
Chapter 5

Alicia Boole Stott and
four-dimensional polytopes

5.1 Introduction

In this chapter we present the life and work of Alicia Boole Stott (1860-1940),
an Irish woman who considerably contributed to four-dimensional geometry.
Although she never studied mathematics, she learned herself to ‘see’ the
fourth dimension. Using the special capacity of her mind, she developed
a new method to visualize four-dimensional polytopes. In particular, she
constructed the three-dimensional sections of these four-dimensional objects.
The result is a series of three-dimensional polyhedra, which she illustrated
making drawings and three-dimensional models. The presence of an exten-
sive collection in the University of Groningen (The Netherlands) reveals a
collaboration between Boole Stott and the Groningen professor of geometry
P. H. Schoute. This collaboration lasted more than 20 years and combined
Schoute’s analytical methods with Boole Stott unusual ability to visualize the
fourth dimension. After Schoute’s death (1913), the University of Gronin-
gen in 1914 awarded an honorary doctorate to Boole Stott. She remained
isolated from the mathematical community until about 1930, when she was
introduced to the geometer H. S. M. Coxeter with whom she collaborated
until her death in 1940.
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5.2 Boole Stott’s life

5.2.1 Gems from the basement

In the spring of 2001 an old paper roll containing drawings of polyhedra
was found in the basement of the Mathematics, Astronomy and Physics
building at the Zernike Campus of the University of Groningen (see Fig-
ure 5.14 in section 5.3.1). The drawings, carefully made and beautifully
coloured, looked like a series of related Archimedean solids, first increas-
ing and then decreasing in size. The roll was unsigned but the drawings
were quickly recognised to be representations of three-dimensional models
held at the Groningen University Museum and known to be the work of
Alicia Boole Stott (1860-1940), the daughter of the logician George Boole
(1815-1864). Further investigation revealed that Boole Stott had enjoyed a
fruitful collaboration with the Groningen Professor of Geometry, Pieter Hen-
drik Schoute (1846-1913) for over twenty years1, and had been awarded an
honorary doctorate by the University of Groningen in 1914. After Schoute’s
death in 1913, Boole Stott’s drawings and models remained in the Gronin-
gen University Mathematics Department. The drawings appear to display
three-dimensional sections of regular four-dimensional polytopes, obtained by
intersecting the four-dimensional polytopes with a three-dimensional space.
Looking at the complete set of drawings it is possible to see that one section
develops into another by a further shift of the three-dimensional space.

In this chapter we trace the history of Boole Stott’s drawings and models,
beginning with a biography of Boole Stott, and finishing with a detailed
description of two of her publications. As will be described, Boole Stott,
had a rather special education under the tutelage of her mother (her father
George Boole having died when she was only four). We set Boole Stott’s
work into its historical context with an account of the early history of four-
dimensional geometry, followed by a discussion of the work of Boole Stott’s
predecessors, notably Ludwig Schlaefli (1814-1895) and Washington Irving
Stringham (1847-1900).

It is clear that Boole Stott developed a mental capacity to understand
the fourth dimension in way that differed considerably from the analytic
approach of other geometers of the time, in particular that of Schoute. But
how did she come to develop such an understanding of four-dimensional

1There is an error in the Dictionary of Scientific Biography (and it is repeated on the
St Andrew’s website) where Schoute’s date of death is given as 1923.
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geometry? Did her isolation from the mathematical community and her
special education play a role in her discoveries? In Section 5.2.4 we consider
these questions and discuss the origins of Boole Stott’s interest in polytopes.

Boole Stott’s collaboration with Schoute, which is described in detail in
Section 5.2.6, raises several questions concerning their actual working prac-
tice - How often, when and where did they meet? Why did the models
and drawings end up in Groningen? - which we attempt to answer. With
Schoute’s death, Boole Stott’s mathematical activity seems to have drawn
to a halt and it was only several years later that Boole Stott’s interest in
polytopes was revived. In 1930 Boole Stott’s nephew, Geoffrey Ingham Tay-
lor (1886-1975), introduced her to the young HSM Coxeter (1907-2003), the
two became friends, and Coxeter later made several references to her in his
works.

Boole Stott’s published her main results on polytopes in two papers of
1900 [B-S 2] and 1910 [B-S 4]. As the discussion in Section 5.3 shows, the
first paper [B-S 2] relates to the drawings and the models. This publication
studies the three-dimensional sections of the regular polytopes, which are
series of three-dimensional polyhedra. In order to illustrate these sections,
Boole Stott made drawings and cardboard models of the sections of the two
most complicated polytopes. Boole Stott’s work was receipted by some of
her contemporaries, but was almost forgotten later on.

5.2.2 The beginnings of four-dimensional geometry

Geometry as studied to the middle of the 19th century dealt with objects
of dimension no greater than three. The interest among mathematicians in
the fourth dimension seems to have arisen in the middle of the 19th century
after the Habilitation lecture of Riemann (1826-1866), given on June 10th,
1854. In this lecture [Rie], published by Richard Dedekind after Riemann’s
death, Riemann introduced the notion of an n-dimensional manifold. The
lecture had few mathematical details but was presented with many ideas
about what geometry should be. With the increasing use of analytical and
algebraic methods, the step to a higher number of dimensions became nec-
essary. Various mathematicians generalized their theories to n dimensions.
From that moment on, interest in higher dimensional spaces was booming.
By 1885 several articles on the topic had appeared, written by mathemati-
cians such as William Clifford (1845-1879) [Cli] or Arthur Cayley (1821-1895)
[Cay]. Another important figure who popularized the topic was Howard Hin-
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ton (1853-1907), an English high school teacher of mathematics. In his book
The fourth dimension [Hin2] Hinton introduced the term tesseract for an
unfolded hypercube.

5.2.3 Polytopes and modelling

Four-dimensional polytopes are the four-dimensional analogue of polyhedra.
They were discovered by the Swiss mathematician L. Schlaefli. Between 1850
and 1852, Schlaefli had developed a theory of geometry in n-dimensions. His
work, Theorie der vielfachen Kontinuität [Schl1], contained the definition
of the n-dimensional sphere and the introduction of the concept of four-
dimensional polytopes, which he called polyschemes. He proved that there
are exactly six regular polytopes in four dimensions and only three in di-
mensions higher than four. Unfortunately, because of its size, his work was
not accepted for publication. Some fragments of it were sent by Schlaefli to
Cayley, who acted as an intermediary and published them in the Quarterly
Journal Of Pure And Applied Mathematics [Schl2]. The manuscript was not
published in full until after his death [Schl1]. Thus, mathematicians writing
about the subject during the second half of the century were partly unaware
of Schlaefli’s discoveries.

The first person to rediscover Schlaefli’s polytopes was W. I. Stringham.
His paper [Stri], much referred to, became important since it provides an
intuitive proof of the existence of the six regular polytopes, and gives explicit
constructions for each of them. It also includes one of the earliest known
illustrations of four-dimensional figures, displayed in Figure 5.1.

5.2.4 A special education

Alicia Boole Stott was born in Castle Road, near Cork (Ireland) on June 8th,
1860 [McH]. She was the third daughter to the today famous logician George
Boole (1815-1864) and Mary Everest (1832-1916). George Boole died from
fever at the age of 49. George’s widow Mary and five daughters were left
with very little money, so Mrs Boole was forced to move to London, taking
Alicia’s four sisters with her. Alicia had to stay at Cork with her grandmother
Everest and an uncle of her mother [McH]. At the age of eleven, she moved
to London to live with her mother and sisters for seven years. Her stay in
London was only interrupted by one visit to Cork in 1876, where she worked
in a children’s hospital for a short period [Cox5].
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Figure 5.1: Projections of four-dimensional polytopes by Stringham [Stri].

Since Alicia was a woman born around the middle of the nineteenth cen-
tury, she had hardly any educational opportunity. In England colleges did
not offer degrees to women, and women could only aspire to study some
classical literature and other arts, and hardly any science [Mich]. Alicia’s
knowledge of science consisted only of the first two books of Euclid [Cox1].

Having so little knowledge of science, how is it possible that Alicia devel-
oped such an understanding of four-dimensional geometry? Did her special
environment stimulated her? The family situation certainly provided her
with a very particular education. She was only four years old when her fa-
ther died, so she could not have received much mathematical influence from
him. However, she certainly received a good tuition from her mother. Mary
Everest Boole had studied with her husband, George Boole. When Boole
died, Everest Boole moved to England and was offered a job at Queen’s Col-
lege in London as a librarian. Her passion however was teaching, and she
liked giving advice to the students [Mich]. She had innovating ideas about
education, believing for example that children should manipulate things in
order to make the unconscious understanding of mathematical ideas grow
[Mich]. Her belief that models should be used in order to visualize and un-
derstand geometrical objects is reflected in the following words:

There is another set of models, the use of which is to provide
people who have left school with a means of learning the relation
between three dimensions and four. [Eve1]

The geometric education may begin as soon as the child’s hands
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can grasp objects. Let him have, among his toys, the five regular
solids and a cut cone. [Eve2]

Most of Everest Boole’s books were published years after they were writ-
ten. Michalowicz [Mich] proffers some explanation as to why Everest Boole’s
work remained unknown for so long. It is therefore probable that Everest
Boole had these ideas on the use of models by the time she educated her
daughters, in particular her daughter Alicia. Apart from the education pro-
vided by her mother, Alicia was also strongly influenced by the amateur
mathematician Howard Hinton, whom she met during her London period.
Hinton was a school teacher, and was very interested in four-dimensional
geometry.

Hinton was fascinated by the possibility of life in either two of four dimen-
sions. He used hundreds of small colour cubes and assigned a Latin name to
each of them. After having contemplated them for years he claimed that he
had learned to visualize the fourth dimension [McH]. He stimulated Alicia
and her sisters during his visits to the family by putting together the small
cubes and by trying to make them perceive the hypercube. He also made
them memorize the arbitrary list of Latin names he had assigned to them
[McH]. This seems to have strongly inspired Alicia in her later work, and
she soon started surprising Hinton with her ability to visualize the fourth
dimension. Little more is known about their contact, apart from Alicia’s
contribution to Hinton’s book: A new era of thought [Hin1]. She wrote part
of the preface, as well as some chapters and appendices on sections of some
three-dimensional solids. Hinton is also remembered for his books The fourth
dimension [Hin2] and An episode of flatland [Hin3].

In 1889 Alicia lived near Liverpool working there as a secretary [Cox5].
She married the actuary Walter Stott in 1890 and had two children, Mary
(?-?)2 and Leonard (1892-1963) [McH]. Boole Stott returned to do research
by the time the children were growing up. On a family picture dated around
1895, Boole Stott is present with her two children in the company of her four
sisters, her mother and some of her nephews (see Figure 5.2).

2I have not been able to find the precise years of Mary, but she was born before 1895
(see E. I. Taylor’s diary [Tay-E] and Boole Stott’s letter to her sister Margaret [B-S 1])
and was still alive in December 1958, when she wrote her will [Sto]
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Figure 5.2: From left to right, from up to down: Margaret Taylor, Ethel L. Voyn-
ich, Alicia Boole Stott, Lucy E. Boole, Mary E. Hinton, Julian Taylor, Mary Stott,
Mary Everest Boole, George Hinton, Geoffrey Ingram Taylor, Leonard Stott. Boole
Stott’s three sisters Margaret, Ethel and Mary married E. I. Taylor, W. M. Voyn-
ich and H. Hinton respectively. (Courtesy of the University of Bristol)

5.2.5 Boole Stott’s models of polytopes

Inspired by Howard Hinton, Boole Stott undertook a study of four-dimensio-
nal geometry between 1880 and 1890. She worked as an amateur, without any
scientific education or scientific contacts. Probably unaware of the existence
of the six regular polytopes in the fourth dimension, she succeeded in finding
them by herself again [McH]. As reminded earlier, these six polytopes, first
discovered by Schlaefli in 1840, were independently rediscovered by String-
ham [Stri] and other mathematicians [Cox1]. Five of these polytopes are the
four-dimensional analogues of the five regular polyhedra, namely the hyper-
cube, hyperoctahedron, hypertetrahedron, 120-cell and 600-cell. The extra
one is called the 24-cell and has no three-dimensional analogue.

Boole Stott also calculated series of sections of all six three-dimensional
regular polytopes, building them in beautiful cardboard models. These sec-
tions consist of a set of increasing semiregular polyhedra, that vary in shape
and colour. Figure 5.3 shows a picture of a showcase [B-S 7] kept at the
Groningen University Museum containing Boole Stott’s models.

Her method to obtain these sections was completely based on geometrical
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Figure 5.3: Models of sections of the 600-cell and the 120-cell. [B-S 7]. (Courtesy
of the University Museum, Groningen)

visualization. How do the models Boole Stott built help in the understand-
ing of these four-dimensional bodies? To answer this, one must step into a
dimension lower: consider the two-dimensional sections of a tetrahedron that
consist of a series of increasing triangles. By looking at these triangles, we
get information about the shape of the tetrahedron. Since we live in a three-
dimensional space, we cannot visualize four-dimensional bodies, in particular
the regular polytopes. However, by looking at the increasing polyhedra built
by Boole Stott, we can get an idea of the shape of such a polytope.

Boole Stott’s method consisted on unfolding the four-dimensional poly-
topes so that we can visualize them in the three-dimensional space.

5.2.6 Boole Stott and the Netherlands

After the drawings and models made by Boole Stott had been found in
Groningen, the present research started. We soon found out about Boole
Stott’s collaboration with P. H. Schoute, who was a professor of mathematics
at the University of Groningen.
For a short biography and a portrait of Schoute, we refer to Section 1.4.3
in Chapter 1. In 1894, Schoute ([Schou1], [Schou2] and [Schou3]) described
by analytical methods the three-dimensional central sections of the four-
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dimensional polytopes. According to Coxeter [Cox1], Boole Stott got to
know about Schoute’s publications from her husband (it remains unclear
how Walter Stott would have known about Schoute’s work). She realized that
Schoute’s drawings of the sections were identical to her cardboard models and
sent photographs of the models to Schoute. These models showed that her
central diagonal3 sections agreed with his results. This is displayed in Figure
5.4, where the drawing on the left is from [Schou3] and the photograph on the
right is a model by Boole Stott, currently present at Groningen University
Museum.

Figure 5.4: Schoute’s drawing [Schou3] and Boole Stott’s model of the central
diagonal section of the 600-cell from [B-S 7]. (Courtesy of the University Museum,
Groningen)

Schoute was very surprised and immediately answered asking to meet her
and proposing a collaboration [McH]. How did this collaboration actually
work? Schoute came to England during some of his summer holidays to stay
with Boole Stott at her maternal cousin’s house in Hever [Cox1]. In the
photograph Figure 5.5, Schoute is present in the company of Boole Stott and
some of her family during one of his visits.

Boole Stott and Schoute worked together for almost twenty years, com-
bining Boole Stott’s ability for visualizing four-dimensional geometry with
Schoute’s analytical method [McH]. Schoute persuaded her to publish her re-
sults. Her main publications are [B-S 2] and [B-S 4] published in the journal
of the Dutch Academy of Science Verhandelingen der Koninklijke Akademie
van Wetenschappen te Amsterdam.

3 See Definition 10.
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Figure 5.5: From left to right, from up to down: Mary Stott, G. I. Taylor, Mar-
garet Taylor, Pieter Schoute, Alicia Boole Stott. [B-S 10]. (Courtesy of the Uni-
versity of Bristol)

Apart from Schoute’s visits to England, the collaboration between the two
partners also worked via correspondence. Boole Stott, in a letter [B-S 5] to
her nephew Geoffrey Ingram Taylor, discusses a manuscript that she received,
probably from Schoute, about one of her publications:

... I have not done anything more interesting than staining very
shabby floors and such like homehold thing for some time; but last
night I received by post a M.S. of 70 very closely written pages
containing an analytical counterpart of my last geometrical paper.
Of course I must read it. It is the second attempt and was only
written because I did not like the first but I am such a duffer at
analytical work anyhow that I don’t suppose I shall like this very
much better. [B-S 5].

Boole Stott’s words show the contrast of every day life with her mathematical
work, and reveal much modesty concerning her analytical abilities.

The journal Verhandelingen der Koninklijke Akademie van Wetenschap-
pen te Amsterdam where Boole Stott published her results was the journal
of the Dutch Academy of Sciences; it was read internationally by the mathe-
maticians of the time. Some of them refer to Boole Stott’s work in their work:
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for example, E. Jouffret refers to Boole Stott publication of 1900 in [Jou, pp.
107]. Other references to her work can be found, for example, in the work
of the Dutch mathematicians Willem Abraham Wythoff (1865-1939) [Wyth]
and Jacob Cardinal (1848-1922) [Car].

Although Boole Stott published her results in a Dutch journal and a big
part of her collection is present in Groningen, it remains unclear whether
she ever went to The Netherlands or not. The set of models were proven to
be a present from Boole Stott to Schoute [Schou4] what suggests that they
could have been sent from England. Concerning her drawings at Groningen, a
closer look at the paper she used reveals that some of the sheets are originally
English, and others Dutch, which leads us to no conclusion either.

5.2.7 An honorary doctorate

Because of Boole Stott’s important contributions to mathematics, the board
of the University of Groningen decided to award a doctorate to her in 1914.
With that purpose, Johan Antony Barrau (1873-1953) (the successor of
Schoute after the death of the latter in 1913) wrote a recommendation letter
to the board of the University together with a list of Boole Stott’s publi-
cations [Bar]. This list included the three joint publications with Schoute
[BS-Sch 1], [BS-Sch 2] and [BS-Sch 3], and Boole Stott’s papers [B-S 3a] and
[B-S 4], but Barrau missed [B-S 2]. The text in Barrau’s letter, originally in
Dutch, reads:

From these papers, one infers a very special gift for seeing the
position and forms in a space of four dimensions. Three of these
papers are written jointly with late prof. Dr. P. H. Schoute con-
nected during so many years to the University of Groningen; And
this fruitful cooperation with the professor that she lost, is the
reason for the Faculty of Mathematics and Physics to propose
Mrs A. Boole Stott for the doctorate honoris causa in Mathemat-
ics and Physics, to confer on the occasion of the coming festive
commemoration of the 300th birthday of the University.

Boole Stott was informed about the doctorate by the University in a
printed announcement, 20 April 1914 (Figure 5.6 and [B-S 6]), in which she
was invited to attend the festive promotion ceremony on July the 1st. Note
in the figure that there was not a female version of such a document, which
indicates how rare it was for a woman to receive an honorary doctorate at
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that time. Contrary to what Coxeter claims [Cox1], Boole Stott did not come
to Groningen to attend the ceremonies ([**]). The plan was that Boole Stott
would stay with Schoute’s widow [Sch-J]. However, the list of accommodation
for the 68 honoris causa candidates contains the remark does not come for
Alicia Stott [*]. Some small question remains open. Why did Boole Stott
not go to the ceremony?

Concerning the honoris causa diploma, note that the message in figure 5.6
is not the original diploma but an announcement of it. What happened to
the original document? A private communication with Boole Stott’s grand-
nephews Geoffrey and James Hinton revealed that the original diploma had
been in their possession for some time, but had somehow disappeared after-
ward.

Figure 5.6: Message to Boole Stott that she was awarded an honorary doctorate.
[B-S 6]. (Courtesy of the University of Cambridge)

5.2.8 Boole Stott and Coxeter

Boole Stott resumed her mathematical work in 1930, which had stopped
since Schoute’s death in 1913, when she met H. S. M. Coxeter [Cox1] by her
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nephew Geoffrey Ingram Taylor4(1886-1975). The correspondence between
Taylor and his aunt Boole Stott reveals a closeness between the two relatives.
Taylor, aware of her mathematical activities, might have decided to introduce
her aunt to Coxeter. When Boole Stott and Coxeter met, she was then a
70 year old woman whilst Coxeter was only 23. Despite this difference of
age, they became friends. They used to meet and work at several topics in
mathematics. In a particular occasion [Rob], Coxeter invited Boole Stott
to a tea party at Cambridge University, where they would deliver a joint
lecture. She attended the party bringing along her a set of models which she
donated for permanent exhibition to the department of mathematics. These
models are currently in the office of Professor Lickorish at the department.
Coxeter’s own words [Cox1] describe Boole Stott as:

The strength and simplicity of her character combined with the
diversity of her interests to make her an inspiring friend.

In his later work, Coxeter often made reference to her and her work, and
called her “Aunt Alice”, as Boole Stott’s nephew Taylor used to do. Coxeter
[Cox1] describes her married life saying:

In 1890 she married Walter Stott, an actuary; and for some years
she led a life of drudgery, rearing her two children on a very small
income.

Boole Stott died at 12 Hornsey Lane, Highgate, Middlesex, on December
17, 1940 [The Times, December 18, 1940].

Since Coxeter and Boole Stott do not have any common publications, it
is not always easy to know what precise contributions Boole Stott has made.
However, we have some idea about this thanks to several remarks about her
work that Coxeter made in his publications.

5.3 Boole Stott’s mathematics

Alicia Boole Stott published her main results in two papers. The first one
called On certain series of sections of the regular four-dimensional hypersolids
was published in 1900 and deals with three-dimensional sections of four-
dimensional polytopes. In her second publication Geometrical deduction of

4Taylor became one of the most brilliant and influential mathematical physicist of the
20th century. He was expert on fluid dynamics and wave theory [OxDNB]
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semiregular from regular polytopes and space fillings, published in 1910, Boole
Stott gives a method to obtain semi-regular polyhedra and polytopes from
regular ones.

We next present a mathematical description of Boole Stott’s result in her
paper [B-S 2].

5.3.1 1900 paper on sections of four-dimensional poly-
topes

Boole Stott publication On certain series of sections of the regular four-
dimensional hypersolids [B-S 2] describes a rather intuitive and elegant me-
thod to obtain the three-dimensional sections of the regular polytopes. To
ease understanding of the paper, we present some definitions.

Definition 8. A regular polytope in 4-dimensional space is a subset of R4

bounded by isomorphic 3-dimensional regular polyhedra. These polyhedra
are called cells in the papers of Boole Stott and Schoute. If two cells have a
non empty intersection, then the intersection is a 2-dimensional face of both
cells.

The number of vertices, edges, faces and cells of these polytopes are given
in table Figure 5.7.

Polytope v e f c cell
Hypertetrahedron or 5-cell 5 10 10 5 tetrahedron

Hypercube or 8-cell 16 32 24 8 cube
Hyperoctahedron or 16-cell 8 24 32 16 tetrahedron

24-cell 24 96 96 24 octahedron
120-cell 600 1200 720 120 dodecahedron
600-cell 120 720 1200 600 tetrahedron

Figure 5.7: Polytopes in four dimensions.

Boole Stott gave an intuitive proof of the uniqueness of the six regu-
lar polytopes in four dimensions. Her proof went as follows. Let P be a
regular polytope whose cells are cubes. Let V be one of the vertices of P ,
and consider the diagonal section of P corresponding to an affine space K,
close enough to V so that K intersects all the edges coming from V . The
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corresponding section must be a regular polyhedron bounded by equilateral
triangles. Furthermore, there are only three regular polyhedra bounded by
triangles, namely the tetrahedron (bounded by 4 triangles), the octahedron
(bounded by 8 triangles) and the icosahedron (bounded by 20 triangles).
Then, the polytope can only have 4, 8, or 20 cubes meeting at each vertex.
Considering the possible angles in 4 dimensions, Boole Stott shows that the
only possibility for P is to have 4 cubes at a vertex (8 and 20 are too many),
which gives the 8-cell (or hypercube).

Proceeding in the same way, she found the remaining 5 polytopes.
After her proof, Boole Stott proceeded by considering three dimensional

perpendicular sections, which are defined below.

Definition 9. Let O be the center of a given polytope P , and C be the
center of one of its cells. Let H be some affine 3-dimensional subspace,
perpendicular to OC. A perpendicular section is H ∩ P .

Although the publication [B-S 2] treats only perpendicular sections, Boole
Stott also made models of diagonal sections of polytopes (see for example the
model on the right in Figure 5.4). These sections are defined as:

Definition 10. Let O be the center of the polytope P , and V be one of
its vertices. Let K be some affine 3-dimensional subspace, perpendicular to
OV . A diagonal section (or cross section) is K ∩ P .

We now give Boole Stott’s description of the perpendicular sections for
two of the polytopes in detail, namely, the hypercube and the 24-cell. We
also discuss the other polytopes and remark that the drawings reproduced in
the figures are Boole Stott’s drawings. We note that Boole Stott’s method
consisted of unfolding the four-dimensional polytope into the third dimen-
sion. Once the polytope is represented in a three-dimensional space, the
calculations become much simpler and easier to visualize.

The 8-cell or the hypercube

Boole Stott begins by studying the perpendicular sections of the hypercube
(see Definition 9). The three-dimensional sections will result from intersect-
ing the polytope with particular three-dimensional spaces.

Let P1 denote the hypercube. P1 is the analogues of the cube in four
dimensions. It is characterized by having 8 cubes, 4 of them meeting at every
vertex. Figure 5.8 is Boole Stott’s representation of part of the unfolding
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hypercube. Since it is an unfolding of a 4-dimensional object, vertices, edges
and faces occur more than once (this, of course, can only be understood in 4
dimensions).

Figure 5.8: Hypercube: four cubes meeting at a vertex A. [B-S 2].

The first three-dimensional section is the result of intersecting the poly-
tope with a three-dimensional space Hi containing the cube ABCDEFGH
in Figure 5.8. To obtain the second section, the space H1 is moved to-
wards the center of the polytope, until it passes through the point a. Call
this new three-dimensional space H2. The second section is P1 ∩ H2. Note
that the faces of the new section must be parallel to the faces of the cube
ABCDEFGH. In particular, the section P1 ∩H2 contains the squares abcd,
abfg and adef (see Figure 5.8). After the necessary identification of the
points, edges and faces that occur more than once in the unfolded polytope,
and using the symmetry of the polytope, one can conclude that the section
P1 ∩ H2 is again a cube isomorphic to the cube ABCDEFGH.

Analogously, the third section will again be a cube. This simple exam-
ple gives the idea of Boole Stott’s method. Let us now consider the more
interesting case of the 24-cell, which is still not too difficult to visualize.

The 24-cell

Let P2 denote the 24-cell. We note that this polytope is the only one without
an analogues in 3 dimensions. Its 24 cells are octahedra, and 6 of them meet
at every vertex. In Boole Stott’s representation (see Figure 5.9), only 4
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octahedra are drawn. Note that the figure is again an unfolding, and the two
A′ should be identified and similarly, for AE and AC.
The perpendicular sections that Boole Stott described are parallel to the
octahedron ABCDEF .

Figure 5.9: Four octahedra of the 24-cell. [B-S 2].

1. Let H1 be the space containing the octahedron ABCDEF . The first
section H1 ∩ P2 is clearly the octahedron ABCDEF itself.

2. Let H2 be the space parallel to H1 and passing through the point a,
the mid-point between A and AC. The second section H2 ∩ P2 is a 3-
dimensional solid whose faces are parallel to the faces of the octahedron
ABCDEF or the rectangle BCEF . In Figure 5.10 two of these faces
are shadowed. Since the drawing of the octahedra meeting at A is
not complete (3 octahedra are missing), we only see part of the final
section. The remaining part can be deduced by symmetry.

3. Let H3 be the space parallel to H1 and passing through the vertex
AC. The section H3 ∩ P contains the following faces: A rectan-
gle ABACAEAF parallel to the rectangle BCEF , and a triangle
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Figure 5.10: Section H2 ∩ P of the 24-cell. [B-S 2].

AEACCE parallel to the face ACE (the shadowed faces of Figure
5.11).

4. By symmetry, the fourth section passing through a1, the mid-point
between AC and A′, is isomorphic to the second section.

5. Again by symmetry, the last section through A′ is an octahedron.

The 16-cell or the hyperoctahedron

This polytope is the analogues of the octahedron in four dimensions. It is
bounded by 16 tetrahedra, 8 of them meeting in every vertex. After drawing
five of them as in previous cases, Boole Stott used the same method to obtain
the 3-dimensional sections. The first and last sections are clearly tetrahedra
(since the 16-cell is bounded by tetrahedra). The other three sections are
shown in the next figure:
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Figure 5.11: Section H3 ∩ P of the 24-cell. [B-S 2].

Figure 5.12: Five tetrahedra of the 16-cell. [B-S 2].
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Figure 5.13: 2nd, 3rd and 4th sections of the 16-cell. [B-S 2].

The 120-cell

The 120-cell is bounded by 120 dodecahedra. In making the sections of this
polytope, Boole Stott gives drawings of their unfoldings. These sections are
also drawn in [B-S 8]. Figure 5.14 shows some of them.

Figure 5.14: Sections of the 120-cell. [B-S 8].

The 600-cell

This is the most complicated polytope. The complete sections are drawn in
Boole Stott’s paper and constructed in cardboard by her. The models are
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currently in exhibition at the University Museum of Groningen. Figure 5.15
illustrate unfoldings and cardboard models of the sections of the 600-cell.5

Figure 5.15: Drawings in [B-S 7] and models in Groningen University Mu-
seum of perpendicular sections of the 600-cell.

5Note that the drawing on the right hand side corresponds with the uppermost card-
board model.
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5.3.2 1910 paper on semi-regular polytopes

In her paper Geometrical deduction of semi-regular from regular polytopes
and space fillings [B-S 4], Alicia Boole Stott gave a new construction for
the so-called Archimedean solids and her discovery of many of their four
dimensional analogues. Inspired by some stereographic photographs of semi-
regular polyhedra sent to her by Schoute, she got the idea of deriving semi-
regular polyhedra from regular ones. In this way, she discovered many of the
Archimedean polytopes (i.e., the generalization of semi-regular solids to any
dimension).

Semi-regular polyhedra in 3 dimensions

Definition 11. A convex semi-regular polyhedron is a convex polyhedron
whose faces are regular polygons of two or more different types, ordered in
the same way around each vertex.
There are different kinds of convex semi-regular polyhedra:

1. An n-gonal prism is a convex semi-regular polyhedron constructed from
two parallel regular polygons with n sides (n 6= 4) called bases and n
squares.

2. An n-gonal antiprism is a convex semi-regular polyhedron constructed
from two parallel polygons with n sides and 2n triangles.

3. An Archimedean solid is a convex semi-regular polyhedron which is not
a prism or an antiprism. There are 13 different Archimedean solids.

Archimedes (287 BD-212 BC) discovered these thirteen solids. His orig-
inal manuscripts were lost, but Pappus of Alexandria (290 AD-350 AD) at-
tributes the discovery to him in his Book V.

Five of the Archimedean solids can be obtained by the process of trunca-
tion (i.e., cutting off all corners) of the five Platonic solids (see Figure 5.16 nr.
1, 2, 3, 4, and 5), namely the truncated tetrahedron, truncated cube, truncated
octahedron, truncated dodecahedron and the truncated icosahedron. Truncat-
ing the cube (or octahedron) and the dodecahedron through the middle of an
edge, we get the cuboctahedron and the icosidodecahedron (see Figure 5.16 nr.
6, 7). Truncating all vertices and edges of the last two (see Figure 5.16 nr. 8,
9) will give the Great rhombicuboctahedron and the Great rhombicosidodeca-
hedron. Truncating the vertices and edges of the cube (or octahedron) and
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the dodecahedron (or icosahedron) will give the Small rhombicuboctahedron
and the Small rhombicosidodecahedron (see Figure 5.16 nr. 10, 11). The last
two Archimedean solids are obtained by the process snubbing (moving the
faces of two Platonic solids outwards while giving each face a twist) of the
cube and the dodecahedron (see Figure 5.16 nr. 12, 13). The results of this
process are called the snub cube and the snub dodecahedron.
In the following table, v and e denote respectively the number of vertices and
edges of an Archimedean solid. Further p∗i denotes the number of pi-gonal
faces.

Name Symbol v e p∗3 p∗4 p∗5 p∗6 p∗8 p∗10
Truncated tetrah. (3, 6, 6) 12 18 4 4

Truncated cube (3, 8, 8) 24 36 8 6
Truncated octah. (4, 6, 6) 24 36 6 8
Truncated dodec. (3, 10, 10) 60 90 20 12
Truncated icosah. (5, 6, 6) 60 90 12 20

Cuboctahedron (3, 4, 3, 4) 12 24 8 6
Icosidodecahedron (3, 5, 3, 5) 30 60 20 12

Great rhombicuboct. (4, 6, 8) 48 72 12 8 6
Great rhombicosid. (4, 6, 10) 120 180 30 20 12

Small rhombicuboct. (3, 4, 4, 4) 24 48 8 18
Small rhombicosidod. (3, 4, 5, 4) 60 120 20 30 12

Snub cube (3, 3, 3, 3, 4) 24 60 32 6
Snub dodecahedron (3, 3, 3, 3, 5) 60 150 80 12

Figure 5.16: Archimedean solids in three dimensions.

Boole Stott’s method is based on two operations on polytopes, one is the
inverse of the other, called expansion and contraction. This gives a new and
very elegant way to construct these solids.

Definition 12. For i = 0, 1, 2, . . . , n−1, let Li denote the set of i-dimensional
faces of a regular n-dimensional polytope with O as centre (e.g., L0 consists
of the vertices, L1 consists of the edges). Let Mi denote the set of centers of
the elements of Li. The ek-expansion of the polytope is described as follows:

1. Every lk ∈ Lk is moved away from O at a certain distance in the
direction Omk, where the point mk ∈ Mk is the center of lk.
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2. All these distances are equal and taken so that the vertices in this
position now form a new semi-regular polytope.

The operation ck-contraction is a sort of inverse of expansion. For a given
semi-regular polytope and a special choice of elements in Lk, the contraction
consists of moving towards O those elements until they meet.
These two operations provide an elegant way to construct from a regular
polytope a semi-regular one.

Examples of expansion in 3 dimensions: From now on, {3, 3}, {4, 3},
{3, 4}, {5, 3} and {3, 5} will denote the tetrahedron, cube, octahedron, do-
decahedron and icosahedron. The letter ‘t’ in front of a solid will denote the
corresponding truncated solid.

1. e1 expansion: This concerns the edges L1. This e1 expansion applied
to any Platonic solid has as result the same solid but now truncated.
Thus, for any Platonic solid S, we have e1(S) = tS.

Figure 5.17: Example: e1({3, 4}) =t{3, 4} in [B-S 4].

2. e2 expansion: This concerns the 2-dimensional faces. Boole Stott
shows that the e2 expansion of a Platonic solid and of its dual produces
the same Archimedean solid (see Figure 5.18). There are three different
solids coming out of this operation, namely:

i) e2({3, 3}) = (3, 4, 3, 4)

ii) e2({4, 3}) = e2({3, 4}) = (3, 4, 4, 4)

ii) e2({5, 3}) = e2({3, 5}) = (3, 4, 5, 4)
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Figure 5.18: Example: e2({4, 3}) and e2({3, 4}). [B-S 4].

Semi-regular polytopes in 4 dimensions

Definition 13. An Archimedean 4-dimensional polytope is a convex polytope
whose cells (i.e., 3-dimensional faces) are regular or semi-regular convex poly-
hedra, and such that the group of symmetries of the polytope is transitive
on its vertices.

The complete list of Archimedean 4-dimensional polytopes was first given
by J. H. Conway in [Con] using a computer search. The list consists of:

1. 45 polytopes: These are characterized by having n-gonal prisms and
Archimedean solids as cells. These polytopes are known through the
work of Wythoff in 1918 [Wyth], who gave a method to construct them.
However, all 45 had previously been discovered by Boole Stott [B-S 4].

2. Prismatic polytopes: These are convex semi-regular 4-dimensional
polytopes having as cells two isomorphic convex semi-regular polyhedra
(called the bases) and prisms.

i) There are 17 of these whose bases are Platonic solids (here we
exclude the cube) or Archimedean solids.

ii) There are infinitely many prismatic polytopes whose bases are
prisms or antiprisms.

3. Cartesian products: Boole Stott defined in [B-S 4, pg 4 footnote]
the Cartesian product of any two polytopes as:
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Definition 14. Let P1 ⊆ Rn be an n-dimensional polytope and let
P2 ⊆ Rm be an m-dimensional polytope. The Cartesian product of P1

and P2 is the polytope:

P1 × P2 = conv({(x, y) ∈ Rn+m | x ∈ P1, y ∈ P2},

where conv denotes the convex hull. There are infinitely many poly-
topes of this type.

4. The snub 24-cell: This consists of 120 tetrahedra and 24 icosahedra.
It was first discovered by Thorold Gosset in 1900 [Gos]. Boole Stott
collaborated with Coxeter in the investigation of this polytope, and she
made models of its sections [Cox1].

5. The Grand Antiprism: This consists of twenty 5-gonal antiprisms,
and 300 tetrahedra. It was first discovered by John Conway and
Michael Guy in 1965 using a computer search.

Boole Stott made very important contributions in her 1910 paper to the
semi-regular polytopes in 4 dimensions. She was the first to find all 45 poly-
topes discussed in the first item of the list above. Her results (using her
notation) are summarized in Figure 5.19 and 5.20. The symbols {3, 3, 3},
{4, 3, 3}, {3, 3, 4}, {3, 4, 3}, {5, 3, 3} and {3, 3, 5} denote the hypertetrahe-
dron, hypercube, hyperoctahedron, 24-cell, 120-cell and 600-cell respectively,
and Pn denotes the n-gonal prism.
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Nr Symbol Cells

1 {3, 3, 3} 5 {3, 3}
2 e1{3, 3, 3} 5 t{3, 3} and 5 {3, 3}
3 e2{3, 3, 3} 5 (3, 4, 3, 4), 10 P3 and 5 {3, 4}
4 e3{3, 3, 3} 10 {3, 3} and 20 P3

5 e1e2{3, 3, 3} 5 t{3, 4}, 10 P3 and 5 t{3, 3}
6 e1e3{3, 3, 3} 5 t{3, 3}, 10 P6, 10 P3 and 5 (3, 4, 3, 4)

7 e1e2e3{3, 3, 3} 10 t{3, 4} and 20 P6.

8 c0e1{3, 3, 3} 5 {3, 4} and 5 {3, 3}
9 c0e1e2{3, 3, 3} 10 t{3, 3}

10 {4, 3, 3} 8 {4, 3}
11 e1{4, 3, 3} 8 t{4, 3} and 16 {3, 3}
12 e2{4, 3, 3} 8 (3, 4, 4, 4), 32 P3 and 16 {3, 4}
13 e3{4, 3, 3} 16 {4, 3}, 32 P3 and 16 {3, 3}
14 e1e2{4, 3, 3} 8 t(3, 4, 3, 4), 32 P3 and 16 t{3, 3}
15 e1e3{4, 3, 3} 8 t{4, 3}, 24 P8, 32 P3 and 16 (3, 4, 3, 4)

16 e2e3{4, 3, 3} 8 (3, 4, 4, 4), 24 {4, 3}, 32 P6 and 16 t{3, 3}
17 e1e2e3{4, 3, 3} 8 t(3, 4, 3, 4), 24 P8, 32 P6 and 16 t{3, 4}
18 c0e1{4, 3, 3} 8 (3, 4, 3, 4), 16 {3, 3}
19 c0e1e2{4, 3, 3} 8 t{3, 4}, 16 t{3, 3}
20 {3, 3, 4} 16 {3, 3}
21 e1{3, 3, 4} 16 t{3, 3} and 8 {3, 4}
22 e2{3, 3, 4} 24 (3, 4, 3, 4) and 24 {4, 3}
23 e1e2{3, 3, 4} 24 t{3, 4} and 24 {4, 3}

Figure 5.19: Boole Stott’s semi-regular polytopes (I) in [B-S 4].
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Nr Symbol Cells

24 {3, 4, 3} 24 {3, 4}
25 e2{3, 4, 3} 24 (3, 4, 4, 4), 96 P3 and 24 (3, 4, 3, 4)

26 e3{3, 4, 3} 48 {3, 4}, 192 P3

27 e1e2{3, 4, 3} 24 t(3, 4, 3, 4), 96 P3, 24 t{4, 3}
28 e1e3{3, 4, 3} 24 t{3, 4}, 96 P6, 96 P3 and 24 (3, 4, 4, 4)

29 e1e2e3{3, 4, 3} 24 t(3, 4, 3, 4), 192 P6, and 24 t(3, 4, 3, 4)

30 c0e1e2{3, 4, 3} 48 t{4, 3}
31 {5, 3, 3} 120 {5, 3}
32 e1{5, 3, 3} 120 t{5, 3} and 600 {3, 3}
33 e2{5, 3, 3} 120 (3, 4, 5, 4), 1200 P3 and 600 {3, 4}
34 e3{5, 3, 3} 120 {5, 3}, 720 P5, 1200 P3 and 600 {3, 3}
35 e1e2{5, 3, 3} 120 t(3, 5, 3, 5), 1200 P3 and 600 t{3, 3}
36 e1e3{5, 3, 3} 120 t{5, 3}, 720 P10, 1200 P3 and 600 (3, 4, 3, 4)

37 e2e3{5, 3, 3} 120 (3, 4, 5, 4), 720 P5, 1200 P6 and 600 t{3, 3}
38 e1e2e3{5, 3, 3} 120 t(3, 5, 3, 5), 720 P10, 1200 P6 and 600 t{3, 4}
39 c0e1{5, 3, 3} 120 (3, 5, 3, 5), and 600 {3, 3}
40 c0e2{5, 3, 3} 120 {3, 5}, and 600 {3, 4}
41 c0e1e2{5, 3, 3} 120 t{3, 5}, and 600 t{3, 3}
42 {3, 3, 5} 600 {3, 3}
43 e1{3, 3, 5} 600 t{3, 3} and 120 {3, 5}
44 e2{3, 3, 5} 600 (3, 4, 3, 4), 720 P5 and 120 (3, 5, 3, 5)

45 e1e2{3, 3, 5} 600 t{3, 4}, 720 P5 and 120 t{3, 5}

Figure 5.20: Boole Stott’s semi-regular polytopes (II) in [B-S 4].
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5.4 Conclusion

Boole Stott’s figure represents a fascinating example of an amateur woman
mathematician at the turning of the 19th and 20th centuries. Her story
tells us several things. The contemporary interest in the fourth dimension
plays an essential role in Boole Stott’s story, and it is reflected in the work
of the figures that influenced her. However, Boole Stott’s intuition for four-
dimensional space developed in a completely different way to theirs, due
to the restriction of educational possibilities for women of the time. This,
combined with the particular education received by Boole Stott from her
family, seems to have led her to her discoveries. Boole Stott’s methods,
far from the analytical approach common in her contemporaries, show an
extraordinary ability to visualize the fourth dimension.

The way her mathematics influenced others was clearly affected by the
fact that many of her discoveries were not properly published, but are only
known through some references to her work by Schoute or Coxeter. Still,
Boole Stott is vividly remembered through her publications and her collec-
tions of models and drawings, which remind us of the beauty and dimensions
of her work.
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