
J. R. Sklaroff

Redundancy Management Technique for
Space Shuttle Computers

Abstract: This paper describes how a set of off-the-shelf general purpose digital computers is being managed in a redundant avionic
configuration while performing flight-critical functions for the Space Shuttle. The description covers the architecture of the redundant
computer set, associated redundancy design requirements, and the technique used to detect a failed computer and to identify this fail-
ure on-board to the crew. Significant redundancy management requirements consist of imposing a total failure coverage on all flight-
critical functions, when more than two redundant computers are operating in flight, and a maximum failure coverage for limited storage
and processing time, when only two are operating. The basic design technique consists of using dedicated redundancy management
hardware and software to allow each computer to judge the “health” of the others by comparing computer outputs and to “vote” on
the judgments. In formulating the design, hardware simplicity, operational flexibility, and minimum computer resource utilization were
used as criteria.

Introduction
The Space Shuttle avionics system contains five identi-
cal general purpose digital computers, each capable of
communicating with the avionic subsystems to perform
flight-critical and non-critical functions. During time-
critical mission phases (i.e., recovery time less than one
second), such as boost, reentry, and landing, four of
these computers operate as a redundant set, receiving
the same input data, performing the same flight-critical
computations, and transmitting the same output com-
mands. (The fifth computer performs non-critical com-
putations.) In this mode of operation, comparison of
output commands and “voting” on the results in the re-
dundant set provide the basis for efficient detection and
identification of two flight-critical computer failures.
After two failures, the remaining two computers in the
set use comparison and self-test techniques to provide
tolerance of a third fault. This paper describes the com-
puter set configuration, its operation in collecting and
transmitting data, the redundancy management require-
ments, design considerations in meeting the require-
ments, and the actual design implementation.

The Space Shuttle represents the first planned opera-
tional use of multiple, internally simplex computers to
provide continuous correct system operation in the pres-
ence of computer hardware failures. The concept was
flight-proven in the Tactical Aircraft Guidance (TAGS)
research and development program [11, which demon-

20 strated a helicopter flight control system using three

simplex digital computers to provide single-fault toler-
ance. The F-8 aircraft research and development pro-
gram [2] , currently under way, also uses three digital
computers in a triply redundant flight control system. By
comparison, previous space programs used either spe-
cially designed, internally redundant computers or multi-
ple computers in a prime-backup configuration to pro-
vide fault-tolerant operation. The Saturn IB and Saturn V
launch vehicle digital computer was a triply redundant
design providing redundancy at a modular level within
the computer [3]. The Orbiting Astronomical Observa-
tory processor was four-fold redundant at the circuit
level. The Skylab program used dual computers in an
active/standby mode (in-orbit), relying on self-test
techniques to detect failures in the active computer, and
redundant hardware to switch to the standby computer
(up to 2.75 s switchover time) [4].

Internally redundant computers use considerable ex-
tra circuitry to provide the required fault tolerance for
continuous system operation [5] . This circuitry also
provides the means to detect failures by making logical
comparisons at selected points in the data flow within
the computer. The concept of redundancy, when em-
ployed at the computer unit level, uses comparisons of
data generated at the normal computer interface and
thus does not incur the cost of special computer or cir-
cuit development. The Space Shuttle avionics design,
constrained to the use of standard, off-the-shelf comput-

J. R. SKLAROFF IBM J. RES. DEVELOP.

Figure 1 Space Shuttle avionics system block diagram.

ers, presented a unique engineering opportunity to prop-
erly utilize redundance at the unit level to provide the
necessary failure coverage and fault tolerance.

System configuration
The digital processing subsystem defined for the Space
Shuttle [6, 71 contains five general purpose computers
(GPCs) communicating with the avionic subsystems
over serial data buses (Fig. 1). Four of the five GPCs
are identically programmed to perform flight-critical
functions, such as guidance, navigation, and control. The
fifth computer is programmed to perform non-flight-
critical avionic functions.

A GPC consists of an IBM AP-101 central processor
unit (CPU) and an input/output processor (IOP).
Each IOP is transformer-coupled to the buses, and can
transmit or receive 1-MHz serial digital data over each
of 24 bus channels. The data buses, in turn, are trans-
former-coupled to multiplexer/demultiplexer units
(MDMs) and digital subsystems. The MDMs (contain-
ing analog-to-digital and digital-to-analog converters)
interface with analog subsystems, such as flight control
sensors and effectors.

Subsystems performing similar functions are assigned
to the same data-bus group. (There are seven such
groups in total.) Subsystems have varying levels of re-
dundancy at the unit level, depending on their criticality;
e.g., there are three inertial measurement units, two ra-

dar altimeters, and four air data transducer assemblies.
Each unit is addressable by a command word over the
bus. To prevent the loss of more than one redundant
unit when one data bus fails, no two redundant units in-
terface with the same bus.

Some subsystems are internally redundant, such as
the hand controllers and keyboard units. Also, all safety-
of-flight critical effector subsystems, such as the actuators
for the main engine and for the aerosurfaces, the main en-
gine interface units, and mission event controllers are
internally redundant at different levels. Such subsystems
receive redundant commands on separate input channels
and, using internal algorithms, generate one output. The
algorithms detect incorrect commands and eliminate such
commands from consideration in the output.

An example of a four-input “voting” effector is the
aerosurface actuator, which uses four independent servo
channels driving a four-element force-summed actuator.
Failure of any three of the four channels can be tolerat-
ed without loss of operational capability. Hydraulic fault
detection is provided by sensing the pressure differential
at each element of the secondary actuator. With more
than two channels operating, the actuator element is
automatically bypassed when the threshold pressure
differential is exceeded for a given time. With two chan-
nels operating, no actuator element is bypassed when
the pressure differential is exceeded, thereby producing a
“standoff” until one of the channels is manually reset. 21

REDUNDANCYMANAGEMENT JANUARY 1976

I Coverage during two-computer operation

Figure 2 Effect of coverage during two-computer operation on
the failure rate of a four-computer redundant set; coverage of
the first two failures is one. Normalization is to the zero-cover-
age failure rate. The GPC failure rate is 8 X lo-' per hour.

The use of voting effectors provides, in effect, down-
stream protection against failures in the redundant com-
puter set. It allows a computer to transmit incorrect
commands to critical subsystems for an indefinite num-
ber of cycles without actually having adverse effects on
system operation. Thus, it is not necessary to detect
computer failures immediately and stop the transmission
of the incorrect output. This feature significantly relaxes
the failure detection time constraint, which is one of the
requirements that control the selection of the redundan-
cy management technique.

Another feature of the system that facilitates the
selection of a redundancy management technique is the
interconnection of buses to computers. This feature al-
lows each computer to have access to all flight-critical
data received or transmitted by the other computers and
makes possible the comparison of identical computa-
tions among computers.

System operation
Each bus within a data-bus group is assigned, under soft-
ware control, to operate in either a command or a listen
mode. In the command mode, data requests and com-
mands are issued to the subsystems over the bus and
data are received over this same bus. In the listen mode,
data are only received on the bus.

In the flight-critical sensor and control-data-bus group
22 (two subgroups of four buses), one bus in each sub-

J. R. SKLAROFF

group is assigned to operate in the command mode (in
each redundant-set computer) and the remaining three
are assigned to operate in the listen mode. In the inter-
computer channel (ICC) data-bus group (five buses),
one bus (in each computer) is in the command mode
and the remaining four are in the listen mode.

For data collection, since each of the redundant sub-
systems is connected to a different bus, a different com-
puter requests data from each of the subsystems and the
returned data are available to all other computers in the
set. The listening computers are alerted that the subsys-
tem data are available by receiving a listen command,
which is issued by the command computer just prior to
issuing the data request command to the subsystem.
When operated in this manner, identical input data are
available to each computer in the redundant set.

For data output, since each channel of the effector
subsystem is connected to a different bus of the group, a
different computer transmits command data to each of
the voter-effector channels. Thus, a voter-effector sub-
system requiring four inputs receives inputs from four
different computers. Also, since the buses are intercon-
nected to all computers, the capability exists for each
computer to listen to the command data sent out by each
of the other computers.

For inter-computer information transfer, each com-
puter communicates with all other computers, passing
data to the others, requesting data from the others, and
performing any other tasks required to operate the com-
puter set. No subsystem is connected to the ICC buses.

As a consequence of the distributed control of redun-
dant sensors among computers, an unacceptable time-
skew may exist between redundant inputs unless the
computers are synchronized prior to initiating the inputs.
Similarly, unacceptable data-skew may exist at the
voting effectors unless synchronization occurs prior to
initiating outputs. Moreover, unacceptable command dif-
ferences may exist at the voting effectors unless syn-
chronization occurs at appropriate points during program
execution. Synchronization is accomplished in the Space
Shuttle computer set by using inter-computer discrete
signals and synchronization software.

Program synchronization is required because comput-
ers that do not use exactly the same data for computing
flight-control outputs experience command divergence
[8]. The time required to synchronize program execu-
tion depends on the design of the flight software operat-
ing system. A fixed time-slice system (i.e., one in which
all processes are run within a given cycle time) requires
one synchronization point in each computational cycle.
An interrupt-driven system must synchronize at all
points at which data are calculated in one process and
used in another, and at all points needed to preserve
identical process sequences in all computers of the set.

IBM J. RES. DEVELOP.

Redundancy management design

Requirements
Five redundancy management (RM) design require-
ments established for the GPCs are presented and dis-
cussed below.

1. A failed computer must be identified to the crew,
prior to assignment to the redundant set, using self-
test techniques that provide at least 96 percent cover-
age. (Coverage is defined as the probability of detect-
ing a failure, given that a failure has occurred.)

The purpose of this requirement is to enable the crew
to identify a failed computer (a) before lift-off (to abort
the mission) or (b) before a critical in-orbit phase (to
realiocate the data bus assignments or to attempt to re-
store a GPC using an initial program load (IPL) from
mass memory). A goal of 96 percent coverage of com-
puter failures in an autonomous environment (i.e., no
external test equipment or cooperative use of other
GPCs) was established. A computer fail-discrete inter-
face with the crew panel suffices for GPC failure identi-
fication.

2. Of four GPCs in the redundant set, the first two to
fail and cause incorrect flight-critical output must be
automatically identified to the crew as failed; the
third should also be identified as failed, but only by
achieving as much coverage as is possible within a
limited processing and storage overhead.

The purpose of this requirement is to enable the crew
to take appropriate action during flight based on com-
plete knowledge of the failure status, such as aborting
the mission, de-energizing the computers, or reallocat-
ing bus assignments. Moreover, in the case in which a
critical failure occurs when only two GPCs are operat-
ing, if the crew can reconfigure accordingly, the voting
effectors will continue to operate without simply arriving
at a standoff.

The relation between failure coverage during a two-
computer operation and the probability of an N-unit sys-
tem loss is presented in the Appendix. The result shows
that for a system which achieves total coverage on the
first N - 2 failures, system loss is a linear function of
coverage during the two-unit operation and is the same
as in the one-unit operation when the coverage is 0.5.
Thus, for any coverage of more than 50 percent, the
probability that the redundant set will fail when two
computers are operating is less than the failure probabili-
ty when only one is operating.

The result in the Appendix has been applied to a typi-
cal Shuttle mission. The graph shown in Fig. 2 illustrates
the importance of providing adequate coverage in the
two-computer operation. If two computers are allowed

successful

/ Continual

I / /
successful
restoration

I'ransient-to-solid failure ratio

Figure 3 Effect of GPC transient failures on the computer-set
failure rate as a function of restoration policy, in relation to the
zero-transient failure rate. The operational-hour equivalents are
6.6, ascent; 128, passive orbit; 43, active orbit; and 4.4, reen-
try/ landing.

to operate until one critically fails and is removed 100
percent of the time (coverage = 1), the probability that
the computer set will fail is 5.5 times lower than if one
fails and is removed only 50 percent of the time (cover-
age = 0.5). Also, if two computers are allowed to oper-
ate without ever removing one that fails, the computer-
set failure rate is 5.5 times greater than if one computer
is arbitrarily shut down.

3. A GPC indicated as failed should be capable of auto-
matically inhibiting all transmission, but this capabil-
ity must be enabled by the crew.

The purpose of this requirement is to provide the crew
with the option of automatic reconfiguration of the re-
dundant set.

4. A GPC failure should not cause another GPC to
either identify itself as failed or generate an incorrect
output.

The purpose of this requirement is to minimize the
occurrence of (a) a non-failed computer being identified
as failed because of the redundancy management design
implementation and (b) a failed computer causing an-
other computer to execute an incorrect program. 23

REDUNDANCY MANAGEMENT JANUARY 1976

5. Restoration of a GPC in which a permanently incor-
rect critical output exists because of a transient fail-
ure should be accomplished wherever practical.

The purpose of this requirement is to minimize the
impact of transient GPC failures on system operation.
Figure 3 illustrates the effect that such transients have
on the number of computer-set losses, depending on the
restoration policy used. If restoration is never attempt-
ed, computer-set losses increase by a factor of 16 over
those of a continual restoration policy at a 2: 1 “tran-
sient-to-solid’’ (i.e., intermittent-to-permanent type) fail-
ure ratio, and by 60X at a 4: 1 ratio. However, if com-
puter restoration takes place only during passive orbit
(non-time-critical phase), computer-set losses increase
only 1 . 6 ~ over a continual restoration policy at a 2 : 1
transient-to-solid failure ratio, and 2.8X at a 4 : 1 ratio.
For a continual restoration policy, an undue amount of
computer resource and operational complication is in-
volved in restoring and adding a computer to the redun-
dant set during time-critical mission phases. Consequent-
ly, the redundancy management implementation need
not automatically attempt restoration on detecting a
computer failure. Instead, restoration can be attempted
under crew control during passive orbit, when no maneu-
ver takes place.

Considerations
Several factors must be considered in developing com-
puter redundancy management techniques to satisfy the
requirements listed in the previous section. One of the
more significant considerations is whether faults (hard-
ware defects) or manifestations of faults to the output
interfaces should be detected. Detection of faults is help-
ful from a hardware maintenance standpoint, but is of
little practical operational value. A computer fault is of
interest when the effect of the fault shows up in an opera-
tional output. Therefore, redundancy management design
for the Space Shuttle should be oriented to the detection
of failures that affect commands on the flight-critical
buses.

Another important consideration is the amount of re-
source needed to attain the total coverage required for
the one- or two-failure case. Such coverage cannot be
attained in single off-the-shelf computers, as specified for
the Space Shuttle. Therefore, cooperative testing tech-
niques must be established among the computers. Com-
parison of identical computations is one method of at-
taining high coverage and is practical in the Shuttle
computer set, without a significant amount of additional
hardware, as a consequence of the normal system opera-
tion of command and listen modes, synchronization, and
grouping of buses.

Other design decisions and rationales in developing
24 the redundancy management technique are as follows.

J. R. SKLAROFF

1 . Minimize the need to depend on the computer to de-
tect and identify its own failure by using special hard-
ware logic dedicated to the RM process.

Even though the comparison-of-output technique can
detect a very high percentage of failures, identification is
not certain if the failed GPC is simply notified that it has
failed. Therefore, non-failed computers in the set must
have the capability of forcing the failed computer to indi-
cate itself as having failed. This requires hardware dedi-
cated to the redundancy management identification pro-
cess.

2. Use computer software to judge the “health” of other
computers.

If a computer cannot correctly monitor and test other
computers, then it probably cannot compute correct
output itself and will be judged bad by the others. Thus,
the output-compare process need not be a part of the
RM hard logic, but may be done by software.

3. Use sum-checking of critical outputs as the compari-
son basis.

A large range of output-compare data exists. Each
separate word transmitted on the flight-critical buses
could be compared, but this would result in considerable
computer and bus overhead. A more effective method of
reducing overhead, without losing the required coverage,
is to sum the outputs to be transmitted over the flight-
critical buses during one computational cycle and then
compare the sum-check.

4. Transmit the compare word over the ICC buses.

Eight flight-critical buses and the ICC buses are avail-
able for transmitting the selected compare word to the
other computers. Input/output processor transmission
and reception on the flight-critical buses are checked
when transmitting commands to the sensors and receiv-
ing data from the sensors using special communication
tests, e.g., IOP BITE (built-in test equipment) and bus
channel timeout. The ICC buses are available for use
without interfering with the critical bus traffic.

5 . Detect faults in dedicated RM hardware by pro-
grammed testing of the logic.

Faults in any redundancy management logic added to
the individual computers do not propagate to the flight-
critical channels and show up as critical failures. How-
ever, faults in this logic are critical, and it is important
that they be detected in order to satisfy design require-
ment 4. Hence, faults in this logic should be detected by
a test program executed in each CPU.

IBM J. RES, DEVELOP.

Design implementation
The hardware and software elements developed for the
Space Shuttle and used to meet the redundancy manage-
ment requirements are listed in Table 1 . The elements
and their operational use support failure detection, iden-
tification, and reconfiguration. These functions are per-
formed according to which of the following conditions
prevails during flight: (a) four or three GPCs operating
in the redundant set (quad or triplex configuration) ; or
(b) two GPCs operating in the redundant set (duplex
configuration).

8 Quad/ Triplex operation
When more than two GPCs are operating in the redun-
dant set, the level of achievable coverage can be signif-
icantly improved over that provided by self-testing by
using cooperative techniques. Moreover, the resource
utilized in obtaining this coverage with cooperative tech-
niques is significantly less than that required for self-
testing.

Two cooperative tests are performed in the Shuttle to
detect a failed GPC when more than two GPCs are in
the redundant set. These are the compare word test and
the bus channel timeout test.

The compare word test consists of

a. Computing a compare word by summing critical
GPC command outputs (to the effectors);

b. Transmitting the compale word on the ICC bus to
the other computers in the RM set;

c. Receiving compare words from other computers and
storing them in designated locations in main memory;

d. After a time has elapsed which ensures receipt of all
compare words, comparing the received words with
the computed word on a bit-by-bit basis; and

e. Identifying another GPC as failed if two successive
non-compares are assigned to it.

The compare word test, performed after the critical
GPC commands have been computed in each computa-
tion cycle, is implemented using both CPU and IOP
software. The test uses less than 0.2 percent of the CPU
processing capability and achieves nearly total coverage.

The bus channel timeout test consists of waiting a given
time after synchronization for another computer to per-
form an input transaction on its dedicated bus. This test,
plus the compare word test, provides total coverage in
the computer set of all flight-critical functions.

The compare word test uses the dedicated redundancy
management hardware, shown in Fig. 4, for cooperative
identification as follows:

Failure-vote register (F V R) Each IOP contains a four-
bit register, which is used to judge another GPC as

Table 1 Summary of the elements of redundancy management.

Function Element
. "

Fault Compare word test
~ ~~ ~ ~~ ~~~

detection Bus channel timeout test
Built-in test equipment
Self-test programs
Watchdog timer

Fault Failure-vote-discrete out
identification GPC-fail-discrete out

Reconfiguration Failure-vote inhibit, voter- and timeout-
IOP reset (RM-initiated)

10P-master reset (software-initiated)
IOP-fail reset (BITE-initiated)
Power off and halt-discrete in (crew-initi-

ated)

failed as the result of a cooperative test. When a failure is
detected, a bit is set in this register. Each position of the
FVR is associated with another GPC within the com-
puter set. The FVR is set and reset under control of the
software and is automatically reset for any reset Of
the IOP.

Failure-vote discrete driverlreceiver Each output of the
FVR is logically connected to an independent, discrete
driver. Each failure-vote discrete driver has two dedicat-
ed outputs, one to indicators on the crew panel and the
other to a discrete receiver in the IOP of one of the
GPCs (the one corresponding to the dedicated FVR
position). Thus, each GPC contains four failure-vote
discrete drivers for transmission of the results of the
compare word test to other GPCs (and to the crew
panel) and four failure-vote discrete receivers for accep-
tance of the votes.

Voter logic and fail-latch The voter logic accepts the
outputs of the fail-vote discrete receivers and generates
an output to set a voter fail-latch whenever two or more
failure-vote discretes are received from other GPCs.
The voter fail-latch is reset by an IOP power-on reset or
a halt-discrete input from a crew panel switch and is set
by the voter logic. The output of the latch is transmitted
to the computer-fail driver, failure-vote inhibitor, and
transmission termination control logic.

Computer-fail driver Vuil-discrete) During flight the
computer-fail driver is used to transmit a GPC critical
failure indication to the controls and display console as a
result of both cooperative and self-test GPC failure
identification. When the voter fail-latch is set, the com-
puter-fail driver transmits an output discrete to the crew
panel. No fail indication is present when a GPC is on
and operating normally, is off, or has received a halt-dis-
Crete input. 25

REDUNDANCY MANAGEMENT JANUARY 1976

Failure-vote inhibit \

Failure votes
from other
computers

r------ 1
i i
I Software I control +

Master,
power-on,
or IOP-fail - Reset

,""""
I
I Ah11
I p r k I driver No. 2 ' Discrete Comp.

I
I

I

vote
Failure-
register : I & F b I No. 3 Failure votes

(4 bits)

Discrete Comp.

to other

No. 4

I
driver No. 5

- L",

No. 4 Fg Comp. -* Discrete

Camp. Discrete
NO. 5 "+ receiver

E,", Watchdog cpu timer

Voter logic
(two or
more)

0

Power-on reset
or halt-dlscrete

Timeout
latch

-+ IOP reset
(inhibit discretes

I and transmitters)

7 Reset I I
I
I

L----------,-------,_-------J
Master, power-on,
IOP-fail reset.
or halt-discrete Transmission termination control logic

Computer-fail

crew panel
signal to

Figure 4 Dedicated redundancy management logic, shown for computer 1.

The hardware shown in Fig. 4 is also used for recon-
figuration, which involves termination of the role of a
GPC as a functioning member of the redundant GPC
set. One manifestation of reconfiguration is an IOP re-
set, which can occur automatically when the GPC has
been identified as failed; another is automatic inhibition
of the transmission of failure votes to other GPCs,
which means that the logic operates to prevent a failed
GPC from further participation in cooperative failure
detection.

Duplex operation
When only two GPCs are operating in the redundant
set, identification as a result of cooperative testing is not
possible, although detection of a disagreement is possi-
ble through the compare word test. ,Therefore, self-test-
ing must be used to distinguish which of two GPCs has
failed. The cooperative tests are still useful, however, in
providing a program cue to scheduling any planned self-
test program execution. As such, cooperative tests
should be run continuously in the duplex mode. Thus,
whenever a failure vote is set by either of the two com-
puters, that computer can also run self-test.

The sources of self-test coverage that can be used in
26 the duplex mode fall into three categories:

BITE (built-in test equipment) BITE consists of any
hardware logic or microcode which causes an interrupt
to the CPU, during its normal program operation, when
a GPC failure is detected.

Self-test programs These programs detect GPC failures,
but must be specifically executed under program con-
trol. They can consist of either main-memory-resident
(macrocode) or control-storage-resident (microcode)
routines.

Watchdog timer A watchdog timer (shown in Fig. 4),
located in the IOP and periodically loaded by the CPU,
is used to detect failures that affect cyclic program exe-
cution by the CPU and is a means of indicating that the
GPC has failed after fault detection by the CPU. When-
ever the time loaded into the timer elapses, a timeout
latch is set to identify the failure to that GPC.

The level of coverage of critical hardware that can be
achieved by self-test techniques during duplex operation
is limited by the resource utilization constraints imposed
by flight-program budgets. An example of the relation
between coverage and resource utilization is shown in
Table 2 for the central processor (the example does not
include memory or power supply). The level of CPU
coverage achievable for the amount of storage and pro-

.I. R. SKLAROFF IBM .I. RES. DEVELOP.

cessing time expended, when a combination of BITE,
watchdog timer, and microcoded self-test program is
used, is considered acceptable. The use of a macrocoded
self-testing program in the redundant set during flight
operation would take too much storage and processing
time for the additional coverage it would provide. How-
ever, the execution of a macrocoded self-testing program
prior to assignment to the redundant set, to meet the 96
percent coverage requirement discussed previously, is
necessary.

Summary
The use of computers in flight-critical applications has
imposed a requirement for multiple-fault tolerance in the
computer configuration. In the Space Shuttle avionics,
multiple, internally simplex digital computers are con-
figured to receive the same input data and calculate the
same flight-critical outputs, in order to use voting fault-
tolerant control effectors.

The calculation of the same outputs by each critical
computer and the synchronization of inputs are used to
provide the means of achieving total failure coverage of
flight-critical functions for a small computational re-
source and hardware cost. The technique that was im-
plemented uses each computer to judge the “health” of
the others through a bit-by-bit comparison of critical
data and an 1 / 0 transaction timeout test. The judge-
ment process was implemented in software for greater
flexibility, and the vote on the judgements and the gener-
ation of the failure indication were implemented in dedi-
cated hardware for greater failure identification reliability.

When more than two computers are operating, the
level of failure detection and identification achievable
using data comparison between computers and voting
techniques is significantly higher than that obtainable
using self-testing. When only two are operating, an ac-
ceptable level of failure detection and identification can
be obtained, within limited storage and processing time,
by using built-in test equipment and a watchdog timer on
a continual basis and scheduling special test microcode
to follow the occurrence of a non-compare.

Acknowledgments
The author appreciates the useful comments received
from F. G. Kilmer, H. A. Padinha, R. E. Poupard, and
A. R. Stevens. This paper covers work performed under
Space Shuttle contract M4J3XMS-483027 between
Rockwell International Corporation, Space Division,
and International Business Machines Corporation, Fed-
eral Systems Division.

Appendix
Here we develop the relation between coverage during
two-unit operation and the probability of multiple-unit
system loss.

JANUARY 1976

Table 2 Relation between self-test resource utilization and
coverage for the central processor (not including memory or
power supply).

Coveruge of
Centrul processor critical Storage
se l f tes t coverage hardware (half- Processing

source (percent) words) time (ms)

BITE* 36.9 0 0
BITE/Watchdog timer 68.5 4 0.005
BITE/Timer/Micro-

coded self-testing 88.7 14 0.15
BITE/Timer/Micro-

and macro-coded
self-testing 96.8 110 1.3

*BITE is the abbreviation for built-in test equipment.

The probability of an N-unit system loss, P S L , with
total coverage on the first N - 2 failures, is

P S L = P, (t) PSL* (T - t) d t , l (A1 1
where T = mission length; P , (t) = probability of failing to
a two-unit system at time t ; and PSL* (T - t) = probabil-
ity of system loss during two-unit operation. In turn,
PSL* has been derived [9] as

PSL* = (1 -e -”) - [(2 c - 1) / (2 k + l)]
x e-U[1 - p “ U] , (A2 1

where u = A, (T - t) ; A, = unit failure rate; c = failure cov-
erage during two-unit operation; k = A, /Ac; and A, = fail-
ure rate of components that do not affect the unit’s func-
tion, i.e., the false alarm rate.

Equation (A2) shows that, for this particular system,
system loss is a linear function of coverage c. Moreover,
this loss, during two-unit operation, is the same as in
one-unit operation when c = 0.5.

References
I . F. G . Kilmer and J . R. Sklaroff, “Redundant System Design

and Flight Test Evaluation for the TAGS Digital Control
System,” Proceedings of the 29th Annual National Forum
if the American Helicopter Society, Washington, D.C., May
1973.

2. C. Jarvis, “A Digital Fly-by-Wire Technology Development
Program Using an F-8C Test Aircraft,” presented at the
AIAA 12th Aerospace Sciences Meeting, Washington, D.C.,
January 1974.

3. F. B. Moore and J. B. White, “Application of Redundancy
in the Saturn V Guidance and Control System,” AIAA
Paper 67-553, Proceedings of the AIAA Guidance Control
and Flight Dynamics Conference, Huntsville, Alabama,
August 1970.

4. “Apollo Telescope Mount Digital Computer Program,”
Contract NAS 8-20899 Information Document, Part 1, T R
72-WO-0039, IBM Federal Systems Division, Huntsville,
Alabama 35805, December 1971. 27

REDUNDANCY MANAGEMENT

5. H. Hecht, “A Comparison of Fault Tolerant and Externally
Redundant Computers,” SAMSO T R 74-66, Aerospace
Corporation, El Segundo, California, January 1974; avail-
able as document AD777166/0 from the U.S. National
Technical Information Service, Springfield, Virginia 22 15 1.

6. S. Z . Rubenstein and L. 0. Shroyer, “Digital Processing
Subsystem for the Space Shuttle,” presented at the National
Aviation Electronics Conference (NAECON), May 1974.

7. E. A. O’Hern, “Space Shuttle Avionics Redundancy Man-
agement,” presented at the AIAA Digital Avionics Systems
Conference, Boston, April 1975.

8. H. A. Padinha, “Divergence in Redundant Guidance,
Navigation and Control Systems,” Proceedings of the ION
National Aerospace Meeting, Washington, D.C., March
1973.

28

J. R. SKLAROFF

9. D. R. Thomas and F. G. Kilmer, “Redundancy Manage-
ment Policies for a Dual Redundant Computer Configura-
tion,” T R 75-C65-0013, IBM Federal Systems Division,
Owego, New York 13827, February 1975.

Received February 24, 1975; revised August 15, 1975

The author is located at the IBM Federal Systems Divi-
sion, Owego, New York 13827.

1BM .I. RES. DEVELOP.

