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The Design of APL 

Abstract: This  paper  discusses the development of APL, emphasizing and illustrating the principles  underlying its design. The principle 
of simplicity appears most strongly in the minimization of rules governing the behavior of APL objects, while the principle of practicali- 
ty is served by the design process  itself, which relies heavily on experimentation. The paper gives the rationale  for many specific de- 
sign choices, including  the  necessary adjuncts  for  system  management. 

Introduction 
This  paper  attempts  to identify the  general principles 
that guided the  development of APL and  its  computer 
realizations, and  to  show  the role these principles  played 
in the evolution of the language. The  reader will be  as- 
sumed  to  be familiar  with the  current definition of APL 
[ 11. A brief chronology of the  development of APL is 
presented in an  appendix. 

Different  people claiming to follow the  same broad 
principles  may well arrive  at radically  different designs; 
an  appreciation of the  actual  role of the principles  in de- 
sign can  therefore  be  communicated only by illustrating 
their application  in a variety of specific instances.  It 
must  be  remembered, of course,  that in the  heat of battle 
principles are  not applied as consciously or systematical- 
ly as may appear in the telling. Some notion of the  evo- 
lution of the  ideas may be gained from consulting  earlier 
discussions, particularly  Refs. 2-4. 

The  actual  operative principles guiding the design of 
any  complex  system  must be few  and  broad.  In  the pres- 
ent  instance  we believe these principles to  be simplicity 
and practicality.  Simplicity enters in four guises: uni- 
formity (rules are  few  and simple), generality (a small 
number of general  functions  provide  as special cases a 
host of more specialized functions), familiarity (familiar 
symbols and usages are  adopted  whenever  possible), 
and brevity (economy of expression is sought). Practi- 
cality is manifested in two  respects:  concern with actual 
application of the language, and  concern with the practi- 
cal  limitations  imposed  by  existing equipment. 

We believe that  the design of APL was  also affected in 
important  respects by a number of procedures  and cir- 
cumstances.  Firstly,  from  its inception APL has  been 324 
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developed by using it in a succession of 'areas.  This 
emphasis on application  clearly favors practicality and 
simplicity. The  treatment of many  different areas fos- 
tered generalization; for  example,  the general inner 
product was  developed in attempting  to  obtain  the  ad- 
vantages of ordinary matrix  algebra in the  treatment of 
symbolic logic. 

Secondly,  the lack of any  machine realization of the 
language  during the first seven  or eight years of its  de- 
velopment  allowed the designers the  freedom  to  make 
radical  changes,  a freedom not  normally  enjoyed  by  de- 
signers who must observe  the  needs of a  large  working 
population dependent  on  the language for  their daily 
computing needs.  This  circumstance was due  more 
to  the  dearth of interest in the language than  to foresight. 

Thirdly,  at  every stage the design of the language was 
controlled by a small  group of not  more  than five people. 
In particular, the men who designed (and  coded)  the 
implementation were  part of the language  design group, 
and all members of the design group were  involved in 
broad  decisions affecting the implementation. On  the 
other  hand, many ideas were  received and  accepted 
from people outside  the design group, particularly from 
active  users of some implementation of APL. 

Finally, design decisions were made by Quaker con- 
sensus;  controversial  innovations  were  deferred until 
they could be revised or  reevaluated so as  to  obtain 
unanimous agreement. Unanimity was not  achieved 
without  cost in time and effort, and many  divergent 
paths  were explored and  assessed.  For  example, many 
different notations for the  circular  and hyperbolic  func- 
tions  were  entertained  over a period of more than a year 
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before  the  present  scheme  was  proposed,  whereupon 
it  was quickly adopted.  As  the language grows,  more 
effort is needed  to  explore  the ramifications of any major 
innovation. Moreover,  greater  care is needed in intro- 
ducing new facilities, to avoid the possibility of later 
retraction  that would inconvenience thousands of users. 
An  example of the  degree of preliminary exploration 
that may be involved is furnished  by the  depth  and di- 
versity of the investigations reported in the  papers by 
Ghandour and Mezei [5] and by More [6]. 

The character  set 
The typography of a  language to be entered  at a  simple 
keyboard is subject  to  two major  practical restrictions:  it 
must be linear, rather  than two-dimensional, and it must 
be printable  by  a limited number of distinct  symbols. 

When  one  is not concerned with an immediate ma- 
chine realization of a language, there is no strong reason 
to so limit the typography and  for this reason  the lan- 
guage may develop in a freer publication form. Before 
the design of a machine  realization of APL, the restric- 
tions  appropriate  to a keyboard form  were  not  observed. 
In particular,  different fonts  were  used  to indicate the 
rank of a variable. In  the  keyboard  form,  such distinc- 
tions can be made, if desired, by adopting classes of 
names  for  certain  classes of things. 

The practical  objective of linearizing the typography 
also led to  increased uniformity and generality. I t  led to 
the  present  bracketed form of indexing, which removes 
the  rank limitation on  arrays imposed by use of super- 
scripts  and  subscripts.  It  also led to  the regularization of 
the  form of dyadic  functions  such  as NolJ and NWT (later 
eliminated from  the  language). Finally, it led to writing 
inner  and  outer  products in the linear form + . x and 0 . x 
and eventually to  the recognition of such  expressions  as 
instances of the  use of operators. 

The  use of arrays  and of operators greatly reduced  the 
demand  for  distinct  characters in APL, but  the limitations 
imposed by the normal  88-symbol typewriter  keyboard 
fostered two  innovations which greatly increased  the 
utility of the 88 symbols: the  systematic  use of most 
function  symbols to  represent both a dyadic  and a mo- 
nadic  function, as suggested in conventional  notation 
by the  double  use of the  minus sign to  represent both 
subtraction (a dyadic function)  and negation (a monadic 
function); and the  use of composite  characters formed 
by typing one symbol over  another  (through  the  use of 
a backspace),  as in and ! and @ . 

It  was  necessary to restrict  the  alphabetic  characters 
to a single font  and capitals were  chosen  for readability. 
Italics  were initially favored  because of their  common 
use  for denoting  variables in mathematics, but  were 
finally chosen primarily because they  distinguished the 

letter 0 from  the digit 0 and  letters like L and 2' from  the 
graphic  symbols L and T. 

To allow the possibility of adding complete  alphabetic 
fonts by  overstriking, the  underscore (-), diaeresis 
( ") , overbar (-) , and  quad ( 0 )  were provided. In  the 
APL\%O realization,  only the  underscore is used in this 
way.  The inclusion of the  overbar  on  the typeball fortu- 
nately filled a need we  had  not anticipated -a symbol for 
negative constants, distinct from  the symbol for  the ne- 
gation  function. The quad  proved a useful symbol alone 
and in combination (as in I), and  the  diaeresis still re- 
mains unassigned. 

The SELECTRICB typewriter imposed certain practical 
limitations on  the  placement of symbols  on  the  keyboard, 
e.g., only narrow  characters can appear in the  upper 
row of the typing  element. Within these limitations we 
attempted  to  make  the  keyboard  easy  to  learn by  group- 
ing related symbols (such  as  the  relations) in a rational 
order  and  by making mnemonic associations  between 
letters  and  the  functions  associated with them in the 
shifted case  (such  as  the magnitude function I with M, 
and  the membership  symbol E with E ) .  

Valence  and order of execution 
The valence of a function is the  number of arguments  it 
takes; APL primitives have valences of 1 (monadic 
functions)  and 2 (dyadic  functions),  and user-defined 
functions may have a valence of 0 as well. The  form  for 
all APL primitives  follows the familiar  model of arithme- 
tic, that is, the symbol for a dyadic  function  occurs be- 
tween its arguments  (as in 3+4) and  the symbol for a 
monadic  function  occurs before  its argument  (as in - 4) .  

A  function f of valence greater  than  two is conven- 
tionally written in the form f ( a , b , c , d ) .  This  can be 
construed as a monadic  function F applied to  the  vector 
argument a,b,c,d, and  this  interpretation is used in 
APL. In  the APL\360 realization, the  arguments a,b,c, 
and d must share a common  structure.  The definition 
and implementation of generalized arrays,  whose ele- 
ments  include enclosed arrays, will, of course,  remove 
this  restriction. 

The  result of any primitive APL function depends only 
on its  immediate arguments, and the  interpretation of 
each  part of an APL statement  is  therefore localized.  Like- 
wise, the  interpretation of each  statement  is  independent 
of other  statements in a program. This  independence of 
context  contributes significantly to  the readability and 
ease of implementation of the language. 

The  order of execution of an APL expression  is con- 
trolled  by parentheses in the familiar  way, and  parenthe- 
ses  are  used  for  no  other  purpose.  The  order is other- 
wise determined by one simple  rule: the right  argument 
of any  function is the value of the  entire  expression fol- 
lowing it. In  particular,  there is no  precedence  among 
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functions; all functions, user-defined as well as primitive, 
are  treated alike. 

This simple rule  has  several  consequences of practical 
advantage  to  the  user: 

a)  An  unparenthesized  expression is easy  to  read  from 
left to right because  the first function encountered is 
the major function,  the  next is the major  function in 
its right argument,  etc. 

b) An  unparenthesized  expression is also  easy  to  read 
from right to left because this is the  order in  which it 
is executed. 

c) If T is any vector of numerical terms,  then  the pres- 
ent rule makes  the  expressions - / T  and + / T  very 
useful: the  former  is  the alternating sum of T and  the 
latter  is  the alternating product.  Moreover, a contin- 
ued fraction may be  written without parentheses in 
the form 3++4++5++6, and  the efficient evaluation 
of a polynomial  can be  written without parentheses in 
the  form 3+XX4+Xx5+Xx6. 

The rule that multiplication is executed before  addi- 
tion and  that  the  power function is executed  before mul- 
tiplication has  been long accepted in mathematics.  In 
discarding any established  rule it is wise to  speculate  on 
the  reasons  for  its  adoption  and  on  whether  they still 
apply.  This  rule  makes  parentheses  unnecessary in the 
writing of polynomials, and this alone  appears  to be  a 
sufficient reason  for  its original adoption.  However, in 
APL a polynomial can  be written  more perspicuously in 
the form +/CxX*E, which also  requires  no  parentheses. 
The  question of the  order of execution  has  been dis- 
cussed in several places: Falkoff et al. [2,3], Berry [7], 
and  Appendix A of Iverson [ 81. 

The  order in which isolated parts of a statement,  such 
as  the  parts (X+4) and (Y-2 ) in the  statement (Y+4) 
X (Y-2 ), are  executed is normally  immaterial, but  does 
matter when repeated specifications are permitted  in a 
statement  as in ( A t 2  )+A. Although the  use of such ex- 
pressions is poor  practice, it is desirable  to  make  the in- 
terpretation unequivocal: the  rule  adopted  (as given in 
Lathwell and  Mezei [9] ) is that  the rightmost  function or 
specification which can  be performed is performed first. 

It is interesting to  note  that  the  use of embedded as- 
signment was first suggested  during the  course of the 
implementation when it was  realized that special steps 
were needed to  prevent it. The order of executing iso- 
lated parts of a statement  was  at first left unspecified 
(as  stated in Falkoff and  lverson [ 11 ) to allow freedom 
in implementation,  since  isolated parts could then be 
executed in parallel on any  machine offering parallel 
processing. However,  embedded assignment  found such 
wide use  that  an unambiguous definition became es- 
sential to fix the behavior of programs moving from 
system  to  system. 

Another  aspect of the  order of execution is the  order 
among  statements, which is normally taken  as  the  order 
of appearance,  except  as modified by explicit branches. 
In  the publication form of the language branches  were 
denoted by arrows  drawn  from a branch point to  the  set 
of possible destinations,  and  the drawing of branch  ar- 
rows is still to be recommended  as  an  adjunct  for clari- 
fying the  structure of a program (Iverson [ IO] ,  page 3 ) . 

In formalizing  branching it was necessary  to  introduce 
only one new concept  (denoted by +) and three simple 
conventions: 1 )  continuing with the  statement indicated 
by the first element of a vector  argument of +, or with the 
next  statement  in  sequence if the  argument  is  an  empty 
vector, 2 )  terminating the  function if the indicated  con- 
tinuation is not  the  index of a statement in the program, 
and 3 )  the  use of labels, local names defined by the in- 
dices of juxtaposed  statements. At first labels were 
treated  as local  variables, but  it  was  found to be  more 
convenient  in  both  use  and implementation to treat  them 
as  local constants. 

Since  the  branch  arrow  can  be followed  by any valid 
expression it provides  convenient multi-way conditional 
branches.  For  example, if L is a  Boolean vector  and S is 
a corresponding  set of statement  numbers  (often  formed 
as the  catenation of a set of labels),  then  +L/S  provides 
a (l+pL)-way  branch (to one of the  elements of S or 
falling through if every element of L is zero); if I is an 
empty  vector  or  an  index to the  vector S, then -tScI] 
provides a similar ( l + p L  )-way  branch. 

Programming  languages  commonly incorporate special 
forms of sequence  control, typified by the DO statement 
of FORTRAN. These  forms  are excluded from APL be- 
cause  their  cost in complication of the language out- 
weighs their utility. The  array  operations in APL obviate 
many instances of iteration,  and  those which  remain can 
be represented in a  variety of ways.  For  example,  group- 
ing the initialization, modification, and testing of the con- 
trol  variable at  the head of the  iterated segment  provides 
a particularly perspicuous  arrangement.  Moreover, 
specialized sequence  control  statements  are usually 
context  dependent  and necessarily introduce new rules. 

Conditional  statements of the IF THEN ELSE type  are 
not  only context  dependent,  but  their  inherent limitation 
to a sequence of binary choices often leads  to  awkward 
constructions.  These,  and  other, special sequence con- 
trol forms  can usually be  modeled  readily in APL and pro- 
vided as application packages if desired. 

Scalar functions 
The  emphasis  on generality is illustrated in the defini- 
tions of many of the  scalar functions. For  example,  the 
definition of the  factorial  is  not limited to non-negative 
integers but is extended in the  manner of the  gamma 
function.  Similarly, the  residue is extended  to all num- 
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bers in a  simple and useful  way: M IN is defined as  the 
smallest  (in  magnitude)  among the quantities N - M x I  
(where I is an  integer) which lie in the  range  from 0 to 

M .  If no  such  quantity  exists  (as in the  case  where M is 
zero)  then  the restriction to  the range 0 to M is discard- 
ed,  that  is, 0 IX is X. As  another example, 0*0 is defined 
as 1 because  that is the limiting value of X*Y when the 
point 0 0 is approached along any path other than the X 
axis,  and  because this definition is needed to  make  the 
common  general form of writing a polynomial (in which 
the  constant  term C is written as CxX*O) applicable  when 
the  value of the argument  X is zero. 

The urge to generality must be tempered to avoid set- 
ting traps  for  the  unwary, and compromise is sometimes 
necessary.  For  example, XfO could be defined as infinity 
(i.e., the largest representable  number in an implementa- 
tion) so as  to  obviate special treatment of the  case Y=O 
when computing the  arc tangent of XtY,  but is instead 
defined to yield a domain error.  Nevertheless, OtO is 
given the value 1, in spite of the  fact  that  the mathe- 
matical argument  for  it is much  weaker  than  that  for 0x0, 
because it was  deemed  desirable  to avoid an  error  stop 
in this case. 

Eventually it will be  desirable  to be able  to  set  sepa- 
rate limits on  domains  to  suit various classes of users. 
For  example,  an implementation that  incorporates com- 
plex numbers must yield a result  for  the  expression 

I* .  5 but  should  admit of being set to yield a domain 
error  for a user studying elementary arithmetic. The 
experienced  user should be permitted to  use  an imple- 
mentation in  a mode  that gives  him complete  control of 
domain and  other  errors, i.e., an  error should not  stop 
execution  but should  give necessary information about 
the  error in a form which can  be used  by the program in 
which it  occurs. Such a facility has not yet been  incorpo- 
rated in APL implementations. 

A very general and useful set of functions  was intro- 
duced by adopting the relation symbols < 5 = 2 # to 
represent functions  (i.e., propositions)  rather  than  asser- 
tions. The  result of any proposition  was defined to be 0 
or 1 (rather than, say, true  orfalse) so that  it would lie 
in the  domain of other  arithmetic functions. Thus X=Y 
and XZY represent general comparisons,  but if X and Y 
are integers  then X=Y is the  Kronecker  delta  and X#Y is 
its inverse; if X and Y are Boolean  variables, then  XtY  is 
the exclusive-or and XIY is material  implication. This 
definition also allows expressions  that  incorporate 
both  relational and arithmetic functions  (such  as 
( 2 = + / [ 1 1 O = S o .   I S ) / S + t N ,  which yieldstheprimesup 
to integer N ) .  Moreover, identities  among Boolean func- 
tions are more evident when expressed in these  terms 
than when expressed in more conventional symbols. 

The adoption of the relation  symbols as  functions 
does  not  preclude  their  use  as assertions in informal sen- 
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tences. For example, although one might feel  compelled 
to  substitute “XrY is true”  for “X<4”’ in the  sentence 
“If X5Y then (X<Y)v(X=Y)”,  there  is  no more reason 
to do so than to substitute  “Bob is there is true”  for 
“Bob is there” in the  sentence which begins “If  Bob is 
there  then . . .” 

Although we  strove  to  adopt familiar  symbols and 
usage, any  clash with the principle of uniformity was 
invariably  resolved  in favor of uniformity. For  example, 
familiar  symbols (such  as + - x f )  are used where 
possible, but anomalies such as 1x1 for magnitude and 
N !  for factorial are regularized to !X and !N .  Notation 
such  as X N  for  power  and (E) for  the binomial coeffi- 
cient are replaced  by  regular dyadic  forms X*N and M ! N .  
Elision of the times sign is  not  permitted; this  allows the 
use of multiple-character names and avoids confusion 
between multiplication, as in X(X+3 ), and  the applica- 
tion of a function,  as in F(X+3 ). 

Moreover,  each of the primitive scalar  functions in 
APL is extended to arrays in exactly  the  same way. In 
particular, if V and W are  vectors  the  expressions VXW 
and 3+V are permitted as well as  the  expressions V+W 
and 3XV, although only the  latter pair would be  permit- 
ted  (in  the  sense  used in APL) in conventional  vector 
algebra. 

One view of simplicity might exclude  as  redundant 
those  functions which are easily expressed in terms of 
others. For example, rX may  be  written as - [ - X ,  and 
[/X may be written as -L/-X, and h / L  may be  written 
as -v/-L. From  another viewpoint it is simpler to use a 
more  complete  or  symmetric  set of primitives, since  one 
need not  remember which of a pair is provided and how to 
express  the  other in terms of it. In APL, completeness  has 
been  favored.  For  example,  symbols  are provided for all 
of the nontrivial logical functions although all are easily 
expressed in terms of a small subset of them. 

The  use of the circle to denote  the whole family of 
functions  related to the  circular  functions is a practical 
technique  for conserving symbols  as well as a useful 
generalization. I t  leads to many convenient  expressions 
involving reduction  and  inner  and  outer  products  (such 
as 1 2 30 .OX for a  table of sines, cosines  and tan- 
gents).  Moreover,  anyone wishing to use the symbol 
S I N  for  the sine  function can define the function S I N  as 
either l O X  (for radian arguments) or 1 0 X x 1 8 0 + 0 1  (for 
degree  arguments).  The notational scheme employed for 
the  circular  functions  must clearly be  used with discre- 
tion; it could be used to replace all monadic functions by 
a single dyadic  function with an integer left argument to 
encode  each monadic  function. 

Operators 
The  dot in the  expression M+. x N  is an  example of an 
operator; it takes  functions (in this case + and x )  as 
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arguments  and  produces a  new  function called an inner 
product. (In  elementary  mathematics  the  term operator 
is also used as a synonym  for function, but in APL we 
eschew this usage.)  The evolution of operators in APL 
furnishes  an  example of growing generality  which has  as 
yet  been  neither fully exploited nor fully regularized. 

The  operators now in APL were  introduced  one by one 
(reduction,  then  inner  product,  then  outer  product,  then 
axis operators  such  as $111 ) without being recognized 
as  members of a  class.  When  this class  property  was 
recognized it  was  apparent  that  the  operators had not 
been given  a consistent  syntax  and  that  the notation 
should  eventually be regularized to give operators  the 
same  syntax  as  functions, Le., an  operator taking two 
arguments  occurs  between  its  (function)  arguments  (as 
in + . x ) and  an  operator taking one argument appears in 
front of it. I t  also  became  evident  that  our  treatment of 
operators had  introduced  a useful heirarchy  into the 
order of execution,  operators being executed before 
functions. 

The recognition of operators  as  such  has  also made 
clear  the  much  broader  role  they might be expected  to 
play -derivative  and integral operators  are only two of 
many  useful operators  that  must  be  added  to  the lan- 
guage. 

The  use of the  outer  product  operator  furnishes a 
clear  example of a significant process in the evolution of 
the language: when a  new  facility is introduced it takes 
considerable time to recognize the many ways in which 
it  can  be used  and therefore  to  appreciate its  role in the 
further  development of the language. The  notation a’ (n)  
(later regularized to N d )  had been  introduced early to 
represent a preJix vector, i.e., a Boolean vector of N ele- 
ments with J leading 1’s. Some thought had  been given 
to extending the definition to a vector J (perhaps  to 
yield an N=column  matrix  whose rows  were prefix vec- 
tors  determined by the  elements of J )  but  no decision 
had been  taken. When  considering such  an  extension  we 
normally communicate by defining any  proposed nota- 
tion in terms of existing  primitives. After  the  outer prod- 
uct  was  introduced  the  proposed  extension  was  written 
simply as Jo .>IN,  and it became  clear  that  the function 
a was now redundant. 

One should not  conclude  from this example  that  every 
function or  set of functions easily expressed in terms of 
another is discarded  as  redundant;  judgment must  be 
exercised.  In  the  present  instance  the c1 was discarded 
partly because it was  too  restrictive, i.e., the  outer prod- 
uct form could be applied to yield a host of related  func- 
tions  (such  as J o  . < I N  and Jo  . <$IN) not all of which 
were  expressible in terms of the prefix and  suffix func- 
tions c1 and u. As mentioned in the discussion of scalar 
functions,  the  completeness of an  obvious family of 
functions is also a factor  to be considered. 

Operators  are  attractive  from  several points of view. 
Because  they provide a scheme  for denoting  whole 
classes of related functions, they offer uniformity of 
expression and great  economy of symbols. The concise- 
ness of expression  that they allow can  also be  directly 
related to efficiency of implementation. Moreover, 
they introduce a new level of generality  which  plays an 
important role in the formal manipulability of the lan- 
guage. 

Formal manipulation 
APL is rich in identities and is therefore  amenable  to a 
great  deal of fruitful  formal  manipulation. For  example, 
many of the familiar  identities of ordinary matrix  algebra 
extend  to inner products  other  than +. x, and  de  Mor- 
gan’s law and other dualities extend  to  inner  and  outer 
products  on  arrays.  The  emphasis  on generality, unifor- 
mity, and simplicity is likely to lead to a  language  rich in 
identities, but  our  emphasis  on identities  has  been such 
that it should perhaps be enunciated  as a separate  and 
important guiding principle. Indeed,  the preface to  Iver- 
son [ 101 cites  one  chapter (on the logical calculus)  as 
illustration of “the formal  manipulability of the language 
and its utility in theoretical  work”. A  variety of identi- 
ties is treated in [ 101 and [ 1 11, and a schema  for proofs 
in APL is presented in [ 121. 

Two  examples will be  used to illustrate the role of 
identities in the  development of the language. The iden- 
tity 

(+/X)=(+/U/X)++/(-U)/X 
applies for  any numerical vector X and logical vector U. 
Maintaining  this  identity for  the  case  where U is a vector 
of zeros  forces  one  to define the sum over  an  empty 
vector  as  zero. A  similar  identity  holds for reduction by 
any  associative and commutative function  and leads  one 
to define the reduction of an  empty  array by any func- 
tion as  the identity element of that function. 

The dyadic transpose I 4 A  performs  a  general  permu- 
tation on  the  coordinates of A as specified by the argu- 
ment I. The monadic transpose is a special case which, 
in order  to yield ordinary matrix transpose  for  an  array 
of rank  two,  was initially defined to interchange the  last 
two  coordinates.  It  was  later realized that  the identity 

A/,(M+.XN)=4(4~)+.X4M 

expected  to hold for matrices would not hold for higher 
rank  arrays. To make  the identity true in general, the 
monadic transpose was defined to  reverse  the  order of 
the  coordinates  as follows: 

A/,(4A)=(bpPA)@A. 
Moreover,  the  form  chosen  for  the left  argument of the 
dyadic  transpose led to  the following important identity: 
A / ,  (14&A)=ICJI4A. 
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Execute and format 
In designing an  executable language there is a funda- 
mental choice to  be made: Is  the  statement of an  expres- 
sion to be  taken  as  an  order  to  evaluate it, or  must  the 
evaluation be  indicated by an explicit  function  in the 
language? This decision  was made  very  early in the  de- 
velopment of APL, albeit  with  little  deliberation. Never- 
theless,  once  the  choice  became manifest,  early in the 
development of the implementation, it was applied uni- 
formly  in all situations. 

There  were  some arguments  against  this, of course, 
particularly  in the application of a function to  its argu- 
ments,  where it is often useful to be  able to “call by 
name,”  which requires  that  the evaluation of the argu- 
ment  be deferred. But if implemented  literally (i.e., if 
functions could be defined with  this as  an  option)  then 
names  per  se would have to be known to  the language 
and would constitute  an additional object  type with  its 
own rules of behavior and  specialized  primitive  func- 
tions. A deliberate effort had been made to eliminate 
unnecessary  type distinctions, as in the uniform  lan- 
guage treatment of numbers regardless of their internal 
representation,  and this  point of view  prevailed. In  the 
interest of keeping the  semantic  rules simple, the idea of 
“call by name” was rejected as a primitive concept in APL. 

Nevertheless,  there  are  important  cases  where  the 
formal argument of a function  should  not  be evaluated  at 
the time of invocation-  as in the application of a gen- 
eralized root finder to  an  arbitrary function. There  are 
also situations where it is useful to inhibit evaluation of 
an  expression,  as in certain conditional forms,  and  the 
need for  some  treatment of the problem was  clear.  The 
basis for a solution  was at hand in the form of character 
arrays, which were already objects of the language. Ef- 
fectively,  putting quotes  around a statement inhibits its 
execution by making it a data item,  a character  array 
subject  to  the normal  language  functions. To  get  the ef- 
fect of working  with names,  or with expressions  to be 
conditionally evaluated, it was only necessary  to intro- 
duce  the notion of “unquote,”  or  more  properly “exe- 
cute,”  as a  function that would cause a character  array 
to be evaluated as if it were  the  same  expression without 
the inhibition. 

The  actual  introduction of the  execute  function did 
not  come  for  some time after  its recognition as  the likely 
solution. The  development  that  preceded its final accep- 
tance  into APL illustrates several design  principles. 

The  concept of an  execute  function is a very powerful 
one.  In a sense,  it makes the language  “self-conscious,” 
and  introduces  endless possibilities for  obscurity in pro- 
grams.  This might have  been a reason  for  not allowing it, 
but  we had long since realized that a general-purpose 
language cannot  be  made foolproof and remain  effective. 
Furthermore, APL is easily partitioned, and beginning 
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users,  or  users of application  packages,  need not  know 
about  more  sophisticated  aspects of the language. The 
real  issues  were  whether  the function was of sufficiently 
broad utility, whether it could  be defined simply, and 
whether  it  was  perhaps a  special case of a more  general 
capability that should be implemented  instead. There 
was  also  the need to  establish a symbol for  it. 

The  case  for  general utility  was  easily made.  The exe- 
cute function does allow names  to be  used as arguments 
to  functions  without  the  need  for a  new data  type; it 
provides the  means  for generating  variables under pro- 
gram control,  which can  be useful, for  example, in man- 
aging data  that  do  not conveniently fit into rectangular 
arrays;  it allows the  construction  and  execution of state- 
ments  under program control;  and in interpretive imple- 
mentations  it  provides  conversion  from  characters  to 
numbers  at machine speeds. 

The  behavior of the  execute function is simply de- 
scribed: it treats a character  array  argument  as a  repre- 
sentation of an APL statement  and  attempts  to  evaluate  or 
execute  the  statement so represented.  System  commands 
and  attempts  to  enter function definition mode are not 
valid APL statements  and  are excluded from  the domain 
of execute. I t  can be  said that,  except  for  these exclu- 
sions, execute  acts  upon a character  array  as if the ele- 
ments of the  array were entered  at a terminal in the im- 
mediate execution mode. 

Incidentally, there  was  pressure  to arbitrarily  include 
system  commands in the domain of execute  as a means 
of providing access  to  other  workspaces  under program 
control in order  to facilitate work with large  collections 
of data.  This  was resisted on  the basis that  the  execute 
function  should  not  allow by subterfuge  what was  other- 
wise  disallowed. Indeed,  consideration of this aspect of 
the behavior of execute led to  the removal of certain 
anomalies in function definition and a clarification of the 
role of the  escape  characters) and V. 

The  question of generality has not been finally settled. 
Certainly,  the  execute  function could be  considered a 
member of a class  that includes constructs like those of 
the lambda  calculus.  But it is not necessary  to  have  the 
ultimate answer in order  to  proceed,  and  the simplicity 
of the definition adopted gives some  assurance  that gen- 
eralizations are  not being foreclosed. 

For  some time  during its  experimental implementation 
the symbol for  execute was the epsilon. This  was  chosen 
for obvious  mnemonic reasons  and  because  no  other 
monadic use  was made of this  symbol. As thought  was 
being given to  another new  function -format  -it  was 
observed  that  over  some  part of each of their domains 
format  and  execute  were  inverses.  Furthermore,  over 
these  parts of their  domains they were strongly  related to 
the  functions  encode  and  decode,  and  we  therefore 
adopted  their symbols overstruck by the symbol 0 .  



The  format function furnishes  another  example of a 
primitive whose  behavior  was first defined and long ex- 
perimented  with  by means of APL defined functions. 
These defined functions  were  the DFT (Decimal 
Format)  and EFT (Exponential  Format) familiar to 
most  users of the APL system.  The main advantage of 
the primitive format function over  these definitions is its 
much more efficient use of computer time. 

The  format function has  both a dyadic  and a monadic 
definition, but  the  execute function is monadic only. 
This  leaves  the way open  for a related  dyadic function, 
for which there  has  been  no  dearth of suggestions, but 
none will be adopted until more  experience  has  been 
gained in the  use of what  we  already have. 

System  commands and other  environmental 
facilities 
The definition of APL is purely abstract:  the  objects of 
the language, arrays of numbers  and  characters,  are  act- 
ed  upon by the primitive functions in a manner indepen- 
dent of their  representation  and  independent of any 
practical interpretation placed upon  them.  The  advan- 
tages of such  an  abstract definition are  that it makes  the 
language  truly  machine independent,  and  avoids bias in 
favor of particular application areas. But  not everything 
in a computing system is abstract,  and provision must  be 
made to manage system  resources  and  otherwise  com- 
municate with the  environment in  which the language 
functions  operate. 

Maintaining the  abstract  nature of the language in a 
real computing system  therefore  seemed  to imply a  need 
for language-like facilities in some  sense  outside of APL. 

The need was first met  by the  use of system  commands, 
which are syntactically not  part of APL, and  are  also  ex- 
cluded  from dynamic  use within APL programs. They 
provided a simple and, in some  ways,  convenient  answer 
to  the problem of system management,  but  proved  insuf- 
ficient because  the  actions and  information  provided by 
them are often required  dynamically. 

The exclusion of system  commands from  programs 
was based more strongly on engineering considerations 
than  on a theoretic compulsion, since  the  syntactic dis- 
tinction alone  sets them apart from the language, but 
there remained  a reluctance  to allow such  syntactic 
anomalies in a  program. The real issue, which was 
whether  the  functions provided by the  system com- 
mands  were  properly  the  province of APL, was tabled for 
the time being, and defined functions that mimic the ac- 
tions of certain of them were introduced to allow dy- 
namic execution.  The  functions so provided were  those 
affecting only the  environment within a workspace,  such 
as width  and origin, while those  that would have affected 
major  physical resources of the  system  were still exclud- 
ed  for engineering reasons. 330 
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These  environmental defined functions  were  based  on 
the  use of still another class‘ of functions-called “I- 
beams”  because of the  shape of the symbol  used for 
them -which  provide a more general facility for commu- 
nication between APL programs and  the  less  abstract 
parts of the  system.  The  I-beam  functions  were first in- 
troduced by the  system programmers to allow them  to 
execute  System/360  instructions  from within APL pro- 
grams,  and  thus  use APL as a direct aid in their program- 
ming activity. The  obvious  convenience of functions of 
this  kind,  which appeared to be  part of the language,  led 
to  the  introduction of the monadic I-beam function for 
direct  use by anyone.  Various  arguments  to this function 
yielded  information about  the  environment  such  as avail- 
able  space  and time of day. 

Though clearly an  ad  hoc facility, the  I-beam func- 
tions appear to be part of the language because  they 
obey APL syntax  and  can  be  executed  from within an 
APL program. They  were  too useful to  do  without in the 
absence of a more  rational solution to  the problem, and 
so were  graced with the designation “system-dependent 
functions,” while we  continued  to  use  the  system  and 
think about  the general  problem of communication 
among the  subsystems composing  it. 

Shared variables 
The logical basis for a generalized  communication facil- 
ity in APL\360 was laid in 1964 with the publication of 
the formal  description of System/360 [ 2 ] .  It  was  then 
observed  that  the  interaction  between  concurrent  “asyn- 
chronous”  processes  (programs) could  be  completely 
comprehended by an interface  comprising  variables that 
were shared by the cooperating processes.  (Another fa- 
cility was  also  used,  where  one program forced a branch 
in another,  but this can  be regarded as a derivative rep- 
resentation based on variables shared  between  one 
program and a processor  that  drives  the  other.) I t  was 
not until six or  seven  years  later,  however,  that  the full 
force of this observation was  brought to  bear  on  the 
practical  problem of controlling  in an organic  way the 
environment in which APL programs run. 

Three  processors  can  be identified during the  execu- 
tion of an APL program: APL, or  the  processor  that  ac- 
tually executes  the  program;  the system, or  host  that 
manages  libraries and  other  environmental  factors, 
which  in APL\360 is  the  System/360  processor;  and  the 
user,  who may be  observing  and processing output  or 
providing  input to  the program. The link between APL 
and  system is the  set of I-beam functions,  that  between 
user  and  system  is  the  set of system  commands,  and 
between  user  and APL, the  quad  and quote-quad.  With 
the  exception of the  quote-quad, which is a true variable, 
all these links are  constructs  on  the interfaces rather 
than the interfaces  themselves. 
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It  can be seen  that  the  quote-quad is shared by the 
user  and APL. Characteristically, a value  assigned to it in 
a  program is presented  to  the  user  at  the terminal, who 
utilizes this  information as  he  sees fit. If later  read by the 
program, the value of the quote-quad then has  no fixed 
relationship to  what was  earlier specified by the pro- 
gram. The values  written and read by the program are 
a fortiori APL objects-abstract  arrays-but they may 
have practical significance to  the  user-processor, sug- 
gesting, for  example,  that  an  experimental  observation 
be  made and  the  results  entered  at  the  keyboard. 

Using the  quote-quad  as  the paradigm for  their behav- 
ior, a general  facility for  shared variables was designed 
and  implemented  starting in late 1969 (see Lathwell 
[ 131 ). The underlying concept was to  provide communi- 
cation  across  the  boundary  between  independent  proces- 
sors by explicitly establishing certain variables as being 
shared  between  them. A shared variable is syntactically 
indistinguishable from  others  and may be used  normally 
either  on  the right or left of an assignment arrow. 

Although  motivated  most  strondly at  the time by a 
need to provide  a “file and I/O”  capability for APL\360, 
the  shared variable facility satisfied other  needs  as well, 
a significant criterion for  the inclusion of a new feature 
in the language. It provides for general  communication, 
not only between APL and  the  host  system, but also 
between APL programs running concurrently  at different 
terminals, which is in a sense a more fundamental use of 
the  idea. 

Perhaps  as  important as the practical use of the facil- 
ity is the potency that an implementation lends to the 
concept of shared variables as a  basis for understanding 
communication in any  system. With respect  to APL\360, 
for  example, we had long used the  term “distinguished 
variable” in discussing the interface between APL and 
system, meaning thereby variables, like trace  and  stop 
vectors, which hold control or state information. I t  is 
now clear  that “distinguished  variables” are  shared vari- 
ables, distinguished from  ordinary variables  by ‘the  fact 
of their being shared,  and  further qualified by their 
membership in a  particular  interface. In principle, the 
environment  and  resources of APL\360 could be com- 
pletely controlled  through the  use of an  appropriate  set 
of such distinguished  variables. 

System functions 
In a given  application area it is usually easier  to work 
with A P L  augmented by defined functions, designed to 
embody the significant concepts of the  area,  than with 
the primitive functions of the language alone.  Such de- 
fined functions,  together with the  relevant variables or 
data  objects,  constitute  an application  language, or appli- 
cation extension. Managing the  resources or environ- 
ment of an A P L  computing system is a particular applica- 
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tion, in which the  data  objects  are  the distinguished vari- 
ables that define the  interface  between APL and  system. 

For convenience,  the defined functions constituting an 
application extension  for  system management  should 
behave differently from  other defined functions, at least 
to  the  extent of being available  at all times, like the prim- 
itives, without having to be  copied from  workspace  to 
workspace.  Such ubiquity requires  that  the  names of 
these  functions be  distinguished from  those a user might 
invent. This distinction can only be  made, if APL is to 
remain  essentially context  independent, by the establish- 
ment of a class of reserved names. This  class  has been 
defined as  names starting with the  quad  character,  and 
functions having such  names  are called system functions. 
A similar naming convention applies to distinguished 
variables, or system variables, as they are now called. 

In principle, system  functions work  with system vari- 
ables  that  are independently identifiable. In  practice, 
the  system variables in a particular situation may not 
be  available  explicitly, and  the  system  functions may 
be  locked. This  can  come  about  because  direct  access  to 
the interface by the  user is deemed  undesirable for  tech- 
nical reasons, or because of economic  considerations 
such  as efficiency or protection of proprietary rights. In 
such situations system  functions  are superficially distin- 
guishable from primitive functions only  by  virtue of the 
naming convention. 

The  present  I-beam  functions  behave like system 
functions.  Fortunately,  there  are only two of them: the 
monadic function  that is familiar to all users of APL, and 
the  dyadic function that  is still known mostly to  system 
programmers. Despite  their usefulness, these  functions 
are hardly to  be taken as examples of good application 
language  design,  depending as they do  on  arbitrary nu- 
merical arguments  to give  them  meaning, and having no 
meaningful relationships  with each  other.  The monadic 
I-beams  are more like read-only  variables  -changeable 
constants,  as  it  were  -than  functions.  Indeed,  except  for 
their  syntax,  they  behave precisely like shared variables 
where the  processor  on  the  other  side  replaces  the value 
between  each  reference  on  the APL side. 

The  shared variable facility itself requires communica- 
tion between APL and  system in order to establish a de- 
sired interface  between APL and cooperating processors. 
The  prospect of inventing new system  commands  for 
this, or otherwise providing an  ad  hoc facility, was  most 
distasteful, and  consideration of this  problem was a ma- 
jor  factor in leading toward  the  system function concept. 
It  was  taken  as  an indication of the validity of the  shared 
variable approach  to communication when  the solution 
to  the problem it  engendered  was  found within the con- 
ceptual  framework it provided, and this  solution also 
proved  to  be a  basis for clarifying the  role of facilities 
already  present. 



In  due  course a set of system  functions  must be  de- 
signed to parallel the facilities  now  provided  by system 
commands  and  go beyond them.  Aside from the obvi- 
ous advantage of being dynamically executable,  such a 
set of system  functions will have  other  advantages  and 
some disadvantages. The major  operational advantage 
is  that  the  system  functions will be  able to use  the full 
power of APL to  generate  their  arguments  and exploit 
their results. Countering  this,  there  is  the  fact  that  this 
power  has a  price: the  automatic  name isolation  provided 
by the extralingual system  commands will not  be avail- 
able to the  system  functions.  Names used as  arguments 
will have  to be presented  as  character  arrays, which is not 
a disadvantage in programs,  although it is less  convenient 
for casual keyboard  entry than is the use of unadorned 
names in system  commands. 

A  more  profound advantage of system  functions  over 
system  commands lies in the possibility of designing the 
former  to  work  together  constructively.  System com- 
mands are  foreclosed  from this  by the  rudimentary na- 
ture of their  syntax;  they  do  constitute a language, but 
one having no  constructive potential. 

Workspaces,  files, and input-output 
The  workspace organization of APL\360 libraries serves 
to group  together  functions  and variables intended  to 
work together,  and to render them active  or inactive as a 
group, preserving the  state of the  computation during 
periods of inactivity. Workspaces  also implicitly qualify 
the  names of objects within them, so that  the  same  name 
may be  used independently in a multiplicity of work- 
spaces in a  given system.  These are useful attributes;  the 
grouping feature,  for  example,  contributes strongly to 
the  convenience of using APL by  obviating the linkage 
problems  found in other library systems. 

On  the  other  hand, engineering  decisions made  early 
in the  development of APL\360 determined  that  the 
workspaces  be of fixed size. This limits the  size of ob- 
jects  that  can  be managed  within  them and  often be- 
comes  an  inconvenience.  Consequently,  as usage of 
APL\360 developed, a demand  arose  for a “file” facility, 
at first to  work with  large  volumes of data  under  pro- 
gram  control,  and  later to utilize data  generated by other 
systems.  There  was  also a demand  to  make  use of high- 
speed  input  and  output equipment. As  noted in an earlier 
section,  these  demands led  in  time to  the  development of 
the  shared variable  facility. Three  considerations  were 
paramount in arriving at this  solution. 

One consideration  was the  determination to maintain 
the  abstract  nature of APL. In  particular,  the  use of prim- 
itive functions  whose definitions depend  on  the repre- 
sentation of their  arguments  was  to be avoided.  This 

332 alone was sufficient to rule out  the notion of a file as a 

formal concept in the language. APL has primitive array 
structures  that  either  encompass  the logical structure of 
files or  can  be  extended  to  do so by relatively  simple 
functions defined on  them.  The  user of APL may  regard 
any  array  or collection of arrays  as a file, and in princi- 
ple should  be able  to  use  the  data so organized  without 
regard to  the medium on which these  arrays may be 
stored. 

The  second  consideration  was  the not uncommon 
observation  that files are used in two  ways, as a medium 
for  exchange of information and as a dynamic  exten- 
sion of working storage during computation  (see Falkoff 
[ 141). In keeping  with the principle just  noted,  the 
proper solution to  the  second problem  must  ultimately 
be  the removal of workspace size  limitations, and this 
will probably  be  achieved in the  course of general de- 
velopments in the  industry.  We  saw  no  prospect of a sat- 
isfactory direct solution  being achieved locally in a 
reasonable time, so attention was concentrated  on  the 
first  problem in the  expectation  that, with  a good general 
communication  facility,  on-line storage  devices could  be 
used for  workspace  extension at least  as effectively as 
they  are so used in other  systems. 

The third consideration was one of generality. One 
possible approach  to  the communication  problem would 
have  been  to  increase  the  roster of system  commands 
and  make  them dynamically executable,  or  add varia- 
tions  to  the I-beam functions  to manage specific storage 
media and 1 / 0  equipment  or  access  methods. But in ad- 
dition to being  unpleasant because of its  ad hoc nature, 
this  approach did not  promise to be general  enough. In 
working interactively with large  collections of data,  for 
example,  the possible functional  variations  are  almost 
limitless. Various  classes of users may be allowed ac- 
cess  for different purposes  under a variety of controls, 
and  unless  it  is  intended  to impose restrictive  constraints 
ahead of time, it is futile to  try  to  anticipate  the solutions 
to  particular problems. Thus,  to  provide a communica- 
tion facility by accretion  appeared  to be an  endless  task. 

The  shared variable approach  is general  enough  be- 
cause, by making the  interface explicitly  available  with 
primitive controls  on  the  behavior of the  shared variable, 
it provides  only the  basic communication  mechanism. It 
then remains for  the specific problem  to  be managed by 
bringing to  bear  on  it  the full power of APL on  one  side, 
and  that of the  host  system  on  the  other.  The only re- 
maining question is one of performance:  does  the  shared 
variable concept  provide  the basis for  an effective imple- 
mentation?  This  question  has  been  answered affirma- 
tively as a  result of direct  experimentation. 

The  net effect of this approach  has  been  to  provide  for 
APL an application extension comprising the few system 
functions  necessary to manage shared variables. Actual 
file or 1/0 applications are managed, as required,  by 
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user-defined functions.  The  system functions are used 
only to establish  sharing, and  the  shared variables are 
then  used  for  the  actual  transfer of information between 
APL workspaces  and file or  I/O  processors. 

Appendix. Chronology of APL development 
The  development of APL was  begun in 1957 as a neces- 
sary  tool  for writing clearly about various  topics of inter- 
est in data processing. The  early  development is de- 
scribed in the  preface of Iverson [lo] and  Brooks  and 
Iverson [ 151. Falkoff became interested in the work 
shortly after  Iverson  joined  IBM in 1960, and used the 
language in his work on parallel search memories [ 161. 
In early  1963 Falkoff began  work on a  formal descrip- 
tion of System/360 in APL and was later  joined in this 
work by Iverson  and Sussenguth [2]. 

Throughout this  early  period the language was used 
by both Falkoff and  Iverson in the teaching of various 
topics at various  universities and  at  the  IBM  Systems 
Research  Institute. Early in 1964  Iverson began using it 
in a course in elementary  functions  at  the  Fox  Lane 
High  School in Bedford, New  York,  and in 1966 pub- 
lished a text  that grew out of this work [8]. John  L. 
Lawrence  (who,  as  editor of the IBM Systems Journal, 
procured  and  assisted in the publication of the  formal 
description of System/360)  became  interested in the  use 
of APL at high school and college level and invited the 
authors  to  consult with him in the  development of cur- 
riculum  material based  on  the  use of computers.  This 
work led to  the  preparation of curriculum  material in a 
number of areas  and  to  the publication of an APL\360 
Reference Manual by Sandra  Pakin [ 171. 

Although our  work through 1964 had been focused on 
the language as a tool  for communication among people,  
we never  doubted  that  the  same  characteristics which 
make  the language  good for this purpose would make  it 
good for communication  with  a  machine. In  1963  Her- 
bert  Hellerman implemented a portion of the language 
on  an  IBM/1620  as  reported in [18]. Hellerman’s sys- 
tem  was used by students in the high school  course with 
encouraging results.  This,  together with our earlier work 
in education, heightened our interest in a full-scale imple- 
mentation. 

When the work on  the formal  description of Sys- 
tern1360 was finished in 1964 we  turned  our  attention  to 
the problem of implementation. This work  was  brought 
to rapid  fruition in 1965 when  Lawrence  M. Breed 
joined the project and,  together with Philip S. Abrams, 
produced  an implementation on  the  7090 by the end of 
1965.  Influenced  by  Hellerman’s interest in  time-sharing 
we had  already  developed an APL typing element  for  the 
IBM 1050 computer terminal. This  was  used in early 
1966  when  Breed adapted  the  7090  system  to  an experi- 
mental  time-sharing system developed under  Andrew 
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Kinslow, allowing us the first use of APL in the  manner 
familiar today. By November  1966,  the  system had been 
reprogrammed for  System/360  and APL service  has been 
available within IBM  since  that  date.  The  system be- 
came available outside  IBM in 1968. 

A paper by Falkoff and  Iverson  [3] provided the first 
published  description of  the APL\360 system,  and a 
companion paper by  Breed and  Lathwell [ 191 treated 
the implementation. R. H. Lathwell joined  the design 
group in 1966  and  has  since been concerned primarily 
with the implementations of APL and with the  use of APL 
itself in the design process.  In  1971  he published,  to- 
gether with Jorge Mezei, a formal definition of APL in 
APL [9]. 

The A P L \ ~ ~ O  System benefited from  the  contributions 
of many outside of the  central design group.  The  preface 
to  the  User’s  Manual [ l ]  acknowledges  many of  these 
contributions. 
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