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Redundancy  Management  Technique for 
Space  Shuttle  Computers 

Abstract: This  paper  describes how a set of  off-the-shelf  general  purpose digital computers is being  managed in a redundant  avionic 
configuration while performing flight-critical functions for  the Space Shuttle.  The  description  covers  the  architecture of the  redundant 
computer  set,  associated  redundancy  design  requirements, and the technique  used to detect a failed  computer  and  to  identify  this  fail- 
ure  on-board to the crew. Significant redundancy management requirements consist of imposing a total failure coverage on all flight- 
critical  functions, when more  than  two  redundant  computers are operating in flight, and a maximum  failure  coverage  for limited storage 
and processing time, when only two are  operating.  The basic design technique consists of using dedicated redundancy  management 
hardware and software to allow each computer to judge the “health” of the others by comparing  computer outputs and to “vote” on 
the  judgments.  In  formulating the design, hardware  simplicity,  operational  flexibility, and minimum  computer  resource  utilization  were 
used as criteria. 

Introduction 
The  Space  Shuttle avionics  system contains five identi- 
cal general purpose digital computers,  each  capable of 
communicating  with the avionic subsystems  to perform 
flight-critical and non-critical  functions.  During  time- 
critical  mission phases (i.e., recovery time less  than  one 
second),  such  as  boost,  reentry,  and landing, four of 
these  computers  operate  as a redundant  set, receiving 
the  same input data, performing the  same flight-critical 
computations,  and transmitting the  same  output  com- 
mands.  (The fifth computer performs non-critical com- 
putations.)  In this  mode of  operation,  comparison of 
output  commands and  “voting” on the  results in the re- 
dundant  set provide the basis for efficient detection  and 
identification of two flight-critical computer failures. 
After  two failures, the remaining two  computers in the 
set  use  comparison  and self-test techniques  to  provide 
tolerance of a third fault.  This  paper  describes  the  com- 
puter  set configuration, its  operation in collecting and 
transmitting data,  the  redundancy management  require- 
ments, design considerations in meeting the require- 
ments,  and  the  actual design  implementation. 

The  Space  Shuttle  represents  the first planned opera- 
tional use of multiple, internally  simplex computers  to 
provide  continuous  correct  system  operation in the pres- 
ence of computer  hardware failures. The  concept was 
flight-proven in the  Tactical Aircraft Guidance  (TAGS) 
research  and  development program [ 11, which demon- 

20 strated a  helicopter flight control  system using three 

simplex digital computers  to  provide single-fault toler- 
ance.  The F-8 aircraft  research  and  development pro- 
gram [ 2 ] ,  currently under way, also  uses  three digital 
computers in a  triply redundant flight control  system. By 
comparison, previous space programs  used either spe- 
cially designed,  internally redundant  computers  or multi- 
ple computers in a  prime-backup  configuration to pro- 
vide  fault-tolerant  operation. The  Saturn  IB  and  Saturn V 
launch vehicle digital computer was a triply redundant 
design  providing redundancy  at a modular level within 
the  computer [3]. The Orbiting  Astronomical Observa- 
tory processor  was four-fold redundant  at  the circuit 
level. The Skylab  program  used dual  computers in an 
active/standby mode (in-orbit), relying on self-test 
techniques  to  detect failures in the  active  computer, and 
redundant  hardware  to switch to  the standby computer 
(up  to 2.75 s switchover  time) [4]. 

Internally redundant  computers  use  considerable  ex- 
tra circuitry to  provide  the required  fault tolerance  for 
continuous system operation [ 5 ] .  This circuitry also 
provides  the  means  to  detect failures by making logical 
comparisons  at  selected  points in the  data flow within 
the  computer.  The  concept of redundancy,  when em- 
ployed at  the  computer unit  level, uses  comparisons of 
data  generated  at  the normal computer interface and 
thus  does not incur  the  cost of special computer  or cir- 
cuit  development.  The  Space  Shuttle avionics  design, 
constrained  to  the  use of standard, off-the-shelf comput- 
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Figure 1 Space Shuttle avionics  system block diagram. 

ers,  presented a unique engineering opportunity  to prop- 
erly  utilize redundance  at  the unit level to  provide  the 
necessary failure coverage and  fault tolerance. 

System configuration 
The digital processing subsystem defined for  the  Space 
Shuttle [6, 71 contains five general purpose  computers 
(GPCs) communicating with the avionic subsystems 
over serial data  buses  (Fig. 1 ). Four of the five GPCs 
are identically  programmed to perform flight-critical 
functions, such  as guidance,  navigation, and  control.  The 
fifth computer  is programmed to perform non-flight- 
critical  avionic  functions. 

A GPC consists of an IBM AP-101 central  processor 
unit (CPU) and  an  input/output  processor (IOP). 
Each IOP is transformer-coupled to  the  buses,  and can 
transmit or receive 1-MHz serial digital data  over each 
of 24 bus channels. The  data  buses, in turn,  are  trans- 
former-coupled to multiplexer/demultiplexer units 
(MDMs) and digital subsystems. The MDMs (contain- 
ing analog-to-digital and digital-to-analog converters) 
interface  with  analog subsystems,  such  as flight control 
sensors  and effectors. 

Subsystems performing similar functions are assigned 
to  the  same  data-bus group. (There  are  seven  such 
groups in total.)  Subsystems  have varying  levels of re- 
dundancy  at  the unit  level,  depending on  their  criticality; 
e.g., there  are  three inertial measurement units, two  ra- 

dar  altimeters,  and four air  data  transducer assemblies. 
Each unit is addressable by a  command  word over  the 
bus. To prevent  the loss of more  than  one  redundant 
unit  when one  data  bus fails, no two redundant units in- 
terface with the  same  bus. 

Some subsystems  are internally redundant,  such  as 
the hand controllers  and keyboard  units. Also, all safety- 
of-flight critical  effector subsystems,  such as  the  actuators 
for  the main engine  and for  the  aerosurfaces,  the main en- 
gine  interface units,  and mission event  controllers  are 
internally redundant  at different levels. Such  subsystems 
receive redundant  commands  on  separate  input  channels 
and, using internal  algorithms, generate  one  output.  The 
algorithms detect  incorrect  commands  and eliminate such 
commands  from consideration in the  output. 

An  example of a four-input  “voting”  effector is the 
aerosurface  actuator, which uses four independent  servo 
channels driving  a  four-element  force-summed actuator. 
Failure of any three of the  four  channels  can  be tolerat- 
ed without loss of operational  capability.  Hydraulic  fault 
detection is provided by sensing the  pressure differential 
at  each element of the  secondary  actuator. With more 
than two  channels operating, the  actuator element is 
automatically  bypassed when  the threshold pressure 
differential is exceeded  for a  given  time. With two  chan- 
nels operating, no actuator element is bypassed when 
the  pressure differential is exceeded,  thereby producing a 
“standoff” until one of the  channels is manually reset. 21 
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I Coverage during  two-computer  operation 

Figure 2 Effect of coverage during two-computer  operation  on 
the failure rate of a four-computer  redundant  set;  coverage of 
the first two failures is one.  Normalization is to  the zero-cover- 
age failure rate.  The GPC failure rate is 8 X lo-' per hour. 

The  use of voting effectors provides, in effect, down- 
stream  protection against  failures in the  redundant  com- 
puter  set.  It allows  a computer  to  transmit  incorrect 
commands  to critical subsystems  for  an indefinite num- 
ber of cycles without  actually having adverse effects on 
system operation.  Thus, it is not  necessary  to  detect 
computer failures  immediately and  stop  the transmission 
of the  incorrect  output.  This  feature significantly relaxes 
the failure detection time constraint, which is one of the 
requirements  that  control  the selection of the  redundan- 
cy management technique. 

Another  feature of the  system  that facilitates the 
selection of a  redundancy  management technique is the 
interconnection of buses  to  computers.  This  feature al- 
lows each  computer  to  have  access  to all flight-critical 
data received or  transmitted by the  other  computers  and 
makes possible the  comparison of identical computa- 
tions  among computers. 

System operation 
Each bus within a data-bus  group is assigned, under soft- 
ware  control,  to  operate in either a  command or a  listen 
mode. In  the command mode,  data  requests and com- 
mands are issued to  the  subsystems  over  the  bus  and 
data  are received over this same bus. In  the listen  mode, 
data  are only  received on  the  bus. 

In  the flight-critical sensor  and  control-data-bus group 
22 (two subgroups of four  buses),  one bus in each sub- 
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group is assigned to  operate in the command  mode (in 
each  redundant-set  computer)  and  the remaining three 
are assigned to  operate in the listen  mode. In  the inter- 
computer channel (ICC) data-bus  group (five buses), 
one  bus  (in  each  computer) is in the command  mode 
and  the remaining four  are in the listen  mode. 

For  data collection, since  each of the  redundant sub- 
systems is connected  to a different bus, a different com- 
puter  requests  data from each of the  subsystems  and  the 
returned  data  are available to all other  computers in the 
set.  The listening computers  are  alerted  that  the  subsys- 
tem  data  are available by receiving  a  listen command, 
which is issued by the command computer  just  prior  to 
issuing the  data  request command to  the  subsystem. 
When operated in  this manner, identical input  data  are 
available to  each  computer in the  redundant  set. 

For  data  output,  since  each  channel of the effector 
subsystem is connected  to a  different  bus of the  group, a 
different computer transmits  command data  to  each of 
the voter-effector channels.  Thus, a  voter-effector  sub- 
system requiring  four inputs receives inputs from four 
different computers.  Also,  since  the buses are intercon- 
nected  to all computers,  the capability exists  for  each 
computer  to listen to  the command data  sent  out by each 
of the  other  computers. 

For  inter-computer information transfer,  each com- 
puter  communicates with all other  computers, passing 
data  to  the  others, requesting data from the  others, and 
performing  any other  tasks  required  to  operate  the  com- 
puter  set. No subsystem is connected  to  the ICC buses. 

As a consequence of the  distributed  control of redun- 
dant  sensors among computers,  an  unacceptable time- 
skew may exist  between  redundant inputs  unless the 
computers  are  synchronized prior to initiating the  inputs. 
Similarly, unacceptable  data-skew may exist  at  the 
voting  effectors unless synchronization occurs prior to 
initiating outputs.  Moreover,  unacceptable command dif- 
ferences may exist  at  the voting  effectors unless syn- 
chronization  occurs  at  appropriate points  during  program 
execution.  Synchronization is accomplished in the  Space 
Shuttle  computer  set by using inter-computer  discrete 
signals and  synchronization  software. 

Program synchronization is required  because  comput- 
ers  that  do  not  use exactly the  same  data  for computing 
flight-control outputs  experience command  divergence 
[8]. The time  required to  synchronize program execu- 
tion depends  on  the design of the flight software  operat- 
ing system. A fixed time-slice system (i.e., one in which 
all processes  are run  within a given cycle  time)  requires 
one  synchronization point in each  computational  cycle. 
An  interrupt-driven  system  must  synchronize  at all 
points  at which data  are calculated in one  process  and 
used in another,  and  at all points needed to  preserve 
identical process  sequences in all computers of the  set. 
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Redundancy management  design 

Requirements 
Five  redundancy  management (RM) design  require- 
ments  established  for the GPCs are  presented and dis- 
cussed below. 

1. A failed computer  must be identified to  the  crew, 
prior to assignment to  the  redundant  set, using self- 
test  techniques  that provide at  least 96 percent  cover- 
age. (Coverage is defined as  the probability of detect- 
ing a failure, given that a failure has  occurred.) 

The  purpose of this  requirement is to enable the  crew 
to identify a failed computer ( a )  before lift-off (to  abort 
the mission) or  (b) before  a  critical in-orbit phase  (to 
realiocate the  data  bus assignments or  to  attempt  to re- 
store a GPC using an initial program load (IPL) from 
mass memory). A goal of 96 percent  coverage of com- 
puter failures in an  autonomous  environment (i.e., no 
external  test equipment or cooperative use of other 
GPCs) was established. A computer fail-discrete  inter- 
face with the  crew panel suffices for GPC failure  identi- 
fication. 

2. Of four GPCs in the  redundant  set,  the first two  to 
fail and  cause  incorrect flight-critical output must  be 
automatically identified to  the  crew  as failed; the 
third  should also be identified as failed, but only by 
achieving as much coverage as is possible within a 
limited processing and storage overhead. 

The  purpose of this requirement is to  enable  the  crew 
to take appropriate  action during flight based on  com- 
plete  knowledge of the failure status,  such  as aborting 
the mission,  de-energizing the  computers,  or reallocat- 
ing bus  assignments. Moreover, in the  case in which  a 
critical  failure occurs  when only two GPCs are  operat- 
ing, if the  crew  can reconfigure accordingly, the voting 
effectors will continue  to  operate without simply arriving 
at a  standoff. 

The relation between failure coverage during a two- 
computer  operation and the probability of an N-unit sys- 
tem loss is presented in the  Appendix.  The result shows 
that  for a  system  which achieves total coverage  on  the 
first N - 2 failures,  system loss is a  linear  function of 
coverage during the two-unit operation and is the  same 
as in the one-unit operation when the  coverage is 0.5. 
Thus,  for any coverage of more  than 50 percent,  the 
probability that  the  redundant  set will  fail when two 
computers  are operating is less than  the failure  probabili- 
ty when  only one is operating. 

The  result in the Appendix has been  applied to a typi- 
cal Shuttle mission. The graph  shown in Fig. 2 illustrates 
the  importance of providing adequate  coverage in the 
two-computer  operation. If two  computers  are allowed 
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I'ransient-to-solid failure ratio 

Figure 3 Effect of GPC transient  failures on the  computer-set 
failure  rate  as a function of restoration  policy, in relation to the 
zero-transient failure  rate.  The  operational-hour equivalents are 
6.6, ascent; 128, passive orbit; 43, active orbit; and 4.4, reen- 
try/ landing. 

to  operate until one critically fails and is removed  100 
percent of the time (coverage = 1 ), the probability that 
the  computer  set will fail is 5.5 times  lower  than if one 
fails  and is removed only 50 percent of the time (cover- 
age = 0.5). Also, if two computers  are allowed to oper- 
ate without ever removing one  that fails, the  computer- 
set failure rate is 5.5 times greater than if one  computer 
is arbitrarily shut  down. 

3. A GPC indicated as failed should  be capable of auto- 
matically inhibiting all transmission,  but  this capabil- 
ity must  be  enabled  by the  crew. 

The  purpose of this requirement is to provide the  crew 
with the  option of automatic reconfiguration of the re- 
dundant  set. 

4. A GPC failure should not cause  another GPC to 
either identify itself as failed or  generate  an  incorrect 
output. 

The  purpose of this requirement is to minimize the 
occurrence of (a) a non-failed computer being identified 
as failed because of the redundancy  management  design 
implementation  and (b) a failed computer causing an- 
other  computer  to  execute  an  incorrect program. 23 
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5. Restoration of a GPC in which  a  permanently  incor- 
rect critical output  exists  because of a transient fail- 
ure should  be  accomplished wherever practical. 

The  purpose of this requirement is to minimize the 
impact of transient GPC failures on  system  operation. 
Figure 3 illustrates the effect that  such  transients  have 
on  the  number of computer-set  losses, depending on  the 
restoration policy used. If restoration is never  attempt- 
ed,  computer-set  losses  increase by a factor of 16 over 
those of a  continual restoration policy at a 2: 1 “tran- 
sient-to-solid’’ (i.e.,  intermittent-to-permanent type) fail- 
ure ratio, and by 60X at a 4:  1 ratio. However, if com- 
puter  restoration  takes place only during  passive orbit 
(non-time-critical phase),  computer-set  losses  increase 
only 1 . 6 ~  over a continual restoration policy at a 2 :  1 
transient-to-solid  failure ratio, and 2.8X at a 4 :  1 ratio. 
For a  continual restoration policy, an  undue  amount of 
computer  resource and  operational  complication is in- 
volved in restoring and adding  a computer  to  the redun- 
dant  set during time-critical mission phases. Consequent- 
ly,  the redundancy  management  implementation  need 
not  automatically attempt  restoration  on  detecting a 
computer failure. Instead,  restoration  can be attempted 
under  crew control  during passive  orbit, when no maneu- 
ver  takes place. 

Considerations 
Several  factors must  be  considered in developing com- 
puter redundancy  management  techniques to satisfy the 
requirements listed in the previous  section. One of the 
more significant considerations is whether faults (hard- 
ware  defects)  or manifestations of faults to  the  output 
interfaces should be  detected.  Detection of faults is help- 
ful from a hardware maintenance standpoint,  but is of 
little  practical  operational  value.  A computer fault is of 
interest  when  the  effect of the fault  shows  up in an opera- 
tional output.  Therefore, redundancy  management  design 
for  the  Space  Shuttle should be  oriented  to  the  detection 
of failures that affect commands  on  the flight-critical 
buses. 

Another  important consideration is the  amount of re- 
source needed to  attain  the total coverage required for 
the  one-  or two-failure case. Such coverage  cannot be 
attained in single off-the-shelf computers,  as specified for 
the  Space  Shuttle.  Therefore,  cooperative testing tech- 
niques  must be established  among the  computers.  Com- 
parison of identical computations is one method of at- 
taining high coverage and  is practical in the  Shuttle 
computer  set, without  a significant amount of additional 
hardware,  as a consequence of the normal  system  opera- 
tion of command  and  listen  modes,  synchronization, and 
grouping of buses. 

Other design  decisions and rationales in developing 
24 the redundancy  management  technique are  as follows. 
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1 .  Minimize the need to  depend  on  the  computer  to  de- 
tect  and identify its  own  failure by using special hard- 
ware logic dedicated  to  the  RM  process. 

Even though the comparison-of-output  technique can 
detect a very high percentage of failures,  identification is 
not  certain if the failed GPC is simply notified that it has 
failed. Therefore, non-failed computers in the  set must 
have  the capability of forcing the failed computer  to indi- 
cate itself as having failed. This  requires  hardware dedi- 
cated  to  the redundancy  management identification pro- 
cess. 

2. Use  computer  software  to  judge  the  “health” of other 
computers. 

If a computer  cannot correctly  monitor  and test  other 
computers, then it probably cannot  compute  correct 
output itself and will be  judged  bad by the  others.  Thus, 
the  output-compare  process need not  be a part of the 
RM hard logic, but  may  be done by  software. 

3. Use sum-checking of critical outputs  as  the compari- 
son basis. 

A  large  range of output-compare  data  exists.  Each 
separate word  transmitted on  the flight-critical buses 
could be compared,  but this would result in considerable 
computer and bus  overhead. A more  effective method of 
reducing overhead, without losing the required coverage, 
is to sum the  outputs  to be  transmitted over  the flight- 
critical buses during one computational cycle  and then 
compare  the  sum-check. 

4. Transmit  the  compare word over  the  ICC  buses. 

Eight flight-critical buses  and  the  ICC buses are avail- 
able  for transmitting the selected compare  word  to  the 
other  computers.  Input/output  processor transmission 
and reception on  the flight-critical buses are  checked 
when  transmitting commands  to  the  sensors  and receiv- 
ing data from the  sensors using special  communication 
tests, e.g., IOP  BITE (built-in test  equipment)  and bus 
channel  timeout. The  ICC  buses  are available for  use 
without interfering  with the critical  bus traffic. 

5 .  Detect faults in dedicated RM hardware by pro- 
grammed  testing of the logic. 

Faults in any  redundancy  management logic added  to 
the individual computers  do not propagate  to  the flight- 
critical channels  and  show up as critical  failures. How- 
ever, faults in this logic are critical,  and it is important 
that they  be detected in order  to satisfy design  require- 
ment 4. Hence, faults in this logic should  be detected by 
a test program executed in each CPU. 
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Design  implementation 
The  hardware  and  software  elements developed for  the 
Space  Shuttle and  used to meet the redundancy manage- 
ment  requirements are listed in Table 1 .  The  elements 
and  their operational  use support failure detection, iden- 
tification, and reconfiguration. These functions are  per- 
formed  according to which of the following conditions 
prevails  during flight: (a )  four or  three GPCs operating 
in the  redundant  set  (quad  or triplex  configuration) ; or 
(b)  two GPCs operating in the redundant set  (duplex 
configuration). 

8 Quad/  Triplex  operation 
When more than  two GPCs are operating in the  redun- 
dant  set,  the level of achievable coverage can be signif- 
icantly  improved over  that provided by self-testing by 
using cooperative techniques. Moreover,  the  resource 
utilized in obtaining  this coverage with cooperative tech- 
niques is significantly less than  that required for self- 
testing. 

Two  cooperative  tests  are performed in the  Shuttle  to 
detect a failed GPC when  more than  two GPCs are in 
the  redundant  set.  These  are  the  compare word test and 
the bus  channel  timeout test. 

The compare word test consists of 

a.  Computing a compare word by summing critical 
GPC command outputs  (to  the  effectors); 

b. Transmitting the  compale word on  the ICC bus to 
the  other  computers in the  RM  set; 

c.  Receiving compare  words from other  computers and 
storing  them in designated  locations in main memory; 

d.  After a time has elapsed which ensures  receipt of  all 
compare words,  comparing the received words with 
the  computed word on a bit-by-bit basis;  and 

e.  Identifying another GPC as failed if two successive 
non-compares are assigned to it. 

The  compare word test, performed after  the critical 
GPC commands  have been computed in each  computa- 
tion cycle, is implemented using both CPU and IOP 
software. The  test  uses  less than 0.2 percent of the CPU 
processing  capability  and achieves nearly  total  coverage. 

The bus channel  timeout  test consists of waiting a  given 
time after synchronization  for another  computer  to per- 
form an input transaction  on  its  dedicated bus. This  test, 
plus the  compare word test, provides  total coverage in 
the  computer  set of all flight-critical functions. 

The  compare word test  uses  the dedicated  redundancy 
management hardware, shown in Fig. 4, for cooperative 
identification as follows: 

Failure-vote  register ( F V R )  Each IOP contains a  four- 
bit register, which is used to  judge  another GPC as 

Table 1 Summary of the  elements of redundancy  management. 

Function Element 
. " 

Fault  Compare word test 
~ ~~ ~ ~~ ~~~ 

detection Bus  channel  timeout test 
Built-in test equipment 
Self-test  programs 
Watchdog timer 

Fault Failure-vote-discrete out 
identification GPC-fail-discrete out 

Reconfiguration Failure-vote inhibit, voter- and timeout- 
IOP  reset  (RM-initiated) 

10P-master  reset  (software-initiated) 
IOP-fail reset  (BITE-initiated) 
Power off and halt-discrete in (crew-initi- 

ated) 

failed as  the result of a cooperative  test. When  a  failure is 
detected, a bit is set in this  register. Each position of  the 
FVR is associated with another GPC within the  com- 
puter  set.  The  FVR is set  and  reset  under control of the 
software and is automatically reset  for  any  reset Of 
the IOP. 

Failure-vote  discrete  driverlreceiver Each  output of the 
FVR is logically connected  to  an  independent,  discrete 
driver.  Each failure-vote discrete  driver  has  two  dedicat- 
ed  outputs,  one  to indicators on  the  crew panel  and the 
other  to a discrete receiver in the IOP of  one  of  the 
GPCs (the  one corresponding to the dedicated FVR 
position).  Thus,  each GPC contains  four failure-vote 
discrete  drivers  for transmission of the  results of the 
compare word test  to  other GPCs (and  to  the  crew 
panel) and four failure-vote discrete receivers  for accep- 
tance of the  votes. 

Voter  logic  and  fail-latch The  voter logic accepts  the 
outputs of the fail-vote discrete receivers and  generates 
an  output  to  set a voter fail-latch whenever two or more 
failure-vote discretes  are received  from other GPCs. 
The  voter fail-latch is  reset by an IOP power-on reset  or 
a  halt-discrete  input  from  a crew panel switch  and is set 
by the  voter logic. The  output of the  latch is transmitted 
to  the computer-fail driver, failure-vote  inhibitor, and 
transmission  termination control logic. 

Computer-fail  driver  Vuil-discrete) During flight the 
computer-fail driver is used to transmit a GPC critical 
failure  indication to  the  controls and  display console  as a 
result of both cooperative  and self-test GPC failure 
identification.  When the  voter fail-latch is set,  the  com- 
puter-fail driver transmits an  output  discrete  to  the  crew 
panel. No fail indication is present when a GPC is on 
and  operating  normally, is off, or has  received  a  halt-dis- 
Crete input. 25 
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Figure 4 Dedicated  redundancy  management logic, shown for computer 1. 

The  hardware shown in Fig. 4 is also used for recon- 
figuration, which  involves  termination of the role of a 
GPC as a  functioning  member of the  redundant GPC 
set.  One manifestation of reconfiguration is an IOP re- 
set, which can  occur automatically  when the GPC has 
been identified as failed; another is automatic inhibition 
of the transmission of failure votes  to  other GPCs, 
which means  that  the logic operates  to  prevent a failed 
GPC from further participation in cooperative failure 
detection. 

Duplex  operation 
When  only two GPCs are operating in the  redundant 
set, identification as a  result of cooperative testing is not 
possible,  although detection of a  disagreement is possi- 
ble through the  compare word test.  ,Therefore, self-test- 
ing must be used to distinguish which of two GPCs has 
failed. The  cooperative  tests  are still useful,  however, in 
providing a program cue  to scheduling  any  planned self- 
test program execution.  As  such,  cooperative  tests 
should  be  run  continuously in the duplex  mode. Thus, 
whenever a failure vote is set by either of the two com- 
puters,  that  computer  can also  run  self-test. 

The  sources of self-test coverage  that  can be  used in 
26 the duplex mode fall into  three categories: 

BITE (built-in  test  equipment) BITE  consists of any 
hardware logic or microcode  which causes  an  interrupt 
to  the CPU, during  its  normal  program operation, when 
a GPC failure is detected. 

Self-test programs These programs detect GPC failures, 
but  must be specifically executed  under program  con- 
trol. They  can  consist of either main-memory-resident 
(macrocode)  or control-storage-resident (microcode) 
routines. 

Watchdog timer A  watchdog  timer (shown in Fig. 4),  
located in the IOP and periodically loaded by the CPU, 
is used to  detect failures that affect cyclic  program exe- 
cution by the CPU and is a means of indicating that  the 
GPC has failed after fault detection by the CPU. When- 
ever  the time  loaded into  the timer elapses, a  timeout 
latch is set  to identify the failure to  that GPC. 

The level of coverage of critical hardware  that can  be 
achieved by self-test techniques during  duplex operation 
is limited by the  resource utilization constraints imposed 
by flight-program budgets. An  example of the relation 
between  coverage and resource utilization is shown in 
Table 2 for  the  central  processor  (the example does not 
include memory or  power  supply).  The level of CPU 
coverage achievable for  the  amount of storage  and  pro- 
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cessing  time expended, when a combination of BITE, 
watchdog  timer, and microcoded  self-test  program is 
used, is considered  acceptable.  The  use of a macrocoded 
self-testing  program in the  redundant  set during flight 
operation would take  too much storage and  processing 
time for  the additional coverage it would provide.  How- 
ever,  the  execution of a macrocoded  self-testing  program 
prior to assignment to  the  redundant  set,  to  meet  the 96 
percent  coverage  requirement discussed  previously, is 
necessary. 

Summary 
The  use of computers in flight-critical applications has 
imposed  a requirement  for multiple-fault tolerance in the 
computer configuration. In  the  Space  Shuttle avionics, 
multiple, internally  simplex digital computers  are con- 
figured to receive the  same input data  and calculate the 
same flight-critical outputs, in order  to  use voting fault- 
tolerant  control effectors. 

The calculation of the  same  outputs by each critical 
computer  and  the  synchronization of inputs are used to 
provide  the  means of achieving  total  failure coverage of 
flight-critical functions for a small computational re- 
source  and  hardware  cost.  The  technique  that  was im- 
plemented uses  each  computer  to  judge  the  “health” of 
the  others through  a  bit-by-bit comparison of critical 
data  and  an 1 / 0  transaction  timeout  test.  The  judge- 
ment  process was  implemented in software  for  greater 
flexibility, and  the  vote  on  the  judgements and the  gener- 
ation of the failure  indication were implemented in dedi- 
cated  hardware  for  greater failure identification reliability. 

When more  than  two  computers  are operating, the 
level of failure detection and  identification achievable 
using data  comparison  between  computers  and voting 
techniques is significantly higher than  that  obtainable 
using self-testing.  When only two  are operating, an  ac- 
ceptable level of failure detection and identification can 
be obtained, within limited storage  and processing  time, 
by using built-in test equipment and a watchdog  timer on 
a continual  basis and scheduling  special test  microcode 
to follow the  occurrence of a non-compare. 
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Appendix 
Here we develop  the relation between  coverage during 
two-unit operation  and  the probability of multiple-unit 
system loss. 
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Table 2 Relation between self-test resource utilization and 
coverage for the central processor (not including  memory or 
power supply). 

Coveruge of 
Centrul processor critical  Storage 
se l f tes t  coverage  hardware (half- Processing 

source (percent)  words) time (ms) 

BITE* 36.9 0 0 
BITE/Watchdog timer 68.5 4 0.005 
BITE/Timer/Micro- 

coded self-testing 88.7 14 0.15 
BITE/Timer/Micro- 

and macro-coded 
self-testing 96.8 110 1.3 

*BITE is the abbreviation for built-in test equipment. 

The probability of an N-unit  system loss, P S L ,  with 
total  coverage  on  the first N - 2  failures, is 

P S L  = P,  ( t )  PSL* ( T  - t )  d t ,  l (A1 1 
where T = mission length; P ,  ( t )  = probability of failing to 
a two-unit system  at time t ;  and PSL* ( T  - t )  = probabil- 
ity of system loss during  two-unit operation.  In  turn, 
PSL* has  been derived [9] as 

PSL* = ( 1  -e -”)  - [ ( 2 c -  1 ) / ( 2 k +  l ) ]  
x e-U[ 1 - p “ U ] ,  (A2 1 

where u = A, ( T  - t )  ; A, = unit  failure rate; c = failure  cov- 
erage during  two-unit operation; k = A, /Ac;  and A, = fail- 
ure  rate of components  that  do  not affect the unit’s func- 
tion, i.e., the false alarm  rate. 

Equation (A2) shows  that,  for this  particular system, 
system  loss is a linear function of coverage c. Moreover, 
this loss, during  two-unit operation, is the  same  as in 
one-unit  operation  when c = 0.5. 
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