
Stroke Surfaces: Temporally Coherent
Artistic Animations from Video

John P. Collomosse, David Rowntree, and Peter M. Hall

Abstract—The contribution of this paper is a novel framework for synthesizing nonphotorealistic animations from real video

sequences. We demonstrate that, through automated mid-level analysis of the video sequence as a spatiotemporal volume—a block

of frames with time as the third dimension—we are able to generate animations in a wide variety of artistic styles, exhibiting a uniquely

high degree of temporal coherence. In addition to rotoscoping, matting, and novel temporal effects unique to our method, we

demonstrate the extension of static nonphotorealistic rendering (NPR) styles to video, including painterly, sketchy, and cartoon

shading. We demonstrate how this novel coherent shading framework may be combined with our earlier motion emphasis work to

produce a comprehensive “Video Paintbox” capable of rendering complete cartoon-styled animations from video clips.

Index Terms—Artistic rendering, video-based NPR, stroke surfaces, video paintbox, rotoscoping.

�

1 INTRODUCTION

PROCESSING images into artwork is a significant and
demanding area within nonphotorealistic rendering

(NPR). In this paper, we describe “Stroke Surfaces”—a
novel framework for the creation of nonphotorealistic
animations from video clips.

The production of temporally coherent animations from
video is a longstanding problem in NPR. Static image-based
NPR techniques do not generalize easily to video, and
painting video frames individually results in a distracting
flickering (swimming) within the video sequence. This
paper contributes a video-based NPR solution that can
produce animations free from such artifacts. This enables
the animator to reintroduce some form of controlled
incoherence; for example, object outlines can pulsate
rhythmically or can appear roughly drawn. The animator
has control over the painting style; object interiors and
object outlines are treated independently, so the animator
can choose a line-drawing as output, a painting, or a
traditional flat-shaded cartoon with solid outlines. Different
styles can be applied to distinct objects; specified objects
need not be painted at all but left in a photorealistic state.
Rotoscoping and matting effects are also possible—in fact,
rotoscoping, matting, and painting are unified under our
rendering framework.

Our work initially focused upon the problem of render-
ing video in cartoon-like styles; however, we are now
capable of synthesizing a wider gamut of artistic styles,
including sketchy, oil and watercolor paint, and cartoon flat
and gradient shaded animations within a single framework
(see Figs. 6, 8, and 9). The framework we present here also
complements work recently published by the authors in [1],

[2] which addresses the associated problem of emphasizing
motion within video (for example, using cartoon-style
streak-lines or squash and stretch deformation). In
Section 5, we briefly describe how this motion emphasis
work may be integrated with our Stroke Surfaces frame-
work to produce a comprehensive “Video Paintbox”
capable of rendering cartoon-styled animations from video.

Throughout this work, our rationale has been to design a
framework that offers animators a high degree of expres-
sion over the character of animations; both by providing
control over visual elements, but, importantly, also by
providing a degree of automation that frees them from
laborious work (such as tracing around objects every few
frames). The enabling factor for such automation is the
development and application of Computer Vision methods
to NPR and, as such, our work falls within the increasingly
active convergence area between computer graphics and
computer vision.

1.1 Overview of the Rendering Framework

Internally, our framework is comprised of three principal
components: An intermediate representation (IR) provides an
abstract description of the input video clip. This is parsed
from the video by a computer vision front end which is
responsible for video analysis. This representation, together
with any rendering parameters, forms the input to the
computer graphics back end, which is responsible for all
decisions relating to synthesis, subject to animator control.

We have designed a data structure specifically with
coherent and flexible rendering in mind. To form our data
structure, we begin by independently segmenting frames
into connected homogeneous regions using standard
Computer Vision techniques [3] and use heuristics to create
semantic associations between regions in adjacent frames.
Regions are thus connected over time to produce a
collection of conceptually high-level spatiotemporal “video
objects.” These objects carve subvolumes through the video
volume delimited by continuous isosurface patches, which
we term “Stroke Surfaces.” The video is encoded by a set of
such boundaries and a counterpart database containing
various properties of the enclosed video objects. The

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 4, JULY/AUGUST 2005 1

. J.P. Collomosse and P.M. Hall are with the Department of Computer
Science, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
E-mail: {jpc, pmh}@cs.bath.ac.uk.

. D. Rowntree is with Nanomation Ltd., 6 Windmill St., London, W1T 2JB,
UK. E-mail: david@nanomation.co.uk.

Manuscript received 5 July 2004; revised 24 Nov. 2004; accepted 7 Jan. 2005;
published online 10 May 2005.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0066-0704.

1077-2626/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

surfaces and database, respectively, form the two halves of
the IR, which is passed to the back end for rendering. To
render a frame at time t the back end intersects the Stroke
Surfaces with the plane z ¼ t to generate a series of splines
corresponding to region boundaries in that frame. By
manipulating the IR (for example, temporally smoothing
the Stroke Surfaces), the back end is able to create
temporally coherent animations in a range of artistic styles,
under the high-level direction of the animator.

We give detailed descriptions of the front end, IR, and
the back end in Sections 2, 3, and 4, respectively.

1.2 Related Work

Our research is alignedwith image-basedNPR, the branch of
NPR which aims to synthesize artwork from real-world
images. Research in this area is strong and diverse, encom-
passing artistic styles such as pen-and-ink, water color, and
impasto oil paint which have been emulated [4]. Automatic
NPR methods are of the greatest relevance to us since
automation is a prerequisite to efficiently painting the
numerous frames in any animation (though early rotoscoped
animations such as Snow White [Disney, 1937] achieved
this through exhaustive manual effort). It is unfortunate
that contemporary automatic methods (for example, the
painterly methods of [5], [6]) do not generalize easily to
video. Some labor can be saved using modern in-between-
ing methods; rotoscopers working on the film “Waking
Life” [Fox Searchlight, 2001] drew around objects every 10
or 20 frames to create cartoon-like sequences. A recent
approach [7] tracks, rather than interpolates, key-framed
contours over the course of a video. Computer-aided
systems have also been developed for producing line-art
cartoons [8].

The majority of video-based NPR techniques address the
problem of automatically producing painterly animations
from video. Litwinowicz [9] was the first to address the
problem in a fully automatic manner. Brush strokes painted
upon the first frame are translated from frame to frame in
accordance with optical flow motion vectors estimated
between frames. Translating strokes in this manner causes
them to bunch in some places and spread in others so that
the density distribution of paint strokes over time is

automatically controlled. A similar painterly technique
driven by optical flow was proposed by Kovacs and
Sziranyi [10]. Hertzmann and Perlin [11] use differences
between consecutive frames of video, repainting only those
areas which have changed above a global threshold. While
these methods can produce impressive painterly video, they
do not fully control flicker. Errors present in the estimated
motion field quickly accumulate and propagate to subse-
quent frames, resulting in increasing temporal incoherence
which then requires exhaustive manual correction [12].
Others have applied snakes [13] to assist drawing on a per-
frame basis [14], with an aim to semi-automatically
producing cartoons from video. Unfortunately this ap-
proach is not robust to occlusion and instabilities inherent
in the per-frame snake relaxation process can cause
animations to scintillate. If one were processing video for
interaction or real-time animation, then a frame-by-frame
approach would be justified (an example is Hertzmann’s
“Living Painting” [11]). However, our motivation is to
process video offline for postproduction and, as such, a
global analysis over all frames seems a more promising
avenue for producing our temporally coherent animations.

Our approach treats the video sequence as a spatiotem-
poral array of color—a voxel volume formed by stacking
sequential frames over time. This representation is popular
in the Computer Vision community (see, for example, [15],
[16]) and has been used by the Graphics community: Klein
et al. [17] use it to support their work in video cubism, which
allows users to interactively create NPR effects, but which
does not support video painting. Our NPR framework
makes use of the spatiotemporal representation of video not
only to control temporal coherence, but also to synthesize a
wide gamut of artistic effects that would not be possible
otherwise. In this regard, our work has a common
philosophy with recent work by Wang et al. [18]. Like us,
Wang et al. identify spatiotemporal subvolumes that
correspond to semantic regions and also fit spatiotemporal
surfaces through the video volume. Yet, the two pieces of
work contrast in several important aspects:

1. We automatically process the video volume into
subvolumes separated by their interfacing surfaces
and construct a graph structure to specify the
connectivity between these subvolumes; the user is
allowed to modify this connectivity as a postprocess
by single mouse clicks in distinct frames. Interaction
occurs iteratively as a means of refining the quality
of animated output. This graph representation is
robust to the occlusions and clutter that arise in real
video. Wang et al. place their interaction prior to
video processing—users draw around specific re-
gions in key frames less than a second apart, which
is more labor intensive and processes only the video
foreground.

2. We segment the video into regions on a frame-by-
frame basis and then associate regions across time (a
so called 2Dþ t approach), whereas Wang et al.
segment the volume directly using a extension of the
mean-shift [3] algorithm to 3D. We favor 2Dþ t
because it helps overcome the problem of volume
oversegmentation. Consider a small, fast moving
object; imaged regions of that object may not overlap
in adjacent frames. In this situation, a 3D voxel-based

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 4, JULY/AUGUST 2005

Fig. 1. A visualization of the Stroke Surfaces generated from the SHEEP
sequence, which, when intersected by the a time plane, generate the
region boundaries of a temporally coherent segmentation. The boundary
of single video object, for example, the sheep’s body, may be described
by multiple Stroke Surfaces.

segmentation would oversegment the object; our
2Dþ t associative approach is able to link the two
regions together, thus treating the object as a single
video volume.

3. We use a piecewise bicubic representation for our
surfaces, whereas Wang et al. use polyhedral meshes
fitted by marching cubes. The advantage of para-
metric surfaces is that they allow specific control
over continuity conditions and, thus, over temporal
coherence in the video. Also, in contrast to [18], our
surfaces represent the interfaces between subvo-
lumes, rather than the boundary of each distinct
subvolume. We avoided the latter since it led to
duplication of surface information, causing bound-
aries to no longer appear coincident following
surface manipulations (for example, when perform-
ing smoothing operations to enhance temporal
coherence, or performing warps for animation
effects—Section 4.1).

4. We fit a set of basis vectors to semantic regions,
which move coherently over time; this is not a
feature of [18]. These basis sets serve to widen the
gamut of artistic styles from flat shading to include
stroke-based painterly rendering approaches such as
those used by by Litwinowicz [9]. Furthermore, they
allow us to unify matting, rotoscoping, and painting
in a common framework.

2 FRONT END: SEGMENTING THE VIDEO VOLUME

The front end is responsible for the smooth segmentation of
the video volume into subvolumes in a voxel representation
which describe the trajectories of features. There are three
stages to this process. We begin by independently segment-
ing frames into connected homogeneous regions. The
second stage associates segmented regions in each frame
with regions in adjacent frames to generate video objects.
The third stage removes spurious associations and tempo-
rally smooths the video objects.

2.1 Frame Segmentation

In common with earlier segmentation-based NPR work
([6]), we segment on the basis of homogeneous color. This
was chosen for initial simplicity only and does not
constitute a fundamental limitation of our approach. Even
so, the choice of segmentation algorithm influences the
success of the later region-matching step because segmenta-
tions of adjacent frames must yield similar class maps to
facilitate association.

Robustness—defined as the ability to produce near-
identical results given distinct but near identical images—is
an important property of the segmentation algorithm we
use. Although most published 2D segmentation algorithms
are accompanied by an evaluation of their performance
versus a ground truth segmentation, to the best of our
knowledge, a comparative study of robustness, as we have
defined it, is not present in the literature. Consequently, we
empirically investigated the robustness of contemporary
2D segmentation algorithms. Briefly, each segmentation
algorithm was applied to a series of video frames to
produce a series of segmented class maps. Robustness of the
algorithm was a measured as a function of error between
distance transforms of consecutive class maps. Full experi-
mental details, including a more formal definition of

robustness, can be found elsewhere [19]. Here, we state
the conclusion of that experiment: that EDISON [20] proved
the most robust algorithm under our definition.

2.2 Region Matching

Each frame isnowpartitioned intoa set of regionswhichmust
be associated over time. The problem of creating correspon-
dence between sets of regions, eachwithinmultiple frames, is
combinatorial in nature and an optimal solution cannot be
found through exhaustive search for any practical video. We
propose a heuristic solutionwhichwe have found to perform
well (that is, it results in a locally optimal solution exhibiting
acceptable temporal coherence) and has quadratic complex-
ity in the number of regions per frame.

Consider a single region r 2 Rt, where Rt denotes the set
of segmented regions in frame t. We wish to find the set of
regions in adjacent frames with which r is associated. We
compute this by searching sets Rt�1 and Rtþ1 independently
—examining potential mappings from r to Rt�1 and then
from r to Rtþ1. Thus, r may be associated with zero, one, or
more regions in adjacent frames. The suitability of match
between two regions in adjacent frames r 2 Rt and � 2 Rt�1

is evaluated by an objective function Eðr; �Þ. We describe
this function momentarily (Section 2.2.1), but first complete
description of the association algorithm.

For the purposes of illustration, let us consider the
creation of associations between r and regions in the set
Rtþ1. A matching set is initialized to empty and the area (in
pixels) of r is computed as an “area-count.” A potential set
of associating regions in Rtþ1 is identified whose centroids
fall within a distance � of the centroid of r. A score Eð:Þ for
potential region each is computed. The regions are sorted
into a list in descending order of their score. Next, a
cumulative sum of their area counts is computed, working
from the start of the list and storing the cumulative sum
with each region. The area-count of r is subtracted from
each term. The matching set extends down this list until
either the score or area measure falls below a threshold. For
a given Ri, we form matching sets with regions in adjacent
frames both in the future and in the past. The resulting
subvolumes are broken into, possibly many, temporally
convex video objects. A property of the temporally convex

COLLOMOSSE ET AL.: STROKE SURFACES: TEMPORALLY COHERENT ARTISTIC ANIMATIONS FROM VIDEO 3

Fig. 2. (a) Example of a single video-subvolume split into five temporally

convex objects. (b) Two examples of an object association graph before

and after the filtering step of Section 2.3. Sporadic associations (red) are

removed and object boundaries interpolated (green) from neighbors.

representation is that many separate video objects can
merge to produce one object and a single video object
division can split into many objects. We therefore generate a
graph structure, with video objects as nodes, specifying
how those objects split and merge over time.

2.2.1 Heuristics for Association

The quality of match between two regions Ri and Rj is
measured by the following heuristic function:

EðRi;RjÞ ¼
0 if �ðRi;Rj; �Þ > 1
eðRi;RjÞ otherwise;

�
ð1Þ

eðRi;RjÞ ¼ w1�ðRi;RjÞ þ w2�ðRi; rjÞ�
w3�ðRi;Rj; �Þ � w4�ðRi; rjÞ:

ð2Þ

The function �ð:Þ is the spatial distance between the region
centroids as a fraction of some threshold distance �. The
purpose of this threshold is to prevent regions that are far
apart from being considered as potentially matching; eð:Þ is
not computed unless the regions are sufficiently close. We
have found � ¼ 30 pixels to be a useful threshold.
Constants w½1::4� weight the influence of each of four
heuristic functions; the functions are all bounded in ½0; 1�.
These parameters may be modified by the user to tune the
association process, though, typically, less than an order of
magnitude of variation is required. We have found w1 ¼
0:8; w2 ¼ 0:6; w3 ¼ 0:6; w4 ¼ 0:4 to be suitable values for the
processing of all videos presented in this paper. The
function �ð:Þ is the Euclidean distance between the mean
colors of the two regions in CIELAB space (normalized by
division by

ffiffiffi
3

p
). �ð:Þ is a ratio of the two regions’ areas in

pixels. �ð:Þ is a shape similarity measure, computed
between the two regions. Regions are first normalized to
be of equal area, �ð:Þ is then computed by taking Fourier
descriptors of the angular description function [21] of each
region’s boundary. Shape similarity is inversely propor-
tional to Euclidean distance between the magnitude vectors
of the Fourier descriptors for both regions (disregarding
phase). The shape descriptors are therefore invariant to
shape translation, rotation, and uniform scaling.

2.3 Filtering and Smoothing

Our video description thus far is comprised of a graph in
which spatiotemporal objects are nodes and edges connect
matched objects. This graph is noisy in the sense that some
objects are short-lived, so we filter out objects that exist for
less than six frames (about 1

4 second). The “holes” left by
cutting such objects are filled by extrapolating from im-
mediate neighbors. A serendipitous effect of this process is
that poorly segmented areas of the video tend to merge into
one large coherent object.

We now describe a temporal smoothing process per-
formed by fitting continuous surfaces to voxel objects. Note
that these surfaces are discarded following the smoothing
process, and are distinct from the Stroke Surfaces later fitted
to form the IR.

The boundary of any object is described by a spatiotem-
poral surface. Disregarding “end caps”—surfaces for which
time is constant—we fit a piecewise-smooth surface to
object boundaries using bicubic Catmull-Rom patches,

which are interpolating splines. Fitting is performed via a
generalization of active contours to surfaces (after [13], [22]):

E ¼
Z 1

0

Z 1

0

ðEint½Qðs; tÞ� þ Eext½Qðs; tÞ�Þdsdt; ð3Þ

the internal energy is

Eint ¼ �
@Qðs; tÞ

@s

����
����
2

þ�
@Qðs; tÞ

@t

����
����
2

þ

�
@2Qðs; tÞ

@s2

����
����
2

þ�
@2Qðs; tÞ

@t2

����
����
2

ð4Þ

and the external energy is

Eext ¼ �fðQðs; tÞÞ: ð5Þ

Function fð:Þ is the Euclidean distance of the surface point
Qðs; tÞ to the closest voxel of the object, hence constant �
(whichwepreset as unity) controls the influence of thedata in
the fit. We preset control over spatiotemporal gradients
� ¼ 0:5, � ¼ 0:25, and spatial curvature � ¼ 0:5. Constant �
dictates the penalties associated with high curvatures in the
temporal dimension, which correlate strongly with temporal
incoherence in the segmentation.Wehave chosen tomake the
value of this temporal constraint available to the user, thus
allowing variation in the degree of temporal smoothing.

Surfaces are fitted within the volume using an adapta-
tion of Williams’ algorithm to locate surface points [23],
which, in the final iterations of the fit, relaxes penalties due
to high magnitudes in the second derivative. We inhibit this
relaxation in the temporal dimension to improve temporal
coherence. Once the continuous, bounding surfaces have
been smoothly fitted, the volume is requantized to return to
a voxel representation.

3 FORMING THE INTERMEDIATE REPRESENTATION

The results of the video segmentation process (Section 2) are
a set of segmented, smooth, video objects in a voxel
representation, and an object association graph describing
how video objects are connected over time. In our IR,
spatiotemporal objects are represented in terms of stroke
surfaces that mark the boundary between exactly two
neighboring objects. Each connected component in the
boundary of an object pair has its own Stroke Surface.
Stroke surfaces may contain internal “holes” if the
boundary between neighboring object has holes. Each
Stroke Surface has a winged edge structure [24], meaning it
contains pointers referencing a counterpart database, which
holds information about the objects which it separates.
Stroke Surfaces are preferred over storing each object in
terms of its own bounding surface because boundary
information is not duplicated and the IR is more compact
and more manipulable.

But, there are disadvantages, too: It is harder to vary the
topology of the scene, for example, the adjacency of the
objects, while maintaining the containment of objects in this
representation (this motivated the temporal smoothing step
in the previous section). Stroke Surfaces are not fitted to
objects thate have no spatial adjacency but are only
temporally adjacent—this information is already encoded
in the association graph. Now, given adjacent objects A and

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 4, JULY/AUGUST 2005

B, we first identify each connected component in their
boundary and fit a Stroke Surface to each component
independently, using a two-stage algorithm. First, a two-
dimensional surface is fitted over the boundary using an
active-surface approach of the kind already described in
Section 2.3. Second, any holes in the connected component
are accounted for by fitting a surface patch over each hole.
The Stroke Surface is then comprised of those points in the
bounding surface that are not in any of the “hole” surfaces.

The boundary between objects is defined as follows:
Consider two abutting objects, A and B, say. The distance
transform for all pixels in A with respect to object B is
computed, the distance transform for all pixels in B with
respect to object A. Thus, a scalar field is generated that
spans all voxels in both A and B; the minimum of the scalar
fields is the boundary used in the fitting process.

3.1 The Counterpart Database

We maintain a counterpart database that stores information
about objects. The database is indexed by the pointers held
in the Stroke Surfaces’ winged edge structure. Its purpose is
to store information that is useful to the NPR process in the
back end, for example, a record of the object’s color at each
temporal instant—other specifics are best left to Section 4.
Some data, though, is common to all NPR applications; this
generic data is comprised of the following fields:

1. Born: The frame number in which the object starts.
2. Died: The frame number in which the object ends.
3. Parent object list: A list of objects which have either

split or merged at time B to form the current object.
Objects can be assigned an empty list of parents: No
object in frame one, for example, has a parent;
neither do objects that are revealed by removal of a
previously occluding object.

4. Child object list: A list of objects which the current
object will become. If this list is empty, the object
simply disappears (possibly due to occlusion or
reaching the end of the video).

These attributes encode the graph structure that links
objects (see Section 2.2). The Stroke Surfaces and counter-
part database together comprise the basic intermediate
representation (IR) that is passed to the back-end for
rendering.

3.2 User Correction

Processing video into the IR is strongly dominated by
automation, but Segmentation is imperfect and user
correction is necessary for some sequences. We bias the
parameters to the EDISON algorithm (used in the frame
segmentation step) slightly toward oversegmentation be-
cause oversegmentation is much more easily resolved via
merging objects than undersegmentation (which introduces
the complicated problem of specifying a spatiotemporal
surface along which to split video objects). In practice,
therefore, the volume may be oversegmented. We therefore
provide an interactive facility for the user to correct the
system by linking objects as required. This operation takes
place directly after the region association and filtering
process. These links may take two forms:

1. Semantic link: The animator links two objects by
creating edges in the object association graph.
Objects remain as two distinct volumes in our

representation, but the graph is modified so that
any smoothing of graphical attributes (such as
region color) occurs over all linked objects (see
Fig. 3b). This type of link is used to encode
additional, semantic knowledge of the scene (for
example, the continuity of the yellow bear’s fur in
Fig. 3b).

2. Physical link: The animator physically links two
adjacent video objects by merging their voxel
volumes. The objects to be merged are deleted from
the representation and replaced by a single object
which is the union of the linked objects (see Fig. 3a).
This type of link is often used to correct over-
segmentation due to artifacts such as shadow or
noise and is preferable in this respect to “semantic”
linking since merged volumes will undergo coarse
smoothing as a single object.

4 BACK END: RENDERING THE IR

We now describe the back end of the framework,
responsible for rendering the IR. Given our spatiotemporal
video representation, any frame is on a plane of constant
time that intersects the volume. The Stroke Surfaces can
therefore be rendered as lines and the interiors of objects as
areas. This immediately gives us the opportunity to render
video into novel nonphotorealistic styles that were not
possible hitherto. For example, we can create line render-
ings or paint regions in a flat color (as we alluded to earlier,
attributes such as color can be added to the database in an
style-specific field). Many other nonphotorealistic effects
are possible, as we now describe.

4.1 Surface Manipulation

The representation of video as a set of spatiotemporal
Stroke Surfaces simplifies manipulation of the image
sequence in both spatial and temporal domains and enables
us to synthesize novel temporal effects which would
otherwise be difficult to produce on a per frame basis. To

COLLOMOSSE ET AL.: STROKE SURFACES: TEMPORALLY COHERENT ARTISTIC ANIMATIONS FROM VIDEO 5

Fig. 3. Users may create manual links between objects to tune the

segmentation or composition. (a) The user creates a physical link

between oversegmented objects, a single object replaces four. (b) The

user creates a semantic link between two objects. The objects remain

distinct, but edges are created in the object association graph; during

rendering, attributes are blended between regions tomaintain coherence.

this end, we have devised a method for manipulating
Stroke Surfaces to produce small scale deformations.

Consider a single Stroke Surface qðs; tÞ embedded in the
video volume, where ðs; tÞ form an arc-length parameter-
ization of that surface. We subsample the fields s 2 ½0; 1�; t 2
½0; 1� at regular intervals to obtain a grid of well-distributed
points on manifold qðs; tÞ. By creating a simple 3D
triangular mesh using these regular samples as vertices,
we are able to create a piecewise planar approximation to
qðs; tÞ, which we write as pðs; tÞ. The difference between
these two vector fields eðs; tÞ ¼ qðs; tÞ � pðs; tÞ forms the
basis for deforming the Stroke Surface. By holding pð:Þ
constant and manipulating eð:Þ in frequency space, we are
able to produce a range of novel temporal effects. For
example, since adjacent objects are represented in terms of
their interfacing surfaces, residual temporal incoherences in
those boundaries may be dampened by smoothing the
surfaces. Thus, applying a low-pass (Gaussian) filter in the
temporal dimension allows us to further enhance temporal
coherence. There is no danger of introducing “holes” into
the video volume as with the coarse smoothing step
(Section 2.3)—if volume is lost from one video object, it is
gained by surrounding video objects. Similarly, by introdu-
cing novel frequency components, we can produce coherent
“wobbles” in the boundaries of animated objects. Fig. 4
contains stills from such animations, reminiscent of
commercial cartoons, for example, “Roobarb and Custard”
[Grange Calveley, 1972].

4.2 Rendering Region Interiors

As described earlier, a straightforward strategy for render-
ing a region interior is to uniformly fill it with a single,
mean color computed over that region’s footprint in the
original video. The cartoon-like “flat shading” effect that
results goes some way to satisfying the second (shading)
subgoal of our original motivation—the automated genera-
tion of cartoons from video. However, as video objects
divide and merge over the course of the clip, the mean color

of their imaged regions can change significantly from frame
to frame (perhaps due to shadows). This can cause
unnatural, rapid color changes and flickering in the video.

Thus, the ability to obtain temporally smooth segmenta-
tion (Stroke Surface) boundaries in an animation is
insufficient on its own. One must also apply shading
attributes to the bounded regions in a temporally smooth
manner. The flickering of region color we demonstrate is
symptomatic of the more general problem of assigning the
graphical attributes stored in the IR database to regions in a
coherent way. We draw upon our spatiotemporal repre-
sentation to mitigate against this incoherence.

Recall that objects are associated via a graph structure;
pointers to each video object’s child and parent objects are
stored in the database component of the IR. We analyze this
graph to obtain a binary voxel map describing the union of
all video objects within the subgraph containing the video
object corresponding to the region being rendered. By
averaging graphical database attributes, such as color, over
the volume, we can create a smooth transition of those
attributes over time (even if objects appear disjoint in the
current frame but connect at some other instant in the past
or future). Such coherence could not be obtained using the
per frame sequential analysis performed by current video-
driven NPR methods [9], [10], [11].

The highly abstracted nature of a flat shaded video can be
unappealing for certain applications; artists oftenmakeuse of
shadows and shading cues to add a sense of lighting and
depth to a scene. Although comprehensive detection and
handling of shadows remains an area for future work, we
have attempted to reintroduce shading cues in two ways.

First, we fit a linear shading gradient to each object on a
per frame basis. The gradient at time t over an object may be
described as a triple Gt ¼ ½g0; g1; 	�, where g0 and g1 are the
start and end shading intensities, respectively, and 	
specifies the direction of shading over the region (as an
angle). An optimal Gt is sought by minimizing the error
between the luminance channel of the region texture and a
synthesized intensity gradient generated by a putative Gt.
These gradient triples are computed by the front end and
stored as a field in the IR database. When rendering, we can
augment our flat shaded regions by rendering the gradient
triple, smoothing the parameters in a similar manner to
color to promote temporal coherence (Fig. 8, top middle).

Second, we compute the interframe (planar projective)
homographies for each video object’s texture as it moves
from frame to frame. The sequences of homographies are
stored in the database and smoothed over time. In this way,
we attach a rigid reference frame to the object that
transforms smoothly over time. We transform region
texture at each time instant to fall within a common
reference frame. By detecting and thresholding edges
within these texture samples, we are able to form con-
nected, binary spatiotemporal components for strong edges
within the interior of the object. Stroke surfaces are fitted to
these components, as in Section 3, and thus represent
interior edge cues in our IR; in this case, both pointers in the
winged edge structure reference the same object. This
property also proves useful to differentiate rendering style
between interior and exterior edges.

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 4, JULY/AUGUST 2005

Fig. 4. Examples of controlled incoherence that may be inserted into an
animation through Stroke Surface manipulation. Top left: Visualization of
the XYT volume in which the surfaces describing an object have been
shattered into small pieces and “jittered” by random affine transforma-
tions. This produces a broken boundary that yields a sketched effect
when rendered (top right). Bottom: A coherent sketchy effect creates by
shattering and jttering surfaces in the SHEEP sequence (left) and
controlled wobbles created by perturbing the same surfaces (right).

We are also able to apply morphological operators to
interior regions, prior to rendering. Fig. 8 (bottom left)
demonstrates a water color effect, combined with a sketchy
outline, in which we have applied an erosion operator to the
region prior to rendering; this gives the aesthetically
pleasing impression of brush strokes stopping “just short
of the edges.”

4.3 Reference Frames and Rotoscoping

Modern NPR techniques (for example, stroke-based ren-
derers [2], [5], [9] or adaptive textures [25]) may be
considered a form of modern day rotoscoping as both
share a common objective: to produce stylized animations
from video in which motion is coherent with the motion of
the underlying source image sequence.

Recall the local motion estimates for video objects stored
in the IR. These estimates model interframe motion as a
homography and were applied to recover internal edge
cues. However, the same motion estimates may be used to
to implement automated rotoscoping in our framework.
Animators draw a (potentially animated) design upon a
single key-frame of the original footage. The interframe
homography stored in the IR database is then used to
automatically transform the design from frame to frame—
the design remains static within the reference frame to
which it is attached; it appears to be rigidly attached to the
video object (see Fig. 5).

Rather than have the animator draw a design on the rigid
reference frame, we may use that frame as the basis on a
canvas on which to deposit paint strokes. These strokes may
adapt their color according to the video texture over which
they are painted. The visual attributes of these strokes, such
as color, scale, and orientation, can also be smoothed over
time. Thus, we can produce flicker-free painterly effects in
video by considering painting and rotoscoping as essen-
tially the same task. We have found that affine transforms
are aesthetically better suited for carrying painting strokes
from frame to frame and we simply compute the closest

affine transform (in a least squares sense) to each homo-
graphy. In doing so, we allow strokes to translate, rotate,
and scale with the region on which they are painted; the
latter prevents holes from appearing between strokes as
objects approach the camera.

As a special case of rotoscoping, we may set the
interframe homography estimates for a region to imply no
region motion. By supplying these regions with video as a
texture, rather than hand-drawn animations, we are able to
replace shaded video objects with alternatively sourced
video footage. This facilitates video matting within our
framework, as we demonstrate in Fig. 5 (bottom) by
substituting a novel background into the SHEEP sequence.
We can also use the source video footage itself as a texture
and thus reintroduce photorealistic objects from the original
video back into the nonphotorealistic animation (producing
the “mixed media” effects in Fig. 8, top right).

4.4 Rendering Region Outlines

Having concluded our explanation of interior region
rendering, we now describe the edge rendering process of
the back end. Recall the surface intersection operation by
which we determine the Stroke Surfaces to be rendered a
particular frame. The splines which result from this
intersection form trajectories along which we paint long,
flowing strokes, which are stylized according to a user-
selected procedural NPR brush model. This produces
attractive strokes which move with temporal coherence
through the video sequence; a consequence of the smooth
spatiotemporal nature of the Stroke Surfaces. We have used
an implementation of Strassman’s hairy brush model [26] to
render our splines, producing thick painterly strokes to
depict the exterior (holding) lines of objects (see Fig. 8,
bottom right).

Because temporal incoherence has been brought under
control, the corollary is that we may reintroduce incoher-
ences in a controlled way. We have discussed (Section 4.1)
how we may introduce undulations in the surfaces, which
causes the lines to “wobble.” However, we can produce
other effects specific to line rendering. For example, Stroke
Surfaces can be “shattered” into small shards, each of which
exhibits temporal coherence over a short time. Shards are
subjected to small, random affine transformations and
rendered using fine brush strokes to produce a sketchy
effect (Fig. 4).

5 RESULTS AND COMPARISON

Fig. 8 contains examples of stills taken from animations
rendered by our rendering framework. In Fig. 9, we
demonstrate the results of integrating our proposed frame-
work with our earlier cartoon motion emphasis framework
[1], [2]. This earlier framework shares a similar architecture to
that described in this paper. Object descriptions were
extracted from the source video by a Computer Vision front
end andpassed to a graphics back endwhich applied various
animation motion cues to the original footage, squash and
stretch object deformation and streak line placement being
but two examples. In our integratedVideo Paintbox, the front
end of the motion emphasis framework operates upon the
original footage as before.However, the footage passed to the
back end is substituted for the nonphotorealistic animations

COLLOMOSSE ET AL.: STROKE SURFACES: TEMPORALLY COHERENT ARTISTIC ANIMATIONS FROM VIDEO 7

Fig. 5. Coherent painterly rendering: Painting frames are attached to

objects (top) and strokes move with them (middle). The painted sheep

has been matted onto a static photography (bottom).

stylized by our Stroke Surface framework. This enables the
synthesis of cartoon-styled animationswhichnot only appear
“cartoon shaded,” but also exhibit many of the motion cues
used by traditional animators.

The majority of artistic styles that may be synthesized by
the complete Video Paintbox have no counterpart in the
published NPR literature; most existing techniques address
only the single, specific problem of producing temporally
coherent painterly animations. This improved diversity of
style is one of our principal contributions; however, we also
wish to demonstrate the contribution made due to the
improvements in temporal coherence. To this end, we
compared our animation system with Litwinowicz’s video
painting algorithm based on optical flow [9]. This approach
tends to produce animations exhibiting poor temporal
coherence; a manifestation of the motion estimation errors
which accumulate due to the per frame sequential nature of
the algorithm. This is especially noticeable in “flat” regions
since optical flow tends to show movement only at edges
and textures. In addition, the translations performed over
time causes strokes to “bunch” together, leaving “holes” in
the canvas which must be filled with new strokes. The
addition of strokes is driven by a stochastic process in [9]
and thus also contributes to temporal incoherence. We
measured the temporal coherence of painted video objec-
tively in two ways: stroke flicker and motion coherence.

Considering flicker, the location and visual attributes of
strokes should not vary rapidly, so, if si is a vector of stroke
parameters (location, color, etc.) in frame i, then f ¼
jjst � st�1j � jstþ1 � stjj is a measure of flicker; the higher
the score, the greater the flicker. We averaged f over many
frames and many strokes and used it to compare our
method with two versions of Litwinowicz’s algorithm, one
in which the “bunching/holes” problem was not resolved
(OF-) and one in which it was (OF). Numeric results are

shown in Fig. 10 (right) for three test videos (see
accompanying material), in which we have normalized
scores so that OF is unity. We offer about an order of
magnitude improvement over [9].

Considering motion coherence, stroke movement should
cohere with the motion of objects to which they are
attached. We rotated, scaled, and translated images with
and without texture, thus providing a ground-truth vector
field over a variety of conditions. We then computed an
optical flow field using a standard method [27] and a vector
field using our method. In all cases, our method reproduced
the ground truth vector field very closely, but the optical
flow method produced very different results. This was
especially clear in regions of flat texture; the local motion
estimates of optical flow measured little motion in these
regions. By contrast, our motion estimate was computed
over the entire segmented object, thus distributing error
globally over all pixels. Further details of all these
experiments available in [19].

6 CONCLUSIONS AND DISCUSSION

We have presented a novel NPR framework for synthesiz-
ing nonphotorealistic animations from video sequences.
The spatiotemporal approach adopted by our framework
enables us to smoothly vary attributes, such as region or
stroke color over time, and to create improved motion
estimates of objects in the video. By manipulating video as
distinct regions tracked over time, rather than individual
voxels, we are able to produce robust motion estimates for
objects and synthesize both region-based (e.g., flat-shaded
cartoon) and stroke-based (e.g., traditional painterly) NPR
styles. For the latter, brush stroke motion is guaranteed to
be consistent over entire regions—contradictory visual cues
do not arise where stroke motion differs within a given
object. We have also provided a single framework for
matting and rotoscoping and allow many novel effects that
are unique to our NPR application. We have successfully
integrated our framework with earlier motion emphasis
work [1], [2], enabling complete cartoon style animations to
be generated from video with a high degree of automation.
Further work might investigate application of other stroke-
based NPR algorithms to our rotoscoping framework and
experiment with alternative brush models or alpha blend-
ing techniques to stylize boundaries.

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 4, JULY/AUGUST 2005

Fig. 7. Table summarizing the “level of visual flicker” of paint strokes

present in an animation produced by each of three algorithms

(horizontal) over each of three source video sequences (vertical).

Flicker level ranges from zero (no flicker) to unity (sever flicker).

Fig. 6. Identical frames four seconds into the BOUNCE sequence rendered in a oil-painted style with our technique (right) and OF (left, middle). The

errors that have built up in the cumulative optical flow estimate at this stage cause large-scale distortion and flickering in the image. We have omitted

the stroke density regulation stage (OF-) in the left-hand image; this improves temporal coherence. However, large holes are created in the canvas

(red circle) and, elsewhere, tight bunching of strokes causes the scene to tend back toward photorealism.

We did not set out to produce a fully automated
system—not only do we desire interaction for creative
reasons (setting high-level parameters, etc.), but also for the
correction of the Vision algorithms in the front end. The
creative nature of animation demands the user be kept “in
the loop,” a point well-illustrated in Fig. 9, which demon-

strates not only the strengths of our automated process (for
example, flicker-free shading and motion emphasis), but
also the limitations. In Fig. 9 (top), it is unlikely that an
animator would create such a “busy” background; com-
monly, such superfluous detail is abstracted away. This has
been accomplished in Fig. 9 (bottom) by interactively
merging video objects to hint at the presence of brickwork
in the background. This is a manifestation of the “general
segmentation problem,” which precludes the possibility of
segmenting any given video into semantically meaningfully
parts. However, we have kept the burden of correction low
(Section 3.2). Users need only click on video objects once,
for example, to merge two oversegmented feature sub-
volumes, and those changes are propagated throughout the
spatiotemporal video volume. In practical terms, user
correction takes only a couple of minutes of user time in
contrast to the hundreds of man hours required to correct
the optical flow fields of contemporary video NPR
techniques [12] or repeatedly key a rotoscoping process.

An area for future investigation is the compact nature of
our continuous Stroke Surface representation. Fig. 10
summarizes the details of a brief comparative investigation,
contrasting the storage requirements of our videodescription

COLLOMOSSE ET AL.: STROKE SURFACES: TEMPORALLY COHERENT ARTISTIC ANIMATIONS FROM VIDEO 9

Fig. 8. Some of the available artistic effects. Top, left to right: Cartoon flat and gradient shaded animations from the BOUNCE sequence. Mixed

reality effect where original footage has been selectively matted in to a sketchy line animation. Bottom, left to right: Water color wash effect and

cartoon flat shaded bears with sketchy and thick stroke outlines. See Fig. 9 (left) for stills of the source footage.

Fig. 9. The Stroke Surface framework may be integrated with our motion emphasis work [1], [2] to produce complete cartoon-styled animations.

Videos of these two sequences have been included in the supplementary material.

Fig. 10. Demonstrating the comparatively low storage requirements of

the surface representation when transmitting cartoons. Our test

comparison uses up to 50 frames of a typical gradient-shaded animation

produced by our system.

with those of common video compression technologies.
Approximately 150KB were required to store 50 frames of
a typical video sequence. The compact nature of our
description compares favorably with the other video
compression algorithms tested when operating upon
cartoon-shaded animation, although we note that the
spatiotemporal nature of our representation prohibits
real-time encoding of video. It is therefore conceivable
that our video description could be transmitted—and
after, rendered into a number of artistic styles. This
creates a novel level of abstraction for video in which a
service provider might determine the video content, while
the client determines the style in which that content is
rendered. The level of abstraction is analogous to that of
XML/XSLT documents. Splitting the responsibilities of
video content provision and visualization between client
and server is a promising direction for developing our
video representation.

Perhaps themost limiting assumption in our system is that
videomust be segmented into homogeneous regions in order
to be parsed into the IR (and thus subsequently rendered).
Certain classes of video (for example, crowd scenes or
running water) do not readily lend themselves to segmenta-
tion and thus cause our method difficulty. Typically, such
scenes are undersegmented as large feature subvolumes,
causing an unappealing loss of detail in the animation. This is
not surprising; the segmentation of such scenes is a difficult
task even for a humanobserver. Thus, althoughwe are able to
produce large improvements in the temporal coherence of
many animations, our method is less general than optical
flow-based methods, which are able to operate on all classes
of video, albeit with a lower degree of coherence.

A further criticism is that the homography, used to
attach reference frames assumes both planar motion and
rigid objects. However, many artistic styles (such as cartoon
shading and sketchy rendering) do not use this aspect of the
system. Ideally, the video representation would be ex-
tended to increase the generality of all artistic styles: three-
dimensional descriptions of objects or curvilinear (rather
than linear) bases for the reference frame are two possible
directions for development.

A full description of our Video Paintbox can be found in
[19]. See http://www.cs.bath.ac.uk/~vision/cartoon for a
selection of rendered clips.

REFERENCES

[1] J.P. Collomosse, D. Rowntree, and P.M. Hall, “Cartoon-Style
Rendering of Motion from Video,” Proc. First Int’l Conf. Vision,
Video, and Graphics (VVG), pp. 117-124, July 2003.

[2] J.P. Collomosse, D. Rowntree, and P.M. Hall, “Video Analysis for
Cartoon-Like Special Effects,” Proc. 14th British Machine Vision
Conf., vol. 2, pp. 749-758, Sept. 2003.

[3] D. Comanicu and P. Meer, “Mean Shift: A Robust Approach
Toward Feature Space Analysis,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 603-619, May 2002.

[4] G. Gooch and A. Gooch, Non-Photorealistic Rendering. A.K. Peters,
July 2001.

[5] A. Hertzmann, “Painterly Rendering with Curved Strokes of
Multiple Sizes,” Proc. ACM SIGGRAPH, pp. 453-460, 1998.

[6] D. DeCarlo and A. Santella, “Abstracted Painterly Renderings
Using Eye-Tracking Data,” Proc. ACM SIGGRAPH, pp. 769-776,
2002.

[7] A. Agarwala, A. Hertzmann, D. Salesin, and S. Seitz, “Keyframe-
Based Tracking for Rotoscoping and Animation,” Proc. ACM
SIGGRAPH, pp. 584-591, 2004.

[8] J. Fekete, E. Bizouarn, T. Galas, and F. Taillefer, “Tictactoon: A
Paperless System for Professional 2D Animation,” Proc. ACM
SIGGRAPH, pp. 79-90, 1995.

[9] P. Litwinowicz, “Processing Images and Video for an Impres-
sionist Effect,” Proc. ACM SIGGRAPH, pp. 407-414, 1997.

[10] L. Kovacs and T. Sziranyi, “Creating Video Animations Combin-
ing Stochastic Paintbrush Transformation and Motion Detection,”
Proc. 16th Int’l Conf. Pattern Recognition, vol. II, pp. 1090-1093, 2002.

[11] A. Hertzmann and K. Perlin, “Painterly Rendering for Video and
Interaction,” Proc. ACM Non-Photorealistic Animation and Rendering
(NPAR), pp. 7-12, 2000.

[12] S. Green, D. Salesin, S. Schofield, A. Hertzmann, and P.
Litwinowicz, “Non-Photorealistic Rendering,” ACM SIGGRAPH,
NPR Course Notes, 1999.

[13] M. Kass, A. Witkin, and D. Terzopoulos, “Active Contour
Models,” Int’l J. Computer Vision, vol. 1, no. 4, pp. 321-331, 1987.

[14] A. Agarwala, “Snaketoonz: A Semi-Automatic Approach to
Creating Cel Animation from Video,” Proc. ACM Non-Photorealis-
tic Animation and Rendering Conf. (NPAR), pp. 139-147, June 2002.

[15] D. Terzopolous, A. Witkin, and M. Kass, “Constraints on
Deformable Models: Recovering 3D Shape and Nonrigid Motion,”
Artificial Intelligence, vol. 36, no. 1, pp. 91-123, 1988.

[16] D. DeMenthon, “Spatio-Temporal Segmentation of Video by
Hierarchical Mean Shift Analysis,” Proc. Statistical Methods in
Video Processing (SMVP) Workshop at ECCV, 2002.

[17] A.W. Klein, P.J. Sloan, R.A. Colburn, A. Finkelstein, and M.F.
Cohen, “Video Cubism,” Technical Report MSR-TR-2001-45,
Microsoft Research, May 2001.

[18] J. Wang, Y. Xu, H-Y. Shum, and M. Cohen, “Video Tooning,” Proc.
ACM SIGGRAPH, pp. 574-583, 2004.

[19] J.P. Collomosse, “Higher Level Techniques for the Artistic
Rendering of Images and Video,” PhD thesis, Univ. of Bath,
U.K., May 2004.

[20] C. Christoudias, B. Georgescu, and P. Meer, “Synergism in Low
Level Vision,” Proc. 16th Int’l Conf. Pattern Recognition, vol. 4,
pp. 150-155, Aug. 2002.

[21] R.L. Cosgriff, “Identification of Shape,” Technical Report 820-11,
ASTIA AD 254792, Ohio State Univ., 1960.

[22] G. Hamarneh and T. Gustavsson, “Deformable Spatio-Temporal
Shape Models: Extending asm to 2d+time,” J. Image and Vision
Computing, vol. 22, no. 6, pp. 461-470, 2004.

[23] D. Williams and M. Shah, “A Fast Algorithm for Active Contours
and Curvature Estimation,” Graphical Models and Image Processing,
vol. 55, no. 1, pp. 14-26, 1992.

[24] B. Baumgart, “A Polyhedral Representation for Computer
Vision,” Proc. Nat’l Computer Conf., pp. 589-596, 1975.

[25] P. Hall, “Non-Photorealistic Rendering by Q-Mapping,” Computer
Graphics Forum, vol. 1, no. 18, pp. 27-39, 1999.

[26] S. Strassmann, “Hairy Brushes,” Proc. ACM SIGGRAPH, vol. 20,
pp. 225-232, 1986.

[27] T. Gautama and M.M. VanHulle, “A Phase-Based Approach to the
Estimation of the Optical Flow Field Using Spatial Filtering,” IEEE
Trans. Neural Networks, vol. 5, no. 13, pp. 1127-1136, 2002.

John P. Collomosse received the PhD degree from the University of
Bath in 2004; his thesis addresses the problem of artistic rendering from
digital images and video. Now employed as a lecturer (assistant
professor), he is still based in Bath and holds related research interests
in augmented reality, NPR, and computer vision.

David Rowntree founded the London-based animation company
“Nanomation” in 1999, where he works both as an animator and
developer of novel Softimage shaders.

Peter M. Hall’s first degree is in physics with astrophysics and his PhD
degree is in scientific visualization. He is a lecturer (assistant professor)
in the Department of Computer Science, University of Bath, appointed in
1999. His research interests are in computer vision and computer
graphics. He in an executive member of the British Machine Vision
Association and chairs the UK Vision, Video, and Graphics.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 4, JULY/AUGUST 2005

