
Chapter 8

The Solution of
Equations of the Fifth
Degree

We seek the solution of the equation x5 = 2625x+61500.

8.1 This chapter closely follows a talk given in 1977 by the author
at the Philips Contest for Young Scientists and Inventors, “Special
equations of the fifth degree that are solvable in radicals.” The equa-
tion presented above is again a classical example. Already in 1762,
Leonhard Euler recognized from his studies of solvability of equations
that this equation belongs to a class of fifth-degree equations that can
be solved in radicals. Like other mathematicians of his time, Euler
had attempted to extend the methods for equations of degree less
than five to those of fifth degree. Even the mountain of formulas that
resulted could not dampen Euler’s optimism, for he wrote,

One may conjecture with apparent certainty that with the
correct approach to this elimination procedure, one would
finally arrive at an equation of fourth degree. If the re-
sult were an equation of higher degree, then . . . [the pre-
viously used intermediate value for representing the solu-
tions] would itself contain roots of this degree, and that
would seem to be unreasonable.
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82 8. The Solution of Equations of the Fifth Degree

However, in his actual calculations, Euler had to trim his sails
somewhat:

However, since the large number of expressions makes this
task so difficult that one cannot achieve any measure of
success, it seems appropriate to develop some special cases
that do not lead to such complex formulas.1

Euler refers to the intermediate results he used as “such values
as shorten the calculations.” In reality, Euler has avoided not merely
calculational difficulties, but the basic impossibility of a general solu-
tion. Nonetheless, in this way he arrives at a large class of fifth-degree
equations that can be solved in radicals. Since this class does not con-
tain all solvable fifth-degree equations, we will look here at the work
of another mathematician. In 1771, thus at almost the same time as
the work of Lagrange and Vandermonde, the Italian mathematician
Giovanni Francesco Malfatti (1731–1807) was searching for a general
formula for equations of the fifth degree. Malfatti, who later, in 1804,
commented critically on Ruffini’s first attempts at an unsolvability
proof based on his own work and thereby motivated Ruffini to refine
his work, succeeded in carrying out extremely complicated calcula-
tions of a resolvent of the sixth degree. This did not lead to the
original goal of a general solution. However, Malfatti noticed that
in the special case in which the sixth-degree resolvent possesses a ra-
tional solution, the given fifth-degree equation can be solved. Later,
using Galois theory, it could be shown that Malfatti had character-
ized all equations of the fifth degree that are solvable in radicals (in
relation to all irreducible fifth-degree polynomials over the rational
numbers).

Malfatti’s computations are very complicated, and it is very much
worth noting that he continued successfully from the point at which
Euler had not been able to progress.2 To get some idea of Malfatti’s
method of attack, we will consider his calculation, beginning with the

1Von der Auflösung der Gleichungen aller Grade, reprinted in: Leonhard Euler,
Drei Abhandlungen über die Auflösung der Gleichungen, Ostwalds Klassiker Nr. 226,
Leipzig, 1928. This quotation and the one following appear on page 45; the equation
in the epigraph appears on page 50.

2See J. Pierpont, Zur Geschichte der Gleichung V. Grades (bis 1858), Monatshefte
für Mathematik und Physik, 6 (1895), pp. 15–68. Malfatti’s attempts at a solution
are described on pages 33 through 36.



8. The Solution of Equations of the Fifth Degree 83

equation
x5 + 5ax3 + 5bx2 + 5cx + d = 0,

only for the case a = b = 0, that is, for equations of the type

x5 + 5cx + d = 0.

Furthermore, we will assume cd �= 0. We should note further that this
does not restrict the generality as much as it seems at first glance. In
fact, every equation of degree five can be transformed into an equation
of this type using a substitution that eliminates the degree-four term.
See the section on the transformations of Tschirnhaus and of Bring
and Jerrard.3

Malfatti’s calculations begin with the assumption, without loss
of generality, that the solutions are represented in the form

xj+1 = −
(
εjm + ε2jp + ε3jq + ε4jn

)
,

for j = 0, 1, 2, 3, 4 and with ε = cos
(

2π
5

)
+ i sin

(
2π
5

)
. This corre-

sponds precisely to the method employed already by Bézout, Euler,
Lagrange,4 and Vandermonde. If one multiplies the five associated
linear factors together, then one obtains, along with Euler, the equa-
tion

x5 − 5(mn + pq)x3 + 5
(
m2p + n2q + mp2 + nq2

)
x2

− 5
(
m3p + n3q + mq3 + np3 − m2n2 + mnpq − p2q2

)
x

+ m5 + n5 + p5 + q5 + (mn − pq)
(
mp2 + nq2 − m2q − n2p

)
= 0.

Finally, one must try to determine the unknowns m, n, p, q by
comparing the coefficients with the original equation. We will employ
the following shorthand:

y = pq = −mn,

r = m2q + n2p = −
(
mp2 + nq2

)
,

v = m3p + n3q,

w = mq3 + np3.

3For specific applications, however, it is unfortunate that equations with rational
coefficients are not transformed into equations of the same type.

4Since m = −
`

x1 + ε4x2 + ε3x3 + ε2x4 + εx5
´

/5, etc., at issue here are Lan-

grange resolvents for the values m5, p5, q5, n5.
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The two identities mentioned together with the definition of the
quantities y and r already contain the result of comparing coefficients
for the powers x3 and x2. For the other two powers, comparing coef-
ficients gives the pair of equations

c = −v − w + 3y2,

d = m5 + n5 + p5 + q5 + 20ry.

To be able to formulate as well the last-introduced identity com-
pletely in terms of r, v, w, y, we use the relations

rv =
(
m2q + n2p

) (
m3p + n3q

)
= pq

(
m5 + n5

)
+ (mn)2

(
mp2 + nq2

)
=

(
m5 + n5

)
y − ry2,

rw = −
(
mp2 + nq2

) (
mq3 + np3

)
= −mn

(
p5 + q5

)
− (pq)2

(
m2q + n2p

)
=

(
p5 + q5

)
y − ry2,

thereby obtaining for the pair of equations the new form

c = −(v + w) + 3y2,

dy = r(v + w) + 22ry2.

A calculation of the four unknown quantities r, v, w, y will be
possible only if two additional identities are taken into account:

vw =
(
m3p + n3q

) (
mq3 + np3

)
= pq

(
m4q2 + n4p2

)
+ mn

(
m2p4 + n2q4

)
= pq

(
m2q + n2p

)2
+ mn

(
mp2 + nq2

)2 − 4m2n2p2q2

= yr2 + (−y)(−r)2 − 4y4 = −4y4

and

−r2 =
(
m2q + n2p

) (
mp2 + nq2

)
= pq

(
m3p + n3q

)
+ mn

(
mq3 + np3

)
= (v − w)y.

Putting these two identities together, we obtain

r4 = (v − w)2y2 = (v + w)2y2 − 4vwy2 = (v + w)2y2 + 16y6.
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Now, using this equation and the pair of equations previously
obtained from comparing coefficients, we may determine the values
r, v, w, y. First, we eliminate v + w via

v + w = 3y2 − c,

so that the following equations remain:

dy =
(
25y2 − c

)
r,

r4 = 25y6 − 6cy4 + c2y2.

To eliminate the variable r as well, we take the fourth power of the
first of these two equations and then substitute the second equation
into the result to obtain

d4y4 =
(
25y2 − c

)4 (
25y4 − 6cy2 + c2

)
y2.

Our exclusion of the special case cd = 0 helps us in what follows
to avoid some complications: First, we have y �= 0, since otherwise, at
least three of the values m, n, p, q would be equal to zero, resulting in
c = 0. Furthermore, we would also have 25y2 − c �= 0, since otherwise
we must have y = 0.

From y �= 0, we can now multiply the last equation by 25y−2. We
then substitute z = 25y2, so that a bicubic resolvent results, that is,
an equation of the sixth degree:

(z − c)4
(
z2 − 6cz + 25c2

)
= d4z.

As we shall see, it is sometimes useful to use the bicubic resolvent
in the equivalent form

(
z3 − 5cz2 + 15c2z + 5c3

)2
=

(
d4 + 256c5

)
z.

Of course, in its general form, the bicubic resolvent cannot be
solved in radicals. If it were, then beginning with the variable z, the
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values y, r, v, w, m, n, p, q could then be calculated in turn:

y =
1
5
√

z,

r =
dy

25y2 − c
,

v =
3y3 − cy − r2

2y
,

w =
3y3 − cy + r2

2y
,

m, n =
5

√√√√v + y2

2y
r ±

√(
v + y2

2y
r

)2

+ y5,

p, q =
5

√√√√w + y2

2y
r ±

√(
w + y2

2y
r

)2

− y5.

Each equation comes almost directly from the previously derived iden-
tities, in the case of the last two equations with the help of Viète’s
root theorem. Note that the sign of the unknown y can be chosen ar-
bitrarily, since changing the sign merely exchanges the pairs (p, q) and
(m, n). Furthermore, note that the ordering of the variables p, q, m, n

is always taken such that the equation v = m3p + n3q is satisfied.

8.2 Malfatti himself recognized that the bicubic resolvent that he
obtained can be used to solve special equations of the fifth degree in
radicals. In particular, this is possible when a rational solution to the
bicubic resolvent can be found. Here we shall take as an example the
equation in the epigraph to this chapter with the coefficients c = −525
and d = −61500.

Since the bicubic resolvent is a monic polynomial with integer co-
efficients, all rational solutions, as demonstrated in Chapter 6, must
be integers dividing the number 25c6. One obtains additional infor-
mation from the second representation of the bicubic resolvent: Since
d4 + 256c5 = 37809000002 is a square, every rational solution must
be the square of an integer. And finally, division by 56 shows that
z
5 is also a solution of an equation with integer coefficients, that is,
that z is divisible by 5. Having limited the number of possible integer
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solutions to 112, one obtains the solution z = 5625. It then turns
out that y = 15, r = −150, v = −150, w = 1350, and finally, for
j = 0, 1, 2, 3, 4,

xj+1 = εj 5

√
75

(
5 + 4

√
10

)
+ ε2j 5

√
225

(
35 − 11

√
10

)

+ ε3j 5

√
225

(
35 + 11

√
10

)
+ ε4j 5

√
75

(
5 − 4

√
10

)
.

8.3 Malfatti’s attempt at a solution shows a methodology in the finest
classical tradition, namely, to solve equations using suitable substi-
tutions and transformations. In hindsight, we see that the success of
Malfatti’s approach, to the extent that success was possible, is clari-
fied if one expresses the relevant intermediate values as polynomials
in the solutions x1, . . . , x5. Thus from the two identities

p = −1
5

(
x1 + ε2x2 + ε4x3 + εx4 + ε5x5

)

and

q = −1
5

(
x1 + ε3x2 + εx3 + ε4x4 + ε2x5

)
one obtains

25y = 25pq =
5∑

j=1

x2
j +

(
ε2 + ε3

)
(x1x2 + x2x3 + x3x4 + x4x5 + x5x1)

+
(
ε + ε4

)
(x1x3 + x2x4 + x3x5 + x4x1 + x5x2).

In the special case considered here, a = b = 0, since we have

5∑
j=1

xj =
∑

1≤j<k≤5

xjxk = 0
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and −ε + ε2 + ε3 − ε4 = −
√

5, we obtain for the resolvent solution z

the particularly simple representation5

z = 25y2 =
1
5
(x1x2 + x2x3 + x3x4 + x4x5 + x5x1)2.

Furthermore, with this representation it is clear that in the sense
of Vandermonde, the existence of a rational solution of the bicubic
resolvent can be interpreted as a relation between the solutions.

5A derivation of the bicubic resolvent based on Lagrange’s universal approach

(see Chapter 5) can be found in C. Runge, Über die auflösbaren Gleichungen der

Form x5 + ux + v = 0, Acta Mathematica, 7 (1885), pp. 173–186; see also Heinrich
Weber, Lehrbuch der Algebra, volume I, Braunschweig, 1898, pp. 670–676: One first
investigates the behavior of the slightly altered polynomial representation

y =

√
5

50
(x1x2 + x2x3 + x3x4 + x4x5 + x5x1 − x1x3 − x2x4 − x3x5 − x4x1 − x5x2)

under the 120 possible permutations of the five solutions x1, . . . , x5. Ten of these
permutations leave the polynomial unchanged. All of these are even permutations;
that is, they belong to the collection of sixty permutations that leave unchanged the
square root of the discriminant:

√
D =

Y

i<j

(xi − xj).

Furthermore, there are ten odd permutations whose effect on the polynomial y is to
change its sign. Thus the sixty even permutations transform the polynomial y into six
different polynomials y1 = y, y2, . . . , y6, and the sixty odd permutations transform y
into an additional six polynomials, namely y7 = −y1, . . . , y12 = −y6. The first six
polynomials are thus solutions of the sixth-degree equation

y6 + λ5y5 + · · · + λ1y + λ0 = 0,

whose coefficients λ0, . . . , λ5 arise from the elementary symmetric polynomials in the
polynomials y1, . . . , y6. To obtain these coefficients in terms of c and d of the original
equation x5 + 5cx + d = 0, the polynomials y1, . . . , y6 are expressed in terms of the
solutions x1, . . . , x5. However, the resulting polynomials are only “almost” symmetric;
namely, the polynomials of even degree (in the variables y1, . . . , y6) are symmetric,
while those of odd degree are altered by a sign change for odd permutations and
are unchanged by even permutations. Using the fundamental theorem on symmetric

functions and considering the degrees of c, d,
√

D, λ0, . . . , λ5 as polynomials in the
variables x1, . . . , x5 (namely 4, 5, 10, and 12 − 2j for λj), there must exist rational
numbers µ0, µ1, µ2, µ4 satisfying

y6 + µ4cy4 + µ2c2y2 + µ0c3 = µ1
√

Dy.

After determining the constants, one finally obtains, after squaring the equation ob-
tained, the form of the bicubic resolvent derived by a different route in the main text;

here one determines
√

D by observing that the discriminant D must be representable
as a symmetric polynomial of degree 20 of the form αc5+βd4 with two constants α and
β, where the constants can be found using particular equations. One finally obtains
D = 55 `256c5 + d4´.
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The Transformations of Tschirnhaus and of Bring
and Jerrard

The first systematic attempt at a general solution method for equations
of degree five was undertaken in 1683 by Ehrenfried Walther, Count of
Tschirnhaus (1651–1708). Tschirnhaus’s idea is based on the hope that one
could generalize the well-known substitutions that cause the second-highest
coefficient to disappear so that additional coefficients would disappear as
well.

Instead of transforming a given equation

xn + an−1x
n−1 + an−2x

n−2 + · · · + a1x + a0 = 0

using the substitution

x = y − an−1

n

into an equation of reduced form

yn + bn−2y
n−2 + · · · + b1y + b0 = 0,

Tschirnhaus began his investigations with a substitution of the form

y = x2 + px + q

with parameters p and q to be determined. The n solutions x1, . . . , xn of
the original equation are transformed into the n solutions y1, . . . , yn with
yj = x2

j + pxj + q, where the coefficients of the powers of yn−1 and yn−2

are both zero precisely when the two conditions
X

yj =
X

y2
j = 0

are satisfied. If one starts with a reduced equation in which the coefficient of
the second-highest power is already 0, then one obtains for the parameters
p and q the following conditions that must be satisfied:

0 =
X

yj =
X

`

x2
j + pxj + q

´

=
X

x2
j + p

X

xj + nq

=
X

x2
j + nq,

0 =
X

y2
j =

X

`

x2
j + pxj + q

´2

=
X

x4
j + 2p

X

x3
j +

`

p2 + 2q
´

X

x2
j + nq2.

The first of the two conditions immediately permits a unique deter-
mination of the parameter q. If one then substitutes the obtained value
for q into the second condition, then one obtains for the parameter p a
quadratic equation (except in the special case in which the coefficient of
the third-highest power is already zero). Thus the so-called Tschirnhaus
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transformation of a given nth-degree equation can always be parameter-
ized such that the resulting equation has coefficients equal to zero for the
powers yn−1 and yn−2.

Tschirnhaus now believed that using transformations of higher degree,
which of course contain more parameters to be chosen, would allow further
simplification of the equations, so that every equation could be solvable in
radicals. Although Tschirnhaus did not succeed in supporting his idea with
concrete calculations, it is nevertheless possible to use a transformation of
the form

y = x4 + px3 + qx2 + rx + s

for his special case of a fifth-degree equation

x5 + a4x
4 + a3x

3 + a2x
2 + a1x + a0 = 0,

resulting in an equation of the form

y5 + b1y + b0 = 0.

The parameters can be determined by solving a cubic and a quardratic
equation. This fact was first discovered in 1786 by the Swedish mathemati-
cian Erland Samuel Bring (1736–1798), though without the mathematical
world taking proper note of his achievement. Only much later, in 1864, af-
ter George Birch Jerrard (1804–1863) had rediscovered the transformation,
were Bring’s investigations recalled. The transformation is today gener-
ally called the Bring–Jerrard transformation. However, its details are so
complicated that the actual calculations are difficult to carry out.6
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Exercises

(1) Solve the equation

x5 + 15x + 12 = 0.

(2) Solve the equation

x5 + 330x − 4170 = 0.


