
A. D. Falkoff
K. E. lverson

The Design of APL

Abstract: This paper discusses the development of APL, emphasizing and illustrating the principles underlying its design. The principle
of simplicity appears most strongly in the minimization of rules governing the behavior of APL objects, while the principle of practicali-
ty is served by the design process itself, which relies heavily on experimentation. The paper gives the rationale for many specific de-
sign choices, including the necessary adjuncts for system management.

Introduction
This paper attempts to identify the general principles
that guided the development of APL and its computer
realizations, and to show the role these principles played
in the evolution of the language. The reader will be as-
sumed to be familiar with the current definition of APL
[11. A brief chronology of the development of APL is
presented in an appendix.

Different people claiming to follow the same broad
principles may well arrive at radically different designs;
an appreciation of the actual role of the principles in de-
sign can therefore be communicated only by illustrating
their application in a variety of specific instances. It
must be remembered, of course, that in the heat of battle
principles are not applied as consciously or systematical-
ly as may appear in the telling. Some notion of the evo-
lution of the ideas may be gained from consulting earlier
discussions, particularly Refs. 2-4.

The actual operative principles guiding the design of
any complex system must be few and broad. In the pres-
ent instance we believe these principles to be simplicity
and practicality. Simplicity enters in four guises: uni-
formity (rules are few and simple), generality (a small
number of general functions provide as special cases a
host of more specialized functions), familiarity (familiar
symbols and usages are adopted whenever possible),
and brevity (economy of expression is sought). Practi-
cality is manifested in two respects: concern with actual
application of the language, and concern with the practi-
cal limitations imposed by existing equipment.

We believe that the design of APL was also affected in
important respects by a number of procedures and cir-
cumstances. Firstly, from its inception APL has been 324

A. D. FALKOFF AND K . E. IVERSON

developed by using it in a succession of 'areas. This
emphasis on application clearly favors practicality and
simplicity. The treatment of many different areas fos-
tered generalization; for example, the general inner
product was developed in attempting to obtain the ad-
vantages of ordinary matrix algebra in the treatment of
symbolic logic.

Secondly, the lack of any machine realization of the
language during the first seven or eight years of its de-
velopment allowed the designers the freedom to make
radical changes, a freedom not normally enjoyed by de-
signers who must observe the needs of a large working
population dependent on the language for their daily
computing needs. This circumstance was due more
to the dearth of interest in the language than to foresight.

Thirdly, at every stage the design of the language was
controlled by a small group of not more than five people.
In particular, the men who designed (and coded) the
implementation were part of the language design group,
and all members of the design group were involved in
broad decisions affecting the implementation. On the
other hand, many ideas were received and accepted
from people outside the design group, particularly from
active users of some implementation of APL.

Finally, design decisions were made by Quaker con-
sensus; controversial innovations were deferred until
they could be revised or reevaluated so as to obtain
unanimous agreement. Unanimity was not achieved
without cost in time and effort, and many divergent
paths were explored and assessed. For example, many
different notations for the circular and hyperbolic func-
tions were entertained over a period of more than a year

IBM J . RES. DEVELOP.

before the present scheme was proposed, whereupon
it was quickly adopted. As the language grows, more
effort is needed to explore the ramifications of any major
innovation. Moreover, greater care is needed in intro-
ducing new facilities, to avoid the possibility of later
retraction that would inconvenience thousands of users.
An example of the degree of preliminary exploration
that may be involved is furnished by the depth and di-
versity of the investigations reported in the papers by
Ghandour and Mezei [5] and by More [6].

The character set
The typography of a language to be entered at a simple
keyboard is subject to two major practical restrictions: it
must be linear, rather than two-dimensional, and it must
be printable by a limited number of distinct symbols.

When one is not concerned with an immediate ma-
chine realization of a language, there is no strong reason
to so limit the typography and for this reason the lan-
guage may develop in a freer publication form. Before
the design of a machine realization of APL, the restric-
tions appropriate to a keyboard form were not observed.
In particular, different fonts were used to indicate the
rank of a variable. In the keyboard form, such distinc-
tions can be made, if desired, by adopting classes of
names for certain classes of things.

The practical objective of linearizing the typography
also led to increased uniformity and generality. I t led to
the present bracketed form of indexing, which removes
the rank limitation on arrays imposed by use of super-
scripts and subscripts. It also led to the regularization of
the form of dyadic functions such as NolJ and NWT (later
eliminated from the language). Finally, it led to writing
inner and outer products in the linear form + . x and 0 . x
and eventually to the recognition of such expressions as
instances of the use of operators.

The use of arrays and of operators greatly reduced the
demand for distinct characters in APL, but the limitations
imposed by the normal 88-symbol typewriter keyboard
fostered two innovations which greatly increased the
utility of the 88 symbols: the systematic use of most
function symbols to represent both a dyadic and a mo-
nadic function, as suggested in conventional notation
by the double use of the minus sign to represent both
subtraction (a dyadic function) and negation (a monadic
function); and the use of composite characters formed
by typing one symbol over another (through the use of
a backspace), as in and ! and @ .

It was necessary to restrict the alphabetic characters
to a single font and capitals were chosen for readability.
Italics were initially favored because of their common
use for denoting variables in mathematics, but were
finally chosen primarily because they distinguished the

letter 0 from the digit 0 and letters like L and 2' from the
graphic symbols L and T.

To allow the possibility of adding complete alphabetic
fonts by overstriking, the underscore (-), diaeresis
(") , overbar (-) , and quad (0) were provided. In the
APL\%O realization, only the underscore is used in this
way. The inclusion of the overbar on the typeball fortu-
nately filled a need we had not anticipated -a symbol for
negative constants, distinct from the symbol for the ne-
gation function. The quad proved a useful symbol alone
and in combination (as in I), and the diaeresis still re-
mains unassigned.

The SELECTRICB typewriter imposed certain practical
limitations on the placement of symbols on the keyboard,
e.g., only narrow characters can appear in the upper
row of the typing element. Within these limitations we
attempted to make the keyboard easy to learn by group-
ing related symbols (such as the relations) in a rational
order and by making mnemonic associations between
letters and the functions associated with them in the
shifted case (such as the magnitude function I with M,
and the membership symbol E with E) .

Valence and order of execution
The valence of a function is the number of arguments it
takes; APL primitives have valences of 1 (monadic
functions) and 2 (dyadic functions), and user-defined
functions may have a valence of 0 as well. The form for
all APL primitives follows the familiar model of arithme-
tic, that is, the symbol for a dyadic function occurs be-
tween its arguments (as in 3+4) and the symbol for a
monadic function occurs before its argument (as in - 4) .

A function f of valence greater than two is conven-
tionally written in the form f (a , b , c , d) . This can be
construed as a monadic function F applied to the vector
argument a,b,c,d, and this interpretation is used in
APL. In the APL\360 realization, the arguments a,b,c,
and d must share a common structure. The definition
and implementation of generalized arrays, whose ele-
ments include enclosed arrays, will, of course, remove
this restriction.

The result of any primitive APL function depends only
on its immediate arguments, and the interpretation of
each part of an APL statement is therefore localized. Like-
wise, the interpretation of each statement is independent
of other statements in a program. This independence of
context contributes significantly to the readability and
ease of implementation of the language.

The order of execution of an APL expression is con-
trolled by parentheses in the familiar way, and parenthe-
ses are used for no other purpose. The order is other-
wise determined by one simple rule: the right argument
of any function is the value of the entire expression fol-
lowing it. In particular, there is no precedence among

DESIGN I

325

3F APL JULY 1973

326

functions; all functions, user-defined as well as primitive,
are treated alike.

This simple rule has several consequences of practical
advantage to the user:

a) An unparenthesized expression is easy to read from
left to right because the first function encountered is
the major function, the next is the major function in
its right argument, etc.

b) An unparenthesized expression is also easy to read
from right to left because this is the order in which it
is executed.

c) If T is any vector of numerical terms, then the pres-
ent rule makes the expressions - / T and + / T very
useful: the former is the alternating sum of T and the
latter is the alternating product. Moreover, a contin-
ued fraction may be written without parentheses in
the form 3++4++5++6, and the efficient evaluation
of a polynomial can be written without parentheses in
the form 3+XX4+Xx5+Xx6.

The rule that multiplication is executed before addi-
tion and that the power function is executed before mul-
tiplication has been long accepted in mathematics. In
discarding any established rule it is wise to speculate on
the reasons for its adoption and on whether they still
apply. This rule makes parentheses unnecessary in the
writing of polynomials, and this alone appears to be a
sufficient reason for its original adoption. However, in
APL a polynomial can be written more perspicuously in
the form +/CxX*E, which also requires no parentheses.
The question of the order of execution has been dis-
cussed in several places: Falkoff et al. [2,3], Berry [7],
and Appendix A of Iverson [81.

The order in which isolated parts of a statement, such
as the parts (X+4) and (Y-2) in the statement (Y+4)
X (Y-2), are executed is normally immaterial, but does
matter when repeated specifications are permitted in a
statement as in (A t 2)+A. Although the use of such ex-
pressions is poor practice, it is desirable to make the in-
terpretation unequivocal: the rule adopted (as given in
Lathwell and Mezei [9]) is that the rightmost function or
specification which can be performed is performed first.

It is interesting to note that the use of embedded as-
signment was first suggested during the course of the
implementation when it was realized that special steps
were needed to prevent it. The order of executing iso-
lated parts of a statement was at first left unspecified
(as stated in Falkoff and lverson [11) to allow freedom
in implementation, since isolated parts could then be
executed in parallel on any machine offering parallel
processing. However, embedded assignment found such
wide use that an unambiguous definition became es-
sential to fix the behavior of programs moving from
system to system.

Another aspect of the order of execution is the order
among statements, which is normally taken as the order
of appearance, except as modified by explicit branches.
In the publication form of the language branches were
denoted by arrows drawn from a branch point to the set
of possible destinations, and the drawing of branch ar-
rows is still to be recommended as an adjunct for clari-
fying the structure of a program (Iverson [IO] , page 3) .

In formalizing branching it was necessary to introduce
only one new concept (denoted by +) and three simple
conventions: 1) continuing with the statement indicated
by the first element of a vector argument of +, or with the
next statement in sequence if the argument is an empty
vector, 2) terminating the function if the indicated con-
tinuation is not the index of a statement in the program,
and 3) the use of labels, local names defined by the in-
dices of juxtaposed statements. At first labels were
treated as local variables, but it was found to be more
convenient in both use and implementation to treat them
as local constants.

Since the branch arrow can be followed by any valid
expression it provides convenient multi-way conditional
branches. For example, if L is a Boolean vector and S is
a corresponding set of statement numbers (often formed
as the catenation of a set of labels), then +L/S provides
a (l+pL)-way branch (to one of the elements of S or
falling through if every element of L is zero); if I is an
empty vector or an index to the vector S, then -tScI]
provides a similar (l + p L)-way branch.

Programming languages commonly incorporate special
forms of sequence control, typified by the DO statement
of FORTRAN. These forms are excluded from APL be-
cause their cost in complication of the language out-
weighs their utility. The array operations in APL obviate
many instances of iteration, and those which remain can
be represented in a variety of ways. For example, group-
ing the initialization, modification, and testing of the con-
trol variable at the head of the iterated segment provides
a particularly perspicuous arrangement. Moreover,
specialized sequence control statements are usually
context dependent and necessarily introduce new rules.

Conditional statements of the IF THEN ELSE type are
not only context dependent, but their inherent limitation
to a sequence of binary choices often leads to awkward
constructions. These, and other, special sequence con-
trol forms can usually be modeled readily in APL and pro-
vided as application packages if desired.

Scalar functions
The emphasis on generality is illustrated in the defini-
tions of many of the scalar functions. For example, the
definition of the factorial is not limited to non-negative
integers but is extended in the manner of the gamma
function. Similarly, the residue is extended to all num-

A. D. FALKOFF AND K. E. IVERSON IBM J . RES. DEVELOP.

bers in a simple and useful way: M IN is defined as the
smallest (in magnitude) among the quantities N - M x I
(where I is an integer) which lie in the range from 0 to

M . If no such quantity exists (as in the case where M is
zero) then the restriction to the range 0 to M is discard-
ed, that is, 0 IX is X. As another example, 0*0 is defined
as 1 because that is the limiting value of X*Y when the
point 0 0 is approached along any path other than the X
axis, and because this definition is needed to make the
common general form of writing a polynomial (in which
the constant term C is written as CxX*O) applicable when
the value of the argument X is zero.

The urge to generality must be tempered to avoid set-
ting traps for the unwary, and compromise is sometimes
necessary. For example, XfO could be defined as infinity
(i.e., the largest representable number in an implementa-
tion) so as to obviate special treatment of the case Y=O
when computing the arc tangent of XtY, but is instead
defined to yield a domain error. Nevertheless, OtO is
given the value 1, in spite of the fact that the mathe-
matical argument for it is much weaker than that for 0x0,
because it was deemed desirable to avoid an error stop
in this case.

Eventually it will be desirable to be able to set sepa-
rate limits on domains to suit various classes of users.
For example, an implementation that incorporates com-
plex numbers must yield a result for the expression

I* . 5 but should admit of being set to yield a domain
error for a user studying elementary arithmetic. The
experienced user should be permitted to use an imple-
mentation in a mode that gives him complete control of
domain and other errors, i.e., an error should not stop
execution but should give necessary information about
the error in a form which can be used by the program in
which it occurs. Such a facility has not yet been incorpo-
rated in APL implementations.

A very general and useful set of functions was intro-
duced by adopting the relation symbols < 5 = 2 # to
represent functions (i.e., propositions) rather than asser-
tions. The result of any proposition was defined to be 0
or 1 (rather than, say, true orfalse) so that it would lie
in the domain of other arithmetic functions. Thus X=Y
and XZY represent general comparisons, but if X and Y
are integers then X=Y is the Kronecker delta and X#Y is
its inverse; if X and Y are Boolean variables, then XtY is
the exclusive-or and XIY is material implication. This
definition also allows expressions that incorporate
both relational and arithmetic functions (such as
(2 = + / [1 1 O = S o . I S) / S + t N , which yieldstheprimesup
to integer N) . Moreover, identities among Boolean func-
tions are more evident when expressed in these terms
than when expressed in more conventional symbols.

The adoption of the relation symbols as functions
does not preclude their use as assertions in informal sen-

-

J U L Y 1973

tences. For example, although one might feel compelled
to substitute “XrY is true” for “X<4”’ in the sentence
“If X5Y then (X<Y)v(X=Y)”, there is no more reason
to do so than to substitute “Bob is there is true” for
“Bob is there” in the sentence which begins “If Bob is
there then . . .”

Although we strove to adopt familiar symbols and
usage, any clash with the principle of uniformity was
invariably resolved in favor of uniformity. For example,
familiar symbols (such as + - x f) are used where
possible, but anomalies such as 1x1 for magnitude and
N ! for factorial are regularized to !X and !N . Notation
such as X N for power and (E) for the binomial coeffi-
cient are replaced by regular dyadic forms X*N and M ! N .
Elision of the times sign is not permitted; this allows the
use of multiple-character names and avoids confusion
between multiplication, as in X(X+3), and the applica-
tion of a function, as in F(X+3).

Moreover, each of the primitive scalar functions in
APL is extended to arrays in exactly the same way. In
particular, if V and W are vectors the expressions VXW
and 3+V are permitted as well as the expressions V+W
and 3XV, although only the latter pair would be permit-
ted (in the sense used in APL) in conventional vector
algebra.

One view of simplicity might exclude as redundant
those functions which are easily expressed in terms of
others. For example, rX may be written as - [- X , and
[/X may be written as -L/-X, and h / L may be written
as -v/-L. From another viewpoint it is simpler to use a
more complete or symmetric set of primitives, since one
need not remember which of a pair is provided and how to
express the other in terms of it. In APL, completeness has
been favored. For example, symbols are provided for all
of the nontrivial logical functions although all are easily
expressed in terms of a small subset of them.

The use of the circle to denote the whole family of
functions related to the circular functions is a practical
technique for conserving symbols as well as a useful
generalization. I t leads to many convenient expressions
involving reduction and inner and outer products (such
as 1 2 30 .OX for a table of sines, cosines and tan-
gents). Moreover, anyone wishing to use the symbol
S I N for the sine function can define the function S I N as
either l O X (for radian arguments) or 1 0 X x 1 8 0 + 0 1 (for
degree arguments). The notational scheme employed for
the circular functions must clearly be used with discre-
tion; it could be used to replace all monadic functions by
a single dyadic function with an integer left argument to
encode each monadic function.

Operators
The dot in the expression M+. x N is an example of an
operator; it takes functions (in this case + and x) as

328

arguments and produces a new function called an inner
product. (In elementary mathematics the term operator
is also used as a synonym for function, but in APL we
eschew this usage.) The evolution of operators in APL
furnishes an example of growing generality which has as
yet been neither fully exploited nor fully regularized.

The operators now in APL were introduced one by one
(reduction, then inner product, then outer product, then
axis operators such as $111) without being recognized
as members of a class. When this class property was
recognized it was apparent that the operators had not
been given a consistent syntax and that the notation
should eventually be regularized to give operators the
same syntax as functions, Le., an operator taking two
arguments occurs between its (function) arguments (as
in + . x) and an operator taking one argument appears in
front of it. I t also became evident that our treatment of
operators had introduced a useful heirarchy into the
order of execution, operators being executed before
functions.

The recognition of operators as such has also made
clear the much broader role they might be expected to
play -derivative and integral operators are only two of
many useful operators that must be added to the lan-
guage.

The use of the outer product operator furnishes a
clear example of a significant process in the evolution of
the language: when a new facility is introduced it takes
considerable time to recognize the many ways in which
it can be used and therefore to appreciate its role in the
further development of the language. The notation a’ (n)
(later regularized to N d) had been introduced early to
represent a preJix vector, i.e., a Boolean vector of N ele-
ments with J leading 1’s. Some thought had been given
to extending the definition to a vector J (perhaps to
yield an N=column matrix whose rows were prefix vec-
tors determined by the elements of J) but no decision
had been taken. When considering such an extension we
normally communicate by defining any proposed nota-
tion in terms of existing primitives. After the outer prod-
uct was introduced the proposed extension was written
simply as Jo .>IN, and it became clear that the function
a was now redundant.

One should not conclude from this example that every
function or set of functions easily expressed in terms of
another is discarded as redundant; judgment must be
exercised. In the present instance the c1 was discarded
partly because it was too restrictive, i.e., the outer prod-
uct form could be applied to yield a host of related func-
tions (such as J o . < I N and Jo . <$IN) not all of which
were expressible in terms of the prefix and suffix func-
tions c1 and u. As mentioned in the discussion of scalar
functions, the completeness of an obvious family of
functions is also a factor to be considered.

Operators are attractive from several points of view.
Because they provide a scheme for denoting whole
classes of related functions, they offer uniformity of
expression and great economy of symbols. The concise-
ness of expression that they allow can also be directly
related to efficiency of implementation. Moreover,
they introduce a new level of generality which plays an
important role in the formal manipulability of the lan-
guage.

Formal manipulation
APL is rich in identities and is therefore amenable to a
great deal of fruitful formal manipulation. For example,
many of the familiar identities of ordinary matrix algebra
extend to inner products other than +. x, and de Mor-
gan’s law and other dualities extend to inner and outer
products on arrays. The emphasis on generality, unifor-
mity, and simplicity is likely to lead to a language rich in
identities, but our emphasis on identities has been such
that it should perhaps be enunciated as a separate and
important guiding principle. Indeed, the preface to Iver-
son [101 cites one chapter (on the logical calculus) as
illustration of “the formal manipulability of the language
and its utility in theoretical work”. A variety of identi-
ties is treated in [101 and [1 11, and a schema for proofs
in APL is presented in [121.

Two examples will be used to illustrate the role of
identities in the development of the language. The iden-
tity

(+/X)=(+/U/X)++/(-U)/X
applies for any numerical vector X and logical vector U.
Maintaining this identity for the case where U is a vector
of zeros forces one to define the sum over an empty
vector as zero. A similar identity holds for reduction by
any associative and commutative function and leads one
to define the reduction of an empty array by any func-
tion as the identity element of that function.

The dyadic transpose I 4 A performs a general permu-
tation on the coordinates of A as specified by the argu-
ment I. The monadic transpose is a special case which,
in order to yield ordinary matrix transpose for an array
of rank two, was initially defined to interchange the last
two coordinates. It was later realized that the identity

A/,(M+.XN)=4(4~)+.X4M

expected to hold for matrices would not hold for higher
rank arrays. To make the identity true in general, the
monadic transpose was defined to reverse the order of
the coordinates as follows:

A/,(4A)=(bpPA)@A.
Moreover, the form chosen for the left argument of the
dyadic transpose led to the following important identity:
A / , (14&A)=ICJI4A.

A. D. FALKOFF AND K . E. IVERSON IBM J. RES. DEVELOP.

Execute and format
In designing an executable language there is a funda-
mental choice to be made: Is the statement of an expres-
sion to be taken as an order to evaluate it, or must the
evaluation be indicated by an explicit function in the
language? This decision was made very early in the de-
velopment of APL, albeit with little deliberation. Never-
theless, once the choice became manifest, early in the
development of the implementation, it was applied uni-
formly in all situations.

There were some arguments against this, of course,
particularly in the application of a function to its argu-
ments, where it is often useful to be able to “call by
name,” which requires that the evaluation of the argu-
ment be deferred. But if implemented literally (i.e., if
functions could be defined with this as an option) then
names per se would have to be known to the language
and would constitute an additional object type with its
own rules of behavior and specialized primitive func-
tions. A deliberate effort had been made to eliminate
unnecessary type distinctions, as in the uniform lan-
guage treatment of numbers regardless of their internal
representation, and this point of view prevailed. In the
interest of keeping the semantic rules simple, the idea of
“call by name” was rejected as a primitive concept in APL.

Nevertheless, there are important cases where the
formal argument of a function should not be evaluated at
the time of invocation- as in the application of a gen-
eralized root finder to an arbitrary function. There are
also situations where it is useful to inhibit evaluation of
an expression, as in certain conditional forms, and the
need for some treatment of the problem was clear. The
basis for a solution was at hand in the form of character
arrays, which were already objects of the language. Ef-
fectively, putting quotes around a statement inhibits its
execution by making it a data item, a character array
subject to the normal language functions. To get the ef-
fect of working with names, or with expressions to be
conditionally evaluated, it was only necessary to intro-
duce the notion of “unquote,” or more properly “exe-
cute,” as a function that would cause a character array
to be evaluated as if it were the same expression without
the inhibition.

The actual introduction of the execute function did
not come for some time after its recognition as the likely
solution. The development that preceded its final accep-
tance into APL illustrates several design principles.

The concept of an execute function is a very powerful
one. In a sense, it makes the language “self-conscious,”
and introduces endless possibilities for obscurity in pro-
grams. This might have been a reason for not allowing it,
but we had long since realized that a general-purpose
language cannot be made foolproof and remain effective.
Furthermore, APL is easily partitioned, and beginning

JULY 1973

users, or users of application packages, need not know
about more sophisticated aspects of the language. The
real issues were whether the function was of sufficiently
broad utility, whether it could be defined simply, and
whether it was perhaps a special case of a more general
capability that should be implemented instead. There
was also the need to establish a symbol for it.

The case for general utility was easily made. The exe-
cute function does allow names to be used as arguments
to functions without the need for a new data type; it
provides the means for generating variables under pro-
gram control, which can be useful, for example, in man-
aging data that do not conveniently fit into rectangular
arrays; it allows the construction and execution of state-
ments under program control; and in interpretive imple-
mentations it provides conversion from characters to
numbers at machine speeds.

The behavior of the execute function is simply de-
scribed: it treats a character array argument as a repre-
sentation of an APL statement and attempts to evaluate or
execute the statement so represented. System commands
and attempts to enter function definition mode are not
valid APL statements and are excluded from the domain
of execute. I t can be said that, except for these exclu-
sions, execute acts upon a character array as if the ele-
ments of the array were entered at a terminal in the im-
mediate execution mode.

Incidentally, there was pressure to arbitrarily include
system commands in the domain of execute as a means
of providing access to other workspaces under program
control in order to facilitate work with large collections
of data. This was resisted on the basis that the execute
function should not allow by subterfuge what was other-
wise disallowed. Indeed, consideration of this aspect of
the behavior of execute led to the removal of certain
anomalies in function definition and a clarification of the
role of the escape characters) and V.

The question of generality has not been finally settled.
Certainly, the execute function could be considered a
member of a class that includes constructs like those of
the lambda calculus. But it is not necessary to have the
ultimate answer in order to proceed, and the simplicity
of the definition adopted gives some assurance that gen-
eralizations are not being foreclosed.

For some time during its experimental implementation
the symbol for execute was the epsilon. This was chosen
for obvious mnemonic reasons and because no other
monadic use was made of this symbol. As thought was
being given to another new function -format -it was
observed that over some part of each of their domains
format and execute were inverses. Furthermore, over
these parts of their domains they were strongly related to
the functions encode and decode, and we therefore
adopted their symbols overstruck by the symbol 0 .

The format function furnishes another example of a
primitive whose behavior was first defined and long ex-
perimented with by means of APL defined functions.
These defined functions were the DFT (Decimal
Format) and EFT (Exponential Format) familiar to
most users of the APL system. The main advantage of
the primitive format function over these definitions is its
much more efficient use of computer time.

The format function has both a dyadic and a monadic
definition, but the execute function is monadic only.
This leaves the way open for a related dyadic function,
for which there has been no dearth of suggestions, but
none will be adopted until more experience has been
gained in the use of what we already have.

System commands and other environmental
facilities
The definition of APL is purely abstract: the objects of
the language, arrays of numbers and characters, are act-
ed upon by the primitive functions in a manner indepen-
dent of their representation and independent of any
practical interpretation placed upon them. The advan-
tages of such an abstract definition are that it makes the
language truly machine independent, and avoids bias in
favor of particular application areas. But not everything
in a computing system is abstract, and provision must be
made to manage system resources and otherwise com-
municate with the environment in which the language
functions operate.

Maintaining the abstract nature of the language in a
real computing system therefore seemed to imply a need
for language-like facilities in some sense outside of APL.

The need was first met by the use of system commands,
which are syntactically not part of APL, and are also ex-
cluded from dynamic use within APL programs. They
provided a simple and, in some ways, convenient answer
to the problem of system management, but proved insuf-
ficient because the actions and information provided by
them are often required dynamically.

The exclusion of system commands from programs
was based more strongly on engineering considerations
than on a theoretic compulsion, since the syntactic dis-
tinction alone sets them apart from the language, but
there remained a reluctance to allow such syntactic
anomalies in a program. The real issue, which was
whether the functions provided by the system com-
mands were properly the province of APL, was tabled for
the time being, and defined functions that mimic the ac-
tions of certain of them were introduced to allow dy-
namic execution. The functions so provided were those
affecting only the environment within a workspace, such
as width and origin, while those that would have affected
major physical resources of the system were still exclud-
ed for engineering reasons. 330

A. D. FALKOFF AND K . E. IVERSON

These environmental defined functions were based on
the use of still another class‘ of functions-called “I-
beams” because of the shape of the symbol used for
them -which provide a more general facility for commu-
nication between APL programs and the less abstract
parts of the system. The I-beam functions were first in-
troduced by the system programmers to allow them to
execute System/360 instructions from within APL pro-
grams, and thus use APL as a direct aid in their program-
ming activity. The obvious convenience of functions of
this kind, which appeared to be part of the language, led
to the introduction of the monadic I-beam function for
direct use by anyone. Various arguments to this function
yielded information about the environment such as avail-
able space and time of day.

Though clearly an ad hoc facility, the I-beam func-
tions appear to be part of the language because they
obey APL syntax and can be executed from within an
APL program. They were too useful to do without in the
absence of a more rational solution to the problem, and
so were graced with the designation “system-dependent
functions,” while we continued to use the system and
think about the general problem of communication
among the subsystems composing it.

Shared variables
The logical basis for a generalized communication facil-
ity in APL\360 was laid in 1964 with the publication of
the formal description of System/360 [2] . It was then
observed that the interaction between concurrent “asyn-
chronous” processes (programs) could be completely
comprehended by an interface comprising variables that
were shared by the cooperating processes. (Another fa-
cility was also used, where one program forced a branch
in another, but this can be regarded as a derivative rep-
resentation based on variables shared between one
program and a processor that drives the other.) I t was
not until six or seven years later, however, that the full
force of this observation was brought to bear on the
practical problem of controlling in an organic way the
environment in which APL programs run.

Three processors can be identified during the execu-
tion of an APL program: APL, or the processor that ac-
tually executes the program; the system, or host that
manages libraries and other environmental factors,
which in APL\360 is the System/360 processor; and the
user, who may be observing and processing output or
providing input to the program. The link between APL
and system is the set of I-beam functions, that between
user and system is the set of system commands, and
between user and APL, the quad and quote-quad. With
the exception of the quote-quad, which is a true variable,
all these links are constructs on the interfaces rather
than the interfaces themselves.

IBM J . RES. DEVELOP.

It can be seen that the quote-quad is shared by the
user and APL. Characteristically, a value assigned to it in
a program is presented to the user at the terminal, who
utilizes this information as he sees fit. If later read by the
program, the value of the quote-quad then has no fixed
relationship to what was earlier specified by the pro-
gram. The values written and read by the program are
a fortiori APL objects-abstract arrays-but they may
have practical significance to the user-processor, sug-
gesting, for example, that an experimental observation
be made and the results entered at the keyboard.

Using the quote-quad as the paradigm for their behav-
ior, a general facility for shared variables was designed
and implemented starting in late 1969 (see Lathwell
[131). The underlying concept was to provide communi-
cation across the boundary between independent proces-
sors by explicitly establishing certain variables as being
shared between them. A shared variable is syntactically
indistinguishable from others and may be used normally
either on the right or left of an assignment arrow.

Although motivated most strondly at the time by a
need to provide a “file and I/O” capability for APL\360,
the shared variable facility satisfied other needs as well,
a significant criterion for the inclusion of a new feature
in the language. It provides for general communication,
not only between APL and the host system, but also
between APL programs running concurrently at different
terminals, which is in a sense a more fundamental use of
the idea.

Perhaps as important as the practical use of the facil-
ity is the potency that an implementation lends to the
concept of shared variables as a basis for understanding
communication in any system. With respect to APL\360,
for example, we had long used the term “distinguished
variable” in discussing the interface between APL and
system, meaning thereby variables, like trace and stop
vectors, which hold control or state information. I t is
now clear that “distinguished variables” are shared vari-
ables, distinguished from ordinary variables by ‘the fact
of their being shared, and further qualified by their
membership in a particular interface. In principle, the
environment and resources of APL\360 could be com-
pletely controlled through the use of an appropriate set
of such distinguished variables.

System functions
In a given application area it is usually easier to work
with A P L augmented by defined functions, designed to
embody the significant concepts of the area, than with
the primitive functions of the language alone. Such de-
fined functions, together with the relevant variables or
data objects, constitute an application language, or appli-
cation extension. Managing the resources or environ-
ment of an A P L computing system is a particular applica-

JULY 1973

tion, in which the data objects are the distinguished vari-
ables that define the interface between APL and system.

For convenience, the defined functions constituting an
application extension for system management should
behave differently from other defined functions, at least
to the extent of being available at all times, like the prim-
itives, without having to be copied from workspace to
workspace. Such ubiquity requires that the names of
these functions be distinguished from those a user might
invent. This distinction can only be made, if APL is to
remain essentially context independent, by the establish-
ment of a class of reserved names. This class has been
defined as names starting with the quad character, and
functions having such names are called system functions.
A similar naming convention applies to distinguished
variables, or system variables, as they are now called.

In principle, system functions work with system vari-
ables that are independently identifiable. In practice,
the system variables in a particular situation may not
be available explicitly, and the system functions may
be locked. This can come about because direct access to
the interface by the user is deemed undesirable for tech-
nical reasons, or because of economic considerations
such as efficiency or protection of proprietary rights. In
such situations system functions are superficially distin-
guishable from primitive functions only by virtue of the
naming convention.

The present I-beam functions behave like system
functions. Fortunately, there are only two of them: the
monadic function that is familiar to all users of APL, and
the dyadic function that is still known mostly to system
programmers. Despite their usefulness, these functions
are hardly to be taken as examples of good application
language design, depending as they do on arbitrary nu-
merical arguments to give them meaning, and having no
meaningful relationships with each other. The monadic
I-beams are more like read-only variables -changeable
constants, as it were -than functions. Indeed, except for
their syntax, they behave precisely like shared variables
where the processor on the other side replaces the value
between each reference on the APL side.

The shared variable facility itself requires communica-
tion between APL and system in order to establish a de-
sired interface between APL and cooperating processors.
The prospect of inventing new system commands for
this, or otherwise providing an ad hoc facility, was most
distasteful, and consideration of this problem was a ma-
jor factor in leading toward the system function concept.
It was taken as an indication of the validity of the shared
variable approach to communication when the solution
to the problem it engendered was found within the con-
ceptual framework it provided, and this solution also
proved to be a basis for clarifying the role of facilities
already present.

In due course a set of system functions must be de-
signed to parallel the facilities now provided by system
commands and go beyond them. Aside from the obvi-
ous advantage of being dynamically executable, such a
set of system functions will have other advantages and
some disadvantages. The major operational advantage
is that the system functions will be able to use the full
power of APL to generate their arguments and exploit
their results. Countering this, there is the fact that this
power has a price: the automatic name isolation provided
by the extralingual system commands will not be avail-
able to the system functions. Names used as arguments
will have to be presented as character arrays, which is not
a disadvantage in programs, although it is less convenient
for casual keyboard entry than is the use of unadorned
names in system commands.

A more profound advantage of system functions over
system commands lies in the possibility of designing the
former to work together constructively. System com-
mands are foreclosed from this by the rudimentary na-
ture of their syntax; they do constitute a language, but
one having no constructive potential.

Workspaces, files, and input-output
The workspace organization of APL\360 libraries serves
to group together functions and variables intended to
work together, and to render them active or inactive as a
group, preserving the state of the computation during
periods of inactivity. Workspaces also implicitly qualify
the names of objects within them, so that the same name
may be used independently in a multiplicity of work-
spaces in a given system. These are useful attributes; the
grouping feature, for example, contributes strongly to
the convenience of using APL by obviating the linkage
problems found in other library systems.

On the other hand, engineering decisions made early
in the development of APL\360 determined that the
workspaces be of fixed size. This limits the size of ob-
jects that can be managed within them and often be-
comes an inconvenience. Consequently, as usage of
APL\360 developed, a demand arose for a “file” facility,
at first to work with large volumes of data under pro-
gram control, and later to utilize data generated by other
systems. There was also a demand to make use of high-
speed input and output equipment. As noted in an earlier
section, these demands led in time to the development of
the shared variable facility. Three considerations were
paramount in arriving at this solution.

One consideration was the determination to maintain
the abstract nature of APL. In particular, the use of prim-
itive functions whose definitions depend on the repre-
sentation of their arguments was to be avoided. This

332 alone was sufficient to rule out the notion of a file as a

formal concept in the language. APL has primitive array
structures that either encompass the logical structure of
files or can be extended to do so by relatively simple
functions defined on them. The user of APL may regard
any array or collection of arrays as a file, and in princi-
ple should be able to use the data so organized without
regard to the medium on which these arrays may be
stored.

The second consideration was the not uncommon
observation that files are used in two ways, as a medium
for exchange of information and as a dynamic exten-
sion of working storage during computation (see Falkoff
[141). In keeping with the principle just noted, the
proper solution to the second problem must ultimately
be the removal of workspace size limitations, and this
will probably be achieved in the course of general de-
velopments in the industry. We saw no prospect of a sat-
isfactory direct solution being achieved locally in a
reasonable time, so attention was concentrated on the
first problem in the expectation that, with a good general
communication facility, on-line storage devices could be
used for workspace extension at least as effectively as
they are so used in other systems.

The third consideration was one of generality. One
possible approach to the communication problem would
have been to increase the roster of system commands
and make them dynamically executable, or add varia-
tions to the I-beam functions to manage specific storage
media and 1 / 0 equipment or access methods. But in ad-
dition to being unpleasant because of its ad hoc nature,
this approach did not promise to be general enough. In
working interactively with large collections of data, for
example, the possible functional variations are almost
limitless. Various classes of users may be allowed ac-
cess for different purposes under a variety of controls,
and unless it is intended to impose restrictive constraints
ahead of time, it is futile to try to anticipate the solutions
to particular problems. Thus, to provide a communica-
tion facility by accretion appeared to be an endless task.

The shared variable approach is general enough be-
cause, by making the interface explicitly available with
primitive controls on the behavior of the shared variable,
it provides only the basic communication mechanism. It
then remains for the specific problem to be managed by
bringing to bear on it the full power of APL on one side,
and that of the host system on the other. The only re-
maining question is one of performance: does the shared
variable concept provide the basis for an effective imple-
mentation? This question has been answered affirma-
tively as a result of direct experimentation.

The net effect of this approach has been to provide for
APL an application extension comprising the few system
functions necessary to manage shared variables. Actual
file or 1/0 applications are managed, as required, by

4. D. FALKOFF AND K. E. IVERSON IBM J. RES. DEVELOP.

user-defined functions. The system functions are used
only to establish sharing, and the shared variables are
then used for the actual transfer of information between
APL workspaces and file or I/O processors.

Appendix. Chronology of APL development
The development of APL was begun in 1957 as a neces-
sary tool for writing clearly about various topics of inter-
est in data processing. The early development is de-
scribed in the preface of Iverson [lo] and Brooks and
Iverson [151. Falkoff became interested in the work
shortly after Iverson joined IBM in 1960, and used the
language in his work on parallel search memories [161.
In early 1963 Falkoff began work on a formal descrip-
tion of System/360 in APL and was later joined in this
work by Iverson and Sussenguth [2].

Throughout this early period the language was used
by both Falkoff and Iverson in the teaching of various
topics at various universities and at the IBM Systems
Research Institute. Early in 1964 Iverson began using it
in a course in elementary functions at the Fox Lane
High School in Bedford, New York, and in 1966 pub-
lished a text that grew out of this work [8]. John L.
Lawrence (who, as editor of the IBM Systems Journal,
procured and assisted in the publication of the formal
description of System/360) became interested in the use
of APL at high school and college level and invited the
authors to consult with him in the development of cur-
riculum material based on the use of computers. This
work led to the preparation of curriculum material in a
number of areas and to the publication of an APL\360
Reference Manual by Sandra Pakin [171.

Although our work through 1964 had been focused on
the language as a tool for communication among people,
we never doubted that the same characteristics which
make the language good for this purpose would make it
good for communication with a machine. In 1963 Her-
bert Hellerman implemented a portion of the language
on an IBM/1620 as reported in [18]. Hellerman’s sys-
tem was used by students in the high school course with
encouraging results. This, together with our earlier work
in education, heightened our interest in a full-scale imple-
mentation.

When the work on the formal description of Sys-
tern1360 was finished in 1964 we turned our attention to
the problem of implementation. This work was brought
to rapid fruition in 1965 when Lawrence M. Breed
joined the project and, together with Philip S. Abrams,
produced an implementation on the 7090 by the end of
1965. Influenced by Hellerman’s interest in time-sharing
we had already developed an APL typing element for the
IBM 1050 computer terminal. This was used in early
1966 when Breed adapted the 7090 system to an experi-
mental time-sharing system developed under Andrew

JULY 1973

Kinslow, allowing us the first use of APL in the manner
familiar today. By November 1966, the system had been
reprogrammed for System/360 and APL service has been
available within IBM since that date. The system be-
came available outside IBM in 1968.

A paper by Falkoff and Iverson [3] provided the first
published description of the APL\360 system, and a
companion paper by Breed and Lathwell [191 treated
the implementation. R. H. Lathwell joined the design
group in 1966 and has since been concerned primarily
with the implementations of APL and with the use of APL
itself in the design process. In 1971 he published, to-
gether with Jorge Mezei, a formal definition of APL in
APL [9].

The A P L \ ~ ~ O System benefited from the contributions
of many outside of the central design group. The preface
to the User’s Manual [l] acknowledges many of these
contributions.

References
I , A. D. Falkoff and K. E. Iverson, APL\360 User’s Monuul,

IBM Corporation, (GH20-0683-1) 1970.
2. A. D. Falkoff, K. E. Iverson, and E. H. Sussenguth, “A

Formal Description of System/360,” IBM Systems Journal,
3, 198 (1964).

3. A. D. Falkoff and K. E. Iverson, “The APL\360 Terminal
System”, Symposium on Interactive Systems for Experi-
mental Applied Mathematics, eds., M. Klerer and J. Rein-
felds, Academic Press, New York, 1968.

4. A. D. Falkoff, “Criteria for a System Design Language,”
Report on NATO Science Committee Conference on Soft-
ware Engineering Techniques, April 1970.

5 . Z . Ghandour and J . Mezei, “General Arrays, Operators
and Functions,” IBM J . Res. Develop. 17, 335 (1973, this
issue).

6. T. More, “Axioms and Theorems for a Theory of Arrays-
Part I ,” IBM J . Res. Develop. 17, I35 (1973).

7. P. C. Berry, APL\360 Primer, IBM Corporation, (GH-20-
0689-2) 1971.

8. K. E. Iverson, Elementary Functions: An Algorithmic
Treatment, Science Research Associates, Chicago, 1966.

9. R. H. Lathwell and J. E. Mezei, “A Formal Description of
APL,” Colloque APL, lnstitut de Recherche d’-
Informatique et d‘Automatique, Rocquencourt, France,
1971.

I O . K. E. Iverson, A Programming Language, Wiley, New
York, 1962.

11. K. E. Iverson, “Formalism in Programming Languages,”
Communicaiions of the ACM, 7 , 8 0 (February, 1964).

12. K. E. Iverson, Algehru: an algorithmic treatment, Addison-
Wesley Publishing Co., Reading, Mass., 1972.

13. R. H. Lathwell, “System Formulation and APL Shared Vari-
ables,” IBM J . Res. Develop. 17, 353 (1973, this issue).

14. A. D. Falkoff, “A Survey of Experimental APL File and
1 / 0 Systems in IBM”, Colloque APL, Institut de Recherche
d’lnformatique et D’Automatique, Rocquencourt, France,
1971.

15. F. P. Brooks and K. E. Iverson, Automatic Duta Process-
ing, Wiley, New York, 1963.

16. A. D. Falkoff, “Algorithms for Parallel Search Memories,”
Journal of the ACM, 488 (1962).

17. S . , Pakin, APL\360 Reference Manual, Science Research
Associates, Inc., Chicago, 1968. 333

DESIGN OF APL

18. H. Hellerman, “Experimental Personalized Array Transla- Received M a y 16, 1972
tor System,” Communicutions of the A C M 7, 433 (.luly,
1964).

APL1360,” Symposium on Interucfivt’ Systems ,for Exprri-

felds, Academic Press. New York, 1968. phiu, Pennsylvania 191 04.

19. 1.. M. Breed and R. H. Lathwell, “Implementation of ~h~ Nre located the I B M D ~ , ~ ~ processing

~ ~ ~ l ; ~ . ~ l ~ ~ ~ ~ \ ~ ~ ~ ~ , ~ i ~ ~ , eds., M, ~l~~~~ and J , ~ ~ i ~ - Division scient$c Center, 3401 Market Street, Philadel-

334

A. 1). FALKO1:F A N D K. E. IVERSON IBM J . RES. DEVELOP.

