

connection_status is not equal to 002)
 00b Non HDCP device
 01b Compliant HDCP device
 10b Revoked HDCP device
 11b Reserved
video_format Indicates the current video format utilized on the HDMI port as defined in the

following fields:

horizontal_lines Indicates the number of horizontal lines associated with the video format on the
HDMI link.

vertical_lines Indicates the number of vertical lines associated with the video format on the
HDMI link.

frame_rate Indicates the frame rate associated with the video format on the HDMI link as
defined in the following table.

Table 9.16–25 - Frame Rate Associated With the Video Format On the HDMI Link

Frame Rate Code Frame Rate

01 23.976 Hz
02 24 Hz
04 29.97 Hz
05 30 Hz
07 59.94 Hz
08 60 Hz

aspect_ratio Indicates the aspect ratio associated with the video format on the HDMI link as
defined in the following table:

Table 9.16–26 - Aspect Ratio Associated With the Video Format On the HDMI Link

Bit Value Video Format

00 4:3
01 16:9

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

170 CableLabs® 8/03/06

Bit Value Video Format

10 Reserved
11 Reserved

prog_inter_type Indicates if the video is progressive or interlaced on the HDMI link,
 0b Interlaced
 1b Progressive
audio_sample_size Audio sample size (valid when connection_status is not equal to 0 AND

device_type is equal to 0b1 and audio_format = 0b000)
 00b Not valid (audio_format is not equal to 0b000)
 01b 16
 10b 20
 11b 24
audio_format Audio format (valid when connection_status is not equal to 0 AND device_type

is equal to 0b1)
 000b PCM
 001b MPEG-1
 010b MPEG-2
 011b DTS
 100b AAC
 101b MP3
 110b ATRAC
 111b Other audio format
audio_sample_freq Audio sample frequency (valid when connection_status is not equal to 0 AND

device_type is equal to 0b1)
 000b 32.0 KHz
 001b 44.1 KHz
 010b 48.0 KHz
 011b 88.2 KHz
 100b 96.0 KHz
 101b 176.4 KHz
 110b 192 KHz
 111b Other sample frequency

9.16.3.12 RDC Status Report

In response to a RDC status report request, the Host SHALL reply with a RDC status report, unless an error has
occurred

Table 9.16–27 - RDC_status_report

Syntax No. of Bits Mnemonic
RDC_report() {

RDC_center_freq 16 uimsbf
reserved 6 ‘111111’
RDC_transmitter_power_level 8 tcimsbf
RDC_data_rate 2 bslbf

}

RDC_center_freq Indicates the frequency of the RDC center frequency, in MHz
(Frequency = value * 0.05 + 5 MHz).

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 171

Table 9.16–28 - RDC Center Frequency Value

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Frequency (MS) Frequency (LS)

RDC_transmitter_power_level Indicates the RDC power level in dBmV.

RDC_data_rate Indicates the current RDC data rate.
 00b 256kbps
 01b 1544kbps
 10b 3088kbps
 11b Reserved

9.16.3.13 OCHD2 Network Address

The net_address_report SHALL contain the network address parameters associated with the Host and the Card.

Table 9.16–29 - net_address_report

Syntax No. of Bits Mnemonic
net_address_report() {

number_of_addresses 8 uimsbf
for (i=0; i<number_of_addresses; i++) {

net_address_type 8 uimsbf
number_of_bytes_net 8 uimsbf
for (j=0; j<number_of_bytes_net; j++) {

net_address_byte 8 uimsbf
}
number_of_bytes_subnet 8 uimsbf
for (j=0; j<number_of_bytes_subnet; j++) {

sub_net_address_byte 8 uimsbf
}

}
}

number_of_addresses Total number of network addresses contained in the report.

net_address_type Type of device associated with reported network address.
 0x00 No addressable device available
 0x01 Host
 0x02 1394 port
 0x03 Reserved
 0x04 DOCSIS
 0x05 Reserved
 0x06 CableCARD
 0x07-0xFF Reserved
number_of_bytes_net The total number of bytes required for the network address. NOTE: IPv6

SHALL be reported as 16 bytes.

net_address_byte One of a number of bytes that constitute the Network addresses assigned to the
Host device. Each byte represents 2 hexadecimal values (xx) in the range of
0x00 to 0xFF.

number_of_bytes_subnet The total number of bytes required for the subnet address. NOTE: IPv6 shall be
reported as 16 bytes.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

172 CableLabs® 8/03/06

sub_net_address_byte One of a number of bytes that constitute the Network addresses assigned to the
Host device. Each byte represents 2 hexadecimal values (xx) in the range of
0x00 to 0xFF.

9.16.3.14 home_network_report

In response to a Home Network report request, the Host SHALL reply with a home_network_report, unless an error
has occurred.

Table 9.16–30 - home_network_report

Syntax No. of Bits Mnemonic
home_network_report() {

max_clients 8 uimsbf
host_DRM_status 8 uimsbf
connected_clients 8 uimsbf
for (i=0; i<connected_clients; i++) {

client_mac_address 48 uimsbf
number_of_bytes_net 8 uimsbf
for(j=0; j<number_of_bytes_net; j++) {

client_IP_address_byte 8 uimsbf
}
client_DRM_status 8 uimsbf

}
}

max_clients Maximum number of clients the Host can support. NOTE: If the Host does not
support home network clients, then it SHALL report 0x00.

host_DRM_status Host DRM (Digital Rights Management) capability.
 0x00 Host has no DRM capability.
 0x01 Host supports DRM but not for home networked clients.
 0x02 Host supports DRM for itself and home networked clients.
 0x03-0xFF – Reserved.
connected_clients Number of connected clients.

client_mac_address MAC address of client i.

number-of_bytes_net Number of bytes in the network address. NOTE: IPv6 SHALL be reported as
16 bytes.

client_IP_address_byte IP address of client i. NOTE: If no IP address is assigned for client i, then this
value SHALL be returned as 0x00 for all bytes.

client_DRM_status ASD status of client i.
 0x00 – No DRM support in client i. NOTE: If the Host device does not

support DRM, then this value SHALL always be returned.
 0x01 – DRM trust not established in client i.

9.16.3.15 0x02 – DRM trust established in client i.host_information_report

In response to a Host Information report request, the Host SHALL reply with a host_information_report, unless an
error has occurred.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 173

Table 9.16–31 - home_network_report

Syntax No. of Bits Mnemonic
host_information_report() {

vendor_name_length 8 uimsbf
for (i=0; i<vendor_name_length; i++) {

vendor_name_character 8 uimsbf
}
model_name_length 8 uimsbf
for (i=0; model_name_length; I++) {

model_name_character 8 uimsbf
}

}

vendor_name_length Length of the vendor name.

vendor_name_character Name of the vendor in ASCII.

model_name_length Length of the model name.

model_name_character Name of the model in ASCII.

9.17 Specific Application Support
The Specific Application Support resource is intended for use when a vendor-specific application, which resides in
either the Card or the Host, needs to communicate a private set of objects across the interface. Support for this
resource is required in the Host and Card. The Card SHALL establish at least one session for communication with
the Specific Application Support Resource. Private Host applications and a corresponding specific application in
the Card MAY use one of two possible modes of communication.

• Synchronous mode: where either the SAS_data_rqst(), SAS_data_av(), SAS_data_cnf(), SAS_server_query()
and SAS_server_reply() group of APDUs are used to communicate a private set of objects across the interface
where flow control is managed at the APDU level.

• Asynchronous mode: where only the SAS_async_msg() APDU is used to communicate a private set of objects
across the interface where flow control is managed at the vendor-specific application level between Host and
Card applications.

The CableCARD device MAY open one or more Specific Application Support (SAS) sessions for private
communications between vendor-specific Card applications and private Host applications. The Card, as the
initiator of the sessions, is responsible for associating each session (by session number) with the appropriate vendor-
specific Card application. When a private Host application is ready to establish a connection with the Card, a
SAS_connect_rqst() APDU is sent to the Card over any opened SAS session. The Card uses the private Host
application ID to identify the specific SAS session that SHOULD be used for communication between the identified
private Host application and the appropriate vendor-specific Card application. This private Host application ID is
returned to the Host via the SAS_connect_cnf() APDU. This operation establishes the communication path
between a specific pair of applications (vendor-specific Card application, private Host application).

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

174 CableLabs® 8/03/06

Card Host

Open_Session_Response

Open_Session_Request

Open_Session_Response

Open_Session_Request

Sas_Connect_Rqst

 SAS #1

 SAS #n

Sas_Connect_Cnf

Private App ID #xx

App ID #xx, SAS #k

App ID #xx, SAS #k

•
•
•

Figure 9.17-1 - Specific Application Support Connection Sequence

In some instances, the Card MAY receive an SAS_connect_rqst() APDU before a session has been opened for the
associated vendor-specific application. In this case, the Card SHALL establish the necessary SAS session and then
respond with the SAS_connect_cnf() APDU.

Card
Host

Open_Session_Response

Open_Session_Request

Open_Session_Response

Open_Session_Request

Sas_Connect_Rqst

 SAS #1

 SAS #k

Sas_Connect_Cnf

Private App ID #xx

App ID #xx, SAS #k
App ID #xx, SAS #k

Figure 9.17-2 - Specific Application Support Alternate Connection Sequence

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 175

Table 9.17–1 - Specific Application Support Resource

Resource Mode Class Type Version Identifier (hex)
Specific Application
Support

S-Mode/M-Mode 144 1 2 0x00900042

The Specific Application Support resource includes seven APDUs as described in the following table:

Table 9.17–2 - Specific Application Support APDUs

APDU Name Tag Value Resource
Direction
Host ↔

CableCARD

SAS_connect_rqst() 0x9F9A00 Specific Application Support →
SAS_connect() 0x9F9A01 Specific Application Support ←
SAS_data_rqst() 0x9F9A02 Specific Application Support ↔
SAS_data_av() 0x9F9A03 Specific Application Support ↔
SAS_data_cnf() 0x9F9A04 Specific Application Support ↔
SAS_data_query() 0x9F9A05 Specific Application Support ↔
SAS_data_reply() 0x9F9A06 Specific Application Support ↔
SAS_async_msg() 0x9F9A07 Specific Application Support ↔

9.17.1 SAS_connect_rqst APDU

If required by a private Host application, the Host SHALL send a SAS_connect_rqst() APDU to the Card to
establish a connection between that application and the corresponding Card vendor-specific application.

Table 9.17–3 - SAS_connect_rqst APDU Syntax

Syntax No. of Bits Mnemonic
SAS_connect_rqst () {

SAS_connect_rqst_tag 24 uimsbf
length_field()
private_host_application_ID 64 uimsbf

}

SAS_connect_rqst_tag 0x9F9A00

private_host_application_ID This is a unique identifier of the private Host application.

 NOTE (Informative): There is no need to register private_host_application_id
used by different manufacturers. Applications that make use of this resource are
downloaded into the Host by the cable operator, and thus the application has
knowledge of valid ID values that are expected from operator-supplied Cards.

9.17.2 SAS_connect_cnf APDU

After receiving the SAS_connect_rqst() APDU, the Card SHALL reply with a SAS_connect_cnf() APDU to inform
the Host of which SAS session is to be used for this connection.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

176 CableLabs® 8/03/06

Table 9.17–4 - SAS_connect_cnf APDU Syntax

Syntax No. of Bits Mnemonic
SAS_connect_cnf() {

SAS_connect_cnf_tag 24 uimsbf
length_field()
private_host_application_ID 64 uimsbf
SAS_session_status 8 uimsbf

}

SAS_connect_cnf_tag 0x9F9A01

private_host_application_ID This is a unique identifier of the private Host application.

 NOTE (Informative): There is no need to register private_host_application_id
used by different manufacturers. Applications that make use of this resource are
downloaded into the Host by the cable operator, and thus the application has
knowledge of valid ID values that are expected from operator-supplied Cards.

SAS_session_status The status of the requested connection.
 0x00 Connection established
 0x01 Connection denied – no associated vendor-specific Card application

found
 0x02 Connection denied – no more connections available
 0x03-0xFF Reserved

9.17.3 SAS_data_rqst APDU

Once a communication path has been established between the application pair (vendor-specific Card application and
private Host application), via a SAS session, each of the applications can utilize the SAS_data_rqst() APDU to
inform the other application that it is ready to process incoming data as well as request data from the other
application. This APDU is bidirectional in that it can originate from either side of the CHI. When an application
receives a SAS_data_rqst() APDU, it SHALL understand that the sending application is ready to process incoming
data for the remainder of the SAS connection’s lifetime. AAlthough an application needs to send only one
SAS_data_rqst() for the life of a connection, it MAY send more than one SAS_data_rqst() APDU over the lifetime
of an SAS connection.

Table 9.17–5 - SAS_data_rqst APDU Syntax

Syntax No. of Bits Mnemonic
SAS_data_rqst() {

SAS_data_rqst_tag 24 uimsbf
length_field()

}

SAS_data_rqst_tag 0x9F9A02

9.17.4 SAS_data_av APDU

Once a communication path has been established between the application pair (vendor-specific Card application and
private Host application) via a SAS session, each of the applications can utilize the SAS_data_av()APDU to
indicate when the application has data to send across the CHI. An application SHALL NOT send SAS_data_av()
without first receiving a SAS_data_rqst() APDU.

Note: The data itself is transmitted in the SAS_query() and SAS_reply() APDUs.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 177

Table 9.17–6 - SAS_data_av APDU Syntax

Syntax No. of Bits Mnemonic
SAS_data_av() {

SAS_data_av_tag 24 uimsbf
length_field()
SAS_data_status 8 uimsbf
transaction_nb 8 uimsbf

}

SAS_data_av_tag 0x9F9A03

SAS_data_status Status of the available data.
 0x00 Data available
 0x01 Data not available
 0x02-0xFF Reserved
transaction_nb The transaction number is issued from an 8-bit cyclic counter (1-255) and is

used to identify each data transaction and to gain access to the available data.
When data is not available, the transaction_nb SHALL be set to 0x00.

9.17.5 SAS_data_cnf APDU

Once a communication path has been established between the application pair (vendor-specific Card application and
private Host application), via a SAS session, after an application receives a SAS_data_av() APDU, the application
SHALL transmit the SAS_data_cnf() APDU to acknowledge that it is preparing to receive the available data.

Table 9.17–7 - SAS_data_cnf APDU Syntax

Syntax No. of Bits Mnemonic
SAS_data_av_cnf() {

SAS_data_av_cnf_tag 24 uimsbf
length_field()
transaction_nb 8 uimsbf

}

SAS_data_av_cnf_tag 0x9F9A04

transaction_nb The transaction number is issued from an 8-bit cyclic counter (1-255) and is
used to identify each data transaction and to gain access to the available data.
When data is not available, the transaction_nb SHALL be set to 0x00.

9.17.6 SAS_server_query APDU

When data availability has been confirmed, a SAS_server_query() APDU SHALL be sent to initiate the transfer of
application specific data.

Table 9.17–8 - SAS_server_query APDU Syntax

Syntax No. of Bits Mnemonic
SAS_server_query () {

SAS_server_query_tag 24 uimsbf
length_field()
transaction_nb 8 uimsbf

}

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

178 CableLabs® 8/03/06

SAS_server_query_tag 0x9F9A05

transaction_nb The transaction_nb assigned in the SAS_data_av() APDU.

9.17.7 SAS_server_reply APDU

After receiving the SAS_server_query() APDU, the application SHALL respond with the SAS_server_reply()
APDU with the data to transfer.

Table 9.17–9 - SAS_server_reply APDU Syntax

Syntax No. of Bits Mnemonic
SAS_server_reply() {

SAS_server_reply_tag 24 uimsbf
length_field()
transaction_nb 8 uimsbf
message_length 16 uimsbf
for (i=0; i<message_length; i++) {

message_byte 8 uimsbf
}

}

SAS_server_reply_tag 0x9F9A06

transaction_nb The transaction_nb assigned in the SAS_data_av() APDU.

message_length The length of the message in the following for loop.

message_byte The data to transfer.

9.17.8 SAS Async APDU

The sas_async_msg() APDU may be used, instead of sas_data_rqst(), sas_data_av(), sas_data_cnf(),
sas_server_query() and sas_server_reply() group of APDUs in order to reduce the overhead and the time needed to
send a message to/from vendor-specific applications. Once a communication path has been established between the
application pair (vendor-specific Card application, Private Host application) via an SAS session, each of the
applications can utilized the sas_async_msg() APDU to communicate with the other. The sas_async_msg() APDU
is bi-directional and can originate from either side of the CHI. It is the responsibility of the applications to take care
of overflow prevention and ensure reliable delivery of messages.

Table 9.17–10 - SAS_Async Message APDU Syntax

Syntax No. of Bits Mnemonic
SAS_async_msg() {
 SAS_async_msg_tag
 length_field()
 message_nb
 message_length
 for (i =0; i< message_length; i++)
 }
 message_byte

24

8
16

8

uimsbf

uimsbf
uimsbf

uimsbf

SAS_async_msg_tag 0x9F9A07

message_nb: The message number is issued from an 8-bit cyclic counter (0 – 255) and is used
to identify each message.

message_length: The number of bytes in a message.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 179

message_bytes: The message payload in a format agreed between a private Host application and
corresponding specific Card application.

9.18 Card Firmware Upgrade
The Card SHALL support firmware upgrades as defined by this document.

9.18.1 Introduction

The Card will require that its firmware be upgraded occasionally. The mechanism of upgrading this firmware is
unique to each Card manufacturer’s system. This operation MAY be facilitated by adding the interface outlined in
this section. New versions of the Homing and Host Control resources are utilized which encapsulates the previous
operations of the resources but adds new operations for facilitating the firmware upgrade.

9.18.1.1 Summary

9.18.1.1.1 Firmware Upgrade

A Card MAY be designed to be capable of having its firmware reprogrammed. Generally, this is implemented with
flash memory or battery backed up RAM. Occasionally, this firmware will be upgraded. There are generally two
paths in which the firmware can be upgraded: 1) over the cable network using the QAM inband channel, and 2)
over the cable network using the QPSK OOB or DSG channel. Upgrade can be accomplished either by the methods
defined in this document or by other methods. Since different system implementations affect the method of Card
upgrade, two types of upgrade states are offered, a “delayed” and an “immediate”.

9.18.1.1.1.1 Delayed Upgrade
When the Card detects that a firmware upgrade is required and immediate upgrade has not been requested by the
headend, then if the Homing resource is not already open, and the Card requires utilizing the Homing resource, it
will open a session to the Homing resource if it is not already open. The Card will then wait until the
open_homing() APDU is received prior to beginning the upgrade. The Card will inform the Host through the
firmware_upgrade() APDU that it will be doing a firmware upgrade. After receiving the
firmware_upgrade_reply() APDU, the Card can use the Host Control resource to tune either the QAM or QPSK
tuner in the Host to the appropriate frequency and modulation type. The Host will not modify the selected tuner
until the Card has indicated that the firmware upgrade has finished by sending the firmware_upgrade_complete()
APDU or a timeout condition occurs. The firmware_upgrade_complete() APDU can also indicate to the Host
whether a PCMCIA reset, Card reset, or no reset is required by the Card. After receiving the
firmware_upgrade_complete() APDU, the Host will be free to change the QAM tuner.

The Host will send the open_homing() APDU when it is in standby mode (power applied but in the "Off" state) as
defined in [NRSSB].

9.18.1.1.1.2 Immediate Upgrade
There are conditions in which the Card will need to perform an immediate upgrade. When this is required, the Card
will have the option to use the interface upgrade mechanisms defined in this document. If using these mechanisms,
the Card will open the Homing resource, if it is not already open, and send a firmware_upgrade() APDU. The Host
will reply with a firmware_upgrade_reply() when it is ready. The Card will use the Host Control APDUs to tune
either the QAM or QPSK tuner in the Host to the appropriate frequency and modulation type. The Host will not
interrupt this process until it has either received a firmware_upgrade_complete() APDU or a timeout condition
occurs. An optional text message is included in the APDU to display to the user if the Host is not in standby.

Additionally, it is possible that an outside occurrence, such as a power failure, may cause the firmware to become
corrupted. If this occurs, then the Card is incapable of performing most of its functions. It is still able to perform
some functions if ROM code is included in the design. Generally, this ROM code is fairly small since it is not
upgradeable and is utilized only for verification of the firmware and loading the firmware in case of corruption.
This ROM code, called bootloader code in this document, SHALL be carefully designed and verified since it cannot
be modified.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

180 CableLabs® 8/03/06

The bootloader is called upon reset of the Card CPU. It first performs basic initialization operations, then tests the
main program memory to insure that it is valid, and if it is valid, starts executing out of the main firmware memory.
The problem occurs that if the main program memory is not valid, then a mechanism is needed to allow for recovery
of the main firmware.

For this rare condition, the bootloader will contain firmware, which will allow the Card to utilize the APDUs
defined in this document for an immediate upgrade.

9.18.1.1.2 Inband Upgrade Considerations

If the Card utilizes the QAM inband channel for upgrades, then for normal upgrades it should utilize the delayed
upgrade. The Host should then notify the Card that it can upgrade when the Host is placed in the standby state by
the user. If the Host has been in the on state for a long period of time or the Card bootloader has detected corrupted
memory, then an immediate upgrade is required in which case the Host will give control of the QAM tuner
immediately to the Card, independent of its state.

9.18.1.1.3 OOB Upgrade Considerations

If the Card utilizes the QPSK OOB or DSG channel for upgrades, then its operation will depend on whether
applications can still operate while performing an upgrade. If they cannot, a delayed firmware upgrade should be
used. The Card will have to open the Homing resource and wait until the open_homing() APDU is received prior
to beginning the upgrade. If applications can operate during an upgrade, then an immediate firmware upgrade can
be used.

9.18.1.1.4 Other Homing Operations

If desired, the Card can use the Homing resource for receiving other parameters over the inband channel when the
Host is in standby state. If this is utilized, then the upgrade option should not be used so as to allow the Host to
return to the on state at the users request.

9.18.2 Implementation

9.18.2.1 Introduction

In order to meet these operations, there is a need for a mechanism whereby the Card can inform the Host that a
firmware upgrade is required, an optional text message to the user, and the type of upgrade path.

Note that it is the responsibility of the Host to inform the user when an immediate upgrade occurs and to determine
when the recovery can occur for delayed upgrades.

9.18.2.2 Reset Implementation (Normative)

After the Card has finished its firmware upgrade, it will either send the firmware_upgrade_complete() APDU with
the appropriate reset type or simply timeout based on the timeout type.

9.18.3 Host Operation (Normative)

While the Card is performing its upgrade operation, its ability to support the normal Card interface may range from
severely limited to entirely unimpaired. To accommodate any case, some modifications to normal operation are
required. The following is a list of those modifications as well as requirements to the Host.

1. If enabled by the firmware_upgrade() APDU, the Card SHALL still respond to the transport layer
polls with a 5-second timeout. If the Card fails to respond to the poll within 5 seconds, the Host
SHALL perform a PCMCIA reset on the Card.

2. The Card may not be able to support session or application layer operations. The Host SHALL NOT
initiate any new sessions or any application layer operations after receiving a firmware_upgrade()

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 181

APDU until either the firmware_upgrade_complete() APDU is received or the Card times out.
 However, the Host SHALL maintain all session connections so that if the Card cancels the firmware
upgrade, normal operation can continue.

3. The Card may be fully able to support session or application layer operations while performing a
firmware upgrade. The Host SHALL respond to any session or application layer operation initiated by
the Card and perform all descendant operations consistent with normal Host-Card interface. This
includes timeout and reset operation and the initiation of required session and application layer
operations.

4. If the download_timeout_period expires, the Host SHALL perform a PCMCIA reset on the Card.

If the Card sends a firmware_upgrade_complete() APDU with No Reset Required, then the Host SHALL resume
normal operation with the Card in all respects, including timeout and reset operation.

9.18.3.1.1 Timeout Types

The firmware_upgrade() APDU includes a variable called timeout_type, which defines the type of timeout the Host
is to utilize during a firmware upgrade. This can include the normal 5-second transport timeout and/or a download
timeout timer, which starts from the last firmware_upgrade() APDU received or neither. It is highly recommended
that the Card not use the “No timeout” option.

9.18.3.1.2 Transport Layer Timeout

Since the Card may be incorporating flash memory which takes a longer time to program than the transport layer
timeout period (5 seconds), using option 02 or 03 on the timeout_type variable in the firmware_upgrade() APDU
will cause the Host to cease implementing this timeout until either a firmware_upgrade_complete() APDU is
received or the download_timeout_period from the last firmware_upgrade() APDU has passed, in which case the
Host will perform a PCMCIA reset.

9.18.3.2 Upgrade Cancellation

If the Card cancels its firmware upgrade, then it will send the firmware_upgrade_complete() APDU with the reset
type set to 02, “no reset required”.

9.18.3.3 Flowchart (Informative)

Figure 9.18-1 is a flowchart which shows the Card/Host interface which uses Card upgrade methods defined in this
document.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

182 CableLabs® 8/03/06

If not already open, Card
opens Homing resource

Received
open_homing from

Host

Card to perform an
immediate upgrade

Card perform a delayed
upgrade

If not already open, Card
opens Homing resource

No

Card sends
upgrade_firmware APDU

and receives
upgrade_firmware_reply

APDU from Host

Yes

Card uses OOB

Card uses OOB Host
Control APDU's and
performs upgrade

Card uses inband Host
Control APDU's and
performs upgrade

Card sends
upgrade_finished APDU

Card requests
PCMCIA reset

Card requests Card
reset

Normal operation
continues

Host performs Card reset
(sets RS flag)

Host performs PCMCIA
reset (sets RESET

signal)

Yes

No

Yes

Yes

No

No

Card times out?
Yes

No

Figure 9.18-1 - Firmware Upgrade Flowchart

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 183

9.18.4 Homing Resource

9.18.4.1 Homing Resource Definition

As defined in section 8.8.1.1 of [NRSSB], the Homing resource allows for the Card to request specific services
from the Host when the Host is in a standby state. When the Host is in a standby state, only the “immediate” modes
will be supported. This resource SHALL be modified to the following definition.

Table 9.18–1 - Homing Resource

Resource Mode Class Type Version Identifier (hex)
Homing S-Mode/M-Mode 17 1 2 0x00110042

The Card will open the Homing resource when it requires a firmware upgrade or requires a service. The creation of
Homing resource session includes the following objects:

Table 9.18–2 - Homing Objects

Apdu_tag Tag value Resource Direction
Host ↔ Card

open_homing 0x9F9990 Homing
homing_cancelled 0x9F9991 Homing
open_homing_reply 0x9F9992 Homing
homing_active 0x9F9993 Homing
homing_complete 0x9F9994 Homing
firmware_upgrade 0x9F9995 Homing
firmware_upgrade_reply 0x9F9996 Homing
firmware_upgrade_complete 0x9F9997 Homing

9.18.4.2 open_homing

The open_homing() APDU is transmitted by the Host to the Card when it enters the standby state, either from
power up or from user action. It SHALL send this independent of whether the Host Control resource has a session
active.

Table 9.18–3 - Open Homing Object Syntax

Syntax # of bits Mnemonic
open_homing() {
 open_homing_tag
 length_field()
}

24

uimsbf

open_homing_tag 0x9F9990

9.18.4.3 open_homing_reply ()

The open_homing_reply() APDU is transmitted by the Card to the Host to acknowledge receipt of the
open_homing() APDU.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

184 CableLabs® 8/03/06

Table 9.18–4 - Open Homing Reply Object Syntax

Syntax # of bits Mnemonic
open_homing_reply() {
 open_homing_reply_tag
 length_field()
}

24

uimsbf

open_homing_reply tag 0x9F9992

9.18.4.4 homing_active

The homing_active() APDU is transmitted by the Host to the Card to inform the Card that the homing request has
been activated.

Table 9.18–5 - Homing Active Object Syntax

Syntax # of bits Mnemonic
homing_active() {
 homing_active_tag
 length_field()
}

24

uimsbf

homing_active_tag 0x9F9993

9.18.4.5 homing_cancelled

If the Host was not informed that a firmware upgrade was in progress, then it SHALL have the capability to close
the homing state.

Table 9.18–6 - Homing Cancelled Object Syntax

Syntax # of bits Mnemonic
homing_cancelled() {
 homing_cancelled_tag
 length_field()
}

24

uimsbf

homing_canceled_tag 0x9F9991

9.18.4.6 homing_complete (Normative)

When the Card no longer needs the homing function, then it can transmit a homing_complete() APDU to the Host.

Table 9.18–7 - Homing Complete Object Syntax

Syntax # of bits Mnemonic
homing_complete() {
 homing_complete_tag
 length_field()
}

24

uimsbf

homing_complete_tag 0x9F9994

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 185

9.18.4.7 firmware_upgrade

If the Card uses an in-band channel to perform a firmware upgrade, it SHALL transmit the firmware_upgrade()
APDU to the Host. If the upgrade_source is equal to the QAM inband channel (01), then the Host SHALL
immediately give access to the inband tuner through the Host Control resource tune APDU. The Host SHALL
NOT interrupt a firmware upgrade until it receives the firmware_upgrade_complete() APDU. If the Host is not in
the standby mode, then it SHALL display the user_notification_text as found in [ISO8859-1]. The estimated time
to download in download_time SHALL be in seconds.

Table 9.18–8 - Firmware Upgrade Object Syntax

Syntax # of bits Mnemonic
firmware_upgrade() {
 firmware_upgrade_tag
 length_field()
 upgrade_source
 download_time
 timeout_type
 download_timeout_period
 text_length
 for(i=0; i<text_length; i++) {
 user_notification_text
 }
}

24

8
16
8
16
8

8

uimsbf

uimsbf
uimsbf
uimsbf
uimsbf
uimsbf

uimsbf

firmware_upgrade_tag 0x9F9995

upgrade_source This SHALL define which path the Card will use for its firmware upgrade.
 0x00 Unknown – Card is not informing Host of source
 0x01 QAM Inband Channel – Host Control resource will be used
 0x02 QPSK OOB Channel – Host Control resource will be used
 0x03 – 0xFF Reserved
download_time The amount of time, in seconds, that it estimated to take for the firmware

upgrade. If the value is 0000, then the value is unknown.

timeout_type The type of timeout requested.
 0x00 Both timeouts – Use both 5 second and download_timeout_period
 0x01 Transport timeout only – 5 second timeout on transport layer
 0x02 Download timeout only – Value in download_timeout_period
 0x03 No Timeout – Host will not timeout Card
 0x04 – 0xFF Reserved
download_timeout_period The amount of time, in seconds, after the Host has received the

firmware_upgrade() APDU that the Host should use to determine that the Card
has become unstable. After this time, the Host should perform a PCMCIA reset
on the Card. The Host’s timer should be reset every time a firmware_upgrade()
APDU is received. A value of 0000 is defined to be an infinite timeout period.

user_notification_text The text to be displayed to the user if the Host is not in standby mode.

9.18.4.8 firmware_upgrade_reply

The Host will reply to the firmware_upgrade() APDU. The Card will not start the download operation until it
receives this reply.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

186 CableLabs® 8/03/06

Table 9.18–9 - Firmware Upgrade Reply Object Syntax

Syntax # of bits Mnemonic
firmware_upgrade_reply() {
 firmware_upgrade_reply_tag
 length_field()
}

24

uimsbf

firmware_upgrade_reply_tag 0x9F9996

9.18.4.9 firmware_upgrade_complete

After the Card has completed its upgrade, it will transmit the firmware_upgrade_complete() APDU to the Host.
Included in this is whether the Card needs a PCMCIA reset (RESET signal active), Card reset (RS flag active), or
no reset. If there is no reset, then the Host may take control of the tuner if the source was inband.

Table 9.18–10 - Firmware Upgrade Complete Object Syntax

Syntax # of bits Mnemonic
Firmware_upgrade_complete() {
 firmware_upgrade_complete_tag
 length_field()
 reset_request_status
}

24

8

uimsbf

uimsbf

firmware_upgrade_complete_tag 0x9F9997

reset_request_status This contains the status of the reset for the Card.
 0x00 PCMCIA reset requested – The HOST will bring RESET signal active

then inactive.
 0x01 Card reset requested – Host will set RS flag and begin interface

initialization
 0x02 No reset required – Normal Operation continues
 0x03 0xFF Reserved
Note that if the Card wishes to cancel the firmware upgrade, it can send the firmware_upgrade_complete() APDU
with no reset requested. Normal operation should continue if the Host receives this APDU.

9.19 Support for Common Download Specification
The Card SHALL support common download as defined in this document.

This section specifies a common download protocol for CHI for Host devices with QPSK and DSG OOB data
channels.

Annex E of this document provides further clarification for the expected values in the DownloadInfoIndicator
Message used with Common Download.

9.19.1 Overview of Protocol

The protocol described in this document is based on the DSM-CC data carousel, which provides a format for data
objects on a broadcast carousel. Since a common transport layer protocol for the in-band data channel (also known
as the Forward Application Transport or FAT Channel) is MPEG-2, it provides a convenient starting point for a
common protocol to download operating software code objects. When the DSM-CC data carousel is delivered via
the DSG Tunnel, the MPEG-2 sections are encapsulated in DSG packets utilizing the DSG Carousel header, thus
maintaining their MPEG-2 section structure once the DSG IP, UDP and DSG Carousel headers are stripped from
the packet.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 187

The protocol is also extended to include support for DOCSIS Secure Software Download, where the extended
support provides the ability to trigger the DOCSIS Secure Software Download process via the Code Version Table.

Code Version Tables, specific to each type of Host device on the network, provide a locator (one of: source ID or
frequency of the transport stream, modulation mode, and MPEG program ID or frequency of the transport stream,
modulation mode, and PID, or DSG Application Tunnel Application ID for the Advanced DSG method or TFTP
server address) for the code file. The DSM-CC data carousel carried in the DSG Tunnel is contained within the
Application Tunnel (Advanced Mode), as defined in [DSG]. Acquisition of a DSG Tunnel and parsing &
processing of the DCD are not within the scope of this document and are defined within [DSG].This document uses
the following terminology to differentiate among the three download methods:

OOB Forward Data Channel method: This method places the Code Version Table (CVT), as defined in
Section 9.19.3.5, in the QPSK OOB FDC. The Card acquires the CVT via the Extended Channel MPEG section
connection to the QPSK OOB, filters the CVT and passes relevant information to the Host, as defined within
this document. The Host utilizes the information passed to it via the Card to determine if a download is
available. Download via this method is not possible without the Card. The data carousel is carried on the
Inband FAT channel and contains the code file image. The Host only knows of the existence of a download via
the Card.

DSG Channel method: This method places the Code Version Table (CVT), as defined in Section 9.19.3.5, in
the DSG CA Tunnel. The Card acquires the CVT via the Extended Channel DSG connection to the CA Tunnel,
filters the CVT and passes relevant information to the Host, as defined within this document. The Host utilizes
the passed information to determine if a download is applicable and required. The data carousel is carried over
the DSG Application Tunnel, where the MPEG-2 sections are encapsulated within DSG packets. If the
download defined by the CVT is applicable to the Host, then the Host utilizes the information to open an
appropriate DSG Application tunnel to acquire the download. Download via this method is not possible without
the Card and will work only for Advanced Mode. In Basic mode, DCD messages are not processed.

DOCSIS: This method places the Code Version Table (CVT), as defined in Section 9.19.3.5, in the DSG CA
Tunnel. The Card acquires the CVT via the Extended Channel DSG connection to the CA Tunnel, filters the
CVT and passes relevant information to the Host, as defined within this document. The Host utilizes the
received information to determine if a download is applicable and required. The DOCSIS method does not use
a data carousel but instead utilizes TFTP as defined in [DOCSIS2.0]. If the download defined by the CVT is
applicable to the Host, then the Host’s eCM initiates a TFTP download as defined in [DOCSIS2.0]. The Host’s
eSTB SHALL NOT initiate any CVT triggered TFTP downloads. If the eCM is not able to contact the defined
TFTP utilizing the provided TFTP server address, then download via this method is not possible.

Currently, the transport and message protocols between the Headend and the Card are proprietary. In order for any
Host to decode the message, extensions to the existing CHI Specification, are required. These extensions provide a
common network interface to the Host. This approach requires some additional functionality in the Card, in that the
Card translates the proprietary network protocols to the common one specified in this document.

There are three types of code upgrade protocols that may be used by the MSO to download code. Additionally,
there may be devices on the network for which the MSO does not have code objects, in which case, download
would not be supported. Summarizing these options as follows:

• OOB Forward Data Channel

• DSG Channel

• DOCSIS TFTP

This specification defines specific protocols for the first two download methods and provides an additional
signaling method for DOCSIS. These OOB FDC and DSG Channel methods specified here are based on the DSM-
CC data carousel. The Download Now model is used when the MSO has just added a new code file and wants all
applicable Host devices to download the code file immediately. The Deferred Download case allows the MSO to
dynamically add and remove code images as new subscribers come online and require upgrades at a specific time
according to the policies set in the OCAP Monitor Application if a Monitor Application is available.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

188 CableLabs® 8/03/06

9.19.1.1 Common Download via the OOB Forward Data Channel

In the OOB Forward Data Channel model, signaling data (CVT) is broadcast over the OOB Forward Data Channel
that relates the manufacturer and hardware version to the locator for the code object in a DSM-CC data carousel.
The Card filters these data and passes the appropriate data onto the Host. The Host can then tune to the appropriate
broadcast MPEG multiplex stream and set the PID filters to the PID that identifies the code object in the multiplex
stream.

Because every possible code object might not be carried all of the time on the broadcast carousel, the MSO may
provide additional capabilities.

• In one possible scenario, when a Host signs onto the network, the Headend is informed that a new Host is now
on-line. If a new version of the software for that Host and/or a set of Hosts are available, the Headend loads the
object onto the carousel and sends a message (CVT) back to the Host, via the Card, identifying the location of
this code object. If a code object is not available, the Host is informed, via the Card, that download is
unsupported.

• In another possible scenario, when a Host receives a CVT and determines that an image download is required,
the Host will either always notify the Headend, via the Card, or if a Host does not detect its image file at the
DSM-CC location identified in the delivered CVT, it will notify the Card to notify the Headend. After the
Headend is notified that a particular Host has requested a download, the Headend loads the appropriate code
file onto the DSM-CC broadcast carousel.

• If the MSO wants to force a software reload on a given Host to the same version of software as previously
stored on the Host, the MSO can create a copy of code file with a different name, set download_command
parameter to 0x00 (download now) and send a new CVT, applicable only for that Host. The Host upon
receiving a CVT with code file name different than what is stored will initiate the download.

If download command is defined in the CVT, the Host SHALL download as indicated by the download command.
After the Host has finished downloading the object and authenticates it, it sends a ‘done’ message so that the
Headend can unload that object from the carousel.

9.19.1.2 Common Download via the DSG Tunnel

In the DSG model, signaling data (CVT) is broadcast over the DSG CA Tunnel that relates the manufacturer and
hardware version, or optionally can use the Host MAC address or Host ID, as the locator for the code object in a
DSM-CC data carousel. The Card filters the CVT, verifies if it is applicable and if so, passes available data onto the
Host. Upon the Host determining that a download is required, the Host utilizes the Application_ID defined in the
CVT to request the Application Tunnel, and applies additional filtering at the UDP/IP layer if an IP Address and/or
UDP port is defined in the configure_advanced_DSG() APDU. The DSG Application Tunnel is consumed directly
by the Host and no data from the tunnel is passed to the Card. Since the download is applicable to the Host and the
Card has no knowledge of the code image formatting or delivery, the Card SHALL NOT instruct the Host to
remove any number of bytes. It is the responsibility of the Host to determine and remove any header bytes.

Because every possible code object might not be carried all of the time on the broadcast carousel, or if the MSO
wants to force a software upgrade on a given Host, the MSO, by sending CVT with the appropriate parameters, may
provide different scenarios that would initiate the download process on the Host or a set of Hosts. Examples of
possible scenarios are available in Section 9.19.1.2.2. If the download command is defined in CVT the Host
SHALL download as indicated by the download command. If the Host is placed in DSG Basic mode or QPSK
OOB mode, then the Card SHOULD NOT pass a CVT to the Host indicating a DSG Application Tunnel download.
If the Host receives a CVT that defines a DSG Application Tunnel download and the Host is not in DSG Advanced
mode, then the Host SHALL reply with a code_version_table_reply() APDU message indicating an error (0x02 –
Other parameter error) and not initiate a download. In Basic Mode the DCD message is not processed.

9.19.1.2.1 DSG CA Tunnel delivery of CVT

After the Headend receives a new code file for a Host and/or a set of Hosts that requires an immediate download,
the Headend loads the new code file on the DSM-CC data carousel, which is encapsulated within IP/UDP packets

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 189

and placed in a DSG Application Tunnel. The headend inserts a CVT in the CA Tunnel corresponding to the code
file. The Card filters all incoming CVTs and determines if a download is applicable for the attached Host. The Card
SHOULD parse the DCD to determine if the defined Application tunnel exists. If the Card determines that the
Application tunnel exists, then the Card informs the Host of the available download by passing the CVT to the Host,
where the CVT contains the Application_ID necessary for the Host to request the DSG Application Tunnel. If the
Host is not able to locate the Application tunnel defined by the Application_ID in the CVT, then the Host SHALL
reply with a host_download_control() message indicating a request to notify the headend (0x02 – Notify headend)
and not initiate a download.

If the CVTR-defined Application tunnel exists, then the Host acquires the DSG Application Tunnel, parses the
packets received for the applicable MPEG sections, and downloads the code object. If a code file for a particular
Host is not defined in the CVT, then code download for that Host is not supported. If the Host device is in Basic
DSG mode or the Host device is in Advanced DSG mode and there is no Application Tunnel defined in the DCD,
then code download for that Host via the DSG method is not supported.

The Host SHALL NOT pass any data received in the Application tunnel to the Card.

9.19.1.2.2 DSG CVT Trigger

This process contains three aspects that trigger the Host to initiate a download process with the headend:

1. If the Host is in Advanced DSG mode and the Card determines that there is no DSG Application
Tunnel defined within the DCD, then the Card can notify the Headend of the Host’s presence
requesting any available code file. If the code file for the Host exists, then the Headend loads the code
file, establishes the DSG Application Tunnel and generates an appropriate CVT. An example of this
scenario would be one where sometime after the Card and Host complete the mating process and the
Host is placed in DSG advanced mode where the Card is receiving DCD messages and determines that
no Application Tunnel is defined in the DCD.

2. If the Application Tunnel exists, and is in Advanced Mode, then when a Host receives a CVT and
determines that an image download is required, it will either:

a. always notify the Card to notify the headend, or

b. it will parse the DSM-CC carousel within the Application Tunnel. If the Host does not discover its
code image file, then it will notify the Card to notify the Headend. After the Headend is notified
that a particular Host has requested a download, the Headend loads the appropriate code file onto
the Application Tunnel.

3. If the MSO wants to force a software reload on a given Host to the same version of software as
previously stored on the Host, the Headend can load a copy of the code file with a different name onto
the DSG Application Tunnel, set download_command parameter to 0x00 (download now) and send an
appropriate CVT, applicable only for that Host. If the DSG Application Tunnel exists, then the Host
receiving a CVT with code file name different than what is stored, will initiate the download process.

9.19.1.3 DOCSIS

This method uses a two-way connection through a DOCSIS cable modem and utilizes the Trivial File Transport
Protocol (TFTP) method used by DOCSIS for its operational software. For Host devices (with embedded Cable
Modem) in DOCSIS-enabled networks, this mechanism can, at the discretion of the operator, be used to upgrade the
operating software. The DOCSIS protocol provides two methods to signal a download (a device configuration file
and SNMP), as defined in [DOCSIS2.0]. This specification provides an additional signaling method utilizing the
CVT, where the CVT contains the TFTP server address and code file name, as defined in Section 9.19.3.5. If the
CVT contains a code file name applicable to the Host, then the Host is required to download as per the DOCSIS
protocol. Further elaboration of the DOCSIS download method is beyond the scope of this specification and is
defined in [DOCSIS2.0].

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

190 CableLabs® 8/03/06

9.19.1.4 Not Supported

The MSO reserves the right not to support upgrade of any Host.

9.19.2 Operational Details

The Card utilizes the host_info_request() APDU, as defined in this document, to instruct the Host as to which type
of download method to utilize, the OOB Forward Data Channel or DOCSIS. The Host SHALL NOT make any
assumptions as to what type of download to utilize. The MSO may opt to initiate a DOCSIS download without
informing the Card; this scenario is not within the scope of this document.

9.19.2.1 Level of support for OpenCable devices

The Host SHALL support all three defined above methods of download.

9.19.2.2 DSM-CC Data Carousel

All software objects SHALL be transported over the in-band, broadcast channel or the DSG Tunnel via the DSM-
CC data carousel [ISO13818-6]. The DSM-CC specification does not require the DSM-CC control messages. The
Download Information Indication message is defined in section 7.3.2 of [ISO13818-6] and Annex E of this
document. The message sequence for the data carousel scenario is defined in section 7.5 of [ISO13818-6]. The
DSM-CC data carousel-delivered objects using the DSG Tunnel, MPEG sections encapsulated within DSG packets
as defined in [DSG], SHALL be supported. The CableCARD-Host control messages are defined in this
specification.

9.19.2.3 Download Operation

The download method used by the operator is optional and in part depends upon the capabilities of the network and
the Hosts on the network.

9.19.2.3.1 OOB Forward Data Channel Operation

The following figure describes the communication between the Headend and the Card and the Card and the Host.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 191

Figure 9.19-1 - OOB Forward Data Channel Operation

After a session is opened between the Card and the Host, the Card requests identification information from the Host
by sending host_info_request() APDU message. The Host responds with the vendor_id (OUI),
hardware_version_id from the Host (host_info_response()). The Card uses this data to filter the Code Version
Tables (CVT) that are broadcast over the OOB channel. If the CVT has defined either a host_MAC_addr or host_id
field, the Card SHALL obtain them from the Host (see section 9.19.3.5). Each CVT corresponds to a different

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

192 CableLabs® 8/03/06

hardware and software version and additionally may be targeted to a given Host. The locator is contained within the
CVT and is the frequency of the transport stream and the PID for the specific data carousel of the code file. The
Card transmits the proper CVT to the Host. The Host determines if a download is required by comparing the code
file name in the CVT to that stored in the Host. After the Host determines that a download is required, the Host
should determine if its code file is loaded on DSM-CC carousel and notify the Card to inform the Headend if it is
not. If a download is required and code file is loaded on DSM-CC carousel, the Host begins to download the code
object by tuning to the proper in-band frequency and selecting the proper PID in the in-band multiplex stream. If the
CVT has defined command type field, the Host initiates the download as indicated.

9.19.2.3.2 DSG Channel – Advanced and Basic Mode Operation

The following sections describe the communication between the Headend and the Card, and the Card and the Host
when the CVT and subsequent download is via DSG.

9.19.2.3.2.1 CVT defines Application ID (Advanced DSG mode)
The following figure describes the communication between the Headend and the Card and the Card and the Host
when the CVT signals download via an Application ID.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 193

Figure 9.19-2 - DSG Channel Advanced Mode Operation

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

194 CableLabs® 8/03/06

After an Advanced DSG flow is opened between the Card and the Host, the Host passes the DCD to the Card. The
Card filters the DCD for the presence of a DSG CA Tunnel(s). The Card utilizes the configure_advanced_DSG()
APDU to pass classifier(s) and tunnel address information pertaining to the DSG CA Tunnel(s) to the Host. The
Host utilizes the data to filter on the DOCSIS downstream channel for the DSG CA Tunnel. If the Card acquires a
CVT on the DSG CA Tunnel, it parses the CVT to determine if the CVT is applicable for the Host.

If the CVT indicates that the DSM-CC data carousel is located by DSG Application Tunnel ID (i.e., location_type =
0x04), then the Host SHALL request the DSG Application Tunnel address and classifiers from the Card utilizing
the DSG_message() APDU. The Card parses the DCD and acquires the DSG Tunnel address and classifiers
associated with the requested Application ID and passes this information back to the Host utilizing the
configure_advance_DSG() APDU. If the Card is not able to locate the requested Application ID within the DCD,
then the Card responds with an error utilizing the DSG_error() APDU indicating Application ID error (error_status
0x02). If the provided Application ID is not contained in the DCD, then the download for the Host is not applicable.
If the Host is operating in Basic DSG mode and an application ID is provided, then the download for the Host is not
applicable. It is the responsibility of the Host to parse all packets received on the DSG Application Tunnel and
determine the packets that are applicable for the download. The DSM-CC data carousel is carried over a DSG
Application Tunnel where the MPEG-2 sections are encapsulated within IP/UDP packets utilizing the DSG
Carousel Header. If download is applicable and an IP Address and/or UDP Port is defined in the
configure_advance_DSG() APDU, then the Host applies additional filtering on the DSG Application tunnel to
acquire the DSM-CC data carousel. If an IP Address and/or UDP Port is defined in the configure_advanced_DSG()
APDU, then the Host applies additional filtering at the UDP/IP layer. Download via this method is not possible
without the Card and will work only for Advanced Mode. In Basic mode, DCD messages and Application tunnels
are not used.

9.19.2.3.2.2 CVT defines DSG Tunnel Address Information (Basic DSG mode)
The following figure describes the communication between the Headend and the Card and the Card and the Host
when the CVT signals download via DSG Tunnel Address information.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 195

Figure 9.19-3 - DSG Channel Basic Mode Operation

In Basic DSG Mode, if the Card acquires a CVT on the DSG CA Tunnel, then the Card parses the CVT to
determine if the CVT is applicable for the Host (i.e., the Host compares the vendor_id (OUI) and
hardware_version_id of descriptor_data to the Host’s vendor ID and hardware version ID). If the CVT is applicable,
the Card sends the code_version_table() APDU to the Host, which then acquires the DSG Tunnel information
defined within the CVT.

If the CVT indicates that the DSM-CC data carousel is located by DSG Tunnel parameters (location_type = 0x03)
then the Host SHALL apply filtering on the DOCSIS downstream channel as per the values defined in the CVT and
acquire the DSM-CC data carousel. It is the responsibility of the Host to parse all packets received on the DSG
Tunnel and determine the packets that are applicable for the download. If download is applicable and an IP Address
and/or UDP Port is defined, then the Host applies additional filtering on the DSG tunnel to acquire the DSM-CC
data carousel. Download via this method is not possible without the Card and will work only for Basic DSG Mode.

9.19.2.4 Download Operation Overview

The following figure summarizes the flow of events and the decision points in the download operation.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

196 CableLabs® 8/03/06

Figure 9.19-4 - Flow Chart Summarizing Download Operations

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 197

9.19.2.4.1 DSG Channel Download Operation Summary

Figure 9.19-5 - Flow Chart Summarizing DSG Channel Download Operations

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

198 CableLabs® 8/03/06

9.19.2.4.2 Code File Download and Verification Summary

Power loss or resetCode file
downloaded

Retries exhausted ? NO

YES

Code authentication

Authentication
passed ?

Receive
host_download_control()
(download max retries)

Flash code

Receive
host_download_control()

(certificate failure)
NO

YES

Boot from flash

Problem with running
new code

Retries exhausted ?

Receive
host_download_control()
(download completed)

NO

Receive
host_download_control()

(reboot max retries)

YES

Continue
collecting

CVT

Code file download and
verification

Code file damaged
or corrupted ?

NO

Receive
host_download_control()

(image damaged)
YES

Download code file

Figure 9.19-6 - Flow Chart Summarizing Code File Download and Verification

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 199

9.19.2.5 Code Authentication

After a code image is downloaded into the set top box and before it is placed in permanent storage in non-volatile
memory, the image is authenticated using the [OCSEC] code authentication process regardless of the method used
to download the file. This method specifies a particular structure to the code file (PKCS#7 compliant). The code file
consists of the manufacturer’s Code Verification Signature (CVS), and X.509 Code Verification Certificate (CVC)
signed by the root CA, and the signed code image that is compatible with the target.

The Host SHALL verify the CVC included in the CVT before accepting any of the code upgrade settings it
contains. Upon receipt of the CVC in the CVT, the Host SHALL perform the following validation and procedural
steps. If any of the following verification checks fail, the Host SHALL immediately halt the CVC verification
process and log the error if applicable. The Host SHALL NOT download code files when triggered by the CVT if
the received CVT does not include a CVC that validates properly. In addition, if the Host configuration file(s) or
CVT does not include a CVC that validates properly, the Host is not required to process CVCs subsequently
delivered via an SNMP MIB, and SHALL NOT accept information from a CVC subsequently delivered via an
SNMP MIB.

At receipt of the CVC in a CVT, the Host SHALL:

1. Verify that the extendedKeyUsage extension is in the CVC and includes an OID id-kp-codeSigning.

2. Check the CVC subject organization name.

a) If the CVC is a Manufacturer’s CVC (certificate type 0x00) then:

i. If the organizationName is identical to the Host's manufacturer name, then this is the
manufacturer’s CVC. In this case, the Host SHALL verify that the manufacturer’s CVC validity
start time is greater-than or equal-to the manufacturer’s cvcAccessStart value currently held in the
Host.

ii. If the organizationName is not identical to the Host's manufacturer name, then this CVC SHALL
be rejected and the error logged.

b) If the CVC is a Co-signer’s CVC (certificate type 0x01) then:

i. If the organizationName is identical to the Host's current code co-signer, then this is the current
co-signer’s CVC and the Host SHALL verify that the validity start time is greater-than or equal-to
the co-signer’s cvcAccessStart value currently held in the Host.

ii. If the organizationName is not identical to the current code co-signer name, then after the CVC
has been validated (and registration is complete) this subject organization name will become the
Host's new code co-signer. Host SHALL NOT accept a code file unless it has been signed by the
manufacturer, and co-signed by this code co-signer.

3. Validate the CVC issuer signature by using the CL CVC CA Public Key held by the Host.

4. Update the Hosts current value of cvcAccessStart corresponding to the CVC’s subject organizationName
(i.e., manufacturer or co-signer) with the validity start time value from the validated CVC. If the validity
start time value is greater than the Host's current value of codeAccessStart, the Host SHALL update the
Host's codeAccessStart value with the validity start time value, then the Host SHOULD discard any
remnants of the CVC.

9.19.3 System Control Resource

This section provides details of Host-Card messages. A new resource, the System Control resource, is introduced
for handling revision control and download operations. Applications SHALL exist in the Card to support this
resource. New Application Protocol Data Units (APDU) are also introduced.

9.19.3.1 Resource Identifier

The following System Control resource SHALL reside in the Host. The Card SHALL open a session to this
resource in the Host and SHALL NOT close it. Only one session is supported by the Host.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

200 CableLabs® 8/03/06

Table 9.19–1 - Resource Identifier

Resource Mode Class Type Version Identifier (hex)
System Control S-Mode 43 1 1 0x002B0041
System Control S-Mode 43 1 2 0x002B0042
System Control S-Mode 43 1 3 0x002B0043
System Control S-Mode/M-Mode 43 2 1 0x002B0081
Note: This resource has four versions of the System Control resource and the following specifications contain
the previous APDU message structure:

Type 1 Version 1 was defined in OC-SP-CCIF2.0-I01-050331
Type 1 Version 2, defined in OC-SP-CCIF2.0-I03-051117, has been deprecated
Type 1 Version 3, defined in OC-SP-CCIF2.0-I04-060126, has been deprecated
Type 2 Version 1 was defined in OC-SP-CCIF2.0-I06-060622

9.19.3.2 Application Objects (APDUs)

The following table is a list of the APDUs that are required for this specification. The code_version_table() and
code_version_table_reply() APDUs are utilized to support Host firmware download. The Code Version Table
(Code_version_table) is now defined as two unique APDUs. A Code_version_table tag value (hex) of 9F9C02
SHALL be utilized only with System Control resource identifier values of 0x002B0041 (Type 1 Version 1). A
Code_version_table tag value of (hex) 9F9C05 SHALL be utilized only with a System Control resource identifier
value of 0x002B0081(Type 2 Version 1). The S-Card, and the M-Card operating in S-Mode, SHALL use the
Code_version_table with a tag value equal to 9F9C02 or 9F9C05. The M-Card, operating in M-Mode, SHALL use
the Code_version_table with a tag value equal to 9F9C05. Note: System Control resource identifier values
0x002B0042 and 0x002B0043 have been deprecated.

Table 9.19–2 - Table of Application Protocol Data Units

APDU_tag Tag value (hex) Resource Direction
Host <-> Card

Host_info_request 9F9C00 System Control

Host_info_response 9F9C01 System Control

Code_version_table 9F9C02 System Control

Code_version_table_reply 9F9C03 System Control

Host_download_control 9F9C04 System Control

Code_version_table 9F9C05 System Control

9.19.3.3 host_info_request

After the Card opens a session to the System Control resource, the Card SHALL query the Host to determine its
vendor ID and hardware version ID and optional additional parameters. The Card SHALL use at least the vendor
ID and hardware version ID to filter the CVT. If a download is in progress, the Host SHALL terminate it.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 201

Table 9.19–3 - host_info_request

Syntax # of bits Mnemonic
host_info_request() {
 host_info_request_tag 24 uimsbf
 length_field()
}

host_info_request_tag Value = 0x9F9C00
Note: this document does not define DOCSIS download requirements. A headend need not use this ADPU to
inform the Host that updates are performed via a DOCSIS download.

9.19.3.4 host_info_response

The Host SHALL respond to the Card query with its vendor ID and hardware version ID.

Table 9.19–4 - host_info_response

Syntax # of bits Mnemonic
host_info_response() {
 host_info_response_tag 24 uimsbf
 length_field()
 vendor_id 24 uimsbf
 hardware_version_id 32 uimsbf
 number_of_descriptors 8 uimsbf
 for(I=0;i<number_of_descriptors;i++){
 descriptor_tag 8 uimsbf
 descriptor_len 8 uimsbf
 descriptor_data()
 }
}

host_info_response_tag Value = 0x9F9C01

vendor_id Organizationally Unique Identifier (OUI) assigned to the Host device vendor by
the IEEE. A value of 0x000000 is not valid.

hardware_version_id Unique Hardware identifier assigned to each type of hardware from a particular
vendor. The hardware_version_id assigned by the vendor SHALL be a unique
number (for a given vendor_id) and correspond on a one-to-one basis with the
Model ID of the Host. The hardware_version_id SHALL be stored in the Host
and reported to the Card (S-Mode and M-Mode) in a robust manner.

 The same Model ID SHALL correspond on a one-to-one basis with the unique
hardware_version_id number required under this specification.

number_of_descriptors Indicates the number of descriptors defined in the following fields.

descriptor_tag Possible Values:
 0 descriptor_data is Host proprietary data. The maximum value for

descriptor_len is 128.
 1-127 reserved for future standardization
 128-255 optional, for use by Card-Host pairs, where both Card and

Host support the same implementation of the Specific Application
Resource. Other Card -Host pairs SHALL skip these descriptors using
descriptor_len value.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

202 CableLabs® 8/03/06

9.19.3.5 code_version_table

The Headend broadcasts all CVTs via the OOB-FDC or the DSG CA Tunnel. After the Card receives the
host_info_response() message from the Host, the Card SHALL only then start filtering any CVTs it receives from
the Headend and passing them to the Host. The Card SHALL pass a CVT to the Host only if it meets the
following criteria:

• CVT tag =9F9C05 (Type 2, Version 1) and verify protocol version is supported by the Card, and

• CVT vendor_id matches Host vendor_id, and

• CVT hardware_version_id matches Host hardware_version_id or

• If CVT host_MAC_addr is not 0 AND matches the Host MAC address of the Host or

• If CVT Host_id is not 0 AND matches the Host ID of the Host.

Only one code object SHALL be on the carousel at any given time for a given vendor_id and hardware_id.

The Host acknowledges the receipt of the CVT and responds with an ACK or an appropriate error code message in
the code_version_table_reply(). The Card continues to transmit the CVT until it receives the
code_version_table_reply() message. If a new, different CVT is received during this time, with incremented
(modulo the field size) configuration_count_change parameter, the Card SHALL transmit it to the Host, if
appropriate to the selection criteria described above.

It is up to the Host to determine if a download is required: the Card SHALL NOT determine this. When the Host
receives a valid CVT (the OUI and hardware_version_id or Host MAC address or Host ID match), the Host SHALL
determine if the code file name in the CVT matches the code file name stored in non-volatile memory when the
code was last updated. If the file names do not match, the Host SHALL send a host_download_control() APDU
with host_command set to 0x00 (start download) and the action of the Host SHALL be according to the
download_command parameter. If the length of the CVT software upgrade filename is different than the length of
the Host software upgrade filename, then they SHALL be declared to be different, independent of their contents.

If the host_MAC_addr in the CVT is NOT zero, the Card SHALL determine the Host MAC address by transmitting
a diagnostic_req() APDU to the HOST with diagnostic_id = 0x03 (Section 9.16.1). If the address obtained in this
way matches the host_MAC_addr parameter in the CVT, then the CVT SHALL be sent to that Host if the vendor_id
and hardware_version_id both match. If the host_MAC_addr in the CVT is zero, then the Card SHALL ignore this
parameter and filtering SHALL be based only on the vendor_id and hardware_version_id.

If the host_ID in the CVT is not zero, the Card SHALL determine the Host_ID by extracting it from the
authenticated Host Device Certificate as it is described in [CCCP2]. If the identification obtained in this way
matches the host_ID parameter in the CVT, then the CVT SHALL be sent to that Host if the vendor_id and
hardware_version_id both match. If the host_id in the CVT is zero, then the Card SHALL ignore this parameter
and filtering SHALL be based only on the vendor_id and hardware_version_id.

It is also up to the Host design to handle error conditions without lockouts or wait states as well as to authenticate
the vendor parameters and download code. The Host SHALL assume that the Card is operating correctly.

If the OOB Forward Data Channel method is utilized, the use of frequency vector and PID avoids the use of the
virtual channel table, which assumes that the entire SI is being processed. When the download is In-Band FAT
Channel, the Card MAY send a CVT with frequency and PID equal to 0, to signify that the location of the code file
is not known. In this case, an additional CVT with the frequency and PID should be sent when the location is
known.

In Basic DSG Mode it is the responsibility of the Host to control the eCM and acquire the DSG Tunnel, which is
defined with the CVT. If detailed DSG tunnel address information is provided in the CVT (i.e., location_type =
0x03), then the Host SHALL utilize the provided parameters to acquire the DSG tunnel. If an IP Address and/or
UDP Ports are defined in the CVT, then the Host applies additional filtering at the UDP/IP layer.

Note: If the detailed DSG Tunnel address information method is used (i.e., location_type = 0x03,) then the carousel
may be carried on any type of DSG tunnel (e.g., may be carried in a Broadcast tunnel, a CA Tunnel or an
Application tunnel). The Host and Card SHALL disregard any DSG Client ID that may be associated with the

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 203

tunnel when the DSG Tunnel address information method is used. On such DSG tunnels, the MPEG sections will
be encapsulated in UDP packets using DSG_carousel_header as specified in Annex E of [DSG].

In Advanced DSG Mode, if the Host is provided with an Application ID in the CVT (i.e., location_type = 0x04),
then the Host SHALL request the Application Tunnel address and classifiers from the Card utilizing the
DSG_message() APDU. The Card parses the DCD and acquires the DSG ApplicationTunnel address and
classifiers associated with the requested application ID and passes this information back to the Host utilizing the
configure_advance_DSG() APDU. If the Card is not able to locate the application ID within the DCD, then the
Card responds with an error utilizing the DSG_error() APDU indicating Application ID error (error_status 0x02). If
the provided Application ID is not contained in the DCD, then the download for the Host is not applicable. If the
Host is operating in Basic DSG mode and an application ID is provided, then the download for the Host is not
applicable. It is the responsibility of the Host to parse all packets received on the DSG Application Tunnel and
determine the packets that are applicable for the download.

Table 9.19–5 - Code Version Table

Syntax # of bits Mnemonic
code_version_table() {

code_version_table_tag 24 uimsbf
length_field()
protocol_version 8 uimsbf
configuration_count_change 8 uimsbf
number of descriptors 8 uimsbf
for(i=0;i<number of descriptors;i++){
 descriptor_tag 8 uimsbf
 descriptor_len 8 uimsbf
 descriptor_data()
}
download_type 4 uimsbf
download_command 4 uimsbf
if (download_type == 00) {
 location_type 8 uimsbf
 if (location_type == 0) {
 source_ID 16 uimsbf
 }
 if (location_type == 1) {
 frequency_vector 16 uimsbf
 modulation_type 8 uimsbf
 reserved 3 uimsbf
 PID 13 uimsbf
 }
 if (location_type == 2) {
 frequency_vector 16 uimsbf
 modulation_type 8 uimsbf
 program_number 16 uimsbf
 }
}
if (download_type == 01) {
 location_type 8 uimsbf
 if (location_type == 3) {
 DSG_Tunnel_address 48 uimsbf
 source_ip_address 128 uimsbf
 destination_ip_address 128 uimsbf
 source_port_number 16 uimsbf
 destination_port_number 16 uimsbf
 }
 if (location_type == 4) {
 application_id 16 uimsbf
 }

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

204 CableLabs® 8/03/06

Syntax # of bits Mnemonic
}
if (download_type == 02) {
 tftp_server_address 128 uimsbf
)

 code_file_name_length 8 uimsbf
for(i=0;i<software_filename_length;i++){
 code_file_name_byte 8 uimsbf
}
number_of_cv_certificates 8 uimsbf
for (i=0;i<number_of_cv_certificates;i++){
 certificate_type 8 uimsbf
 code_verification_certificate()
}

}

code_version_table_tag Value = 0x9F9C05

protocol_version Identifies the version of the CVT. Protocol version is utilized to signal the
particular version of CVT that is being delivered. The Host device SHALL
discard a CVT if it does not support the defined protocol version. The current
value of the protocol_version is equal to 1 and indicates that the format of the
CVT is as defined in Table 9.19–5.

configuration_count_change Incremented by one (modulo the field size) by the Headend whenever any of the
values of the Code Version Table for a given Host, defined by combination of
the OUI and hardware_version_id, file name Host MAC address or Host ID, has
been changed.

 Informative note: In some events (for example a failover or hot swap at the
headend) discontinuities in the value of configuration change count may occur.
After any event that can cause a discontinuity in the configuration change count,
the Headend MUST ensure that the configuration change count is incremented
(modulo the field size) between two subsequent CVT messages (even if the
CVT message does not change). This is done to ensure that, after a failover or
hot swap in the headend, the new configuration change count does not match the
configuration change count used before the failover event. When the
configuration change count is changed, the Card SHALL pass a CVT to the
Host for verification if download is required.

number_of_descriptors SHALL be greater than 2; mandatory descriptors are vendor_id and
hardware_version_id

descriptor_tag Possible Values:
 0 descriptor_data is vendor_id (mandatory, descriptor_len = 24). Unique

Identifier (the vendor’s OUID) assigned to each vendor. Host sends the
vendor ID to the Card to allow the Card to filter the CVT. A value of
0x0000 is not valid.

 1 descriptor_data is hardware_version_id (mandatory, descriptor_len =
32), Unique Hardware identifier assigned to each type of hardware
from a particular vendor. Host sends the hardware version ID to the
Card to allow the Card to filter the CVT. This can be transmitted to the
Headend by the Card. A value of 0x0000 SHALL NOT be permitted.

 2 host_MAC_addr (optional, descriptor_len = 48), Host MAC address
used for optional filtering if non-zero.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 205

 3 host_ID (optional, descriptor_len = 40), Host device’s unique
identification number used for optional filtering if non-zero or this
parameter is present.

 4-127 reserved for future standardization
 128-255 reserved for private use
download _type Code file delivery method by the DSM-CC data carousel:
 0x00 In-Band FAT Channel
 0x01 DSG Channel
 0x02 DOCSIS tftp

download_command When to download (supplied by Headend):

 0x00 Download Now - If the vendor_id and hardware_version_id and
optionally either a host_MAC_addr or host_id in the descriptor_data in the CVT
matches that of the Host and the code_file_name in the CVT does not match that
of the Host, then the download SHALL be initiated. If there is a match of the
vendor_id and hardware_version_id, but the code_file_name in the CVT
matches that of the Host, then the download SHALL not be initiated.

 0x01 Deferred Download - The initiation of the download SHALL be
deferred according to policies set in an OCAP Monitor Application. In the event
that a Monitor Application is not available or no policies have been set, the
Download Now scenario SHALL apply.

 0x02-03 reserved
location_type Determines nature of the locator for DSM-CC data carousel carrying code file.
 0x00 Carousel located by source_id
 0x01 Carousel located by frequency vector and PID.
 0x02 Carousel located by frequency and program number.
 0x03 Carousel located by DSG Tunnel parameters (Basic DSG mode only)
 0x04 Carousel located by DSG Application Tunnel ID (Advanced DSG

mode only)
 0x05-0xFF Reserved
source_ID The VCT source ID that is associated with each program source. The source ID

is utilized to locate the frequency on which the DSM-CC data carousel is
multiplexed.

frequency_vector Frequency of the download carousel. The frequency is coded as the number of
0.25 MHz intervals.

modulation_type Possible Values:
 0x00 Reserved
 0x01 FAT Channel/QAM64
 0x02 FAT Channel/QAM256
 0x03 – 0xFF Reserved
PID Stream identifier of the code file.

program_number Defines the program number in the transport stream that identifies the DSM-CC
data carousel.

DSG_Tunnel_address MAC address of the DSG tunnel

source_ip_address The source IP address associated with the download applicable to the Host. This
is utilized to allow the Host to better filter packets in the tunnel. If the value is
zero, then the Host SHALL ignore the source IP address of the packet and
provide an additional filter at either the destination IP address (if defined) or a
layer below the IP layer (e.g., Port and/or MPEG section filtering).

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

206 CableLabs® 8/03/06

destination_ip_address The destination IP address associated with the download applicable to the Host.
This is utilized to allow the Host to better filter packets in the tunnel. If the
value is zero, then the Host SHALL ignore the destination IP address of the
packet and provide an additional filter at either the source IP address (if defined)
or a layer below the IP layer (e.g., Port and/or MPEG section filtering).

source_port_number The UDP source port number associated with the download applicable to the
Host. This is utilized to allow the Host to better filter packets in the tunnel. If
the value is zero, then the Host SHALL NOT apply any source port layer
filtering.

destination_port_number The UDP destination port number associated with the download applicable to
the Host. This value is utilized to allow the Host to better filter packets in the
tunnel. If the value is zero, then the Host SHALL NOT apply destination port
layer filtering.

application_id A DSG data stream identifier, associated with Application Tunnel information.
If location_type is 4, then the application_id value SHALL be greater than 0.
Applicable only for the Host operating in DSG Advanced mode. This is utilized
to allow the Host to build a DSG data stream routing table from information
acquired from the DCD.

tftp_server_address The IP address of the TFTP server where the code image resides. The code file
name, as defined via the code_file_name_byte field, contains the complete
directory path and name of the file to download. The address is 128 bits in
length to support IPv6.

code_file_name_length Length of code file name. A length of zero indicates that the CVT is being used
for CVC delivery only.

code_file_name_byte Name of software upgrade file on carousel. This is the name of the Code File
(see [SCTE23]) that is on the broadcast carousel as well as in Host NVM. For
download_type = 0x00 and 0x01, the DSM-CC data carousel SHALL carry the
Code File Name in the Download Info Indication message, module_info_byte
loop. All bytes in the code_version_table() APDU code_file_name_byte loop
and the associated byte in the Download Info Indication message module Info
Byte loop SHALL be the same.

number_of_cv_certificates The number of code verification certificates.

certificate_type Determines the type of CVC
 0x00 Manufacturer CVC
 0x01 Co-Signer CVC
 0x02 - 0xFF Reserved
code_verification_certificate Code Verification Certificate per [OCSEC].

9.19.3.6 code_version_table_reply

When the Host receives a code_version_table() APDU, it SHALL respond with the code_version_table_reply()
APDU. This response serves as an acknowledgement to the receipt of the CVT and an error code if necessary.
When the Card receives this APDU, it SHALL stop sending CVTs to the Host.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 207

Table 9.19–6 - code_version_table_reply

Syntax # of bits Mnemonic
code_version_table_reply() {

code_version_table_reply_tag 24 uimsbf
length_field()
 host_response 8 uimsbf
}

code_version_table_reply_tag Value = 0x9F9C03

host_response Host response to download status:
 0x00 ACK, no error
 0x01 Invalid vendor ID or hardware version ID
 0x02 Other parameter error
 0x03-0xFF Reserved

9.19.3.7 host_download_control

The Host SHALL utilize the host_download_control() APDU to control the download process.

For DSG Channel method, after the Host receives a code_version_table() APDU, the Host SHALL first determine
if its new download image is applicable. If it is, then it SHALL send the host_download_control() APDU with the
host_command equal to 0x00 (start download). The Card, upon receiving start download command, SHALL start
parsing DCD in an attempt to locate the DSG Broadcast Tunnel that carries the DSM-CC data carousel.

For OOB Forward Data Channel Method, the Host SHALL first determine if its new download image is already
loaded on the DSM-CC carousel. If it is, then it SHALL send the host_download_control with the host_command
equal to 0x00 (start download).

If the Host does not find the code file on DSM-CC carousel as defined in CVT, then it SHALL send the
host_download_control() APDU with the host_command equal to 0x02 (notify headend). The Card SHALL then
send a host_notification to the Headend along with the vendor_id and hardware_version_id. The Headend will
verify the code file is the code file available and then send the code_version_table with appropriate information,
e.g., code version and locator data.

When the Host has successfully authenticated the code file, it SHALL send an additional host_download_control()
APDU with a host_command parameter equal to 0x01 (download completed). The Card SHALL then send the
done message to the Headend along with the vendor_id and hardware_version_id so that the code file can be
unloaded from the carousel. If the Host has not successfully authenticated the code file, it SHALL send the
host_download_control() APDU with a host_command parameter equal to 0x05 (certificate failure). The Card
MAY then send this message to the Headend along with the vendor_id and hardware_version_id and/or host_id to
inform the Headend that the code download has been rejected due to certificate authentication failure.

In the case where the Host determines that the image is damaged or corrupted, or number of download retries
reached the limit, it SHALL reject the newly downloaded image and send the host_download_control() APDU with
a host_command parameter equal to 0x04 (image damaged). The Card MAY then send this message to the
Headend along with the vendor_id and hardware_version_id and/or host_id to inform the Headend that downloaded
code file is corrupted or incomplete.

The Host MAY re-attempt to download the new image if the maximum number of download retries (max retries =
3) has not been reached. On the third consecutive failed retry of the Host software download attempt, the Host
SHALL fall back to the last known working image and send the host_download_control() APDU with a
host_command parameter equal to 0x03 (download max retry). The Card MAY then send this message to the
Headend along with the vendor_id and hardware_version_id and/or host_id to inform the Headend that a given Host
had a problem with downloading a code file.

After the Host downloaded a new code file and wrote it to non-volatile storage, the Host SHALL reboot itself with a
new code file. In case of problem with running a new code, the Host MAY re-attempt to reboot itself if the

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

208 CableLabs® 8/03/06

maximum number of reboot retries (max_retries = 3) has not been reached. On the third consecutive failed retry of
the Host software download attempt, the Host SHALL fall back to the last known working image and send the
host_download_control() APDU with a host_command parameter equal to 0x06 (reboot max retry). The Card
MAY then send this message to the Headend along with the vendor_id and hardware_version_id and/or Host_id to
inform the Headend that a given Host had a problem with running a newly downloaded code file.

Table 9.19–7 - host_download_control table

Syntax # of bits Mnemonic
host_download_control() {
 host_download_control_tag 24 uimsbf
 length_field()
host_command 8 uimsbf
}

host_download_control_tag Value = 0x9F9C04

host_command Host command:
 0x00 Start download
 0x01 Download Completed – sent when done receiving data
 0x02 Notify headend – sent when the Host does not find a code file on

DSM-CC data carousel
 0x03 Download max retry – sent when max retry has been reached during

code file downloading
 0x04 Image damaged – sent when downloaded code file is damaged

or corrupted
 0x05 Certificate failure – sent when code’s certificate authentication

failed
 0x06 Reboot max retry – sent when max retry has been reached during

device rebooting
 0x07-0xFF Reserved

9.19.4 Operational Behavior

1. All OpenCable devices SHALL support a single secured firmware image download that SHALL be
used for the entire OpenCable device.

2. If a Host suffers a loss of power or resets during a Common Download-initiated upgrade, the Host
SHALL resume the upgrade without requiring manual intervention and when the Host resumes the
upgrade process.

3. If a Host suffers a loss of power or resets during a configuration file-initiated upgrade, when the Host
reboots the Host SHALL ignore the fact that a previous upgrade was in progress and restart the
download per receipt of the next CVT.

4. In the case where the Host determines that the download image is damaged or corrupted, the Host
SHALL reject the newly downloaded image. The Host MAY re-attempt to download if the maximum
number of download retries (max retries = 3) has not been reached. If the Host exceeds the maximum
number of download retries, the Host SHALL fall back to the last known working image and proceed
to an operational state.

5. In the case where Host determines that the image is damaged or corrupted, the Host SHALL reject the
newly downloaded image. The Host MAY re-attempt to download the new image if the maximum
number of download retries (max retries = 3) has not been reached. On the third consecutive failed
retry of the Host software download attempt, the Host SHALL fall back to the last known working
image and proceed to an operational state. In this case, the Host SHALL send two notifications, one to
notify that the max retry limit has been reached, and another to notify that the image is damaged.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 209

6. In the case where the Host successfully downloads (or detects during download) an image that is not
intended for the Host device, AND

7. In the case where the Host reaches the maximum number of download retries (max retries = 3)
resulting from multiple losses of power or resets during a Common Download -initiated upgrade, Then
the HOST SHALL behave as follows:

a. The Host SHALL verify that the downloaded image is appropriate for itself. If the image is
appropriate, the Host SHALL write the new software image to non-volatile storage. Once the file
transfer is completed successfully, the Host SHALL restart itself with the new code image.

b. If the Host is unable to complete the file transfer for any reason, it SHALL remain capable of
accepting new software downloads (without operator or user interaction), even if power or
connectivity is interrupted between attempts. The Host SHALL log the failure and the Card
MAY report it asynchronously to the network manager.

9.19.5 Signaling Contention

 Once the Host device has initiated the code file download process, it SHALL ignore all other triggers delivered to it
by any signaling mechanism until the download process has been completed. The start of the download process will
be considered to be the time at which the initial trigger is validated. The process will be considered to be complete
when the downloaded code image has been validated and becomes the active operational code.

9.20 DSG Resource

9.20.1 DSG Mode

In basic_DSG_mode and basic_DSG_one-way_mode, all SCTE 65 SI messages, SCTE 18 EAS messages, CVTs
and OCAP XAITs are received by the Host via the extended channel. In advanced_DSG_mode and
advanced_DSG_one-way_mode, all SCTE 65 SI messages, SCTE 18 EAS messages, and OC Signaling are
received either directly by the Host or are received over the extended channel. The Host determines this based on
the presence of DSG Broadcast Tunnel types defined in the Host Entries section of the DSG_directory() APDU. If
the Host Entries section indicates a Broadcast Tunnel of a particular type, then the data is received directly by the
Host via a DSG Broadcast Tunnel. If the Host Entries do not indicate a Broadcast Tunnel of a particular type, then
the data may be delivered over the extended channel. As an example: the Host Entries indicates the presence of a
Broadcast Tunnel of type SCTE 18 (dsg_client_id = Broadcast Client ID for SCTE 18 = 0x01 0x02 0x00 0x02) and
no other types, thus indicating that the Host must consume SCTE 18 EAS messages via the Broadcast Tunnel and
request an extended channel MPEG flow for the SCTE 65, CVTs and OCAP XAIT messages.

The following messages are used for DSG configuration and operation:

• inquire_DSG_mode () – The Host can inquire of the Card the preferred operational mode for the network.

• set_DSG_mode () –The Card commands the Host to operated in the preferred operational mode for the
network; either SCTE 55_mode, basic_DSG_mode, basic_DSG_one-way_mode, advanced_DSG_mode or
advanced_DSG_mde, or advanced_DSG_one-way_mode.

• send_DCD_info () – The Host uses the send_DCD_info() message to pass the TLVs contained in the DCD
message. Not used in DSG Basic mode.

• DSG_directory () – The Card uses the DSG_directory() message to pass DSG Advanced mode
configuration parameters to the Host. Not used in DSG Basic mode.

• DSG_message () – This message is used by the Host to pass the upstream channel ID (UCID) to the Card
or to indicate certain eCM operational states.

• DSG_error () – The Card can inform the Host of errors that occur while operating in DSG mode.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

210 CableLabs® 8/03/06

Table 9.20–1 - DSG Resource

Resource Mode Class Type Version Identifier (hex)
DSG M-Card only in S-

Mode/M-Mode
4 1 1 0x00040041

The DSG Resource APDU messages are as follows:

Table 9.20–2 - DSG APDUs

Direction
Host ↔ Card

APDU Name Tag Value Resource
Host

modem
Card modem

inquire_DSG_mode() 0x9F9100 DSG → →
set_DSG_mode() 0x9F9101 DSG ← ←
DSG_error() 0x9F9102 DSG ← N/A

DSG_message() 0x9F9103 DSG → N/A

DSG_directory() 0x9F9104 DSG ← N/A

send_DCD_info() 0x9F9105 DSG → N/A

9.20.1.1 DSG Basic Mode

• The Card SHALL provide the Host with a set of MAC Addresses that the Host eCM uses to filter DSG
tunnels, where the set of MAC Addresses SHALL be at least one and less than 9 (i.e., 0 <
number_MAC_addresses < 9).

• The Host eCM utilizes the presence/absence of the requested DSG tunnel MAC Address to determine if a
downstream channel contains valid DSG tunnels.

• The Host will not forward DCD messages to the Card, if present in a DSG tunnel.

The following figure is an example of the initial message exchange between the Card and the Host for DSG Basic
Mode operation:

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 211

CardHost

new_flow_req()

new_flow_cnf()

DSG

0x00

new_flow_req()

MPEG

0x00

new_flow_cnf()

Inquire_DSG_mode()

set_DSG_mode()

Start in SCTE55 mode

Basic_DSG
 8 MAC Address or
Basic_DSG_one-Way
 8 MAC Address

Figure 9.20-1 - Sample DSG Basic Mode Message Flow

9.20.1.2 DSG Advanced Mode

• The Host scans for a downstream DOCSIS channel containing a DCD message upon receipt of a
set_dsg_mode () APDU with an operational_mode value = 0x03 or 0x04.

• The Host passes the contents (i.e., TLVs) of the first DCD message received on a downstream channel
(after reassembling any fragmentation) to the Card using the send_DCD_info () APDU, regardless of the
configuration count change field. After the initial send_DCD_info () message has been sent, the Host only
sends the DCD message when it detects a change in the configuration count change field in the DCD
message, detects eCM MAC layer reinitialization, or after the completion of the DCC operation. The DCD
message is defined in [DSG].

• To inform the Host that the DSG channel is not valid, the Card SHALL use the DSG_error() APDU with
error status = 0x01 – Invalid DSG Channel. The Host then searches for another DOCSIS Channel
containing a DCD message. How the Card determines that a DSG channel is not valid is outside the scope
of this specification.

• If the Card determines that the DSG channel is valid, then the Host will stay on the downstream and
forward requested DSG data flows to the Card or terminate DSG data flows directly.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

212 CableLabs® 8/03/06

• The Card SHALL pass the DSG Configuration information received in the DCD message to the Host using
the DSG_directory() APDU upon selection of a valid DSG channel or whenever the Card determines that it
is necessary.

• The Host sends the DSG_message() to pass the UCID, when identified, to the Card. The Host sends the
DSG_message() whenever it detects a change in the UCID value.

• The Card MAY use the Upstream Channel ID (UCID) passed by the Host in the DSG_message() to select
appropriate DSG filters when UCIDs are specified in the DSG rules.

• After the Card parses the DCD message, the Card SHALL use the DSG_directory() APDU to provide the
Host with a set of MAC Addresses and DSG classifiers as applicable for specific DSG data flows.

• The Card MAY resend an updated DSG_directory() APDU at any time when operating in advanced DSG
mode.

• Host specific DSG filters are indicated by the presence of the number_of_host_entries > 0 in the
DSG_directory() APDU, where dir_entry_type = 0x01.

• DSG filters requested by the Card are defined in the number_of_card_entries loop in the DSG_directory()
APDU. All DSG filters defined in the number_of_card_entries loop are forwarded to the eCM.

• The Host uses DSG classifiers provided to it in the Card section of the DSG_directory() APDU to filter
DSG data packets for transmission to the Card.

• The Host uses DSG classifiers provided to it in the Host section of the DSG_directory() APDU to filter
DSG data packets for DSG Clients on the Host.

• The DSG_directory() APDU may define identical filters in the Host Entries loop and Card Entries loop; in
this case the Host consumes the DSG data packets directly in addition to sending these packets to the Card.

The following figure is an example of the initial message exchange between the Card and the Host for Advanced
Mode Operation:

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 213

CableCARD
DeviceHost

new_flow_req()

new_flow_cnf()

DSG

0x00

inq_DSG_mode()

set_DSG_mode()

DSG_message()

send_DCD_info()

advanced_DSG_mode or
advanced_DSG_one-way_mode

2-way ok, UCID
Ent_one-Way_mode
Dwnstr_Scan_Comp
Dynamic_Chan_Chg_Depart

DCD_message

vct_id_included
directory_version
number_of_host_entries
 dsg_client_id
 dir_entry_type
 ADSG_Filter() or
 Ext Ch flow
number_of_card_entries
 ADSG_Filter()
 number_of_RXFrequency
 RXFrequency
 initialization_timeout
 operational_timeout
 two_way_retry_timeout
 one_way_retry_timeout

 vct_id

DSG_directory()

DSG_directory()

As defined

2-way ok, UCID

DSG_message()

Figure 9.20-2 - Sample Advanced Mode Message Flow

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

214 CableLabs® 8/03/06

9.20.2 inquire_DSG_mode APDU

The Host uses the inquire_DSG_mode () APDU to determine the preferred operational mode for the network, either
QSPK mode or DSG mode.

Table 9.20–3 - inquire_DSG_mode APDU Syntax

Syntax No. of Bits Mnemonic
inquire_DSG_mode() {

inquire_DSG_mode_tag 24 uimsbf
length_field() /* always = 0x00 */

}

inquire_DSG_mode_tag 0x9F9100

9.20.3 set_DSG_mode APDU

The Card SHALL use the set_DSG_mode() APDU to inform the Host of the preferred operational mode for the
network. The set_DSG_mode() APDU SHALL be sent by the Card in response to the inquire_DSG_mode(), or it
MAY be sent as an unsolicited message to the Host after the resource session has been established. The Card MAY
send the set_DSG_mode() APDU at any time. The method by which the Card determines the preferred operational
mode is proprietary to the CA/Card system vendor.

The set_DSG_mode() SHALL be used by the Card to indicate either SCTE55_mode, basic_DSG_mode,
basic_DSG_one-way_mode, advanced_DSG_mode or advanced_DSG_one-way_mode.

In basic_DSG_mode or basic_DSG_one-way_mode, the Host receives MPEG flows via the Card thru the Extended
Channel.

In advanced_DSG_mode or advanced_DSG_one-way_mode the Host receives MPEG flows directly via DSG
packets or indirectly thru the Extended Channel.

A Card should support a fall-back operational mode for cases where the Card is unable to obtain the preferred
operational mode or the Host does not support the preferred operational mode. There are two potential default
conditions that should be addressed:

• The Card has not acquired the preferred operational mode from the network due to possible network errors.

• The Card has acquired the preferred operational mode from the network but the Host does not support the
preferred mode.

To ensure backward compatibility in the first case above, the Card SHALL instruct the Host that the preferred
operational mode is SCTE55_mode. In the second case, the Card MAY support any alternative mode supported by
the Host.

If the operational mode of the Host is any of the DSG modes, the Host SHALL deny any tune requests for any
SCTE 55 operational mode tuners. In any DSG mode, the reverse QPSK transmitter SHALL be disabled for the
QPSK RDC. In any DSG one-way modes, the reverse eCM transmitter SHALL be disabled for the DOCSIS return
channel.

If the operational mode is Basic DSG mode, the Card MAY provide up to eight DSG MAC addresses and the
number of header bytes to be removed from the DSG packets.

The Host is expected to support at least eight Ethernet MAC addresses and removal of up to 255 header bytes.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 215

Table 9.20–4 - set_DSG_mode APDU Syntax

Syntax No. of Bits Mnemonic
set_DSG_mode() {

set_DSG_mode_tag 24 uimsbf
length_field()
operational_mode 8 uimsbf
if ((operational_mode == basic_DSG_mode) ||
 (operational_mode == basic_DSG_one-
way_mode)) {

number_MAC_addresses 8 uimsbf
for (i=0; i<number_MAC_addresses; i++) {

DSG_MAC_address 48 uimsbf
}

remove_header_bytes 16 uimsbf
}

}

set_DSG_mode_tag 0x9F9101

operational_mode Defines the preferred operational mode of the network.
 0x00 SCTE55_mode – In this mode field, the reverse QPSK transmitter is

under control of the Card through the use of the OOB_TX_tune_req()
APDU in the Host Control resource. The Host responds to
OOB_TX_tune_req() APDU, operational_mode field set to 0x00, by
tuning the reverse QPSK transmitter to the requested frequency and
coding value (bit-rate and power level). The Card uses the QPSK-
RDC for returning data to the cable headend.

 0x01 basic_DSG_mode – In this mode the Host uses the eCM as the

transmitter for the reverse path. If the Card attempts to command the
reverse QPSK transmitter with the OOB_TX_tune_req() APDU while
the Host is operating in DSG basic mode, the Host denies the tune
request with a “Tuning Denied – RF Transmitter Busy” status. Also, in
this mode, the receiver for the QPSK FDC is not active. If the Card
attempts to command the QPSK receiver with the
OOB_RX_tune_req() message while the Host is operating in the DSG
basic mode, the Host denies the tune request with a “Tuning Denied –
Other reasons” status. Setting this mode is equivalent to the state:
Notification from DSG Client Controller: enable upstream transmitter
defined in the DSG specification.

 NOTE: In basic_DSG_mode all broadcast messages (e.g., SCTE 65 SI

messages, SCTE 18 EAS messages, OC Signaling) will only be
received by the Host via the Extended Channel.

 0x02 basic_DSG_one-way_mode – In basic_DSG_one-way_mode, the

reverse QPSK transmitter and eCM transmitter are disabled for both
the QPSK RDC and the DOCSIS return channel. Also, in this mode,
the receiver for the QPSK FDC is not active. If the Card attempts to
command the QPSK FDC receiver with the OOB_RX_tune_req()
message while the Host is operating in the DSG one-way mode, the
Host SHALL deny the tune request with a “Tuning Denied – Other
reasons” status. If the Card attempts to command the reverse QPSK

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

216 CableLabs® 8/03/06

transmitter with the OOB_TX_tune_req() APDU while the Host is
operating in DSG mode, the Host will deny the tune request with a
“Tuning Denied – Other Reasons”. This mode could be used in one-
way cable systems and for network diagnosis in two-way cable
systems. Setting this mode is equivalent to the state: Notification from
DSG Client Controller: disable upstream transmitter defined in the
DSG specification.

 NOTE: Operating the Host in this mode will interrupt all two-way IP

connectivity until another mode is selected.

 NOTE: In basic_DSG_one-way_mode, all broadcast messages (e.g.,

SCTE 65 SI messages, SCTE 18 EAS messages, OC Signaling) will
only be received by the Host via the Extended Channel.

 0x03 advanced_DSG_mode – In this mode, the Host uses the eCM as the

transmitter for the reverse path. If the Card attempts to command the
reverse QPSK transmitter with the OOB_TX_tune_req() message
while the Host is operating in the DSG mode, the Host denies the tune
request with a “Tuning Denied – RF Transmitter busy” status. Also, in
this mode, the receiver for the QPSK FDC is not active. If the Card
attempts to command this receiver with the OOB_RX_tune_req()
message while the Host is operating in the DSG mode, the Host denies
the tune request with a “Tuning Denied – Other reasons” status.
Setting this mode is equivalent to the state Notification from the DSG
Client Controller: enable upstream transmitter defined in the DSG
specification.

 NOTE: In advanced_DSG_mode, broadcast messages (e.g., SCTE 65

SI messages, SCTE 18 EAS messages, OC Signaling) MAY be
received by the Host directly via DSG Broadcast Tunnels or MAY be
transmitted to the Host over the Extended Channel, as indicated in the
DSG_directory() APDU.

 0x04 advanced_DSG_one-way_mode – In this mode, the reverse QPSK

transmitter and eCM Transmitter are disabled for both the QPSK RDC
and the DOCSIS return channel. Also, in this mode, the receiver for the
QPSK FDC is not active. If the Card attempts to command this receiver
with the OOB_RX_tune_req() message while the Host is operating in
the DSG one-way mode, the Host denies the tune request with a
“Tuning Denied – Other reasons” status. If the Card attempts to
command the reverse QPSK transmitter with the OOB_TX_tune_req()
APDU while the Host is operating in DSG mode, the Host will deny
the tune request with a “Tuning Denied – Other Reasons”. This mode
could be used for network diagnosis in two-way cable systems. Setting
this mode is equivalent to the state: Notification from DSG Client
Controller: disable upstream transmitter defined in the DSG
specification.

 NOTE: Operating the Host in this mode interrupts all two-way IP

connectivity until another mode is selected.

 NOTE: In advanced_DSG_one-way_mode, broadcast messages (e.g.,

SCTE 65 SI messages, SCTE 18 EAS messages, OC Signaling) MAY
be received by the Host directly via DSG Broadcast Tunnels or MAY

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 217

be transmitted to the Host over the Extended Channel, as indicated in
the DSG_directory() APDU.

 05-0xFF Reserved
number_MAC_addresses The number of DSG MAC addresses allocated by the Card provider to carry

DSG data. A maximum of eight unique DSG MAC addresses per Card provider
are allowed in Basic_DSG_Mode.

DSG_MAC_address An Ethernet MAC address allocated by the Card provider to carry DSG data.

remove_header_bytes The number of bytes to be removed from the DSG packets before delivery over
the Extended Channel. A value of zero implies that no header bytes are to be
removed.

9.20.4 send_DCD_info APDU

The send_DCD_info() APDU is used to pass DCD message TLV information between the Host and Card. In DSG
Advanced mode, the Host will reassemble DCD fragments, if necessary, and use the send_DCD_info () APDU to
pass the TLV-encoded data to the Card. If the Host receives the DCD message from the eCM in 2 or more DCD
fragments, the Host SHALL combine all DCD fragments, after removing the DOCSIS MAC management header
and the three header bytes (Configuration Change Count, Number of Fragments and Fragment Sequence Number)
from each of the fragments, and send just the TLVs to the Card. The Host uses the send_DCD_Info() APDU when
the initial DCD for the current downstream channel is reassembled to send the information to the Card and
subsequently when the Configuration Change Count is modified, in the event of an eCM MAC layer re-initialization
or after the completion of the DCC operation. The Host SHALL use the send_DCD_Info() APDU when the initial
DCD for a new downstream channel is reassembled after the eCM is directed to perform a Dynamic Channel
Change. Upon receipt of the send_DCD_info () APDU the DSG Client Controller SHALL parse the DCD
information, and, if there is any change to previously delivered filters, send a new DSG_directory() APDU.

Table 9.20–5 - send_DCD_info APDU Syntax

Syntax # of bits Mnemonic
send_DCD_info () {
 send_DCD_info _tag 24 uimsbf
 length_field()
 DCD_message (*)
}

send_DCD_info_tag 0x9F9105

DCD_message The TLVs comprising the DCD message as defined in [DSG] in the Summary
of DCD TLV Parameters table.

9.20.5 DSG_directory APDU

The Card SHALL use the DSG_directory() APDU to provide DSG filter parameters to the eCM in the Host if the
Card supports Advanced DSG mode and the Host reports resource DSG (0x00040041) and is instructed by the Card
to operate in any Advanced DSG mode. The DSG_directory() APDU is sent either in response to the
send_DCD_info() APDU or a DSG_message() APDU or may be an unsolicited APDU from the Card. The
DSG_directory() APDU SHALL contain all of the client IDs and associated DSG filters that may be released to the
Host as determined by the Card, in addition to DSG filters associated with data flows to the Card.

If the directory_included field is set to 1, the DSG_directory() APDU SHALL provide a list of DSG filters (i.e.,
MAC Addresses and layer-3/layer-4) parameter combinations. The list of DSG filters provided in the
DSG_directory() APDU overrides all previously defined DSG filters passed by the Card.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

218 CableLabs® 8/03/06

• If a DSG filter designates any specific layer-3/layer-4 parameters, then the dsg_mac_address field and the
specific layer-w/layer-4 parameters designated in the DSG filter SHALL be used to identify matching
packets.

• If a DSG filter designates the entire UDP port range, then layer-4 characteristics are ignored when
identifying matching packets.

• If a DSG filter does not designate specific layer-3/layer-4 parameters (i.e., the DSG filter implies all values
of Source IP address, Destination IP Address, and UDP ports), then only the dsg_mac_address value
SHALL be used by the Host eCM to identify matching Ethernet frames.

When UCID is used as a classifier in a DCD rule, it is passed as a parameter in the DSG_directory() APDU. The
Host uses the UCID acquired from the eCM as a match on the UCID contained in a directory entry to determine
which DSG Filters to forward to the eCM. When no UCID matches occur, it needs to use the entry containing the
default UCID = 0x00 in the DSG_directory() APDU. If the Host has not acquired a UCID in 2-way mode or is
running in one-way mode, it needs to use the entry containing the default UCID = 0x00 in the DSG_directory()
APDU. As noted in [DSG], it is expected that every DCD message that includes DSG Rules using UCID as a
classifier also includes an additional Rule, of lower priority, that does not use UCID as a classifier. The Card
SHALL include the additional DSG Rule without UCID as the directory entry containing the default UCID = 0x00.
UCID operation is detailed in the following flow chart:

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 219

Figure 9.20-3 - UCID Flow Example from Host Perspective

If the vct_id_included field is set to 1, the DSG_directory() APDU SHALL provide a vct_id to be used the Host.
This vct_id overrides any previously sent vct_id. When the Host is reinitialized it will revert to the default vct_id
value of zero (0). The Card resends the DSG_directory() APDU to set the vct_id after the Host is reset and the
vct_id value is known. As detailed in the following flow chart:

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

220 CableLabs® 8/03/06

Host connected to RF
in Advanced DSG

Mode set to a default
VCT_ID of 0x00

DSG_directory()
setting VCT_ID to

another value

Host begins filtering
SCTE 65 Broadcast

Tunnel using VCT_ID =
0x00

VCT_ID used to
regionalize Channel

Maps?
YES

NO
Host on plant filtering
VCT_ID of assigned

value or default value

NO
Updated

VCT_ID sent to Card from
Headend

YES

Figure 9.20-4 - VCT_ID Flow from Host Perspective

In any Advanced DSG mode, the eCM SHALL forward IP packets whose MAC destination address and layer-
3/layer-4 parameters match any classifiers passed to it by the Host. The Host will determine which DSG filters to
forward to the eCM based on dsg_client_id specified in the Host Entries section of the DSG_directory() APDU.
The Host will forward to the eCM all DSG Filters specified in the Card Entries section of the DSG_directory()
APDU.

• The dsg_client_id is used to designate the kind of DSG Client associated with the DSG filter in the
number_of_host_entries loop if dir_entry_type = 0x01.

• A dir_entry_type equal to 0x01 in the number_of_host_entries loop indicates DSG filters associated with a
DSG Client ID that is available to the Host directly.

• The Host SHALL terminate all packets which match the ADSG filter() settings sent to the eCM defined in
the number_of_host_entries loop if dir_entry_type equal to 0x01.

• The Host may not forward a particular DSG Filter to the eCM if the device does not recognize or is not
interested in the dsg_client_id associated with the ADSG filter().

• If dir_entry_type = 0x02, the data type associated with the dsg_client_id is a signal to the Host that this
Broadcast data type will be available over an Extended Channel MPEG flow and is not delivered directly
in a DSG Broadcast tunnel.

• The Host will forward to the Card all packets which match the ADSG filter() settings defined in the
number_of_card_entries loop.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 221

• When operating in any Advanced DSG mode the Card MAY provide up to eight unique Ethernet MAC
addresses along with a set of DSG classifiers for its use.

Table 9.20–6 - DSG_directory APDU Syntax

Syntax # of Bits Mnemonic

DSG_directory() {
DSG_directory _tag 24 uimsbf
length_field()
reserved 7 bslbf
vct_id_included 1 bslbf
directory_version 8 uimsbf
number_of_host_entries 8 uimsbf

for (i=0; i< number_of_host_entries; i++) {
dsg_client_id 8*N uimsbf
dir_entry_type 8 uimsbf
if (dir_entry_type == 0x01){
/** Direct Termination DSG Flow **/

ADSG_Filter()
UCID 8 uimsbf

}
if (dir_entry_type == 0x02){
/** Extended Channel MPEG Flow **/

 }
number_of_card_entries 8 uimsbf

for (i=0; i< number_of_card_entries; i++) {
ADSG_Filter() 200 uimsbf

}
number_of_RXFrequency 8 uimsbf

for (i=0; i<number_of_RXFrequency; i++) {
RXFrequency 32 uimsbf

}
initialization_timeout 16 uimsbf
operational_timeout 16 uimsbf
two_way_retry_timeout 16 uimsbf
one_way_retry_timeout 16 uimsbf

if (vct_id_included == 0x01) {

vct_id 16 uimsbf
}

}

DSG_directory_tag 0x9F9104

vct_id_included Indicates if the vct_id is included in this message. The vct_id is defined in
[SCTE65].

 0b The vct_id is not included in this message (No change to last vct_id
sent to Host, if any).

 1b The vct_id is included in this message.
directory_version A modulo 256 counter that SHALL change anytime any of the parameters in the

directory are modified from a previous directory. If a directory is received from
the Card which has the same directory_version number as the previous directory
received from the Card, the Host MAY treat the new directory as identical to the
previous directory and not process it. The Card MAY send a directory with a
different directory_version even if the contents are the same as the previous
directory.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

222 CableLabs® 8/03/06

number_of_host_entries The number of directory entries for Host use provided in this message.

dsg_client_id The TLV-encoded DSG Client ID value associated with the directory entry. The
TLV encoded value SHALL conform to Client ID values allowed by [DSG]. A
DSG Client ID type is always in the context of type 50.4.x, where x varies
depending on the type of Client ID (see [DSG]). The encoding of each instance
of the dsg_client_id field in this message has an implicit prefix type of 50.4,
which is not present in the message and explicitly begins with the appropriate
value for x, followed by the appropriate length and value. Example Client ID
encodings for the dsg_client_id field are:

 Broadcast Client ID for [SCTE65] = 0x01 0x02 0x00 0x01

 Broadcast Client ID for SCTE 18 = 0x01 0x02 0x00 0x02

 Broadcast Client ID for XAIT = 0x01 0x02 0x00 0x05

 Well-Known MAC Address Client ID
 = 0x02 0x06 0xAA 0xBB 0xCC 0xDD 0xEE 0xFF
 CAS Client ID 0x0A0B = 0x03 0x02 0x0A 0x0B

 Application Client ID 16 = 0x04 0x02 0x00 0x10

dir_entry_type Indicates the acquisition method for data associated with the client.
 0x01 – DSG Filter
 0x02 – Extended Channel MPEG Flow. The data flow associated with the

client ID is accessed via Extended Channel MPEG Flow. The use of
this type of entry is only defined for the Broadcast Client IDs for
SCTE-65, SCTE-18, CVT and OCAP XAIT. The Card SHALL NOT
provide a directory with a Client ID value being associated with both a
DSG Filter and an Extended Channel MPEG Flow.

 0x03 – 0xFF - Reserved

UCID Upstream Channel ID – The UCID value contained in the DSG Rule, otherwise

set to 0x00. Note: When a Host is running in one-way mode or 2-way mode,
but has not acquired a UCID, the Host will use the default value of 0x00. When
a DCD rule is defined using UCID, a default rule not containing UCID should
also be defined as defined in [DSG].

number_of_card_entries The number of directory entries provided in this message describing DSG
packets to be forwarded to the Card.

number_of_RXFrequency The number of TLV channel list entries in this message.

RXFrequency The RXFrequency as defined in [DSG].

initialization_timeout DSG Initialization Timeout (Tdsg1). The timeout period for the DSG packets
during initialization as defined in [DSG]. In the DSG_directory () APDU, a
value of zero in the initialization_timeout field indicates that the default value as
defined in [DSG] SHALL be used.

operational_timeout DSG Operational Timeout (Tdsg2). The timeout period for DSG packets during
normal operation as defined in [DSG]. In the DSG_directory () APDU, a value
of zero in the operational_timeout field indicates that the default value as
defined in [DSG] SHALL be used.

two_way_retry_timeout DSG Two-Way Retry Timer (Tdsg3). The retry timer that determines when the
DSG eCM attempts to reconnect with the CMTS as defined in [DSG]. The
valid range of values is 0 to 65535. A value of zero (0) indicates that the Host
should continuously retry two-way operation.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 223

one_way_retry_timeout DSG One-Way Retry Timer (Tdsg4). The retry timer that determines when the
DSG eCM attempts to rescan for a downstream DOCSIS channel that contains
DSG packets as defined in [DSG]. The valid range of values is 0 to 65535. A
value of zero (0) indicates the Host should immediately begin downstream
scanning upon a Tdsg2 timeout.

vct_id The vct_id to be used by the host to filter on the correct virtual channel map.

Table 9.20–7 - ADSG_Filter Syntax

Syntax # of Bits Mnemonic
ADSG_Filter () {
 tunnel_id 8 uimsbf
 tunnel_priority 8 uimsbf
 dsg_mac_address 48 uimsbf
 source_IP_address 32 uimsbf
 source_IP_mask 32 uimsbf
 destination_IP_address 32 uimsbf
 destination_port_start 16 uimsbf
 destination_port_end 16 uimsbf
}

tunnel_id An identifier for the tunnel. This field should match the DSG Rule ID received
in the DCD message for tunnel identifier. The tunnel_id is used by the eCM to
populate the dsgIfStdTunnelFilterTunnelId MIB object.

tunnel_priority Indicates the priority of the Tunnel.

dsg_mac_address The DSG MAC address associated with the DSG filter.

source_IP_address The IP source address of the DSG filter to be used in layer 3 filtering. A value
of all zeros implies all values of SourceIP Address, i.e., this parameter was not
specified in the DCD message.

source_IP_mask The source IP mask of the DSG filter to be used in layer 3 filtering. A value of
all ones implies that all 32 bits of the Source IP Address are to be used for
filtering.

destination_IP_address The IP destination address of the DSG filter to be used in layer 3 filtering. A
value of all zeros implies all values of the Destination IP Address, i.e., this
parameter was not specified in the DCD message.

destination_port_start The beginning of the range of UDP Destination Port numbers of the DSG filter.

destination_port_end The end of the range of UDP Destination Port numbers of the DSG filter.

9.20.6 DSG_message APDU

If the operational mode is advanced_DSG_mode or advanced_DSG_one-way_mode, the Host SHALL use the
DSG_message() APDU to indicate

• the eCM has established two-way communication by passing the UCID of the upstream channel.

• the eCM has entered One-Way mode.

• the eCM has done a complete downstream scan without finding a DCD message or a Basic Mode tunnel
MAC address.

• the eCM has received a DCC-REQ message and is preparing to execute a Dynamic Channel Change.

• an event has occurred that required an eCM MAC layer re-initialization.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

224 CableLabs® 8/03/06

Table 9.20–8 - DSG_message APDU Syntax

Syntax # of bits Mnemonic
DSG_message() {
dsg_message_tag 24 uimsbf
length_field()
message_type 8 uimsbf
if (message_type == 0x01) {

UCID 8 uimsbf
}
if (message_type == 0x04) {

init_type 8 uimsbf
}
if (message_type == 0x07) {
 disabled_forwarding _type 8 uimsbf
}

}

dsg_message_tag 0x9F9103

message_type Indicates the purpose of the message:
 0x00 Reserved
 0x01 2-way OK, UCID – the Host has established two-way communication

and is providing the Card with the channel ID (UCID) of the upstream
channel.

 Advanced Mode: The Card uses this value for filtering of various
DSG rules as applicable.

 Basic Mode: The Card SHALL ignore this value in Basic mode.
 0x02 Entering_One-Way_mode – Sent from the Host to the Card as an

indicator that a timeout or other condition has forced the eCM into
One-Way operation.

 0x03 Downstream Scan Completed – Sent from the Host to the Card after a
complete downstream scan as an indicator that the eCM,

 Advanced Mode: Has been unable to identify a downstream channel
with a DCD message.

 Basic Mode: Has been unable to find a DSG tunnel with a well-known
MAC address.

 0x04 Dynamic Channel Change (Depart) – the eCM has transmitted a DCC-
RSP (Depart) on the existing upstream channel and is preparing to
switch to a new upstream or downstream channel. After channel
switching is complete, the eCM transmits a DCC – RSP (Arrive) to the
CMTS unless the MAC was reinitialized. In either case the eCM will
resend DSG_message() APDU with message_type 0x01 “2-way OK,
UCID” to indicate the upstream has been established.

 0x05 eCM Reset – An event has occurred that requires an eCM MAC layer
re-initialization. The Card needs to re-establish DSG tunnel filtering by
sending the DSG_directory() APDU after it receives message_type =
0x01 2-way OK, UCID. The DSG tunnel MAC addresses and DSG
classifiers are obtained by parsing the next received DCD message.

 0x06 Incorrect number of MAC Addresses – the Card has requested Basic
DSG mode and has indicated an invalid number of MAC Addresses.
The Host will not transition into Basic DSG mode until the Card sends
a new set_DSG_mode() message with the correct number of MAC
Addresses (i.e., 0 < number_MAC_addresses < 9).

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 225

 0x07 eCM cannot forward 2-Way traffic –The eCM has entered the
Operational state, but cannot forward 2-Way traffic because of
provisioning limitations. The Card needs to send the set_DSG_mode()
APDU message to change the operational_mode to one-way operation
using "basic_DSG_one-way_mode" or "advanced_DSG_one-
way_mode".

 0x08-0xFF Reserved.

UCID the channel ID of the DOCSIS channel that the Host is using for upstream

communication.

init_type Specifies what level of reinitialization the eCM will perform, if any, before
communicating on the new channel(s), as directed by the CMTS.

 0x00 Reinitialize the MAC.
 0x01 Perform broadcast initial ranging on new channel before normal

operation.
 0x02 Perform unicast initial ranging on new channel before normal

operation.
 0x03 Perform either broadcast initial ranging or unicast initial ranging on

new channel before normal operation.
 0x04 Use the new channel(s) directly without re-initializing or initial

ranging.
 0x05 Reinitialization method not specified.
 0x06-0xFF Reserved.

disabled_forwarding _type Specifies what type of eCM provisioning limitations impact eCM 2-Way

forwarding.
 0x00 – Network access disabled (NACO=0)
 0x01 – Max CPE limit exhausted

Informative Note: Dynamic Channel Change operations can cause a DSG eCM to move to a new upstream and/or
downstream channel(s) either through manual intervention at the CMTS or autonomously via a load-balancing
operation. message_type = 0x01 and 0x04 allow the DSG Client Controller to be made aware of the initiation and
progress of DCC operations. Acting upon these messages, the Client Controller can provide the proper reaction to
upstream and downstream channel changes; in particular, the Client Controller should take action to make sure it
still has a valid DSG channel after the DCC operation has completed.

9.20.7 DSG_error APDU

The Card SHALL use the DSG_error() APDU to inform the Host of the following error conditions:

• Byte count error

• Invalid_DSG_channel

Table 9.20–9 - DSG_error APDU Syntax

Syntax No. of Bits Mnemonic
DSG_error() {

DSG_error_tag 24 uimsbf
length_field()
error_status 8 uimsbf

}

DSG_error_tag 0x9F9102

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

226 CableLabs® 8/03/06

error_status Indicates the type of error that occurred
 0x00 Byte count error – The Card did not receive the same number of bytes

in the DSG packet as was signaled by the Host.
 0x01 Invalid_DSG_channel –
 Advanced Mode: The Current DCD message transmitted to the Card

is not valid or does not contain the requested DSG tunnel(s). The Host
then acquires a new DCD on a different downstream and passes this
DCD to the Card. Sent from the Card to the Host during initial tunnel
acquisition or when a DCD no longer contains a required tunnel.

 Basic Mode: The current DSG channel is not valid. The Host finds
another DSG channel that contain DSG tunnels with the well-known
MAC address(es).

 0x02-0xFF Reserved

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 227

10 EXTENDED CHANNEL OPERATION

The extended channel provides a data path between the Card and the Host used for network data. There are three
possible states: SCTE 55 Mode (Card contains cable modem); Basic Mode DSG (Host device contains an eCM and
the Card processes network data and passes to Host using extended channel); and Advanced Mode DSG (Host
device contains an eCM and processes network data directly or uses the extended channel for network data).

10.1 Internet Protocol Flows
The Extended Channel supports delivery of IP packets across the Card interface. Both unicast (point-to-point) and
multicast (point-to-multipoint) addressing are supported by this protocol. If the Host is in OOB mode, then the
Card is expected to service the IP flow via utilization of the Host’s RDC and supply the Host with an IP address. On
request of a “new flow request” from the Host, the Card will respond to the request to open the flow by obtaining an
IP address for use by the Host. That IP address is returned in the “new flow confirmation” message.

Informative Note: The Card is not required to grant a request for service type IP Unicast when requested by the
Host.

In DSG mode, the Card resides at the Network Layer and the Host will utilize its eCM to provide the Data Link
Layer to the underlying DOCSIS network. When the Card wishes to utilize the DOCSIS network to transfer IP
datagrams upstream, it must first submit a “new flow request” to the Host to establish an IP flow to transfer
datagrams between the Card and the Host’s eCM interface. The Card will submit its MAC address in its request to
the Host for an IP flow.

If the Host grants the new IP flow request, then the Host utilizes DHCP to acquire an IP address for the Card, and
sends this information, along with the DOCSIS maximum transmission unit (MTU) (1500 bytes for IP datagrams)
to the Card in a new flow confirmation. The Host now opens an IP flow to the Card over the Extended Data
Channel.

The Host utilizes the MAC address provided in the Card’s IP flow request to filter Ethernet frames from the eCM
that are intended for the Card. The Host extracts all unicast IP datagrams from Ethernet frames addressed to the
Card’s MAC address and forwards them over the Extended Channel to the Card.

The Host utilizes the Extended Channel’s IP flow to forward IP datagrams it receives over the eCM interface on
behalf of the Card. The Host does not forward to the Card any datagrams received over other interfaces (e.g.,
Ethernet port, USB port, etc.).

The Host forwards all IP datagrams received from the Card to the eCM interface. The Host does not forward any IP
datagrams received from the Card to any other interface, including but not limited to: IEEE-1394, Ethernet, USB,
802.11a/b/g/n/x, Multimedia Over Coax Alliance (MoCA), etc. The Host resolves the destination MAC address of
the IP datagrams that it receives from the Card and applies the appropriate MAC addresses to the Ethernet frames it
sends upstream.

If an established IP type of flow becomes unavailable for any reason, the device that has granted the flow is required
to report that fact to the one that has requested the flow. The “lost flow indication” transaction is used to report this
type of event. One example case where a flow may become unavailable is due to a change in the state of the eCM
that may have resulted from a change via SNMP to the eCM’s operational state.

10.2 Socket Flows
When operating in DSG mode, an application on the Card has the ability to ask the Host to open a socket
connection to communicate with a remote host. The socket connection can be either TCP or UDP. The Card has the
option of requesting a specific local port on the Host or allowing the Host to choose an appropriate port for the local
socket.

The Card resides at the Application Layer and the Host will utilize its eCM to provide the Data Link Layer to the
underlying DOCSIS network. The Host will use its IP stack to provide network layer services for the application on
the Card. When the Card wishes to utilize the DOCSIS network to transfer IP datagrams upstream, it SHALL first

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

228 CableLabs® 8/03/06

submit a “new flow request” to the Host to establish a socket to transfer data between the Card and the Host’s eCM
interface.

The Host utilizes the socket opened in the socket flow request to transfer data between the remote destination and
the Card. The Host extracts data from the IP datagrams bound for the Card’s socket and forwards that data across
the Extended Channel to the Card.

The Host forwards all data received from the Card over a socket flow to the eCM interface. The Host does not
forward any IP datagrams received from the Card to any other interface, including but not limited to: IEEE-1394,
Ethernet, USB, 802.11a/b/g/n/x, Multimedia Over Coax Alliance (MoCA), etc.

If an established socket flow becomes unavailable for any reason, the Host SHALL report this to the Card using the
lost_flow_ind() APDU. One example is when the remote Host in a TCP connection closes its socket.

10.3 Flow Examples—QPSK Modem Case
Figure 10.3-1 diagrams a CHI in which four flows have been set up. In this example case, the Card provides a full-
duplex modem function for the benefit of the Host (as well as itself).

In the figure, the rectangles with rounded corners represent applications. In this example, the Host has a Navigation
application that receives Service Information data on the Extended Channel via the Card interface (#1). The Host
has opened up three flows to receive MPEG data from the Card, and has supplied different PID values for filtering
for each. The navigation function (#1) uses two SI flows in the example, and another application (#2) uses the third
flow. The Host may have a Video On Demand (VOD) application (#3).

In Figure 10.3-1, the types of services that the Card is required to support are shown with black arrows. As shown
in the figure, three flows delivering MPEG table sections are required. Flows that may be available at the option of
the supplier of the Card are shaded gray. In the figure, the Card supports an IP flow, but a compliant Card can
choose not to support the IP service type.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 229

Host

M
P

E
G

_s
ec

tio
n

Nav. (SI)

1

VOD
3

Card
CA
4

RPT
5

QPSK Rx

QPSK Tx

Transport Processing, Filtering and Routing

IP
_U

IP/Port Routing

App.
2

M
P

E
G

_s
ec

tio
n

Figure 10.3-1 - Flow Examples - QPSK Modem Case

The Card includes two applications of its own. The Conditional Access process (#4) receives data via downstream
QPSK. The Card includes a pay-per-view report back function (#5).

Note that none of these Card applications use flows that travel across the Card interface.

10.4 Flow Examples— Embedded Cable Modem Case DSG Mode
In the next example case, the Host includes an eCM. Figure 10.4-1 diagrams a CHI in which five flows have been
set up. When a Host includes an eCM, it is required to support at least one flow of service type IP Unicast (IP_U)
and one flow of service type DSG. In this example, the Card supports three MPEG section flows if the Host
requests them.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

230 CableLabs® 8/03/06

 Host

eCM IP/Port Routing

Card

IP/Port Routing

MC

1

Transport Processing, Filtering, and Routing

Nav
 (SI)

2

IP_U IP_M MPEG_section

CA
3

RPT

4

MC

5

DSG

IP/Port Routing

Figure 10.4-1 - Flow Examples - eCM Case Basic Mode

In this example, the Host has some application that uses multicast addressed packets (#1) and a Navigation
application (#2) that receives Service Information data on the Extended Channel via the Card interface via three
separate flows.

The Navigation application can open three different simultaneous flows, specifying different PID values for each.
For example, it might set one to the base PID that carries SI network data including the Master Guide Table, Virtual
Channel Table and System Time. It can set a second one to point to a PID value where Event Information Tables
for a specific time slot may be found, and another to collect associated Extended Text Tables (ETTs).

The Card includes three applications of its own. The Host routes IP packets to the Card applications based on IP
address. For unicast packets, those that match the IP address assigned to the Card will be routed across the
interface. For multicast packets, those matching the multicast group address associated with a particular flow will
be delivered.

The Card includes a pay-per-view reportback function (#4) that uses standard IP packets for data transport. Finally,
the Card includes some application (#5) that has registered with the Host to receive multicast-addressed IP packets
through the Host modem.

In the following example, the Host incorporates an eCM and supports Advanced DSG mode. Figure 10.4-2
diagrams a CHI in which 3 flows have been set up. In Advanced DSG mode, the Host MAY receive DSG flows
directly, without going through the Card.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 231

 Host

eCM IP/Port Routing

Card

IP/Port Routing

MC

1

Transport Processing, Filtering, and Routing

Nav
 (SI)

2

IP_U IP_M

CA
3

RPT

4

MC

5

DSG

IP/Port Routing

Figure 10.4-2 - Flow Examples - eCM Case Advanced Direct Mode

In this example, the Host has some application that uses multicast addressed packets (#1) and a Navigation
application (#2) that receives Service Information directly data from the eCM.

The Host would set DSG filter(s) to the values associated with SCTE 65 Broadcast ID (see [DSG]) and the
Navigation application would receive the tuning tables, Source Name Subtable, Virtual Channel Tables, and System
Time. Additional Broadcast ID values are for SCTE 18, OC Signaling. The Card will also inform the Host of any
other DSG Tunnels that it needs to receive.

If the Card includes applications that require IP, after opening an IP flow, the Host will supply the IP packets to the
Card based on IP address. For unicast packets, those that match the IP address assigned to the Card will be routed
across the interface. For multicast packets, those matching the multicast group address associated with a particular
flow will be delivered.

In this example, the Card includes a pay-per-view reportback function (#4) that uses standard IP packets. Finally,
the Card includes some application (#5) that has registered with the Host to receive multicast-addressed IP packets
through the Host modem.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

232 CableLabs® 8/03/06

10.5 Summary of Extended Channel Flow Requirement
Compliance with this standard requires Host and Card to support certain flows. Other types of flows may be
supported at the discretion of the Host or Card. The following table summarizes the requirements.

Table 10.5–1 - Flow Requirements

Operational Mode Service
Type

Requestor Minimum Number of
Possible Concurrent

Flows Supported

Data Direction

MPEG Host 6 Card → Host
IP_U Host 1 Host ↔ Card
IP_M Host 1 (Optional) Card → Host
DSG Card 0 N/A (Error)

SCTE55

Socket Host 1 Host ↔ Card
MPEG Host 6 Card → Host
IP_U Card 1 Host ↔ Card
IP_M Card 1 (Optional) Host → Card
DSG Card 1 Host → Card

Basic DSG

Socket Card 1 Host ↔ Card
MPEG Host 6 Card → Host
IP_U Card 1 Host ↔ Card
IP_M Card 1 (Optional) Host → Card
DSG Card 1 Host → Card

Advanced DSG
(Indirect)

Socket Card 1 Host ↔ Card
MPEG N/A 0 (if all Client IDs direct) N/A (Error if all

Client IDs direct)
IP_U Card 1 Host ↔ Card
IP_M Card 1 (Optional) Host → Card
DSG Card 1 Host → Card

Advanced DSG
(Direct)

Socket Card 1 Host ↔ Card

10.6 System/Service Information Requirements
the Card SHALL supply System and Service Information across the HOST- Card interface, using service_type =
MPEG_section, as defined in Section 9.14.1 and [SCTE65]. The set of MPEG-2 tables provided to support the
navigation function in the Host device SHALL conform to one or more of the profiles specified in [SCTE65].

When the operational_mode in the set_DSG_mode() APDU is 0x03 or 0x04, the Card SHALL supply the DSG
MAC address and filter parameters to allow the Host to receive the System and Service Information directly via
DSG or across the Host/Card interface, using an Extended Channel flow of service_type = MPEG_section. The set
of MPEG-2 tables provided to support the navigation function of the Host device SHALL conform to one or more
of the profiles specified in [SCTE65].

When the table section is in long form (as indicated by the section_syntax_indicator flag set to “1”), a 32-bit CRC is
present. The 32-bit CRC is also present in short-form sections (as indicated by the section syntax indicator flag set
to “0”) carried in the SI_base_PID (0x1FFC). When utilizing the extended channel for SI transmission, then for

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 233

these table sections in which an MPEG-2 CRC is known to be present, the Card SHALL verify the integrity of the
table section using the 32-bit CRC at the table section level, or a 32-bit CRC at another protocol layer. Only SI
messages that pass the CRC check SHALL be forwarded to the Host. The Card SHALL discard SI table sections
that are incomplete or fail the CRC check.

When utilizing the extended channel for SI transmission, then the 32-bit CRC MAY be present in short-form
sections associated with PID values other than the SI_base_PID (0x1FFC) and the Card MAY send these sections to
the Host without any checks. In this case, the Host is responsible for validation of these sections.

Informative note: Profiles 1 through 5 are compatible with Host devices deployed as of Jan 1, 2000. Host devices
that are intended to be portable across the United States will need to function with any of the six profiles of
[SCTE65]. For operational considerations of various profiles, see section A.3 in [SCTE65].

10.7 Link Layer
The link layer of the Extended Channel fragments the datagram PDU, if necessary, over the limited buffer size of
the physical layer, and reassembles the received fragments.

10.7.1 S-Mode

The link header includes two control bits and the flow_id value that has been negotiated by the link device for the
application (see Section 9.14), to identify the end-to-end communication flow.

Table 10.7–1 - S-Mode Extended Channel Link Layer Packet

Bit
7 6 5 4 3 2 1 0
L F 0x00

flow_id (MSB)
flow_id

flow_id (LSB)

datagram PDU fragment

L Last indicator: if this bit is set to '0', then at least one more datagram fragment follows. If
this bit is set to '1', this fragment is the last in the datagram.

F First fragment indicator: if this bit is set to '1', then this fragment is the first of the
datagram. If this bit is set to '0', this fragment is not the first.

flow_id The 3-byte flow identifier associates the data with a registered flow. The flow_id is
assigned as defined in Section 9.14. The flow_id value of zero is reserved and is not to
be assigned.

10.7.2 M-Mode

The link layer of the Extended Channel fragments the datagram PDU, if necessary, over the limited buffer size of
the physical layer, and reassembles the received fragments.

The link header contains the flow_id value that has been negotiated by the link device for the application, see
Section 9.14 to identify the end-to-end communication flow.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

234 CableLabs® 8/03/06

Table 10.7–2 - M-Mode Extended Channel Link Layer Packet

Bit

7 6 5 4 3 2 1 0
0x00

flow_id (MSB)
flow_id

flow_id (LSB)

Datagram PDU fragment

flow_id The 3-byte flow identifier associates the data with a registered flow. The flow_id is
assigned as defined in Section 9.14. The flow_id value of zero is reserved and is not to
be assigned.

For data flows made available to the Host by the Card, the Card is responsible for link layer processing of messages
to be transferred across the Extended Channel. It is the Host's responsibility to reassemble the received datagram
PDU fragments, and to segment PDUs for delivery across the interface. For data flows made available to the Card
by the Host, the roles are reversed.

Received datagram PDU fragments SHALL be reassembled into IP packets, or MPEG-2 table sections, or DSG
messages, depending upon the service_type associated with the flow given by flow_id. The maximum size of the
reassembled PDU (IP packet or MPEG-2 table section or DSG message) SHALL be 4,096 for any Service Type.

10.7.3 Maximum PDUs

Datagram PDUs to be transmitted upstream SHALL be segmented into fragments not exceeding the negotiated
buffer size. The maximum size of any PDU before fragmentation SHALL be 4,096 bytes for downstream data for
any Service Type. The maximum size of any PDU before fragmentation SHALL be 1,500 bytes for upstream data
for any Service Type.

10.8 Modem Models
There are 3 different network connection models that a Host MAY have:

• Unidirectional (no modem)

• Bidirectional, modem function in the Card

• Bidirectional, modem function in the Host

10.8.1 Unidirectional Host Model

For the unidirectional Host model, there is no IP connectivity. The extended channel will be utilized solely for
receiving the OOB SI data.

For this model, the Card will be the link device for the OOB SI MPEG data flow.

10.8.2 Bidirectional With Modem in Card

For the bidirectional Host model with the modem functionality in the Card, the [SCTE55-2] and the [SCTE55-1]
PHY (RF processing, QPSK demodulation and modulation) layer is implemented in the Host, and the Data-link and
MAC protocols are implemented in the Card. The details of the OOB hardware implementation are covered in
Section 5.10.1 of this specification.

For this model, the Card will be the link device for all flows.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 235

10.8.3 Bidirectional With Modem in Host

When the Host implements the DSG functionality, all of the DOCSIS cable modem functionality are implemented
in the Host. The OOB data flows are transmitted, utilizing DSG tunneling [DSG]. The Host SHALL be capable of
receiving the DSG OOB data flows even if it is unable to connect in two-way mode.

For this model, the Card will be the link device for the OOB MPEG SI data flow, and the Host will be link device
for IP data flows and for the DSG flow to the Card/DSGCC.

10.9 SI Requirements
SI data is transmitted either from the Card to the Host using the protocols defined in [SCTE65], or is directly
received by the Host using the protocols defined in [SCTE65]and [DSG]. The Card MAY be the source of all SI
data to the Host. The Card MAY reformat the SI data received over the network to meet the requirements of
[SCTE65] if such data will be sent to the Host via the Extended Channel, as there is no requirement for the cable
system to transmit the SCTE 55 SI data in that format.

10.10 EAS Requirements
The Card MAY receive Emergency Alert messaging on either the FAT channels or the QPSK Forward Data
channel (QPSK FDC), or over a DSG tunnel. The EAS message syntax is compatible with MPEG-2 transport and
is defined in [J042]. For FAT channel transmission, the EAS message appears in transport packets with the same
PID as those used for Service/System Information (SI) and SHALL be transmitted by the Card to the Host. The
table ID for the EAS message is 0xD8 as defined in [J042]. For SCTE 55 mode and Basic DSG Mode transmission,
EAS messages SHALL be processed by the Card and transmitted over the Extended Channel according to [J042].
For Advanced DSG Mode, EAS messages SHALL be processed by the Host directly with no assistance by the Card
if this tunnel is defined by a DSG Filter in the host section (dir_entry_type = 0x01) of the DSG_directory() APDU.
The Host SHALL receive EAS messages over the Extended Channel when indicated by dir_entry_type = 0x02 in
the host section of the DSG_directory() APDU.

EAS messages can be transmitted over the DSG tunnel defined by Broadcast ID 0x02 (see [DSG]) using the
protocol defined in [J042]. When a Card is installed in the Host and the operational_mode is SCTE 55 Mode or
Basic DSG Mode, the Card SHALL always be the source of these messages. The Host SHALL NOT use cable
generated EAS messages received by any other method. The Card MAY reformat the EAS message to meet the
requirements of [J042], as there is no requirement for the cable system to transmit the EAS message in that format.

Note: EAS operation for when a Host does not have a Card installed is outside the scope of this specification.

10.11 XAIT Requirements
When operating in SCTE55_Mode or Basic DSG mode, the Card SHALL forward all received XAIT messaging
across the extended channel as defined in the OpenCable Application Platform Specification, OCAP 1.0 document
[OCAP]. When operating in Advanced DSG mode, the Host SHALL receive XAIT messages over the DSG
Broadcast tunnel defined for XAITs if this tunnel is defined by a DSG Filter in the host section (dir_entry_type =
0x01) of the DSG_directory() APDU. The Host SHALL receive XAITs over the Extended Channel when indicated
by dir_entry_type = 0x02 in the host section of the DSG_directory() APDU.

10.12 OCAP OOB Object Carousel Requirements
When the Host is in Advanced DSG Mode, the device SHALL NOT open any flows over the Extended Channel for
the OCAP object carousel.

When the operational mode is SCTE 55 or Basic DSG Mode, the Host MAY open a flow over the extended channel
for the OCAP object carousel. If the Host does open a flow over the Extended Channel for an OCAP object
carousel, it SHALL first open an MPEG flow to PID 0x0000 to retrieve the PAT and then open an MPEG flow to
the PMT PID defined in the PAT. If the PMT defines the OCAP object carousel to be on the same PID as the PMT,
the Host SHALL NOT open a new flow to that PID (as the flow is already open). If the PMT defined the OCAP
object carousel to be on a different PID, then the Host SHALL open an MPEG flow to that PID to receive the object

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

236 CableLabs® 8/03/06

carousel. While receiving the object carousel, the Host SHALL keep the MPEG flows for the PAT and PMT open
and accept any changes in those tables and act upon those changes.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 237

Annex A Baseline HTML Profile Support
This annex describes HTML keywords that SHALL be supported by the Baseline HTML Profile and gives
requirements for each keyword foreseen on the Host.

The Baseline HTML Profile only supports formatted text messages, in the form of HTML pages, with one
hyperlink.

The Application Information resource MAY identify Hosts that support more elaborate HTML pages with multiple
hyperlinks and multiple levels of text rendering and graphic support. In such a case, the Card can supply HTML
pages that take advantage of these enhanced features.

Note: This extended mode of operation is not described in this annex.

A.1 Format

A.1.1 Display

The Baseline HTML Profile pages SHALL be designed to fit in a 4/3 and 16/9 NTSC display size using the smallest
common screen (640 x 480) without vertical and horizontal scrolling.

MMI messages from the Card will be limited to a maximum of 16 lines of 32 characters each. If the MMI message
is longer than 16 lines, the message will include up to 16 lines of text plus a hyperlink pointing to an additional
page.

All text on every page must be visible on the screen.

The Host device may use screen space below the MMI message for navigation buttons such as “Press MENU to
Exit” and/or status information. Host-added navigation buttons and status information, if added, must not obscure
any MMI text.

If the HTML from the Card contains a hyperlink, the Host MUST provide instructions on how to navigate to any
links contained in the Card’s HTML message. Host-added navigation buttons, if added, must not obscure any MMI
text.

The Baseline HTML Profile requires that MMI windows be opaque.

A.1.2 Font

The Baseline HTML Profile font SHALL support a minimum of 32 characters per line, and a minimum of 16 lines
of characters.

A.1.3 Text and Background Color

Under the Baseline HTML Profile, the Host MAY render text color as requested in the HTML data from the Card.

Under the Baseline HTML Profile, the Host MAY render the background color as requested in the HTML data from
the Card.

If the HTML data does not include a background and/or text color command, or the Host does not support the
background and/or color command, the Host SHALL use either

• black (#000000) text on a light gray (#C0C0C0) background or

• white (#FFFFFF) text on a black (#000000) background.

If the Host device supports either the background color or text color command then it SHALL support both of the
commands. It should not support only one of the commands. (Footnote: Supporting only one of the commands
could lead to unreadable messages, for example if the Card requests blue text on a white background and the Host
supports the text color command but uses the default background color, the result would be blue text on a blue
background).

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

238 CableLabs® 8/03/06

A.1.4 Unvisited Link Color

Under the Baseline HTML Profile, the Host MAY render the unvisited link color as requested in the HTML data
from the Card. If the HTML data does not include an unvisited link color command, or the Host does not support
the unvisited link color command, the Host SHALL use blue (#0000FF).

A.1.5 Paragraph

Under the Baseline HTML Profile, the Host MAY align paragraphs as requested by the HTML data from the Card.
If the HTML data does not include a paragraph alignment command, or the Host does not support the paragraph
alignment command, the Host SHALL use a LEFT paragraph alignment.

A.1.6 Image

The Baseline HTML Profile does not include support for images.

A.1.7 Table

The Baseline HTML Profile does not include support for tables.

A.1.8 Forms

The Baseline HTML Profile doesn’t include support for forms.

A.2 Supported User Interactions

A.2.1 Navigation and Links

The Baseline HTML Profile does not define how a hyperlink is navigated and selected. It is up to the Host
manufacturer to provide some navigation/selection mechanism to identify the user intention and forward the
selected link to the Card using the server_query() APDU. It is up to the Card manufacturer to determine how
results are returned to the Card through the URL of the server_query() APDU. The Host SHALL provide a method
of user navigation to the hyperlink in the MMI message if one is present.

A.2.2 HTML Keywords

Table A–1 lists HTML keywords used in the Baseline HTML Profile (R=Required, O=Optional).

A keyword or a parameter marked as optional MAY be inserted in an HTML page, but MAY not be used by the
Host. It SHALL NOT change what is displayed on the screen but only the way of displaying it (basically, it applies
to the style).

Table A–1 - HTML Keyword List

 Required or
Optional

Structure
<HTML>...</HTML> R

Begin and end HTML document.
<BODY>...</BODY> R

Begin and end of the body of the document, optional attributes of the document
bgcolor: background color, default = light gray (#C0C0C0) O
text: color of text, default = black (#000000) O
link: color of unvisited links, default = blue (#0000FF) O

 ... R
Begin and end an anchor.
href: URL targeted by this anchor. R

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 239

 Required or
Optional

Style Element
<P> R

Change of paragraph
align: CENTER, LEFT, or RIGHT (default = LEFT) O

 R
Force new line.

... <I> ... </I> <U> ... </U> O
Character style: bold, italic, and underlined

A.3 Characters
An HTML page can refer to all Latin-1 characters by their numeric value by enclosing them between the & and ;
symbols. For example, the quotation mark “ can be expressed as " in an HTML page. The characters
specified in the Added Latin-1 entity set also have mnemonic names. Thus, the following 3 expressions are
interpreted as the character “.

"
"
“

NOTE: Mnemonic expressions are case sensitive.

Table A–2 defines characters, their numeric and mnemonic expressions that the Baseline HTML viewer SHALL
support. Any OpenCable baseline HTML page SHALL NOT use the characters, numeric or mnemonic
expressions, which are not defined in Table A–2; the Host MAY ignore the characters which are not defined in
Table A–2.

This list is taken from the HTML 4 Character entity references found at:

http://www.w3.org/TR/REC-html40/sgml/entities.html

Table A–2 - Characters

Character Name Numeric
Expression

Mnemonic
Expression

!
"

$
%
&
'
(
)
*
+
,
-
.

Horizontal tab
Line feed

Space
Exclamation mark
Quotation mark
Number sign
Dollar sign
Percent sign
Ampersand
Apostrophe
Left parenthesis
Right parenthesis
Asterisk
Plus sign
Comma
Hyphen
Period

	

!
"

$
%
&
'
(
)
*
+
,
-
.

"

&

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

240 CableLabs® 8/03/06

Character Name Numeric
Expression

Mnemonic
Expression

/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_
`
a
b

Solidus (slash)

Colon
Semicolon
Less than
Equals sign
Greater than
Question mark
Commercial at

Left square bracket
Reverse solidus
Right square bracket
Circumflex
Horizontal bar
Grave accent

/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_
`
a
b

<

>

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 241

Character Name Numeric
Expression

Mnemonic
Expression

c
d
e
f
g
h
I
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

¡
¢
£
¤
¥
¦
§
¨
©
ª
«
¬
-
®
¯
°
±
²
³
´
µ
¶
·

Left curly brace
Vertical bar
Right curly brace
Tilde
Non-breaking space
Inverted exclamation
Cent
Pound
Currency
Yen
Broken vertical
Section sign
Umlaut/diaeresis
Copyright
Feminine
Left angle quote
No sign
Hyphen
Reg. trade mark
Macron
Degrees
Plus/Minus
Superscript 2
Superscript 3
Acute accent
Micron
Paragraph sign
Middle dot

c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

¡
¢
£
¤
¥
¦
§
¨
©
ª
«
¬
­
®
¯
°
±
²
³
´
µ
¶
·

¡
¢
£
¤
¥
¦
§
¨
©
ª
«
¬
­
®
¯
°
±
²
³
´
µ
¶
·

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

242 CableLabs® 8/03/06

Character Name Numeric
Expression

Mnemonic
Expression

¸
¹
º
»
¼
½
¾
¿
À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï
Ð
Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Ý
Þ
ß
à
á
â
ã
ä
å
æ
ç
è
é
ê
ë

Cedilla
Superscript 1
Masculine
Right angle quote
One quarter
One half
Three quarters
Inverted question mark
A Grave
A Acute
A Circumflex
A Tilde
A Diaeresis
A Ring
AE Diphthong
C Cedilla
E Grave
E Acute
E Circumflex
E Diaeresis
I Grave
I Acute
I Circumflex
I Diaeresis
Icelandic eth
N Tilde
O Grave
O Acute
O Circumflex
O Tilde
O Diaeresis
Multiplication
O Slash
U Grave
U Acute
U Circumflex
U Diaeresis
Y Acute
Icelandic Thorn
Small sharp S
a Grave
a Acute
a Circumflex
a Tilde
a Diaeresis
a Ring
ae Diphthong
c Cedilla
e Grave
e Acute
e Circumflex
e Diaeresis

¸
¹
º
»
¼
½
¾
¿
À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï
Ð
Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Ý
Þ
ß
à
á
â
ã
ä
å
æ
ç
è
é
ê
ë

¸
¹
º
»
¼
½
¾
¿
À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï
Ð
Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Ý
Þ
ß
à
á
â
ã
ä
å
æ
ç
è
é
ê
ë

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 243

Character Name Numeric
Expression

Mnemonic
Expression

ì
í
î
ï
ð
ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü
ý
þ
ÿ

i Grave
i Acute
i Circumflex
i Diaeresis
Icenlandic eth
n Tilde
o Grave
o Acute
o Circumflex
o Tilde
o Diaeresis
Division
o Slash
u Grave
u Acute
u Circumflex
u Diaeresis
y Acute
Icenlandic thorn
y Diaeresis

ì
í
î
ï
ð
ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü
ý
þ
ÿ

ì
í
î
ï
ð
ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü
ý
þ
ÿ

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

244 CableLabs® 8/03/06

Annex B Error Handling
Interface errors SHALL be handled as described in Table B–1 below:

Table B–1 - Error Handling

 Error Condition Failure Host Action Card
Mode SCTE Card Action Comments

1 Card READY
signal does not go
active

Card Minimum –
Perform 1
PCMCIA reset,
Report Error if
not successful
Optional – Retry
PCMCIA resets
up to two times
and report error.
Preferred –
Perform at least 1
PCMCIA reset.
Report Error if
not successful
and continue to
perform PCMCIA
resets.

S-Mode None Host reports
error to user.

2 Host reads
incorrect CIS
values

Card Host reports error
using screen in
Figure B–1 -
Error Display.

S-Mode None Host reports
error to
user.1

3 Host writes
incorrect
TPCE_INDX
value to POD
configuration
register

Host None S-Mode Card cannot perform any
action.

Host detects
as failure #4
and reports
error to
user.1

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 245

 Error Condition Failure Host Action Card
Mode SCTE Card Action Comments

4 Host sets
command channel
RS bit but Card
fails to set FR bit
within 5-second
timeout.

Card Minimum –
Perform 1
PCMCIA reset,
Report Error if
not successful,
Optional – Retry
PCMCIA resets
up to two times
and report error.
Preferred –
Perform at least 1
PCMCIA reset.
Report Error if
not successful
and continue to
perform PCMCIA
resets.

S-Mode None Host reports
error to user.

5 Host sets
command channel
RS bit and
extended channel
RS bit but Card
fails to set FR bit
within 5-second
timeout.

Card Minimum –
Perform 1
PCMCIA reset,
Report Error if
not successful
Optional – Retry
PCMCIA resets
up to two times
and report error.
Preferred –
Perform at least 1
PCMCIA reset.
Report Error if
not successful
and continue to
perform PCMCIA
resets.

S-Mode None Host reports
error to user.

6 Invalid buffer
negotiation - Card
data channel
(buffer size < 16)

Card Host either
1) reports error
using screen in
Figure B–1 -
Error Display
2) retry PCMCIA
resets up to two
times and then
report error using
screen in Figure
B–1 - Error
Display, or
3) operate with
smaller size

S-Mode None Host reports
error to
user.1

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

246 CableLabs® 8/03/06

 Error Condition Failure Host Action Card
Mode SCTE Card Action Comments

7 Invalid buffer
negotiation - Host
data channel
(buffer size < 256
bytes or greater
than Card data
channel buffer
size)

Host None S-Mode Minimum – Card sets IIR
flag and stops responding to
polls.
Preferred – Card works with
Host buffer size

Host reports
error to
user.1

8 Invalid buffer
negotiation –
Card extended
channel (buffer
size < 16)

Card Host either
1) reports error
using screen in
Figure B–1 -
Error Display
2) retry PCMCIA
resets up to two
times and then
report error using
screen in Figure
B–1 - Error
Display, or
3) operate with
smaller size

S-Mode None Host reports
error to
user.1

9 Invalid buffer
negotiation – Host
extended channel
(buffer size < 256
bytes or greater
than Card data
channel buffer
size)

Host None S-Mode Minimum – Card sets IIR
flag and stops responding to
polls.
Preferred – Card works with
Host buffer size

Host reports
error to
user.1

10 Card does not
respond to Hosts
open transport
request within 5
seconds

Card Minimum –
Perform 1
PCMCIA reset,
Report Error if
not successful
Optional – Retry
PCMCIA resets
up to two times
and report error.
Preferred –
Perform at least 1
PCMCIA reset.
Report Error if
not successful
and continue to
perform PCMCIA
resets.

S-Mode None Host reports
error to user.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 247

 Error Condition Failure Host Action Card
Mode SCTE Card Action Comments

11 Host does not
respond to Card
request to open
resource manager
session within 5
seconds.

Host None S-Mode
M-Mode

Minimum – Card, S-Mode
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.

Host reports
error to
user.1

12 Host response to
open resource
manager session
response –
resource manager
non-existent.

Host None S-Mode
M-Mode

Minimum – Card, S-Mode,
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.

Host reports
error to
user.1

13 Host response to
open resource
manager session
response –
resource manager
unavailable.

Host None S-Mode
M-Mode

Minimum – Card, S-Mode,
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.

Host reports
error to
user.1

14 Host response to
open resource
manager session
response –
incorrect version
of resource
manager.

Host None S-Mode
M-Mode

Minimum – Card, S-Mode,
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.

Host reports
error to
user.1

15 Host response to
open resource
manager session
response –
resource manager
busy.

Host None S-Mode
M-Mode

Minimum – Card, S-Mode,
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.

Host reports
error to
user.1

16 Host response to
open resource
manager session
response – invalid
status byte.

Host None S-Mode
M-Mode

Minimum – Card, S-Mode,
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.

Host reports
error to
user.1

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

248 CableLabs® 8/03/06

 Error Condition Failure Host Action Card
Mode SCTE Card Action Comments

17 Card fails to
respond to
profile_inq within
5 seconds.

Card Minimum –
Perform 1
PCMCIA reset,
Report Error if
not successful.
Optional – Retry
PCMCIA resets
up to two times
and report error.
Preferred –
Perform at least 1
PCMCIA reset.
Report Error if
not successful
and continue to
perform PCMCIA
resets.

S-Mode
M-Mode

None Host reports
error to user.

18 Host resource
response – no
application
information
resource.

Host None S-Mode
M-Mode

Minimum – Card, S-Mode,
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.
Preferred – Card continues
operation and will not open
a session to the application
info resource.

Minimum –
Host reports
error to user.
Preferred –
Applications
on the Card
may not
operate
correctly,
including
MMI.1

19 Host resource
response – no
Host control
resource.

Host None S-Mode
M-Mode

Minimum – Card, S-Mode,
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.

Card may
not be able
to do
conditional
access
properly.

20 Host resource
response – no
system time
resource.

Host None S-Mode
M-Mode

Minimum – Card continues
operation and will not open
a session to the system time
resource.
Preferred – Same as
minimum but also reports
this in its MMI diagnostics
application.

Card
operations
which
require
system time
will not
operate.1

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 249

 Error Condition Failure Host Action Card
Mode SCTE Card Action Comments

21 Host resource
response – no
MMI resource.

Host None S-Mode
M-Mode

Minimum – Card continues
operation and will not open
a session to the MMI
resource.

Card cannot
utilize MMI
for
applications
or to report
error
conditions.1

22 Host resource
response – no low
speed
communications.

Host None S-Mode
M-Mode

Minimum – Card continues
operation and will not open
a session to the low speed
communication resource.
Preferred – Same as
minimum but also reports
this in its MMI diagnostic
application.

If OOB
reverse path
not
available,
then some
applications
will be
unavailable,
and the unit
may
function as a
uni-
directional
device.1

23 Host resource
response – no
homing resource1

Host None S-Mode
M-Mode

Minimum – Card continues
operation and will not open
a session to the homing
resource.
Preferred – Same as
minimum but also reports
this in its MMI diagnostic
application.

Card may
have some
operational
problems
(i.e.,
downloadin
g software).1

24 Host resource
response – no
copy protection
resource.

Host None S-Mode
M-Mode

Minimum – Card continues
operation, it SHALL NOT
enable descrambling of any
conditional access
encrypted channels, it will
not open a session to the
copy protection resource,
reports to headend if
possible, reports error to
user, and reports this in its
MMI diagnostic
application.

All CA
channels
will not be
descrambled
, only clear
channels
may be
viewed.1

25 Host resource
response –
unknown resource
identifier.

Host None S-Mode
M-Mode

Minimum – Card continues
operation.

Not a failure
condition

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

250 CableLabs® 8/03/06

 Error Condition Failure Host Action Card
Mode SCTE Card Action Comments

26 Host fails to
respond to open
session request
within 5 seconds.

Host None S-Mode
M-Mode

Minimum – Card, S-Mode,
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.

Host reports
error to
user.1

27 Host response to
open application
info resource
session –
application info
non-existent.

Host None S-Mode
M-Mode

Minimum – Card, S-Mode,
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.
Preferred – Card continues
operation and will not open
a session to the application
info resource.

Minimum –
Host reports
error to user.
Preferred –
Applications
on the Card
may not
operate
correctly,
including
MMI.1

28 Host response to
open application
info resource
session –
application info
unavailable.

Host None S-Mode
M-Mode

Minimum – Card, S-Mode,
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.
Preferred – Card continues
operation and will not open
a session to the application
info resource.

Minimum –
Host reports
error to user.
Preferred –
Applications
on the Card
may not
operate
correctly,
including
MMI.1

29 Host response to
open application
info resource
session –
incorrect version
of application
info.

Host None S-Mode
M-Mode

Minimum – Card, S-Mode,
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.
Preferred – Card continues
operation and will not open
a session to the application
info resource.

Minimum –
Host reports
error to user.
Preferred –
Applications
on the Card
may not
operate
correctly,
including
MMI.1

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 251

 Error Condition Failure Host Action Card
Mode SCTE Card Action Comments

30 Host response to
open application
info resource
session –
application info
busy

Host None S-Mode
M-Mode

Minimum – Card, S-Mode,
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.
Preferred – Card continues
operation and will not open
a session to the application
info resource.

Minimum –
Host reports
error to user.
Preferred –
Applications
on the Card
may not
operate
correctly,
including
MMI.1

31 Host response to
open application
info resource
session – invalid
status byte

Host None S-Mode
M-Mode

Minimum – Card, S-Mode
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.
Preferred – Card continues
operation and will not open
a session to the application
info resource.

Minimum –
Host reports
error to user.
Preferred –
Applications
on the Card
may not
operate
correctly,
including
MMI.1

32 Card requests to
open conditional
access session to
the Host times out
after 5 seconds.

Host None S-Mode
M-Mode

Minimum – Card, S-Mode
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.

Host reports
error to
user.1

33 Card response to
conditional access
resource session –
conditional access
non-existent

Host None S-Mode
M-Mode

Minimum – Card, S-Mode,
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.
Preferred – Card will not
descramble but will
continue other operation and
reports this in its MMI
diagnostic application.

Minimum –
Host reports
error to user.
Preferred –
Scrambled
channels are
not viewed.1

34 Card response to
conditional access
resource session –
conditional access
unavailable

Host None S-Mode
M-Mode

Minimum – Card, S-Mode,
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.
Preferred – Card will not
descramble but will
continue other operation and
reports this in its MMI
diagnostic application.

Minimum –
Host reports
error to user.
Preferred –
Scrambled
channels are
not viewed.1

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

252 CableLabs® 8/03/06

 Error Condition Failure Host Action Card
Mode SCTE Card Action Comments

35 Card response to
conditional access
resource session –
incorrect version
of conditional
access

Host None S-Mode
M-Mode

Minimum – Card, S-Mode,
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.
Preferred – Card will not
descramble but will
continue other operation and
reports this in its MMI
diagnostic application.

Minimum –
Host reports
error to user.
Preferred –
Scrambled
channels are
not viewed.1

36 Card response to
conditional access
resource session –
conditional access
busy

Host None S-Mode
M-Mode

Minimum – Card, S-Mode,
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.
Preferred – Card will not
descramble but will
continue other operation and
reports this in its MMI
diagnostic application.

Minimum –
Host reports
error to user.
Preferred –
Scrambled
channels are
not viewed.1

37 Card response to
conditional access
resource session –
invalid status byte

Host None S-Mode
M-Mode

Minimum – Card, S-Mode,
sets IIR flag and stops
responding to polls. M-
Mode, sets the ER bit in the
IQB.
Preferred – Card will not
descramble but will
continue other operation and
reports this in its MMI
diagnostic application.

Minimum –
Host reports
error to user.
Preferred –
Scrambled
channels are
not viewed.1

38 Card fails to
respond to
ca_info_inq
within 5 seconds.

Card Minimum –
Perform 1
PCMCIA reset,
Report Error if
not successful.
Optional – Retry
PCMCIA resets
up to two times
and report error.
Preferred –
Perform at least 1
PCMCIA reset.
Report Error if
not successful
and continue to
perform PCMCIA
resets.

S-Mode
M-Mode

None Host reports
error to user.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 253

 Error Condition Failure Host Action Card
Mode SCTE Card Action Comments

39 Card requests to
open copy
protection
resource session
to the Host times
out after 5
seconds.

Host None S-Mode
M-Mode

Minimum – Card continues
operation, disables
descrambling of all
conditional access channels,
reports to headend if
possible, reports this to user,
and reports this in its MMI
diagnostic application.

All CA
channels
will not be
descrambled
, only clear
channels
may be
viewed.1

40 Host response to
open copy
protection
resource session –
copy protection
non-existent

Host None S-Mode
M-Mode

Minimum – Card continues
operation, it SHALL NOT
enable descrambling of any
conditional access
encrypted channels, reports
to headend if possible,
reports this to user, and
reports this in its MMI
diagnostic application.

All CA
channels
will not be
descrambled
, only clear
channels
may be
viewed.1

41 Host response to
open copy
protection
resource session –
copy protection
unavailable

Host None S-Mode
M-Mode

Minimum – Card continues
operation, it SHALL NOT
enable descrambling of any
conditional access
encrypted channels, reports
to headend if possible,
reports this to user, and
reports this in its MMI
diagnostic application.

All CA
channels
will not be
descrambled
, only clear
channels
may be
viewed.1

42 Host response to
open copy
protection
resource session –
copy protection
busy

Host None S-Mode
M-Mode

Minimum – Card continues
operation, it SHALL NOT
enable descrambling of any
conditional access
encrypted channels, reports
to headend if possible,
reports this to user, and
reports this in its MMI
diagnostic application.

All CA
channels
will not be
descrambled
, only clear
channels
may be
viewed.1

43 Host response to
open copy
protection
resource session –
invalid status byte

Host None S-Mode
M-Mode

Minimum – Card continues
operation, it SHALL NOT
enable descrambling of any
conditional access
encrypted channels, reports
to headend if possible,
reports this to user, and
reports this in its MMI
diagnostic application.

All CA
channels
will not be
descrambled
, only clear
channels
may be
viewed.1

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

254 CableLabs® 8/03/06

 Error Condition Failure Host Action Card
Mode SCTE Card Action Comments

44 Host does not
support the Card’s
copy protection
system.

Host/Ca
rd
incompa
tibility

None S-Mode
M-Mode

Minimum – Card continues
operation, it SHALL NOT
enable descrambling of any
conditional access
encrypted channels, reports
to headend if possible,
reports this to user, and
reports this in its MMI
diagnostic application.

All CA
channels
will not be
descrambled
, only clear
channels
may be
viewed.1

45 Host and Card do
not mate

Host/Ca
rd
incompa
tibility

None S-Mode
M-Mode

Minimum – Card continues
operation, it SHALL NOT
enable descrambling of any
conditional access
encrypted channels, reports
to headend if possible,
reports this to user, and
reports this in its MMI
diagnostic application.

All CA
channels
will not be
descrambled
, only clear
channels
may be
viewed.1

46 Host response to
CP_sync – Host
busy

Host None S-Mode
M-Mode

Minimum – Card will cease
descrambling of copy
protected channels.

A copy
protected
channel will
stop being
descrambled
.

47 Host response to
CP_sync – no CP
support

Host None S-Mode
M-Mode

Minimum – Card will cease
descrambling of copy
protected channels.

A copy
protected
channel will
stop being
descrambled
.

48 Host response to
CP_sync – invalid
status

Host None S-Mode
M-Mode

Minimum – Card will cease
descrambling of copy
protected channels.

A copy
protected
channel will
stop being
descrambled
.

49 Host fails to
respond to
cp_open_req.

Host None S-Mode
M-Mode

Minimum – Card will cease
descrambling of copy
protected channels and, S-
Mode, set the IIR flag. M-
Mode, sets the ER bit in the
IQB.

A copy
protected
channel will
stop being
descrambled
.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 255

 Error Condition Failure Host Action Card
Mode SCTE Card Action Comments

50 Invalid Host
certificate

Host None S-Mode
M-Mode

Minimum – Card continues
operation, it SHALL NOT
enable descrambling of any
conditional access
encrypted channels, reports
to headend if possible,
reports this to user, and
reports this in its MMI
diagnostic application.

All CA
channels
will not be
descrambled
, only clear
channels
may be
viewed.1

51 Write Error (WE)
occurs after
completion of any
transfer from Host
to Card

Card or
Host

Host performs
Card reset.

S-Mode None User may
see frozen
picture on
scrambled
channels.1

52 Read Error (RE)
occurs after
completion of
any transfer from
Card to Host

Card or
Host

Host performs
Card reset.

S-Mode None User may
see frozen
picture on
scrambled
channels.1

53 Card fails to
respond to any
request within 5
seconds

Card Minimum –
Perform 1
PCMCIA reset,
Report Error if
not successful.
Optional – Retry
PCMCIA resets
up to two times
and report error.
Preferred –
Perform at least 1
PCMCIA reset.
Report Error if
not successful
and continue to
perform PCMCIA
resets.

S-Mode
M-Mode

None User MAY
see frozen
picture on
scrambled
channels.

54 Invalid session
APDU from Host

Host None S-Mode
M-Mode

No action Not a failure
condition

55 Invalid session
APDU from Card

Card Host ignores
invalid sessions.

S-Mode
M-Mode

None Not a failure
condition

56 Invalid SPDU tag
from Host

Host None S-Mode
M-Mode

No action Not a failure
condition

57 Invalid SPDU tag
from Card

Card Host ignores
invalid SPDU
tags.

S-Mode
M-Mode

None Not a failure
condition

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

256 CableLabs® 8/03/06

 Error Condition Failure Host Action Card
Mode SCTE Card Action Comments

58 Invalid APDU tag
from Host

Host None S-Mode
M-Mode

No action Not a failure
condition

59 Invalid APDU tag
from Card

Card Host ignores
invalid APDU
tags.

S-Mode
M-Mode

None Not a failure
condition

60 Transport ID from
Host that has not
been created and
confirmed by
Card

Host None S-Mode
M-Mode

No action Not a failure
condition

61 Transport ID from
Card that has not
been created by
Host.

Card Host ignores
transport ID’s
that have not
been created

S-Mode
M-Mode

None Not a failure
condition

62 Session ID from
Host that has not
been created and
confirmed by
Card

Host None S-Mode
M-Mode

No action Not a failure
condition

63 Session ID from
the Card that has
not been created
by Host.

Card Host ignores
session ID’s that
have not been
created

S-Mode
M-Mode

None Not a failure
condition

64 Incompatible
CableCARD
device Inserted

Host Reports error
using screen in
Figure B–1 -
Error Display

M-Mode None Used when
an S-CARD
in inserted
into an M-
Host.

65 Card Resource
Limit Reached

Card Reports error
using screen in
Figure B–1 -
Error Display

M-Mode None Used when
the stream,
program
and/or PID
limit has
been
reached by a
user initiated
action.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 257

 Error Condition Failure Host Action Card
Mode SCTE Card Action Comments

66 When the Card is
in M-Mode and
the Host sets the
ER bit but the
Card fails to set
the CR bit in the
IQB within 5
seconds of
RESET going
inactive.

Card Minimum –
Perform 1
PCMCIA rest,
Report Error if
not successful,
Optional – Retry
PCMCIA resets
up to two times
and report error.
Preferred –
Perform at least 1
PCMCIA reset.
Report Error if
not successful
and continue to
perform PCMCIA
resets.

M-Mode None Host reports
Error to user

67 Host resource
response – no
Extended Channel
resource.

Host None S-Mode/
M-Mode

Minimum – Card, S-Mode, sets
IIR flag and stops responding
to polls. M-Mode, sets the ER
bit in the IQB.
Preferred – Card continues
operation and will not open a
session to the Extended
Channel resource.

Minimum –
Host reports
error to user.
Preferred –
Applications
on the Card
and/ or Host
may not
operate
correctly.

68 Host resource
response – no
System Control
Resource.

Host None S-Mode/
M-Mode

Minimum – Card continues
operation and will not open a
session to the System Control
resource.
Preferred – Same as minimum
but also reports this in its MMI
diagnostics application.

Minimum –
Host reports
error to user.
1 Preferred –
Common
Downloads
to the Host
may not
function
properly.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

258 CableLabs® 8/03/06

 Error Condition Failure Host Action Card
Mode SCTE Card Action Comments

69 Host resource
response – no
CARD RES
Resource.

Host None M-Mode Minimum – Card continues
operation and will not open a
session to the CARD RES
resource.
Preferred – Same as minimum
but also reports this in its MMI
diagnostics application

Minimum –
Host reports
error to user.
1 Preferred –
Interface
limits may
be reached
and the Host
may not
function
properly,
and/ or may
also display
error code
65.

70 Host resource
response – no
DSG Resource.

Host None M-Mode Minimum – Card continues
operation and will not open a
session to the DSG resource.
Preferred – Same as minimum
but also reports this in its MMI
diagnostics application.

Host reports
error to
user.1

Preferred –
DSG
operations/
messaging
to the
Card/Host
may not
function
properly.

NOTE: A Card reset is defined as the Host's setting the RS bit in the command interface control register. A PCMCIA
reset is defined as the Host's setting the RESET signal active on the PCMCIA interface.

1 - If the error is caused by an issue with the design of the Host or Card, this should be detected during certification.

In the event that an error occurs in which the Host must display an error message, the following message, or its
equivalent, SHALL be displayed:

A technical problem is preventing you
from receiving all cable services at

this time.

Please call your cable operator and
report error code 161-xx to have this

problem resolved.

Figure B–1 - Error Display

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 259

The “xx” after the error code 161 SHALL be the item number of the above table which has failed.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

260 CableLabs® 8/03/06

Annex C CRC-8 Reference Model
The 8-bit CRC generator/checker for the Card Operating in M-Mode. is specified in Figure C–1.

Z(7) Z(6) Z(5) Z(4) Z(3) Z(2) Z(1) Z(0)

11-Byte Header,
LTSID first, RES2 Last,
Most Significant Bit First

CRC[7] CRC[6] CRC[5] CRC[4] CRC[3] CRC[2] CRC[1] CRC[0]
Figure C–1 - 8 bit CRC generator/checker model

The model shown above implements the CRC-8 value used in the MPEG Transport Stream Pre-Header, utilizing the
generator Polynomial:

124678 +++++ xxxxx

The CRC-8 generator/checker operates on the first 11 bytes of the MPEG Transport Stream Pre-Header, starting
with the LTSID field and ending with the RES2 field. Each byte is operated on Most Significant Bit first, and the
model is initialized with all ones before the first byte is sent through the model. After the 11 bytes are processed,
the CRC-8 value (CRC[7:0]) is taken from the 8 delay elements of the model. This value is placed in the 12th byte
of the MPEG Transport Stream Pre-Header (for the generator) or compared with the 12th byte of the MPEG
Transport Stream Pre-Header (for the checker).

An example stream and associated CRC-8 is:

0x01, 0x00, 0x55, 0xAA, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

Produces a CRC of 0x8A.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 261

Annex D S-CARD Attribute and Configuration Registers

D.1 General
The following sections are a detailed map of the attribute registers and configuration option register of the Card,
also known as, SCTE Point of Deployment (POD) module. It is assumed that the reader is familiar with the PC
Card tuple arrangement for the attribute registers.

D.2 Attribute Tuples
The following is a list of the attribute tuples which SHALL be implemented in the Card/POD module.

CISTPL_LINKTARGET
CISTPL_DEVICE_OA
CISTPL_DEVICE_OC
CISTPL_VERS_1
CISTPL_MANFID
CISTPL_CONFIG
CCST_CIF
CISTPL_CFTABLE_ENTRY
STCE_EV
STCE_PD
CISTPL_NO_LINK
CISTPL_END

D.2.1 CISTPL_LINKTARGET

Defined in section 3.1.4 of [PCMCIA4], this is recommended by the PC Card standard for low voltage PC Cards for
robustness. This would be in addition to the tuples defined in EIA 679-B Part B and would be the first tuple.

Table D.2–1 - CISTPL_LINKTARGET

Byte Address(hex) 7 6 5 4 3 2 1 0
0 00 TPL_CODE = CISTPL_LINKTARGET (0x13)
1 02 TPL_LINK = 0x03

2 04 TPL_TAG (3 bytes) = 0x43 (C)
3 06 0x49 (I)
4 08 0x53 (S)

D.2.2 CISTPL_DEVICE_0A

Defined in section 3.2.3 of [PCMCIA4], this tuple is used to define the attribute memory operation.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

262 CableLabs® 8/03/06

Table D.2–2 - CISTPL_DEVICE_0A

Byte Address

(hex)
7 6 5 4 3 2 1 0

0 00 TPL_CODE = CISTPL_DEVICE_0A (0x1D)
1 02 TPL_LINK = 0x04
2 04 Other_Conditions_Info = 0x02
3 06 Device_ID_1 = 0x08
4 08 Device_Size = 0x00
5 0A 0xFF

D.2.3 CISTPL_DEVICE_0C

Defined in section 3.2.3 of [PCMCIA4], this tuple is used to define the common memory operation.

Table D.2–3 - CISTPL_DEVICE_0C

Byte Address(hex) 7 6 5 4 3 2 1 0
0 00 TPL_CODE = CISTPL_DEVICE_0C (0x1C)
1 02 TPL_LINK = 0x04
2 04 Other_Conditions_Info = 0x02
3 06 Device_ID_1 = 0x08

4 08 Device_Size = 0x00

5 0A TPL_END = 0xFF

D.2.4 CISTPL_VERS_1

Defined in section 3.2.10 of [PCMCIA4] with the exception that TPLLV1_MAJOR be 0x05 and that
TPLLV1_MINOR = 0x00. The field name of the product SHALL be “OPENCABLE POD Module”.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 263

Table D.2–4 - CISTPL_VERS_1

Byte Address

(hex)

7 6 5 4 3 2 1 0

0 00 TPL_CODE = CISTPL_VERS_1 (0x15)
1 02 TPL_LINK = 26+n+m
2 04 TPLLV1_MAJOR = 0x05
3 06 TPLLV1_MINOR = 0x00

4 08 TPPLV1_INFO = {Name of manufacturer (n bytes)
4+n 08+(2*n) TPLLV1_INFO (multiple bytes) ox00 (Null)
5+n 0A+(2*n) 0x4F (O)
6+n 0C+(2*n) 0x50 (P)
7+n 0E+(2*n) 0x45 (E)
8+n 10+(2*n) 0x4E (N)
9+n 12+(2*n) 0x43 (C)

10+n 14+(2*n) 0x41 (A)
11+n 16+(2*n) 0x42 (B)
12+n 18+(2*n) 0x4C (L)
13+n 1A+(2*n) 0x45 (E)
14+n 1C+(2*n) 0x20 ()
15+n 1E+(2*n) 0x50 (P)
16+n 20+(2*n) 0x4F (O)
17+n 22+(2*n) 0x44 (D)
18+n 24+(2*n) 0x20 ()
19+n 26+(2*n) 0x4D (M)
20+n 28+(2*n) 0x6F (o)
21+n 2A+(2*n) 0x64 (d)
22+n 2C+(2*n) 0x75 (u)
23+n 2E+(2*n) 0x6C (l)
24+n 30+(2*n) 0x65 (e)
25+n 32+(2*n) 0x00 (Null)
26+n 34+(2*n) Additional Product Information (m bytes)
27+n 36+(2*n) 0x00 (Null)}

27+n+m 36+(2*n)+m TPL_END = 0xFF

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

264 CableLabs® 8/03/06

D.2.5 CISTPL_MANFID

Defined in section 3.2.9 of [PCMCIA4].

Table D.2–5 - CISTPL_MANFID

Byte Address(hex) 7 6 5 4 3 2 1 0
0 00 TPL_CODE = CISTPL_MANFID (0x20)
1 02 TPL_LINK = Link to next tuple (at least 4)
2 04 TPLMID_MANF = PC Card manufacturer code
3 06 TPLMID_CARD = manufacturer information (Part Number and/or Revision)

D.2.6 CISTPL_CONFIG

Defined in section 3.3.4 of [PCMCIA4].

Table D.2–6 - CISTPL_CONFIG

Byte Address (hex) 7 6 5 4 3 2 1 0
0 00 TPL_CODE = CISTPL_CONFIG (0x1A)
1 02 TPL_LINK = 5+n+m+p

2 04 0 TPCC_RMSZ TPCC_RASZ
3 06 0 TPCC_LAST
4 08 n bytes of TPCC_RADR

5+n 0A+(2*n) m bytes of TPCC_RMSK
6+n+m 0C+(2* (n+m)) 19 bytes of TPCC_SBTPL

25+n+m 32+(2* (n+m+p)) TPL_END = 0xFF

TPCC_RMSZ The number of bytes in the configuration registers Base Address in Attribute Memory
Space field (TPCC_RMSK) of this tuple is the value of this field plus 1. For the Card,
this value will depend on the manufacturer.

TPCC_RASZ The number of bytes in the Configuration Register presence mask field (TPCC_RADR
field) of the tuple is this value plus 1. For the Card, this value will depend on the
manufacturer.

TPCC_LAST One byte field which contains the Configuration Index Number of the last configuration
described in the Card Configuration Table. Once the Host encounters this configuration,
when scanning for valid configurations, it SHALL have processed all valid
configurations. For the Card, this value will depend on the manufacturer.

TPCC_RADR The Base Address of the Configuration Registers, in an even byte of Attribute Memory
(address of Configuration Register 0), is given in this field. This Address SHALL NOT
be greater than 0xFFE.

TPCC_RMSK The presence mask for the Configuration Registers is given in this field. Each bit
represents the presence (1) or absence (0) of the corresponding Configuration Register.

TPCC_SBTPL The sub-tuple allows for additional configuration sub-tuples. The CCST_CIF sub-tuple
SHALL be implemented.

D.2.7 CCST-CIF

Defined in section 3.3.4.5.1 of [PCMCIA4]. The interface ID number (STCI_IFN) is 0x41. STCI_STR is defined
to be ‘OpenCable_POD_V1.00’.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 265

Table D.2–7 - CCST-CIF

Byte AddressH 7 6 5 4 3 2 1 0
0 00 ST_CODE = CCST_CIF (0xC0)
1 02 ST_LINK = 0x0B

2 04 STCI_IFN = 0x41
3 06 STCI_IFN_1 = 0x03
4 08 STCI_STR (multiple bytes) 0x50 (P)
5 0A 0x4F (O)
6 0C 0x44 (D)
7 0E 0x5F (_)
8 10 0x56 (V)
9 12 0x31 (1)

10 14 0x2E (.)
11 16 0x30 (0)
12 18 0x30 (0)
13 1A 0x00 (Null)
14 1C TPL_END 0xFF

D.2.8 CISTABLE_ENTRY

Defined in section 3.3.2 of [PCMCIA4]. For the first entry TPCE_INDX has both bits 6 (Default) and 7 (Intface)
set. The Configuration Entry Number is selected by the manufacturer. TPCE_IF = 0x04 – indicating Custom
Interface 0. TPCE_FS SHALL indicate the presence of both I/O and power configuration entries. TPCE_IO is a 1-
byte field with the value 0x22. The information means: 2 address lines are decoded by the Card and it uses only 8-
bit accesses. The power configuration entry – required by this specification, SHALL follow the PC Card
Specification.” Additionally, two sub-tuples, STCE_EV and STCE_PD, SHALL be included.

The power descriptor for Vcc is modified to 1 A.

Table D.2–8 - CISTPL_CFTABLE_ENTRY

Byte Address (hex) 7 6 5 4 3 2 1 0
0 00 TPL_CODE = CISTPL_CFTABLE_ENTRY (0x1B)
1 02 TPL_LINK == 0x33

2 04 TPCE_INDX = 0xC0 LOGICAL OR Config. Entry NumberH

3 06 TPCE_IF = 0x04
4 08 TPCE_FS = 0x0A

5 0A TPCE_PD Vcc Parameter Selection Byte = 0x38

6 0C TPCE_PD Vcc Static Current = Manufacturer value
7 0E TPCE_PD Vcc Average Current = 0x07

8 10 TPCE_PD Vcc Peak Current = 0x07

9 12 TPCE_PD Vpp Parameter Selection Byte = 0x78
10 14 TPCE_PD Vpp Static Current = Manufacturer value
11 16 TPCE_PD Vpp Average Current = 0x26

12 18 TPCE_PD Vpp Peak Current = 0x26

13 1A TPCE_PD Vpp Power Down Current = Manufacturer value
14 1C TPCE_IO = 0x22

15 1E ST_CODE = STCE_EV (0xC0)
16 20 ST_LINK = 0x10

17 22 STEV_STRS = “NRSS_HOST” 0x4F (O)
18 24 0x50 (P)

19 26 0x45 (E)
20 28 0x4E (N)

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

266 CableLabs® 8/03/06

Byte Address (hex) 7 6 5 4 3 2 1 0
21 2A 0x43 (C)
22 2C 0x41 (A)
23 2E 0x42 (B)
24 30 0x4C (L)
25 32 0x45 (E)
26 34 0x5F (_)
27 36 0x48 (H)
28 38 0x4F (O)
29 3A 0x53 (S)
30 3C 0x54 (T)
31 3E 0x00 (Null)
32 40 0xFF
33 42 ST_CODE = STCE_PD (0xC1)
34 44 ST_LINK = 0x12

35 46 STPD_STRS = “NRSS_CI_MODULE” 0x45 (O)
36 48 0x50 (P)

37 4A 0x45 (E)
38 4C 0x4E (N)
39 4E 0x43 (C)
40 50 0x41 (A)
41 52 0x42 (B)
42 54 0x4C (L)
43 56 0x45 (E)
44 58 0x5F(_)
45 5A 0x4D (M)
46 5C 0x4F (O)
47 5E 0x44 (D)
48 60 0x55 (U)
49 62 0x4C (L)
50 64 0x45 (E)
51 66 0x00 (Null)
52 68 0xFF
53 6A 0xFF

D.2.9 STCE_EV

Defined in section 3.3.2.10.1 of [PCMCIA4]. Only the system name is ‘OPENCABLE_HOST’.

Table D.2–9 - STCE_EV

Byte Address(hex) 7 6 5 4 3 2 1 0
0 00 ST_CODE = STCE_EV (0xC0)
1 02 ST_LINK = Link to next tuple (at least m-1)
2 04 STPD_STRS = A list of strings, the first being ISO 646 coded, and the rest

being coded as ISO alternate language strings, with the
initial escape character suppressed. Each string is
terminated by a 0 byte, and the last string, if it does not
extend to the end of the subtuple, is followed by a 0xff
byte.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 267

D.2.10 STCE_PD

Defined in section 3.3.2.10.2 of [PCMCIA4]. Only the physical device name is ‘OPENCABLE_POD_MODULE’.

Table D.2–10 - STCE_PD

Byte Address(hex) 7 6 5 4 3 2 1 0
0 00 ST_CODE = STCE_PD (0xC1)
1 02 ST_LINK = Link to next tuple (at least m-1)
2 04 STPD_STRS = A list of strings, the first being ISO 646 coded, and the rest

being coded as ISO alternate language strings, with the
initial escape character suppressed. Each string is
terminated by a 0 byte, and the last string, if it does not
extend to the end of the subtuple, is followed by a 0xff
byte.

D.2.11 CISTPL_END

Defined in section 3.1.2 of [PCMCIA4]. If the CA Card contains other tuples in addition to those defined above
then these will come before CISTPL_END.

Table D.2–11 - CISTPL_END

Byte Address (hex) 7 6 5 4 3 2 1 0
0 00 TPL_CODE = CISTPL_END(0xFF)

D.3 Configuration Option Register
Defined in section 4.15.1 of [PCMCIA2].

Table D.3–1 - Configuration Option Register

Byte Address(hex) 7 6 5 4 3 2 1 0
0 00 SRESET LevIRE

Q
Function Configuration Index

D.4 Values to Enable CableCARD Personality Change
SRESET – 0 (Do not soft reset (POD reset) the Card)

LevIREQ – 1 (Card generates Level Mode interrupts).

Function Configuration Index – Lower 6 bits of TPCE_INDX.

D.5 Operation After Invoking CableCARD Personality Change
After the correct value is written into the configuration register, the Card SHALL wait a minimum of 10 usec before
switching from the PCMCIA to the Card interface.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

268 CableLabs® 8/03/06

Annex E DownloadInfoIndicator Message Detail for Common
Download (Normative)

The information in this section is given here to facilitate Common Download. This information is to clarify
ambiguities in the DSM-CC specification for use for Common Download. Since the code objects are carried in a
DSM-CC data carousel, a standard format for the DownloadInfoIndicator (DII) message should be defined so that
Host device can interpret this message properly.

The DownloadInfoIndication (DII) message will be defined as identified in Table E–1.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 269

Table E–1 - DownloadInfoIndicator Message Detail

Syntax No. of
Bits

Mnemonic

DSMCC_section() {
Table_id 8 uimsbf
section_syntax_indicator 1 bslbf
reserved 3 bslbf
dsmcc_section_length 12 uimsbf

 table_id_extension 16 uimsbf
 reserved 2 bslbf
 version_number 5 bslbf
 current_next_indicator 1 bslbf
 section_number 8 uimsbf
 last_section_number 8 uimsbf
 dsmccMessageHeader() {
 protocolDiscriminator 8 uimsbf
 DsmccType 8 uimsbf
 MessageId 16 uimsbf
 TransactionId () {
 Originator 2 uimsbf
 Version 14 uimsbf
 Identification 15 uimsbf
 Update_Flag 1 bslbf
 }
 Reserved 8
 adaptionLength 8 uimsbf
 messageLength 16 uimsbf
 }
 DownloadInfoIndication() {
 DownloadId 32 uimsbf
 blockSize 16 uimsbf
 windowSize 8 uimsbf
 ackPeriod 8 uimsbf
 tCDownloadWindow 32 uimsbf
 tCDownloadScenario 32 uimsbf
 compatibilityDescriptor(){
 length 16 uimsbf
 compatibilityDescriptorInfo 16 uimsbf
 }
 numberOfModules 16 uimsbf
 for(I=0;i<numberOfModules;i++){
 ModuleID 16 uimsbf
 ModuleSize 32 uimsbf
 ModuleVersion 8 uimsbf
 ModuleInfoLength 8 uimsbf
 for(i=0;i<ModuleInfoLength;i++){
 ModuleInfoByte 8 uimsbf
 }
 }
 }
 privateDataLength 16 uimsbf
 for(i=0;i<privateDataLength;i++){
 privateDataByte 8 uimsbf
 }
 }
CRC_32 32 uimsbf

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

270 CableLabs® 8/03/06

Table_ID SHALL be 0x3B for the DII table

section_syntax_indicator SHALL be 1b

dsmcc_section_length The number of bytes from the table_ID extension through the last byte of the
checksum/CRC32 field

table_id_extension The table_id_extension field is populated from the bottom two bytes of the
transaction_id field from the dsmccMessageHeader section of the message.

version_number SHALL be set to 00000b

current_next_indicator SHALL be set to 1b

section_number SHALL be 0x00 for this message

last_section_number SHALL be 0x00 for this message

protocolDiscriminator SHALL be 0x11

DsmccType SHALL be 0x03

MessageId SHALL be 0x1002, to denote a DII message

Originator SHALL be 10b

Version Incremented/changed each time any message in the Download scenario is
updated

Identification SHALL be all zeros for a 1 layer data carousel

Update_Flag Toggled each time the DII message is updated

adaptionLength SHALL be 0x00

messageLength Total length in bytes of the message following this field.

Download_ID Used to associate the download data message and the download control
messages of a single instance of a download scenario.

blockSize The length in bytes of the data in every block of the DownloadDataBlock
message, except for the last block of each module, which may be smaller than
blockSize.

windowSize SHALL be 0x00

ackPeriod SHALL be 0x00

tCDownloadWindow SHALL be 0x00

tCDownloadScenario Indicates the timeout period in microseconds for the entire download scenario in
progress.

compatibilityDescriptor Defined in the DSM-CC specifications. It may be used by the data carousel
server to provide additional information to the Host, which may then be used to
further determine applicability of the code image.

numberOfModules The number of modules described in the loop following this field. The loop
includes information for all of the modules to be downloaded by the Client. For
the Data Carousel scenario, the loop describes a subset of all the modules
associated with this Data Carousel, although it may describe all of them.

moduleID An identifier for the module that is described by the moduleSize,
moduleVersion and moduleInfoByte field. The moduleID is unique within the
scope of the downloadID.

moduleSize The length in bytes of the described module.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 271

moduleVersion The version of the described module.

moduleInfoLength The length in bytes of the moduleInfo field.

moduleInfoByte This field contains the ASCII representation of each letter of the
code_file_name as defined in the CVT.

privateDataLength Not used within the scope of these messages at this time.

privateDataByte Not used within the scope of these messages at this time.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

272 CableLabs® 8/03/06

Annex F Extended Channel Resource APDUs (Deprecated)

F.1 DSG Mode
There are two different operational modes defined for DSG, Basic and Advanced Mode. Of these two modes, there
is also two different states for each of these modes: DSG Mode, indicating that a RDC is present and has the ability
to communicate back to the headend; and DSG-One-Way_mode, where the RDC is not present, or is not active, and
there is no communication back to the headend. The DSG_Mode is the desired “Normal” Operating mode.

For DSG Basic Mode Operation:

• The Card SHALL provide the Host with a set of MAC Addresses that the eCM SHALL use to filter DSG
tunnels.

• The eCM SHALL utilize the presence/absence of the requested tunnel MAC Address to determine if a
downstream channel contains valid DSG tunnels.

• The Host SHALL NOT forward the DCD messages, if present, to the Card.

Setting this mode is equivalent to the state Notification from DSG Client Controller: enable upstream transmitter
defined in the DSG specification.

The following figure is an example of the initial message exchange between the Card and the Host for DSG Basic
Mode operation:

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 273

CardHost

New_Flow_Req()

New_Flow_Cnf()

DSG

0x00

New_Flow_Req()

MPEG

0x00

New_Flow_Cnf()

Inq_DSG_Mode()

Set_DSG_Mode()

DSG_Error()

OOB or
DSG or
 8 MAC Address or
DSG_one-Way
 8 MAC Address or
DSG_advanced_mode or
DSG_advanced_one-way_mode

Figure F–1 - DSG Mode Message Flow

F.1.1 inquire_DSG_mode APDU

The Host SHALL use the inquire_DSG_mode () object to inquire the preferred operational mode for the network.

The Host SHALL inquire from the Card the preferred operational mode for the network, either OOB mode or DSG
mode by sending the inquire_DSG_mode() APDU.

Table F.1–1 - inquire_DSG_mode APDU Syntax

Syntax No. of Bits Mnemonic
inquire_DSG_mode() {

inquire_DSG_mode_tag 24 uimsbf
length_field()

}

inquire_DSG_mode_tag 0x9F8E06

F.1.2 set_DSG_mode APDU

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

274 CableLabs® 8/03/06

The Card SHALL use the set_DSG_mode() APDU to inform the Host of the preferred operational mode for the
network. This message is sent in response to the inquire_DSG_mode(), or it MAY be sent as an unsolicited
message to the Host after the resource session has been established. The method by which the Card determines the
preferred operational mode is proprietary to the CA/Card system vendor. The set_DSG_mode() SHALL be used to
indicate either OOB_Mode or DSG_mode, DSG_One-Way_Mode, advanced_DSG_mode or advanced_DSG_one-
way_mode.

A default operational mode SHALL be utilized when the Host and/or Card is unable to obtain the preferred
operational mode. There are two potential default conditions that SHALL be addressed.

• Either the Host or the Card MAY NOT support version 2 of the Extended Channel Support resource
(inquire_DSG_mode and set_DSG_mode() APDUs).

• The Card MAY NOT have acquired the preferred operational mode from the network due to possible network
errors.

To ensure backward compatibility in the first case above, a Host SHALL initialize in the default operational mode
of OOB_mode. In the second case, the Card SHOULD instruct the Host that the preferred operational mode is
OOB_mode.

If the operational mode is DSG_mode, DSG_one-way_mode, advanced_dsg_mode or advanced_dsg_one-
way_mode, the Card SHALL provide up to eight Ethernet MAC addresses and number of header bytes to be
removed from the DSG tunnel packets. In DSG or DSG_one-way mode, once the DSG extended channel flow has
been opened, the Host SHALL filter IP packets whose Ethernet destination address match any of the specified
DSG_MAC_address values, remove the specified number of header bytes from these packets, before sending these
packets across the extended channel.

Table F.1–2 - set_DSG_mode APDU Syntax

Syntax No. of Bits Mnemonic
set_DSG_mode() {

set_DSG_mode_tag 24 uimsbf
length_field()
operational_mode 8 uimsbf
if ((operation_mode == DSG_mode) ||
 (operation_mode == DSG_one-way_mode)) {

number_MAC_addresses 8 uimsbf
for (i=0; i<number_MAC_addresses; i++) {

DSG_MAC_address 48 uimsbf
}
remove_header_bytes 16 uimsbf

}
}

set_DSG_mode_tag 0x9F8E07

operational_mode Defines the preferred operational mode of the network.
 0x00 OOB_mode – In this mode, the reverse OOB transmitter is under

control of the Card through the use of the OOB_TX_tune_req() APDU
in the Host Control resource. The Host SHALL respond to these
messages by tuning the reverse OOB transmitter to the requested
frequency and coding value (bit-rate and power level). The Card uses
the OOB-RDC for returning data to the cable headend.

 0x01 DSG_mode – In this mode the Host uses the eCM as the transmitter for
the reverse path. If the Card attempts to command the reverse OOB
transmitter with the OOB_TX_tune_req() APDU while the Host is
operating in DSG mode, the Host will deny the tune request with a

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 275

“Tuning Denied – RF Transmitter Busy” status. Also, in this mode, the
receiver for the OOB FDC is not active. If the Card attempts to
command this receiver with the OOB_RX_tune_req() message while
the Host is operating in the DSG mode, the Host SHALL deny the tune
request with a “Tuning Denied – Other reasons” status.

 0x02 DSG_one-way_mode – In this mode, the reverse OOB transmitter and
eCM transmitter SHALL be disabled for both the RDC and the
DOCSIS return channel. Also, in this mode, the receiver for the OOB
FDC is not active. If the Card attempts to command this receiver with
the OOB_RX_tune_req() message while the Host is operating in the
DSG one-way mode, the Host SHALL deny the tune request with a
“Tuning Denied – Other reasons” status. If the Card attempts to
command the reverse OOB transmitter with the OOB_TX_tune_req()
APDU while the Host is operating in DSG mode, the Host will deny
the tune request with a “Tuning Denied – Other Reasons”. This mode
could be used in one-way cable systems and for network diagnosis in
two-way cable systems.

 0x03 advanced_dsg_mode – In this mode, the Host uses the eCM as the
transmitter for the reverse path. If the Card attempts to command the
reverse OOB transmitter with the OOB_TX_tune_req() message while
the Host is operating in the DSG mode, the Host SHALL deny the tune
request with a “Tuning Denied – RF Transmitter busy” status. Also, in
this mode, the receiver for the OOB FDC is not active. If the Card
attempts to command this receiver with the OOB_RX_tune_req()
message while the Host is operating in the DSG mode, the Host
SHALL deny the tune request with a “Tuning Denied – Other reasons”
status. Setting this mode is equivalent to the state Notification from
DSG Client Controller: enable upstream transmitter defined in the DSG
specification.

 0x04 advanced_dsg_one-way_mode – In this mode, the reverse OOB
transmitter and eCM Transmitter SHALL be disabled for both the RDC
and the DOCSIS return channel. Also, in this mode, the receiver for
the OOB FDC is not active. If the Card attempts to command this
receiver with the OOB_RX_tune_req() message while the Host is
operating in the DSG one-way mode, the Host SHALL deny the tune
request with a “Tuning Denied – Other reasons” status. If the Card
attempts to command the reverse OOB transmitter with the
OOB_TX_tune_req() APDU while the Host is operating in DSG mode,
the Host will deny the tune request with a “Tuning Denied – Other
Reasons”. This mode could be used for network diagnosis in two-way
cable systems. Setting this mode is equivalent to the state Notification
from DSG Client Controller: disable upstream transmitter defined in
the DSG specification.

 NOTE: Operating the Host in this mode will interrupt all two-way IP
connectivity until another mode is selected.

 05-0xFF Reserved
number_MAC_addresses The number of DSG MAC addresses allocated by the Card provider to carry

DSG tunnels. A maximum of eight DSG tunnels per Card provider are allowed.

DSG_MAC_address The Ethernet MAC addresses allocated by the Card provider to carry the DSG
tunnels.

remove_header_bytes The number of bytes to be removed from the DSG tunnel packets before
delivery over the extended channel. A value of zero implies that no header bytes
are to be removed.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

276 CableLabs® 8/03/06

For the DSG Advanced Mode:

• The Host SHALL scan downstream channels for DCD messages upon receipt of a set_dsg_mode () object with
a value = 0x03 or 0x04.

• The Host SHALL pass a received DCD message to the Card using the send_DCD_info () object only when the
Host detects a change in the configuration count change field in the DCD message or in the event of an eCM
reset. The DCD message is defined in [DSG].

• The Card SHALL determine if the DCD tunnel addresses are valid and inform the Host if the DSG channel is
not valid.

• The Card utilizes the DSG_error() APDU to indicate that the DCD message is not valid.

• If the DSG channel is not valid, e.g., no CA Tunnel present, then the Host SHALL search a new downstream
channel for a DCD message.

• If the DSG channel is valid, then the Host SHALL stay on the downstream and forward requested tunnels to the
Card.

• Upon selection of a valid downstream, the Card SHALL pass the DSG Configuration information received in
the DCD to the Host using configure_advanced_DSG().

• The Host SHALL use the dsg_message() to pass the UCID, when identified, to the Card.

• The Card SHALL be capable of using the Upstream Channel ID (UCID) passed by the Host in the
dsg_message() to select appropriate tunnels when UCIDs are specified in the DSG rules.

• The Host SHALL use dsg_message() to pass application_id(s) to the Card.

• After parsing the DCD message for desired DSG tunnels, the Card uses the configure_advanced_DSG() object
to provide the Host with a set of MAC Addresses and DSG classifiers as applicable, that the eCM SHALL use
to filter DSG Tunnels.

• Host specific tunnels are indicated by the presence of the requested application ID, that is, the application ID
does not equal zero (0).

• DSG Tunnels addresses with an application ID of (0) are requested by the Card.

• The Card SHALL not request any tunnels with a UCID other than the UCID passed by the Host in the
dsg_message().

The following figure is an example of the initial message exchange between the Card and the Host for Advanced
Mode Operation:

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 277

CardHost

New_Flow_Req()

New_Flow_Cnf()

DSG

0x00

New_Flow_Req()

MPEG

0x00

New_Flow_Cnf()

Inq_DSG_Mode()

Set_DSG_Mode()

DSG_Error()

DSG_Msg()

Send_DCD_Info()

advanced_DSG_mode or
advanced_DSG_one-way_mode

App_Tunnel_req
2-way ok, UCID
Ent_one-Way_mode
Dwnstr_Scan_Comp
Dynamic_Chan_Chg_Depart

DCD_message

number_of_filters
 tunnel_id
 application_id
 dsg_mac_address
 source_ip_address
 sounce_ip_mask
 destination_ip_address
 number_ports
 dest_port_number
 remove_header_bytes
number_of_RFFrequency
 RFFrequency
initialization_timeout
operational_timeout
two_way_retry_timeout
one_way_retry_timeout

Configure_Advanced_DSG()

Figure F–2 - Sample Advanced Mode Message Flow

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

278 CableLabs® 8/03/06

F.1.2.1 configure_advanced_DSG APDU

The Card SHALL use the configure_advanced_DSG() object to pass DSG Advanced Mode configuration
parameters to the eCM if the Card supports DSG Advanced mode and the Host reports an extended channel
resource version set to 3 or 4. This message is sent in response to the send_DCD_info() APDU message.

MAC Addresses and DSG classifiers provided in the configure_advanced_DSG() object override all previously
defined values passed by the Card.

When the operational mode is either Advanced_DSG_mode or Advanced_DSG_One-Way_mode, then the Card
may provide up to eight unique Ethernet MAC addresses along with a set of DSG_classifiers. The Card may also
specify the number of header bytes to be removed from the DSG tunnel packets.

In Advanced_DSG or Advanced_DSG_One-Way mode, the eCM/Host SHALL forward IP packets whose MAC
destination address and layer-3/layer-4 parameters match any of the combinations of DSG_MAC address and
DSG_classifiers specified in the configure_advanced_DSG() object.

• When an IP Packet matches a DSG MAC Address/DSG Classifier combination, that packet SHALL be
forwarded.

• If a DSG classifier is not provided for a specific DSG MAC address, the Host SHALL forward all Ethernet
frames received on that MAC address.

The Application_ID parameter is used by the Card to signal the intended destination for the packets for each DSG
MAC Address/DSG Classifier combination.

• An Application_ID of zero (0) indicates that the Host SHALL forward matching packets to the Card.

• An Application ID greater than zero (0) indicates that the matching packets SHALL terminate at the
eCM/Host.

The Host SHALL remove the specified number of header bytes from these packets before delivery across the
extended channel interface to the Card.

Table F.1–3 - Configure Advanced DSG Object Syntax

Syntax # of Bits Mnemonic
configure_advanced_DSG () {
 configure_advanced_DSG _tag 24 uimsbf
 length_field()
 number_of_filters 8 uimsbf

 for (i=0; i< number_tunnel_filters; i++) {
 tunnel_id

8

uimsbf

 application_id 16 uimsbf
 dsg_mac_address 48 uimsbf
 source_IP_address 32 uimsbf
 source_IP_mask 32 uimsbf
 destination_IP_address 32 uimsbf
 number_ports 8 uimsbf
 for(i=0; i< number_ports; i++){
 dest_port_number 16 uimsbf
 }
 remove_header_bytes 16 uimsbf
 }

 number_of_RXFrequency
 for (i=0; i<number_of_RXFrequency; i++){
 RXFrequency
 }

 initialization_timeout

8

32

16

uimsbf

uimsbf

uimsbf

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 279

Syntax # of Bits Mnemonic
 operational_timeout
 two_way_retry_timeout
 one_way_retry_timeout
}

16
16
16

uimsbf
uimsbf
uimsbf

configure_advanced_DSG_tag 0x9F8E0A

number_of_filters The number of DSG tunnels that the Host eCM SHALL filter. A maximum of
eight unique tunnel filters are allowed, although this number may be greater
than eight if certain MAC Addresses are used by multiple DSG tunnels.

tunnel_id An Identifier for the tunnel. This field should match the DSG Rule ID received
in the DCD message for the tunnel identifier. The tunnel_id is used by the eCM
to populate the dsgIfStdTunnelFilterTunnelId MIB object.

application_id The application ID associated with the requested DSG tunnel. A value of zero
(0) indicates that the DSG tunnel is requested by the Card and SHALL be
passed to the Card. A value other than zero (0) indicates that the tunnel is
requested by the Host, which SHALL be terminated in the Host, and is the same
value that was passed to the Card by the Host in the dsg_message() object.

dsg_mac_address The MAC addresses to be filtered by the eCM.

source_IP_address The IP source address specified in the DCD message to be used in layer 3
filtering. A value of all zeros implies all values of Source IP Address, i.e., this
parameter was not specified in the DCD message.

source_IP_mask The source IP mask specified in the DCD message to be used in layer 3
filtering. A value of all ones implies that all 32 bits of the Source IP Address are
to be used for filtering.

destination_IP_address The IP destination address specified in the DCD message to be used in layer 3
filtering. A value of all zeros implies all values of Destination IP Address, i.e.,
this parameter was not specified in the DCD message.

number_ports The number of TCP/UDP Destination Port numbers associated with a
DSG_MAC_Address.

dest_port_number The range of TCP/UDP Destination Port addresses specified in the DCD
message, listed here as individual port numbers.

remove_header_bytes The number of bytes to be removed from the DSG tunnel packets before
delivery. A value of zero implies that no header bytes be removed.

number_of_RXFrequency The number of TLV channel list entry in the DCD message.

RXFrequency The RX Frequency as defined in [DSG]

initialization_timeout DSG Initialization Timeout (Tdsg1). The timeout period for the DSG packets
during initialization as defined in [DSG]. A value of zero indicates that the
default value SHALL be used.

operational_timeout DSG Operational Timeout (Tdsg2). The timeout period for the DSG packets
during normal operation as defined in [DSG]. A value of zero indicates that the
default value SHALL be used.

two_way_retry_timeout DSG Two-Way Retry Timer (Tdsg3). The retry timer that determines when the
DSG eCM attempts to reconnect with the CMTS as defined in [DSG]. A value
of zero indicates that the default value SHALL be used.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

280 CableLabs® 8/03/06

one_way_retry_timeout DSG One-Way Retry Timer (Tdsg4). The retry timer that determines when the
DSG eCM attempts to rescan for a downstream DOCSIS channel that contains
DSG packets as defined in [DSG]. A value of zero indicates that the default
value SHALL be used.

F.1.2.2 DSG_message APDU

The Host SHALL use the dsg_message () object to request Application tunnel data streams, to indicate that the
eCM has established two-way communication and is passing the UCID of the upstream channel, to indicate that the
eCM has entered One-way mode, to indicate that the eCM has done a complete downstream scan without finding a
DCD message or a Basic Mode tunnel, to indicate that the eCM has received a DCC-REQ message and is preparing
to execute a Dynamic Channel Change, or to indicate that an event has occurred that required an eCM reboot.

Table F.1–4 - DSG Message Object Syntax

Syntax # of bits Mnemonic
dsg_message () {

dsg_message_tag 24 uimsbf
length_field()

 message_type 8 uimsbf
 If (message_type = 0x00) {
 number_app_ids 8 uimsbf
 for (i=0; i < number_app_ids; i++) {
 application_id 16 uimsbf
 }
 }
 If (message_type = 0x01) {
 UCID
 }

8 uimsbf

 if (message_type = 0x04) {
 init_type
 }
}

8

uimsbf

dsg_message_tag 0x9F8E09

message_type Indicates the purpose of the object as defined below.
 0x00 Application_tunnel_request –– the Host has determined that there are

applications that require data from one or more DSG tunnels. The Host
passes the application_id(s) of applications requesting access to DSG
tunnels to the Card. The Card parses the DCD message and provides
MAC Address and DSG classifiers for the requested application
tunnels. This is only used in DSG Advanced mode.

 Number_app_ids – the total number of application IDs to follow; only
valid when message type is Application_tunnel_request.

 Application_ID – the application ID of the DSG Application tunnel
required by the Host. The application_ID MAY be obtained from the
source_name_subtable of the Network Text Table contained in
ANSI/SCTE 65. The Card utilizes the application ID to parse the DCD
for the presence of the requested application tunnel. If the tunnel is
present, then the Card uses the configure_advanced_DSG() object to
pass the MAC Address and DSG classifiers associated with the
requested application tunnel to the Host.

 0x01 2-way OK, UCID – the Host has established two-way communication
and is providing the Card with the channel ID (UCID) of the upstream
channel.

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 281

 Advanced Mode: The Card uses this value for filtering of various
DSG rules as applicable.

 Basic Mode: The Card SHALL ignore this value.
 UCID – the channel ID of the DOCSIS channel that the Host is using

for upstream communication.
 0x02 Entering_One-Way_mode – Sent from the Host to the Card as an

indicator that a timeout or other condition has forced the eCM into
One-Way operation.

 0x03 Downstream Scan Completed – Sent from the Host to the Card after a
complete downstream scan as an indicator that the eCM,

 Advanced Mode: Has been unable to identify a downstream channel
with a DCD message.

 Basic Mode: Has been unable to find a DSG tunnel with a well-known
MAC address.

 0x04 Dynamic Channel Change (Depart) – the eCM has transmitted a DCC-
RSP (Depart) on the existing upstream channel and is preparing to
switch to a new upstream or downstream channel. After channel
switching is complete, the eCM transmits a DCC – RSP (Arrive) to the
CMTS unless the MAC was reinitialized. In either case the eCM will
resend DSG_message() with message_type 0x01 “2-way OK, UCID”
to indicate the upstream has been established.

 Init_type – specifies what level of reinitialization the eCM will
perform, if any, before communicating on the new channels(s), as
directed by the CMTS.

 0x00 = Reinitialize the MAC
 0x01 = Perform broadcast initial ranging on new channel before

normal operation
 0x02 = Perform unicast initial ranging on new channel before normal

operation
 0x03 = Perform either broadcast initial ranging or unicast initial

ranging on new channel before normal operation
 0x04 = Use the new channel(s) directly without re-initializing or initial

ranging
 0x05 = Reinitialization method not specified
 0x05 eCM Reset – an event has occurred that required an eCM reboot. The

Card needs to re-establish DSG tunnel filtering by sending the
configure_advanced_DSG() object. The tunnel MAC address and
DSG classifiers can be obtained by parsing the next received DCD
message or from a local cache.

 0x06 – 0xFF Reserved

F.1.2.2.1 Dynamic Channel Change (Informative)
Dynamic Channel Change operations can cause a DSG eCM to move to a new upstream and/or downstream
channel(s) either through manual intervention at the CMTS or autonomously via a load-balancing operation.
Message_type = 0x01 and 0x04 allow the DSG Client Controller to be made aware of the initiation and progress of
DCC operations. Acting upon these messages, the Client Controller can provide the proper reaction to upstream and
downstream channel changes; in particular, the Client Controller should take action to make sure it still has a valid
DSG channel after the DCC operation has completed.

F.1.2.3 send_DCD_info APDU

The send_DCD_info() is an APDU used to pass DCD information between the Host and Card. In DSG Advanced
mode, the Host SHALL use the send_DCD_info () object to pass the entire DCD message, except for the DOCSIS
MAC Management header, to the Card. Upon receipt of the DCD message, the Card SHALL parse the DCD
information.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

282 CableLabs® 8/03/06

Table F.1–5 - send_DCD_info Object Syntax (Resource Version 3)

Syntax # of bits Mnemonic
send_DCD_info () {
 send_DCD_info _tag 24 uimsbf
 length_field()
 DCD_message (*)
}

send_DCD_info_tag 0x9F8E0B

DCD_message The TLVs comprising the DCD message as defined in [DSG] in the Summary
of DCD TLV Parameters table.

F.1.2.4 DSG_error APDU

The Card MAY inform the Host of errors that occur in receiving DSG packets using the DSG_error() APDU.

Table F.1–6 - DSG_error APDU Syntax

Syntax No. of Bits Mnemonic
DSG_error() {

DSG_error_tag 24 uimsbf
length_field()
error_status 8 uimsbf

}

DSG_error_tag 0x9F8E08

error_status Indicates the type of error that occurred
 0x00 Byte count error – The Card did not receive the same number of bytes

in the DSG packet as was signaled by the Host.
 0x01 Invalid_DSG_channel –
 Advanced Mode: The Current DCD message transmitted to the Card

is not valid or does not contain the requested DSG tunnel(s). The Host
SHALL acquire a new DCD on a different downstream and pass this
DCD to the Card. Sent from the Card to the Host during initial tunnel
acquisition or when a DCD no longer contains a required tunnel.

 Basic Mode: The current DSG channel is not valid. The Host SHALL
find another DSG channel that contain DSG tunnels with the well-
known MAC address(es).

 0x02 Application_ID_error – The current DCD message transmitted to the
Card does not contain a valid entry for an application ID requested by
the Host. The Host MAY choose to not to wait for data intended for the
specified application from that tunnel if Application_ID is invalid.

 0x03-0xFF Reserved

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 283

Appendix I Headend Requirements to Support OpenCable Download
Specification—OOB FDC Method (Informative)

I.1 Introduction
This specification is to make cable operators aware of the changes that will be needed in the existing CA systems in
order to fully support the OpenCable Common Download Specification. This specification is not intended to
identify shortcomings in any particular Headend architecture; it is merely an attempt to bring awareness to the
upgrades that are going to be necessary. Each individual Member will make their own decisions as to the
requirements for their particular system(s). This appendix is written with the assumption that the MSO has provided
a customer in the field a qualified Card with the System Control Resource, and that the MSO knows nothing about
the Host the Card will be mated with. This appendix does not address the messaging between the Card and the Host.
It only addresses the communication between the Card and the Headend and what the Headend will be capable of in
order to support a Common Download.

I.2 Requirements for OOB FDC download
When the Card replies to the Headend with its host_online_notification, which consists of a vendor_id and
hardware_version_id, the CA system will have the capability to add this new Host to its database. This data, in
conjunction with the Host_id obtained during mating according to [CCCP2], will enable the MSO to keep track of
what Host an issued Card is mated with. This will be very useful when an MSO wants to determine how many Host
devices of a particular manufacturer are present in a system. This will also provide information as to if a Card is
moved from one Host to another.

Once the Host has been added to the database, the CAS will compare the vendor_id and the hardware_version_id
contained within the host_online_notification message to the CAS database of objects.

The CAS will then create an appropriate CVT as defined in section 9.19.3.5 of this specification. The CVT will be
sent to the Card via the OOB FDC. In conjunction with the CVT message sent to the Host in the field, it will be the
responsibility of the CAS to signal the DCM-CC server to load the appropriate object on the carousel for this
operation. The CAS will define the physical channel and the PID for the broadcast object, to coincide with the CVT
sent to the Card.

Once the download is complete, the Card will send a DONE message to the Headend. The CAS will, upon reception
of the DONE message, signal the object spooler to stop the broadcast and remove the object from the spooler. The
CAS will be able to track what physical channels and what PIDS are in use at any time, to reallocate bandwidth and
PIDS once the download is complete (Clean up). If there is more than one download for a particular object, the CAS
will let all downloads for that particular object complete prior to removing it from the spooler.

In the case where there is not an object that matches the vendor_id or the hardware_version_id contained within the
host_online_notification message, the CAS will not create and deliver a CVT, signaling the Card to exit from the
Download Protocol.

I.3 Requirements for broadcast (one-way) download
In the case of a Unidirectional network, the customer will have to call the MSO and request an
initialization/configuration download. In this scenario, a CSR will take the call in place of the
host_online_notification. The CSR interfaces with the Billing System to generate a message (essentially the
host_online_notification message) from the Billing System to the CAS (requires creation of a billing system
message). The CAS processes the Billing System request and initiates a Bi-Directional Case for downloading up
through the step of the Card generating a DONE message. If the customer and CSR are still online together, the
customer will be able to signal the CSR that the download is done, allowing the CSR to signal the CAS/Billing
System to complete the Bi-Directional Case (i.e., remove the object from the carousel). If the customer and CSR are
not still online together, the download shifts to the unidirectional process. This leaves the object on the carousel

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

284 CableLabs® 8/03/06

since there are no DONE signals from the Host now. The CAS will have to perform clean up after a pre-determined
amount of time that the object is no longer in use in any downloads. This will be the most bandwidth-efficient mode
of operation compared to a 24/7 broadcast of objects.

Figure I-1 - Headend Architecture

I.4 Use Cases impacting head-end operation

I.4.1 Default CVT

This CVT will be sent to all the different types of set-top boxes that pass CableLabs certification. That is, upon
certification, a default CVT will be generated. For Hosts that the operator wants to upgrade, the particular CVTs
involved will be changed accordingly.

The effect of having default CVTs being broadcast is that this allows the Host to proceed ‘as-is’ and assumes that
any Host arriving on the network has a valid, certified OCAP software stack in it. The operator can upgrade the
Host at some future date or not at all.

I.4.2 Forced download

In the event that a certified Host will need an upgrade in the field, the CAS will create a message to be sent from the
Headend to the Card that will force the Card to issue a host_info_request to the Host. This message will be
necessary to start the download protocol to force an upgrade in the field.

If for some reason the operator would want to force a download, even though the OCAP version in the Host
matches the version on the carousel, after the Card is requested to send a host_info_request message and receives

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 285

the host_info_response message, a CVT will be sent to the Host with a code file name changed. It will still point to
the same image on the carousel, however. The file name in the DSM-CC DII message will also have to be changed.

I.5 Relationships between Certification and CVT generation

I.5.1 Failure to change CVT to default after a certification wave

Vendor X certifies their Vendor X 3500 with VendorXCAP v3.4 – rendering obsolete the VendorX 3500s with all
previous versions of VendorXCAP. The operator will ensure that CVT pointing to the pre-VendorXCAP v3.4
object is changed to default. Otherwise, the VendorXCAP 3.4 boxes will be downgraded when they hear the old
CVTs (only to be upgraded later when the MSO process catches up and updates the objects).

In other words, whenever the operator supports a certified version of OCAP, the CVT for that version will be valid
only until the next version becomes certified. The default CVT also becomes an acknowledgement message to the
Host, signaling the Host not to waste any cycles on the download protocol (unless signaled by a new
Host_info_request message). The absence of a CVT does effectively the same thing except that the Host does not
exit from the download procedure.

I.6 CVTs having a Time-To-Live (TTL) property
If the operator does not manage CVTs as described in Section I.3, CVTs can automatically be given a specified
TTL. However, specifying a TTL will be done with caution. If CVT is generated to upgrade all VendorX
3500/VendorXCAP v1.8 to VendorXCAP v2.0, all the Vendor X 3500s will upgrade in short order. Six months
later, we want to issue a CVT to upgrade the Vendor X 3500s to VendorXCAP v3.0. In a case like this, the TTL for
a CVT needs to be 6 months, to catch all the Vendor X 3500/VendorXCap v1.8's that were between the end of the
production line and the MSOs network (sitting in Circuit City warehouses or in garages somewhere), unless we are
tolerant of these stragglers on our network. They will be upgraded to VendorXCAP v3.0 once they are plugged into
the network and the VendorXCAP 3.0 CVT is in place.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

286 CableLabs® 8/03/06

Appendix II Selected Use Case Scenarios—OOB FDC Method
(Informative)

II.1 Scenarios Common to Download Now and Deferred Download

II.1.1 On initialization

On reset, the Card issues an open_session_request message to the Host. The Host responds with an
open_session_response message. The Card issues a host_info_request message and the Host responds with a
host_info_response, informing the Card of the vendor_id, hardware_version_id and communication_channel. The
Card sets its hardware filters to filter the CVTs such that only the CVT corresponding to the vendor_id and
hardware_version_id of the Host get passed to the Host.

II.1.2 Initiation of download protocol without CableCARD reset

After a Card-Host session has been established, the Card can issue a host_info_request by proprietary message(s)
from the Headend to the Card.

II.1.3 CVT changes during download operation

Once the Host has sent an ACK in the code_version_table_reply, the Card does not send any more CVTs to the
Host. Thus, code object changes after this point will be signaled by a new host_info_request message. In this case,
the Host stops the download and responds.

II.1.4 Deferred download

The deferred download is implemented with a CVT deferred download command. The policy for determining when
the download should occur is established by a Monitor Application that has registered interest in the deferred
download event as defined in [OCAP]. At the appropriate time, the Monitor Application with permission
(“codeDown”) will call the codeDownload() method to initiate the software download.

II.1.5 Use of Default CVT

In order to prevent undesired code upgrades or downgrades, the default CVT can be used for any or all Hosts. Thus,
after Card receives the host_info_response, it can send the default CVT to the Host, which is essentially a signal to
ignore the download. The Host responds with the code_version_table_reply, which informs the Card to turn off
CVT filtering.

II.2 Broadcast

II.2.1 Code File Available

The Card sends a CVT to the host containing the locator data and the code file name. The Host determines/validates
the vendor_id and hardware_version_id and compares the code file name in the CVT with that stored in non-volatile
memory. Regardless of the comparison, the Host responds with an ACK message. If the names compare, the Host
continues with its normal operation. If the names do not compare, the Host initiates a download per instructions in
the download_command parameter in the CVT.

II.2.2 Download Not Supported

A default CVT is sent to the Host, which continues or assumes normal operation.

II.2.3 Forced Upgrade

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 287

The Host, on receiving a CVT containing the download now message, will initiate a download of the code file
object pointed to in the CVT. In this case, the Host ignores the comparison of the code file name.

II.3 Code File Available

II.3.1 Code File Available on Carousel

If a code file object is immediately available on the carousel, that information is signaled to the Card, which sends a
CVT with the locator information to the Host.

II.3.2 Code File Available but Not on Carousel

If a code file object is not immediately available on the carousel, the CVT is delayed until the object is mounted on
the carousel.

II.3.3 Download not supported

Same as for broadcast.

OC-SP-CCIF2.0-I07-060803 OpenCable™ Specifications

288 CableLabs® 8/03/06

Appendix III Revision History

The following ECNs were incorporated into OC-SP-CCIF2.0-I02-050708:

ECN Description Date

CCIF2.0-N-05.0769-6 Modifications to extended channel resource to account for eCM 7/1/05

CCIF2.0-N-05.0782-1 Multi-stream Homing Modification 6/17/05

CCIF2.0-N-05.0787-2 Omnibus ECR 6/17/05

CCIF2.0-N-05.0788-3 DownloadInfoIndicator Message Detail for Common Download 6/17/05

The following ECNs were incorporated into OC-SP-CCIF2.0-I03-051117:

ECN Description Date
CCIF2.0-N-05.0761-6 Modifications to Common Download to Support Delivery via

DSG Broadcast Tunnel
7/15/2005

CCIF2.0-N-05.0800-3 Conflict resolution between Host flow ids and Card flow ids 9/9/2005
CCIF2.0-N-05.0807-1 LogicCB requirement 9/14/2005
CCIF2.0-N-05.0808-1 Resource Manager Legacy Support 9/23/2005
CCIF2.0-N-05.0809-1 FDC_Status_Report Correction 10/21/2005
CCIF2.0-N-05.0810-1 Update to RF_TX_Rate_Value 9/6/2005
CCIF2.0-N-05.0811-1 Delete of DLS System Time APDU 9/6/2005
CCIF2.0-N-05.0813-4 Changes to OOB Interface description of DSG to accurately

define header byte removal
9/23/2005

CCIF2.0-N-05.0814-2 DII Message Corrections 10/7/2005
CCIF2.0-N-05.0815-2 Deletion of open_MMI_cnf() APDU for M-Mode 10/7/2005
CCIF2.0-N-05.0816-2 Reference and editorial updates 10/17/2005
CCIF2.0-N-05.0823-1 M-Mode Device Capability Discovery Clarifications 10/31/2005

The following ECNs were incorporated into OC-SP-CCIF2.0-I04-060126:

ECN Description Date
CCIF2.0-N-05.0821-6 Extend Generic Diagnostic Resource Capability 1/13/06
CCIF2.0-N-05.0831-1 n-Band_tune_req() APDU update 12/2/05
CCIF2.0-N-05.0833-1 Remove Low Speed Session Open Requirement 12/2/05
CCIF2.0-N-05.0838-1 Card READY/SDO behavior when invalid VPP1/VPP2 is

detected
12/29/05

CCIF2.0-N-05.0850-1 Interface Query Byte Data Exchange Clarification 1/13/06

CableCARD™ Interface 2.0 Specification OC-SP-CCIF2.0-I07-060803

8/03/06 CableLabs® 289

The following ECNs were incorporated into OC-SP-CCIF2.0-I05-060413:

ECN Description Date
CCIF2.0-N-05.0849-4 Additions/Corrections to the CVT 3/3/06
CCIF2.0-N-05.0854-1 Clarify DSG operation after eCM reboot 1/27/06
CCIF2.0-N-05.0857-1 Card Signal Timing Parameter Connection 1/27/06
CCIF2.0-N-06.0875-1 Poll Time-out Timer Correction 3/17/06
CCIF2.0-N-06.0876-1 Error Code Update 3/17/06
CCIF2.0-N-06.0878-1 Revised description of the download_type 3/24/06
CCIF2.0-N-06.0879-1 COR Write Timing Correction 3/30/06

The following ECNs were incorporated into OC-SP-CCIF2.0-I06-060622:

ECN Description Date
CCIF2.0-N-06.0882-1 Modify M-Card Maximum Power 5/8/06
CCIF2.0-N-06.0886-4 Open Session Request Correction 6/9/06
CCIF2.0-N-06.0888-1 Clarification of System Time 5/18/06
CCIF2.0-N-06.0889-4 CVT update for self-identification of its resource version 6/9/06
CCIF2.0-N-06.0899-2 M-Mode Error Code Updates 6/9/06
CCIF2.0-N-06.0900-1 Clarification of Private Resource Identifier 6/9/06
CCIF2.0-N-06.0905-1 Copy Protection Resource Version Change 6/13/06

The following ECNs were incorporated into OC-SP-CCIF2.0-I07-060803:

ECN Description Date
CCIF2.0-N-06.0895-5 Modifications to Card/Host IP Model 7/21/06
CCIF2.0-N-06.0883-10 New Advanced DSG Resource Type 8/2/06

	1 SCOPE
	1.1 Introduction and Overview
	1.2 Historical Perspective (Informative)
	1.3 Requirements (Conformance Notation)
	1.4 Numerical

	2 REFERENCES
	2.1 Normative References
	2.2 Informative References
	2.3 Reference Acquisition

	3 TERMS AND DEFINITIONS
	4 ABBREVIATIONS AND ACRONYMS
	5 MODEL OF OPERATION
	5.1 Advanced Cable Services
	5.1.1 Interactive Program Guide (IPG)
	5.1.2 Impulse Pay-Per-View (IPPV)
	5.1.3 Video-on-Demand (VOD)
	5.1.4 Interactive services

	5.2 CableCARD Device Functional Description
	5.2.1 Transport Stream Interface
	5.2.2 Command Interface

	5.3 Network Connectivity/OOB Signaling
	5.4 Card Operational Modes
	5.4.1 S-CARD in S-Mode
	5.4.2 M-CARD in S-Mode
	5.4.3 M-CARD in M-Mode

	5.5 One-way Networks
	5.6 Two-way Networks
	5.7 Two-way Networks with DOCSIS
	5.8 M-CARD Device Functional Description
	5.9 Inband Interface - MPEG Data Flow
	5.10 OOB Interface
	5.10.1 QPSK
	5.10.2 DSG

	6 DELETED
	7 PHYSICAL INTERFACE
	7.1 Electrical Characteristics
	7.2 S-Mode Start-Up
	7.2.1 Card Port Custom Interface (0x341)

	7.3 Interface Functional Description
	7.3.1 S-Mode
	7.3.2 M-Mode
	7.3.3 Card Signal Descriptions
	7.3.4 Card Type Identification
	7.3.5 Card Information Structure
	7.3.6 MPEG Transport Interface

	7.4 Electrical Specifications
	7.4.1 DC Characteristics
	7.4.2 AC Characteristics

	7.5 Mechanical Specifications
	7.5.1 Form Factor
	7.5.2 Connector
	7.5.3 Environmental
	7.5.4 PC Card Guidance
	7.5.5 Grounding/EMI Clips
	7.5.6 Connector Reliability
	7.5.7 Connector Durability
	7.5.8 PC Card Environmental

	7.6 CPU Interface
	7.6.1 S-Mode
	7.6.2 M-Mode
	7.6.3 S-Mode Initialization and Operation
	7.6.4 M-CARD Initialization and Operation

	8 COPY PROTECTION
	9 COMMAND CHANNEL OPERATION
	9.1 Session Layer
	9.1.1 S-Mode
	9.1.2 M-Mode
	9.1.3 Resources with Multiple Sessions
	9.1.4 SPDU Structure

	9.2 Application Layer
	9.2.1 Resource Identifier Structure

	9.3 APDUs
	9.3.1 Interface Resource Loading

	9.4 Resource Manager
	9.4.1 profile_inq()
	9.4.2 profile_reply()
	9.4.3 profile_changed()

	9.5 Application Information
	9.5.1 application_info_req()
	9.5.2 application_info_cnf()
	9.5.3 server_query()
	9.5.4 server_reply()

	9.6 Low Speed Communication
	9.7 CA Support
	9.7.1 ca_info_inquiry
	9.7.2 ca_info
	9.7.3 ca_pmt
	9.7.4 ca_pmt_reply
	9.7.5 ca_update

	9.8 Host Control
	9.8.1 OOB_TX_tune_req
	9.8.2 OOB_TX_tune_cnf
	9.8.3 OOB_RX_tune_req
	9.8.4 OOB_RX_tune_cnf
	9.8.5 inband_tune_req
	9.8.6 inband_tune_cnf

	9.9 Generic IPPV Support
	9.10 System Time
	9.10.1 system_time_inq
	9.10.2 system_time

	9.11 Man-Machine Interface (MMI)
	9.11.1 open_mmi_req
	9.11.2 open_mmi_cnf
	9.11.3 close_mmi_req
	9.11.4 close_mmi_cnf

	9.12 M-Mode Device Capability Discovery
	9.12.1 stream_profile APDU
	9.12.2 stream_profile_cnf APDU
	9.12.3 program_profile APDU
	9.12.4 program_profile_cnf APDU
	9.12.5 es_profile APDU
	9.12.6 es_profile_cnf APDU
	9.12.7 request_pids APDU
	9.12.8 request_pids_cnf APDU

	9.13 Copy Protection
	9.14 Extended Channel Support
	9.14.1 new_flow_req APDU
	9.14.2 new_flow_cnf APDU
	9.14.3 delete_flow_req APDU
	9.14.4 delete_flow_cnf APDU
	9.14.5 lost_flow_ind APDU
	9.14.6 lost_flow_cnf APDU

	9.15 Generic Feature Control
	9.15.1 Parameter Storage
	9.15.2 Parameter Operation
	9.15.3 Generic Feature Control Resource Identifier
	9.15.4 Feature ID
	9.15.5 Generic Feature Control APDUs

	9.16 Generic Diagnostic Support
	9.16.1 diagnostic_req APDU
	9.16.2 diagnostic_cnf APDU
	9.16.3 Diagnostic Report Definition

	9.17 Specific Application Support
	9.17.1 SAS_connect_rqst APDU
	9.17.2 SAS_connect_cnf APDU
	9.17.3 SAS_data_rqst APDU
	9.17.4 SAS_data_av APDU
	9.17.5 SAS_data_cnf APDU
	9.17.6 SAS_server_query APDU
	9.17.7 SAS_server_reply APDU
	9.17.8 SAS Async APDU

	9.18 Card Firmware Upgrade
	9.18.1 Introduction
	9.18.2 Implementation
	9.18.3 Host Operation (Normative)
	9.18.4 Homing Resource

	9.19 Support for Common Download Specification
	9.19.1 Overview of Protocol
	9.19.2 Operational Details
	9.19.3 System Control Resource
	9.19.4 Operational Behavior
	9.19.5 Signaling Contention

	9.20 DSG Resource
	9.20.1 DSG Mode
	9.20.2 inquire_DSG_mode APDU
	9.20.3 set_DSG_mode APDU
	9.20.4 send_DCD_info APDU
	9.20.5 DSG_directory APDU
	9.20.6 DSG_message APDU
	9.20.7 DSG_error APDU

	10 EXTENDED CHANNEL OPERATION
	10.1 Internet Protocol Flows
	10.2 Socket Flows
	10.3 Flow Examples—QPSK Modem Case
	10.4 Flow Examples— Embedded Cable Modem Case DSG Mode
	10.5 Summary of Extended Channel Flow Requirement
	10.6 System/Service Information Requirements
	10.7 Link Layer
	10.7.1 S-Mode
	10.7.2 M-Mode
	10.7.3 Maximum PDUs

	10.8 Modem Models
	10.8.1 Unidirectional Host Model
	10.8.2 Bidirectional With Modem in Card
	10.8.3 Bidirectional With Modem in Host

	10.9 SI Requirements
	10.10 EAS Requirements
	10.11 XAIT Requirements
	10.12 OCAP OOB Object Carousel Requirements

	Annex A Baseline HTML Profile Support
	A.1 Format
	A.1.1 Display
	A.1.2 Font
	A.1.3 Text and Background Color
	A.1.4 Unvisited Link Color
	A.1.5 Paragraph
	A.1.6 Image
	A.1.7 Table
	A.1.8 Forms
	A.2 Supported User Interactions
	A.2.1 Navigation and Links
	A.2.2 HTML Keywords
	A.3 Characters
	Annex B Error Handling
	Annex C CRC-8 Reference Model
	Annex D S-CARD Attribute and Configuration Registers
	D.1 General
	D.2 Attribute Tuples
	D.2.1 CISTPL_LINKTARGET
	D.2.2 CISTPL_DEVICE_0A
	D.2.3 CISTPL_DEVICE_0C
	D.2.4 CISTPL_VERS_1
	D.2.5 CISTPL_MANFID
	D.2.6 CISTPL_CONFIG
	D.2.7 CCST-CIF
	D.2.8 CISTABLE_ENTRY
	D.2.9 STCE_EV
	D.2.10 STCE_PD
	D.2.11 CISTPL_END
	D.3 Configuration Option Register
	D.4 Values to Enable CableCARD Personality Change
	D.5 Operation After Invoking CableCARD Personality Change
	Annex E DownloadInfoIndicator Message Detail for Common Download (Normative)
	Annex F Extended Channel Resource APDUs (Deprecated)
	F.1 DSG Mode
	F.1.1 inquire_DSG_mode APDU
	F.1.2 set_DSG_mode APDU
	Appendix I Headend Requirements to Support OpenCable Download Specification—OOB FDC Method (Informative)
	I.1 Introduction
	I.2 Requirements for OOB FDC download
	I.3 Requirements for broadcast (one-way) download
	I.4 Use Cases impacting head-end operation
	I.4.1 Default CVT
	I.4.2 Forced download
	I.5 Relationships between Certification and CVT generation
	I.5.1 Failure to change CVT to default after a certification wave
	I.6 CVTs having a Time-To-Live (TTL) property
	Appendix II Selected Use Case Scenarios—OOB FDC Method (Informative)
	II.1 Scenarios Common to Download Now and Deferred Download
	II.1.1 On initialization
	II.1.2 Initiation of download protocol without CableCARD reset
	II.1.3 CVT changes during download operation
	II.1.4 Deferred download
	II.1.5 Use of Default CVT
	II.2 Broadcast
	II.2.1 Code File Available
	II.2.2 Download Not Supported
	II.2.3 Forced Upgrade
	II.3 Code File Available
	II.3.1 Code File Available on Carousel
	II.3.2 Code File Available but Not on Carousel
	II.3.3 Download not supported
	Appendix III Revision History

