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Abstract.

Predator—prey theory is traced from its origins in the Malthus-Verhulst /o-

gistic equation, through the Lotka-Volterra equations, /ogistic modifications to both prey
and predator equations, incorporation of the Michaelis-Menten-Holling functional response
into the predator and prey equations, and the recent development of ratio-dependent
functional responses and per-capita rate of change functions. Some of the problems of
classical predator-prey theory, including the paradoxes of enrichment and biological con-
trol, seem to have been caused by the application of the principle of mass action to predator—
prey interactions. Predator-prey models that evolved from /ogistic theory or that incor-
porate ratio-dependent functional responses do not have these problems and also seem to

be more biologically plausible.
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INTRODUCTION

The dynamical relationship between predators and
their prey is one of the dominant themes in ecology.
Yet the theory of predator—prey interactions has some
notable problems: One is the ““paradox of enrichment,”
where classical models predict that enriching the sys-
tem will cause an increase in the equilibrium density
of the predator but not in that of the prey (Hairston,
Smith, and Slobodkin 1960), and will destabilize the
community equilibrium (Rosenzweig 1969). These
predictions, however, are not always in line with field
observations (Arditi and Ginzburg 1989, Arditi et al.
1991, Ginzburg and Akgakaya 1992). Another is the
“biological control paradox” (Luck 1990, Arditi and
Berryman 1991), where classical models predict that
you cannot have both a very low and a stable pest
(prey) equilibrium density, yet there are numerous ex-
amples of predator and parasite introductions (classical
biological control) that have resulted in exotic pests
being maintained at sparse and apparently stable den-
sities (Turnbull and Chant 1961, DeBach 1974, Hagen
and Franz 1973).

Recently there has been renewed interest in what is
being called ratio-dependent predator—prey theory (Ar-
diti and Ginzburg 1989, Berryman 1990). Although
ratio-dependent predator—-prey models are not new, they
have not previously occupied a central place in eco-
logical theory. Yet they solve many of the problems of
more conventional models, including the paradoxes of
enrichment and biological control (Arditi and Ginz-

' For reprints of this Special Feature, see footnote 1, p.
1529.
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burg 1989, Arditi and Berryman 1991). In this paper
I briefly sketch the origin and evolution of population
theory and, in particular, predator-prey models. My
objectives are twofold: First, to show how conventional
predator—-prey models deviated significantly from ear-
lier theory, and how this may have led to some of their
problems. Second, to show how ratio-dependent pred-
ator—prey theory follows logically from basic concepts
of single-species population dynamics, and how this
viewpoint solves many of the problems and paradoxes
of traditional predator—prey theory.

MALTHUS-VERHULST LoGisTIC THEORY

The first definitive theoretical treatment of popula-
tion dynamics was Thomas Malthus’ (1798) Essay on
the Principle of Population. Malthus argued that, while
populations grow logarithmically, the resources on
which they depend remain constant or only increase
arithmetically. Thus, the demand for resources must
eventually exceed the supply and population growth,
being dependent on the resource supply, must then
cease. Forty years later, Verhulst (1838) formed Mal-
thus’ “principle of population” into a mathematical
model—the logistic equation

dN/dt = aN(1 — N/K), (1)

where N is the biomass density of the population in
question, a is its maximum per-capita rate of change,
or the instrinsic rate of increase, and K is the equilib-
rium density, often called the carryving capacity of the
environment. Although this equation is often criticized
for its oversimplicity, it remains the central theoretical
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construct for single-species population dynamics and,
when generalized to account for discrete growth pro-
cesses, time-delayed and nonlinear density depen-
dence, and multiple domains of attraction, it describes
the dynamics of many single-species populations in
both laboratory and field (Gause 1934, Allee et al.
1949, Thomas et al. 1980, Berryman and Millstein
1990).

LOTKA-VOLTERRA PREDATOR-PREY THEORY

Lotka’s Elements of Physical Biology (Lotka 1925)
was the next major advance in population dynamics
theory. Not only did Lotka derive the /ogistic equation,
which he called the “law of population growth,” from
first principles, but he also proposed the first model of
trophic (predator—-prey) interactions. However, instead
of developing the predator-prey model by extending
the logistic “law” to two species he, and soon after-
wards Volterra (1928, as translated in Chapman 1931),
adopted the chemical principle of mass action. In other
words, he assumed that the response of the populations
would be proportional to the product of their biomass
densities so that

dN/dt = aN — bNP,
dP/dt = ¢cNP — dP,

(2a)
(2b)

where N and P are the biomass densities of prey and
predator, respectively, a and d are their per-capita rates
of change in the absence of each other, and b and c are
their respective rates of change due to interaction. This
application of the principle of mass action seems to
have been the point where predator—prey theory de-
viated from classical (/ogistic) thinking, and where sub-
sequent theorizing may have been misled.

Shortly after publication of the Lotka-Volterra equa-
tions, Nicholson and Bailey (1935) proposed a dis-
crete-time model of the interaction between insect
parasitoids and their hosts. Although this model was
developed from the more mechanistic perspective of
parasitoid search behavior, it is identical in concept to
the Lotka-Volterra model (Royama 1971).

The zero-growth isoclines of the Lotka-Volterra
equations, obtained by setting their left-hand sides to
zero, are perpendicular to the axis of the other species
(Fig. 1a). Solutions of the differential equations (Egs.
2) form a series of closed ellipses that depend critically
on the initial conditions (neutrally stable limit cycles).
In the more reasonable discrete-time (Nicholson-Bai-
ley) form, however, the model has an unstable solution;
1.e., the community equilibrium is an unstable focus
(similar to the trajectory shown in Fig. 1a). A great
deal of theoretical effort has gone into stabilizing the
Nicholson-Bailey equations; i.e., by incorporating in-

terference between searching predators, spatial hetero-
geneities, polyphagy, etc. (Hassell 1978).

INCURSIONS OF LOGISTIC THEORY

In the original Lotka-Volterra equations, the prey
population grows infinitely in the absence of predators.
To correct this unreasonable assumption, a logistic self-
limitation term is often added to the prey equation,

dN/dt = aN(1 — N/K) — bNP. (3a)

This modification produces an isocline structure sim-
ilar to that shown in Fig. 1b and stabilizes the system
(the equilibrium is now a stable focus).

It is interesting that Volterra (1928, as translated in
Chapman 1931) and Gause (1934) both used the /lo-
gisticequation as the underlying structure for their two-
species competition models, but failed to consider it
as a suitable framework for modeling predator—prey
interactions. Leslie (1948) seems to have been the first
to consider a /ogistic predator equation

dP/dt = cP(1 — eP/N), (3b)

where e is the density of prey required to maintain a
single predator and to replace it with one offspring
when it dies. In other words, e is the marginal subsis-
tence demand for prey, 1/eis the marginal reproductive
value of the resource, and N/e is the carrying capacity
of predators when provided with a constant supply of
prey. Leslie’s equation seems to be the first time that
predator/prey ratios (P/N) rather than products (NP)
are seen in models of trophic relationships. The system
of predator-prey equations (Eqgs. 3) has an isocline
structure similar to that shown in Fig. lc, with the
community equilibrium a stable focus. Notice that the
predator isocline is slanting rather than vertical. This
new isocline structure seems to be intuitively reason-
able because predator equilibrium densities are ex-
pected to be dependent on prey abundance (see e.g.,
Berryman 1981, Arditi and Ginzburg 1989). In addi-
tion, the slanting predator isocline solves the paradoxes
of enrichment and biological control (Arditi and Ginz-
burg 1989, Arditi and Berryman 1991).

PREDATOR FUNCTIONAL RESPONSES

The next major contribution to the theory of pred-
ator/prey interactions was the addition of a predator
functional response. Solomon (1949) and Holling (1959,
1966) argued that, because predators can only handle
a finite number of prey in a unit of time, the prey death
rate should be a nonlinear function of prey density;
ie.,

dN/dt = aN(1 — N/K) — b(N)P, (4a)

where b(N) is the functional response of the predator
to prey density. Based on a series of elegant behavioral
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FiG. 1. Zero-growth isoclines for models of interacting prey (——) and predator (- —-) populations. The thin line is a

trajectory predicted by the discrete-time per-capita trophic model, Eqgs. 8 and 9 (see Berryman 1990); i.e., N,, =

N, expiaq,

+ bN,, , + ¢Z}, where i = | for prey and / = 2 for predator, Z, is the predator/prey ratio, N,, ,/(w, + N,, ,), in ratio
modelsand Z, = N,, ,, Z, = N,,_, in Lotka-Volterra models. (a) Lotka-Volterra-Nicholson-Bailey model: a, = 0.2, b, = 0,
¢, = —0.004, a, = 0.1, b, = 0, ¢, = 0.0002. (b) L-V-N-B model with /logistic self-limitation on the prey: prey model with
parameters the same as (a) except a, = 0.3 and b, = —0.0004; predator model the same as (a) except ¢, = 0.0005. (c) Logistic-
Leslie predator equation: prey model as in (b); ratio predator with a, = 0.2, b, =0, ¢, = — 1, w, = 0. (d) Holling-Rosenzweig-
MacArthur model: ratio prey model with a, = 0.3, b, = —0.0004, ¢, = —1, w, = 0; predator model as in (a), a, = —0.5, b,
=0, ¢» = 0.001, w, = 0. (e) Logistic predator-prey model with no predator self-limitation: prey model as in (d); predator
model as in (c). (f) Logistic predator-prey model with predator self-limitation: prey model as in (d); predator model as in (c)
except b, = —0.001.
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experiments, in which predators (sometimes blind-
folded students) searched for different densities of prey
(sometimes sandpaper disks), Holling derived his fa-
mous “disk’’ equation which turned out to be identical
to the well-known Michaelis-Menten equation of en-
zyme kinetics (Real 1977); i.e.,

b(N) = mN/(w + N), (5)

where m is the maximum predator attack rate and w
is the prey density where the attack rate is half-satu-
rated. The Michaelis-Menten-Holling equation can be
extended to account for general predators that switch
from one prey species to another (sigmoid functional
responses) (Real 1977). When the functional response
is included in the prey equation, we obtain the para-
bolic (humped) prey isoclines (Rosenzweig 1971) that
are characteristic of ratio-dependent prey equations
(Fig. 1d); note that the functional response introduces
ratio-dependence into the prey equation because, when
w is set to zero as in Fig. 1, the per-capita death rate
of the prey becomes mP/N.

On the argument that the prey deaths can be directly
translated into predator births, functional responses
are often employed in predator equations; i.e.,

dP/dt = cP[mN/(w + N)] — dP. (4b)

However, this formulation gives rise to the primitive
rectilinear Lotka-Volterra predator isocline from which
arise the paradoxes of enrichment and biological con-
trol (cf. Fig. 1a and d). Nevertheless, the isocline struc-
ture shown in Fig. 1d has been employed extensively
in the development of modern predator-prey theory
(Rosenzweig and MacArthur 1963, MacArthur and
Connell 1966).

RATIO-DEPENDENT FUNCTIONAL RESPONSES

Although the inclusion of a functional response in
the predator-prey model is intuitively appealing, be-
cause it conservatively couples the prey and predator
equations, there are some notable problems with this
approach. For instance, the functional response de-
scribes the behavior of searching predators on a fast
(behavioral) time scale (minutes or hours), whereas the
population equation, into which it is inserted, often
operates on a slower (population dynamical) time scale
(days or years). To overcome this problem, Arditi and
Ginzburg (1989) suggest that, in cases where the time
scales are incongruent, the functional response should
be expressed in terms of the ratio of prey to predators;
e.g., the Holling Type II functional response should be
written

b(N/P) = m(N/P)/(w + N/P) = mN/(wP + N). (6)

A similar feeding equation was proposed previously

by DeAngelis et al. (1975). When inserted into classical
predator—prey models, this ratio-dependent functional
response produces a parabolic prey isocline and right-
slanting predator isocline (Fig. le), thereby solving the
paradoxes of enrichment and biological control (Arditi
and Ginzburg 1989, Arditi and Berryman 1991).

THE PER-CAPITA VIEWPOINT

Berryman (1981) and Getz (1984) have argued that,
because population dynamics arise from interactions
between individual organisms, the equations should be
derived as per-capita rates of change. For example, we
could write the following general ratio-dependent per-
capita trophic equation,

dN/Ndt = R, = a, = f(N/N,_\) = g(N,../N),  (7)

where ¥, is the biomass density of the i*" species in a
trophic chain, R, is the per-capita rate of change of that
species, g, is its maximum per-capita rate of change in
a given physical environment, f; defines the interaction
between the species and the lower trophic level (its
prey) as a function of the predator/prey ratio, and g,
defines its interaction with the higher trophic level (its
predator), also as a function of the predator/prey ratio.
Using the type II functional response (Eq. 5) for fand
g, we can obtain an explict per-capita trophic equation
(see Appendix),

R =a,— bN/(W,_, + N, ) =N, /(w,+ N), (8

where b, defines the effect of intra-specific competition
for food on the per-capita rate of change (f reduces to
the classical /ogistic when w, , + N, , = a constant;
see Appendix), ¢, is a coefficient of vulnerability defin-
ing the effect of predation on the per-capita rate of
change, and w, is the biomass density of all other food
species in the /" trophic level. Notice that the per-capita
viewpoint clarifies the ecological meaning of the func-
tional response parameter w,, previously called the
“half-saturation” point; i.e., it defines the quantity of
alternative food available to the predator. Because the
denominators of the predator/prey ratios in (Eq. 8)
contain all the prey species available to each predator,
while the predators utilizing that food are contained
in the numerators, it is fairly straightforward to extend
this equation to food webs with many species in each
trophic level.

It is worth noting that, although simple per-capita
equations are nonlinear in respect to their variables,
they are linear in their ratios and, therefore, can be fit
to data with standard regression techniques (Berryman
1990). In this way, model parameters can be estimated
a posteriori from time-series data, such as might be
obtained from annual surveys or harvest records. For
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example, the per-capita rate of change of each species
can be estimated from the relationship

R, = 1/N-dN/dt = d In N/dt = In(N/N, ), (9)

and this can be regressed against the predator/prey
ratios (Eq. 8). These models can then be used to predict
future population trends or to simulate resource or pest
management policies (Berryman 1991); i.e., they have
practical utility.

CONCLUSIONS

Unlike the theoretical models of inter-specific com-
petition and mutualism, which emerged directly from
the theory of logistic single-species population dynam-
ics, the original Lotka-Volterra predator—prey equa-
tions were built around the principle of mass action;
i.e., the responses were assumed to be proportional to
the product rather than the ratio of population densi-
ties. Predator equations derived in this way have ver-
tical isoclines, leading to the paradoxes of enrichment
and biological control.

The inclusion of a predator functional response in
the Lotka-Volterra model corrected the unreasonable
assumption of unsaturating attack rates. However, the
primitive rectilinear predator isocline remained, and
so also the paradoxes of enrichment and biological
control. This problem was solved by making the func-
tional response depend on prey/predator ratios rather
than prey densities alone.

Per-capita predator/prey models evolve naturally
from classical /ogistic theory. Such models have slant-
ing predator isoclines, contain implicit functional re-
sponses (see Appendix), and solve the paradoxes of
enrichment and biological control. In addition, they
offer parsimonious descriptions of predator/prey in-
teractions, and can easily be extended to multi-species
food webs. It may also be significant that /ogistic mod-
els emerge from the reduction and simplification of
detailed physiological and behavioral predator-prey
models (Rapport and Turner 1975, Gutierrez 1992).

The main criticism that has been levelled at /ogistic
(per-capita) predator/prey models is that they may not
strictly conform to the laws of conservation (Ginzburg
and Akg¢akaya 1992); i.e., the equations are not ex-
plicitly coupled by the biomass of prey killed, as are
conventional models. However, it may be overly re-
strictive to insist that predator/prey models adhere
strictly to the laws of conservation. After all, prey death
is not always necessary for predator reproduction. For
example, true parasites and most organisms that feed
on plants do not kill their hosts, but they may reduce
fertility, fecundity, and growth rates. Insistence on con-
formity to the laws of conservation may, therefore,
unnecessarily constrain the development of a general
theory of predator-prey interactions.

LITERATURE CITED

Allee, W. C., A. E. Emerson, O. Park, T. Park, and K. P.
Schmidt. 1949. Principles of animal ecology. Saunders,
Philadelphia, Pennsylvania, USA.

Arditi, R.,and A. A. Berryman. 1991. The biological control
paradox. Trends in Ecology and Evolution 6:32.

Arditi, R., and L. R. Ginzburg. 1989. Coupling in predator—
prey dynamics: ratio-dependence. Journal of Theoretical
Biology 139:311-326.

Arditi, R., L. R. Ginzburg, and H. R. Ak¢akaya. 1991. Vari-
ation in plankton densities among lakes: a case for ratio-
dependent models. American Naturalist 138:1287-1296.

Berryman, A. A. 1981. Population systems. Plenum, New
York, New York, USA.

1990. Population Analysis System: POPSYS Series

2, Two-Species Analysis (Version 1.0). Ecological Systems

Analysis, Pullman, Washington, USA.

1991. Population theory: an essential ingredient in
pest prediction, management, and policy-making. Ameri-
can Entomologist 37:138-142.

Berryman, A. A., and J. A. Millstein. 1990. Population
Analysis System: POPSYS Series 1, One-Species Analysis
(Version 2.5). Ecological Systems Analysis, Pullman, Wash-
ington, USA.

DeAngelis, D. L., R. A. Goldstein, and R. V. O’Neill. 1975.
A model for trophic interactions. Ecology 56:881-892.
DeBach, P. 1974. Biological control by natural enemies.

Cambridge University Press, Cambridge, England.

Gause, G. F. 1934. The struggle for existence. Williams &
Wilkins, New York, New York, USA.

Getz, W. M. 1984. Population dynamics: a per-capita re-
source approach. Journal of Theoretical Biology 108:623—
643.

Ginzburg, L. R., and H. R. Ak¢akaya. 1992. Consequences
of ratio-dependent predation for steady state properties of
ecosystems. Ecology 73:1536-1543.

Gutierrez, A. P. 1992. The physiological basis of ratio-de-
pendent predator—prey theory: a metabolic pool model of
Nicholson’s blowflies as an example. Ecology 73:1552-1563.

Hagen, K. S., and J. M. Franz. 1973. A history of biological
control. Pages 433-476 in R. F. Smith, T. E. Mittler, and
C. N. Smith, editors. History of entomology. Annual Re-
views, Palo Alto, California, USA.

Hairston, N. G., F. E. Smith, and L. B. Slobodkin. 1960.
Community structure, population control, and competi-
tion. American Naturalist 94:421-425.

Hassell, M. P. 1978. The dynamics of arthropod predator—
prey systems. Princeton University Press, Princeton, New
Jersey, USA.

Holling, C. S. 1959. The components of predation as re-
vealed by a study of small mammal predation of the Eu-
ropean pine sawfly. Canadian Entomologist 91:293-320.

1966. The functional response of invertebrate pred-
ators to prey density. Memoirs of the Entomological Society
of Canada 48:1-86.

Leslie, P. H. 1948. Some further notes on the use of matrices
in population mathematics. Biometrica 35:213-245.

Lotka, A. J. 1925. Elements of physical biology. Williams
& Wilkins, Baltimore, Maryland, USA.

Luck, R. F. 1990. Evaluation of natural enemies for bio-
logical control: a behavioral approach. Trends in Ecology
and Evolution 5:196-199.

MacArthur, R. H,, and J. H. Connell. 1966. The biology of
populations. John Wiley, New York, New York, USA.
Malthus, T. R. 1959. An essay on the principle of popula-

tion. Reprinted from 1798 edition, Johnson, London, as




October 1992

RATIO-DEPENDENT PREDATOR-PREY THEORY

1535

Malthus—Population: the first essay. Ann Arbor Paper-
backs, University of Michigan, Ann Arbor, Michigan, USA.

Nicholson, A. J., and V. A. Bailey. 1935. The balance of
animal populations. Proceedings of the Zoological Society
of London 3:551-598.

Rapport, D. J., and J. E. Turner. 1975. Feeding rates and
population growth. Ecology 56:942-949.

Real, L. 1977. The kinetics of functional response. Amer-
ican Naturalist 111:289-300.

Rosenzweig, M. L. 1969. Paradox of enrichment: destabi-
lization of exploitation systems in ecological time. Science
(Washington, D.C.) 171:385-387.

1971. Why the prey curve has a hump. American
Naturalist 103:81-87.

Rosenzweig, M. L., and R. H. MacArthur. 1963. Graphical
representation and stability conditions of predator—prey in-
teraction. American Naturalist 97:209-223.

Royama, T. 1971. A comparative study of models for pre-

dation and parasitism. Researches on Population Ecology,
Supplement Number 1:1-91.

Solomon, M. E. 1949. The natural control of animal pop-
ulation. Journal of Animal Ecology 18:1-35.

Thomas, W. R., M. J. Pomerantz, and M. E. Gilpin. 1980.
Chaos, asymmetric growth and group selection for dynam-
ical stability. Ecology 61:1312-1320.

Turnbull, A. L., and D. A. Chant. 1961. The practice and
theory of biological control of insects in Canada. Canadian
Journal of Zoology 3:697-753.

Verhulst, P. F. 1838. Notice sur la loi que la population
suite dans son accroissement. Correspondence Mathema-
tique et Physique 10:113-121.

Volterra, V. 1931. Variations and fluctuations of the number
of individuals in animal species living together. Translated
from 1928 edition by R. N. Chapman. Animal ecology.
Arno, New York, New York, USA.

APPENDIX

The type II functional response (Eq. 5) defines the attack
rate per predator supplied with N prey, so for P predators the
prey death rate is mNP/(w + N). Dividing by N gives the per-
capita death rate mP/(w + N) which, after relabelling, can be
substituted for f and g, in Eq. 7 to give Eq. 8. It is important
to note that the first per-capita functional response (f, in Eq.
7) reduces to the classical /ogistic when the lower trophic level
is constant; e.g., a constant input of sunlight for plants. Under
this condition, w, , + N, , = a constant = E, ,, and E, ,/b,
= K, ,, the equilibrium density or carrying capacity of the
environment. Leslie (1948) demonstrated this implicit func-
tional response within the /ogistic equation; e.g., if we write
the per-capita logistic predator equation (Eq. 3b)

dP/Pdt = o(1 — eP/N),
R, =c — bP/N,

., with b = ce.
For a single predator foraging for prey in an arena, this be-

comes
R,=c — b/N,

which has an identical form to the type II functional response;
ie, R, ~ —oasN ~0and R, —~ cas N — oo, Equivalency
between the /ogistic equation and the functional response oc-
curs if the per-capita rate of change of the predator is assumed
to be directly proportional to the number of prey eaten, a not
unreasonable proposition.



