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Turbo Equalization: Principles and New Results
Michael Tüchler, Ralf Koetter, and Andrew C. Singer

Abstract—We study the turbo equalization approach to coded
data transmission over channels with intersymbol interference.
In the original system invented by Douillard et al., the data are
protected by a convolutional code and the receiver consists of two
trellis-based detectors, one for the channel (the equalizer) and one
for the code (the decoder). It has been shown that iterating equal-
ization and decoding tasks can yield tremendous improvements
in bit error rate. We introduce new approaches to combining
equalization based on linear filtering with decoding. Through
simulation and analytical results, we show that the performance
of the new approaches is similar to the trellis-based receiver, while
providing large savings in computational complexity. Moreover,
this paper provides an overview of the design alternatives for
turbo equalization with given system parameters, such as the
channel response or the signal-to-noise ratio.

Index Terms—Decoding, equalization, intersymbol interference,
iterative methods, turbo equalization.

I. INTRODUCTION

M ANY practical communication systems encounter the
problem of data transmission over a channel with inter-

symbol interference (ISI). To protect the integrity of the data
to be transmitted, a controlled amount of redundancy is added
(encoding) using an error correction code (ECC). In this paper,
we assume a coherent, symbol-spaced receiver front-end and
precise knowledge of the signal phase and symbol timing, such
that the channel can be approximated by an equivalent, discrete-
time, baseband model, as shown in Fig. 1, where the transmit
filter, the channel, and the receive filter are represented by a dis-
crete-timelinear filter, with the finite-length impulse response
(FIR)

(1)

of length . The coefficients are assumed to be time-in-
variant and known to the receiver.

In a typical implementation of the system of Fig. 1, the
received symbols are processed with an equalizer or detector to
combat the effects of ISI. The equalizer produces estimates of
the data and, for complexity reasons, typically consists of linear
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Fig. 1. Representation of a data transmission system.

processing of the received signal [linear equalizer (LE)] and
possibly past symbol estimates [decision feedback equalizer
(DFE)] [1], [2]. The parameters of these filters can be selected
using a variety of optimization criteria, such as zero forcing
(ZF) or minimum mean squared error (MMSE) criteria [1],
[2]. Optimal equalization methods for minimizing the bit error
rate (BER) and the sequence error rate are nonlinear and are
based on maximum-likelihood (ML) estimation, which turns
into maximuma posteriori probability (MAP) estimation in
the presence ofa priori information about the transmitted data.
Efficient algorithms exist for MAP/ML sequence estimation,
e.g., the Viterbi algorithm (VA) [1], [3], [4], and MAP/ML
symbol estimation, e.g., the BCJR algorithm [5]. We will refer
to these estimation methods as MAP/ML equalization.

Significant improvements in BER performance are possible
with coded data transmission using an ECC. Communicating
soft information between the equalizer and the decoder, instead
of hard information (symbol estimates only), improves the BER
performance but usually requires more complex decoding al-
gorithms. State-of-the-art systems for a variety of communica-
tion channels employ convolutional codes and ML equalizers
together with an interleaver after the encoder and a deinterleaver
before the decoder [6], [7]. Interleaving shuffles symbols within
a given time frame or block of data and thus decorrelates error
events introduced by the equalizer between neighboring sym-
bols. These error “bursts” are hard to deal with using a con-
volutional decoder alone. Some applications exploit coding to
overcome deficiencies of the chosen equalizer, e.g., the use of a
DFE and a high-rate code to deal with the effects of error prop-
agation [8].

In the receiver, an optimal joint processing of the equaliza-
tion and decoding steps is usually impossible due to complexity
considerations. A number of iterative receiver algorithms repeat
the equalization and decoding tasks on the same set of received
data, where feedback information from the decoder is incorpo-
rated into the equalization process. This method, called turbo
equalization, was originally developed for concatenated convo-
lutional codes (turbo coding, [9]) and is now adapted to var-
ious communication problems, such as trellis coded modulation
(TCM) [10], [11] and code division multiple access (CDMA)
[12]. We refer to standard references [13]–[15] for an overview
of turbo coding. Turbo equalization systems were first proposed
in [16] and further developed in several articles [17], [18]. In
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all these systems, MAP-based techniques, most often a VA pro-
ducing soft output information [19], are used exclusively for
both equalization and decoding [16], [17]. The more complex
BCJR algorithm [5] was implemented in [17]. Combined turbo
coding and equalization [20], [21] includes three or more layers:
two or more coding layers as in conventional turbo coding ap-
plications and the channel equalizer.

The MAP/ML-based solutions often suffer from high
computational load for channels with long memory or large
constellation sizes (expensive equalizer) or convolutional
codes with long memory (expensive decoder). This situation is
exacerbated by the need to perform equalization and decoding
several times for each block of data. A major research issue
is thus the complexity reduction of such iterative algorithms.
Ariyavisitakul and Li [22] proposed a joint coding-equalization
approach, distinct from turbo equalization, working with
convolutional coding and a DFE. Here, within the DFE, soft
information from the DFE forward filter and tentative (hard)
decisions from the decoder using the VA are fed back. Wang
and Poor [12] proposed a turbo equalization-like system as
part of a multiuser detector for CDMA. This iterative scheme
is based on turbo equalization using an LE to reduce ISI
and MAP decoding. The MAP equalizer is thus replaced
with an LE, whose filter parameters are updated for every
output symbol of the equalizer. In [23], the MAP equalizer
in the turbo equalization framework is exchanged with a soft
interference canceler based on linear filters with very low
computational complexity, whose coefficients are obtained
using a least-mean-square (LMS)-based update algorithm.
This idea is enhanced in [24], where the filter coefficients are
obtained using the LMS algorithm to match the output of a
MAP equalizer. For varying signal-to-noise ratios (SNRs) and
feedback information constellations, a linear estimate of the
MAP equalizer is stored in a table and used for equalization
in the receiver. The approach in [25] is similar to that of [23],
but assumes a (known) impulse response of a partial response
channel occurring in magnetic recording applications. The
equalizer filter output is assigned a reliability measure enabling
the receiver to decide whether the linear algorithm should be
used instead of MAP equalization. Another common technique
to decrease the complexity of the MAP equalizer is to reduce
the number of states in the underlying trellis, which was applied
to turbo equalization in [26]. The approaches in [23]–[25] and
those proposed in this paper address a major shortcoming of
the classical turbo equalization scheme [16]–[18], which is
the exponentially increasing complexity of the equalizer for
channels with a long impulse response or large signal alphabets.
We replace the MAP equalizer with an LE and a DFE, where
the filter parameters are updated using the MMSE criterion.

The paper is organized as follows. A brief definition of a
coded data transmission system applying turbo equalization in
the receiver is given in Sections II and III. In Section IV, we de-
scribe the general structure of a soft-in soft-out (SISO) equalizer
based on MMSE equalization and derive four different imple-
mentations of this general approach using an LE or a DFE. Com-
plexity considerations are explored in Section V. In Section VI,
the two receiver components and the overall system are ana-

Fig. 2. Transmitter section of the data transmission system.

lyzed yielding estimates of the BER performance of the system
and suggestions on how to select appropriate codes and SISO
equalizers. These results are verified and compared to existing
solutions [12], [16]–[18], [23]–[25] in Section VII and summa-
rized in Section VIII.

II. NOTATION AND SYSTEM DEFINITION

To simplify the derivations, all systems to be investigated con-
tain the same transmitter depicted together with the ISI channel
in Fig. 2. The (binary) data is encoded with a (binary) convolu-
tional encoder yielding the code symbols, which are mapped
to the alphabet of the signal constellation. In this paper, for
simplicity we assume binary phase shift keying (BPSK), i.e.,

, and that the channel impulse response coeffi-
cients and the noise samples are real valued. A frame-
work to develop algorithms for higher order constellations and
complex-valued and is presented in [27].

The transmission and receiving tasks are applied to blocks
of data bits of length . They are encoded to

code symbols , ,
, where is the code rate and is

any overhead introduced by the encoder, e.g., a termination se-
quence. The interleaver permutes theand outputs sym-
bols , , , to be transmitted over the ISI
channel. This operation is denoted , where is a
fixed random permutation on elements. For more informa-
tion on (see, for example, [15]). The permutation ,
the deinterleaver, reverses the operation. The noise is mod-
eled as additive white Gaussian noise (AWGN), i.e., the noise
samples are independent and identically distributed (i.i.d.)
with normal probability density function (pdf)

(2)

and independent of the data, where . Given
(1), the receiver input is given by

Before proceeding with a description of the different methods
for turbo equalization, some frequently used notation is intro-
duced. Vectors are written in bold letters and are considered to
be column vectors. Matrices are specified by bold capital let-
ters. Time-varying quantities are augmented with a time index

as the subscript. The matrix contains all zeros,
and contains all ones. is the identity matrix. The
operator is the expectation with respect to the joint pdf
of and . The covariance operator is given by

, where is the Hermitian oper-
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Fig. 3. A receiver performing turbo equalization.

ator. The -value operator is applied to quantities
and is given by

i.e., the log likelihood ratio (LLR). The operator to be
applied to a length vector returns an square matrix with
the vector elements along the main diagonal.

III. B ASIC PRINCIPLE OFTURBO EQUALIZATION

Fig. 3 depicts the receiver structure for turbo equalization pio-
neered in [16]. All other approaches presented here use the same
structure and vary only in the type of equalizer. For decoding,
we consider only the BER-optimal MAP approach. The MAP
equalizer suitable for turbo equalization, which was shown to
perform best in simulations among the trellis-based detection
schemes [17], computes thea posterioriprobabilities (APP’s),

, , given received symbols
, , and outputs thea posterioriLLR minus

thea priori LLR

(3)

Thea priori LLR, which is , represents prior information
on the occurrence probability of and is provided by the de-
coder. For the initial equalization step, noa priori information
is available and hence we have , . We empha-
size that is independent of . This and the concept
of treating feedback asa priori information are the two essen-
tial features of any system applying the turbo principle [13] and
turbo equalization in particular [16], [17]. The MAP decoder
computes the APPs , ,
given code bit LLRs , , and outputs
the difference

where the equalizer output is considered to bea priori
LLR for the decoder. The interleaver and the deinter-
leaver provide the correct ordering of the LLRs

and , which are input to
the equalizer and decoder, respectively. The MAP decoder also
computes the data bit estimates

(4)

Fig. 4. A SISO equalizer based on MMSE equalization.

Applying the turbo principle, after an initial detection of a block
of received symbols, blockwise decoding and equalization oper-
ations are performed on the same set of received data. A suitably
chosen termination criterion stops the iterative process.

IV. TURBO EQUALIZATION USING MMSE EQUALIZATION

The MAP equalizer in Fig. 3 can be replaced with the SISO
equalizer shown in Fig. 4. The depicted structure leads to a
rather general class of SISO equalizers consisting of an MMSE
equalizer, which computes estimatesof the transmitted sym-
bols from the received symbols by minimizing the cost
function . We will apply linear and nonlinear (in-
cluding decision feedback) MMSE equalizers. We furthermore
show that some instances of the SISO equalizer algorithms re-
cover algorithms by Glavieuxet al.[23] and Wu and Cioffi [25].
The SISO equalizer output is obtained using the esti-
mate

(5)

instead of , , which requires the knowledge of
the distribution of conditioned on ,

.
To perform MMSE estimation, the statistics and

of the symbols are required. Usually, the
are assumed to be equiprobable and i.i.d., which corresponds

to , , and yields and . For general
(the are not equiprobable), and are ob-

tained as

After MMSE equalization, we assume that the pdfs

, , are Gaussian with the parameters

and [12]

(6)

This assumption tremendously simplifies the computation of
the SISO equalizer output LLR . We emphasize that

should not depend on the particulara priori LLR
. Therefore, we require that does not depend on
, which affects the derivation of the MMSE equalization

algorithms.
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A. Turbo Equalization Using Linear MMSE Equalization

1) Exact Implementation:The MMSE equalizer for this
novel approach is an LE consisting of a lengthfilter with
time-varyingcoefficients , ,
where , which are defined by the
linear MMSE estimate [28] of given the observation

:

(7)

For data transmission over an ISI channel, this becomes

where is the channel convolution matrix

...

and

However, depends on via and . In order that
be independent of , we set to 0 while computing

, yielding and . This changes (7) to

Writing the MMSE LE output as

where , the vector of the coefficients

is consequently set to

This yields the final expression ,
from which the statistics and of are computed

The output LLR follows as

(8)

When , , e.g., for the initial equalization step,
we have and , , yielding a time-invariant
coefficient vector (NA stands for noa priori infor-
mation), the usual MMSE LE solution [1]

The corresponding output LLR is given by

(9)

2) Approximate Implementation I:Computing for each
time step causes a high computational load for computing

, since an matrix has to be inverted for each. A
recursive algorithm to compute from devised in [27] re-
duces this load tremendously. A further reduction is possible by
using time-invariant coefficients. We propose a low-complexity
alternative, motivated as an approximation to the exact MMSE
solution, which uses the time-invariant coefficient vector
to compute given a general

The use of this approximation will be justified by the excellent
complexity/performance tradeoff shown in Sections V and VI.
Given a set of general, nonzero, , while the MMSE-op-
timal coefficients must vary with , if we restrict complexity
such that the filter coefficients are time-invariant, then after sub-
tracting the nonzero means, this set of coefficients can be viewed
as MMSE optimal by simply ignoring (i.e., setting to zero) the

. From the statistics

for this approach, the output LLR is given by

Computing for each is computationally expensive. A
possible simplification is to approximate with the time

average

which can be further simplified to

(10)

using the approximation
. Simulation results not shown in this paper

reveal that using instead of does not sacrifice
much performance.
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When , , the exact (Section IB-A-1) and the
approximate implementation I of the MMSE LE are identical,
yielding the same output LLR .

3) Approximate Implementation II:Another way to yield a
time-invariant coefficient vector is to let , , i.e.,
for perfecta priori information, yielding and

which is the matched filter response to the channel impulse re-
sponse normalized by , where is the

energy of the channel. The estimates
are computed using given general as follows:

(11)

yielding the statistics

and the output LLR

It turns out that is identical to that for the linear SISO equal-
izer in [23] (in case the assumption , , actually
holds) and [25]. Thus, the algorithms in [23] and [25] are in-
stances of the MMSE LE derived in Section IV-A1 under the
constraint that , . As in Section IV-A3, the
variance can be approximated using the time average

(12)

When , , for which this approach, as shown later,
is certainly not suited, the output LLR becomes

B. Turbo Equalization Using MMSE Decision Feedback
Equalization

The MMSE equalizer for the second novel approach intro-
duced in this paper is a DFE consisting of a lengthfeedfor-
ward filter with time-varyingcoefficients ,

, , and a strictly causal length
feedback filter withtime-varyingcoefficients ,

. It is natural to address the postcursor ISI with the

feedback filter and the precursor ISI with the feedforward filter
yielding the choice

for the filter length parameters [1]. A general expression for the
MMSE DFE output is therefore

(13)

where the are past decided estimates obtained using an
appropriate decision function, e.g.,

for BPSK. We assume that the DFE is error-free, i.e.,
, . Using the relation ,

, between the feedback coefficients and the
feedforward coefficients [1], which also holds in the pres-
ence ofa priori information [29], the output equation
(13) becomes

where is the channel con-

volution matrix, ,

. Applying (7), i.e.,
, we find

where the zero row in follows because the transmitted sym-
bols , , are assumed to be known
due to the available decided estimates yielding .
The derivation of the MMSE DFE is similar to MMSE estima-
tion using (7) given the observation [29]

As in Section IV-A1, to ensure that is independent from
, we replace and with 0 and 1, respectively, while

computing :

With the final expressions for the feedforward filter coefficients,
, and the MMSE

estimate, , the statistics
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TABLE I
NUMBER OF REQUIRED OPERATIONSPER RECEIVED SYMBOL PER ITERATION USING VARYING SISO EQUALIZATION ALGORITHMS.M : CHANNEL IMPULSE

RESPONSELENGTH; N : EQUALIZER FILTER LENGTH; 2 : ALPHABET SIZE OF THE SIGNAL CONSTELLATION

and the output LLR

(14)

can be computed as in Section IV-A1.
When , , is time invariant and equal to the

usual MMSE DFE solution [1]

The corresponding output LLR is given by

A recursive algorithm to efficiently compute from
is given in [29]. It is also possible to derive approximate im-
plementations similar to the approaches in Sections IV-A2 and
IV-Q3. However, the resulting suboptimal algorithms exhibit in-
ferior performance to the exact implementation [29], which in
turn is inferior to the LE-based methods (see Section VII). We
therefore omit the corresponding derivations here.

V. COMPLEXITY COMPARISON

An important aspect of these SISO equalizer algorithms is
their computational complexity. We consider the MAP equal-
izer, the exact MMSE LE (Section IV-A1), the approximate
MMSE LE (I) (Section IV-A2) and (II) (Section IV-A3), and
the MMSE DFE (Section IV-B) for comparison.

We assume that the statistics and of are available
for all and do not consider the computation of [both
mappings and strongly depend
on ]. Any overhead due to initialization (one-time operations
for all iterations), e.g., to compute , is neglected. All quan-
tities are assumed to be complex for this comparison. Table I
shows the required number of real multiplications and additions
per received symbol per iteration, given generala priori in-
formation . The numbers for the MMSE-based ap-
proaches follow from the detailed algorithm derivations in [29].
The MAP equalizer uses the BCJR algorithm [5], where we con-
sidered only the computation of the path metrics (thequantity)
for all trellis sections and the-, -recursions. Efficient imple-
mentations of the BCJR algorithm in the context of the turbo
principle are presented, for example, in [13] and [17]. The al-
gorithms for the approximate MMSE LE’s (I) and (II) can be
implemented in the frequency domain [30], which further de-
creases the computational load for specific systems.

Fig. 5. The two basic receiver components.

VI. A NALYSIS

A. The EXIT Chart

We describe in this paper an analysis tool called an EXIT
chart to compare the performance of the approaches described
in Section IV and to ease the selection of system parameters,
such as the generator of the convolutional code or the equalizer
filter lengths.

A large body of research has been undertaken to provide tools
for choosing design options for turbo codes, e.g., by analyzing
the effects of the interleaver and bounds on the BER [31], [32].
Another analysis approach is to consider the turbo decoder as
a high-dimensional nonlinear dynamic system [33], [34] whose
convergence behavior can be characterized by its fixed points.
These results have proven useful for determining the SNR re-
gions, where the iterative algorithm provides improvement. We
use the approach of ten Brink for analysis of TCM [35] and par-
allel concatenated convolutional codes (PCCCs) [36] using ex-
trinsic information transfer (EXIT) charts for turbo equalization.
For the EXIT analysis, the receiver components are modeled as
devices mapping a sequence of observations(equalizer only)
and LLRs , the a priori information, to a new sequence of
LLRs as shown in Fig. 5.

The sequence of random variables (r.v.s)is assumed to be
i.i.d. according to a single parameter conditional pdf

for a suitably chosen parameter

(15)

We denote briefly as . This pdf is moti-
vated by the fact that an LLR computed from the output

of an AWGN channel with noise power
and input has a distribution according to (15), where

The crucial observation in ten Brink’s analysis is that the se-
quence of the output LLRs is reasonably well approximated
by a single parameter normal distribution of type (15) for a
second parameter . A MAP equalizer and a MAP decoder are
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Fig. 6. Model for analysis of the iterative receiver algorithm.

assumed to match this assumption, which was shown to be accu-
rate in [37] for sum-product decoding algorithms in the general
setup of decoding of graph-based codes.

The SISO equalizer algorithms derived in this paper use the
Gaussian model (6) to compute the output LLR

using (5). Describing the (after dein-
terleaving) with the r.v. reveals that

(16)

The distribution of exhibits the property that the vari-
ance is twice the magnitude of the mean similar to LLRs dis-
tributed with . However, using (15) to analyze the SISO
equalizer output is still an approximation, since (6) is an as-
sumption and the statistics and are not constant
in , as is assumed in (15).

Using the definitions above, it is possible to define a single
parameter transfer function of the equalizer
and of the decoder. Fig. 6 illustrates how these
transfer functions appear in the iterative decoding process.

Besides the constraint on the pdf of the output LLRs
and of the receiver components, another assumption
within the EXIT analysis is that the input LLRs and

conditioned on and , respectively, are i.i.d. samples
of the r.v. . This is also taken into account in the derivation
of the equalizer algorithms, where , ,
is assumed. In the receiver, where is provided by the de-
coder, this assumption is plausible for large interleaver block
lengths, at least for several iterations. Also the decoding algo-
rithm assumes the input code symbol LLR’s to be in-
dependent given , which is again plausible only in presence
of the deinterleaver, since the given are dependent
due to the colored noise disturbing the MMSE equalizer output

. The interleaving and deinterleaving process is thus the cru-
cial step to approximately provide independence requirements
at least locally between neighboring samples, and for several it-
erations.

For the EXIT charts,a priori information or , re-
spectively, is generated from perfectly matching the two re-
quirements [i.i.d. according to ] and presented to each

receiver component (equalizer, decoder) separately. This anal-
ysis is thus asymptotic in that the independence assumptions are
assumed to hold over an infinite number of iterations, which is
possible only for an infinite length block length ( ) and
an ideal interleaver . For a finite block length , the EXIT
chart analysis is still useful over several iterations. While the
independence assumption can be satisfied to arbitrary accuracy,
we emphasize that the assumed distribution (15) is only approx-
imately satisfied even for large interleaving. The main justifica-
tion for the proposed analysis is the apparent usefulness of the
method demonstrated in the sequel.

Similar analysis tools for turbo equalization [38], turbo codes
[39], low-density-parity-check codes [40], or TCM [41] are
available, which are all based on (15) but differ in the observed
parameter. For example, the approach in [41] considers the
SNR of the LLRs for the analysis, which is to observe transfer
functions of type

obtained by passinga priori LLRs at some input SNR
through the equalizer and decoder yielding an output SNR
of the LLRs . Ten Brink’s approach computes the mutual
information

(17)

where , between the r.v.s and . After
passing samples of through the equalizer or the decoder, at
the output the mutual information between the r.v.s

and is obtained by applying (17) using the distribution of
. This is done in [35] and [36] by observing the histogram of

the outputted LLRs to estimate the pdf ofand then computing
numerically using (17). Thus, even though the pdf of

is assumed to be of type (15), which is crucial to model the
input LLRs of the following receiver component, is
obtained without this assumption.

We denote briefly as and briefly as .
From the definition of , we see that is only a function
of with the two extremal values and

for no and perfecta priori information. The EXIT
chart is the transfer function of the equalizer
or of the decoder mapping the input variable

to the output variable . The range
of compactly describes the quality of the output LLRs of a
receiver component and is more convenient than for the
approaches based on or the SNR.

B. EXIT Chart of a MAP Decoder

Fig. 8 depicts EXIT charts of a MAP decoder using several
optimal (with respect to (w.r.t.) the distance spectrum) rate

codes including rate punctured versions. The octal
notation of the code generators is taken from [3]. To
obtain the EXIT charts, code symbols generated
from randomly chosen equiprobable information bitsand



TÜCHLER et al.: TURBO EQUALIZATION: PRINCIPLES AND NEW RESULTS 761

Fig. 7. Mapping between the parameters� andI .

Fig. 8. EXIT charts of a map decoder.

correspondinga priori LLRs distributed with
given a preset are used. This is done by randomly generating

LLRs with the pdf and flipping the sign of
all where yielding the pdf for those
LLRs. For the chosen , the mutual information is computed
numerically using (17), which is the fixed function depicted in
Fig. 7. To obtain , in [35] and [36] the pdfs of the output LLRs

are estimated by splitting the LLRs into
two groups, where and , respectively. A
histogram of the samples in each group approximates ,

, which is therefore used in (17) to obtain. The EXIT
chart is constructed by repeating the procedure above for several
values of yielding pairs .

C. EXIT Chart of a SISO Equalizer

Fig. 9 depicts EXIT charts of the equalizer using MAP equal-
ization and MMSE equalization. We selected the length-5 ISI
channel

(18)

from [1] for the EXIT chart analysis and the simulations. This
channel causes severe ISI, enabling turbo equalization to yield

Fig. 9. EXIT charts of the equalizer at 4-dB SNR.

large performance gains. However, the performance enhance-
ments observed for this channel are representative and qualita-
tively similar to those obtained for a wide variety of fixed and
fading channels [29]. The noise variance is determined ac-
cording to the SNR defined as

(19)

which we set to 4 dB for the chart in Fig. 9. The filter parameters
for the exact MMSE LE and the approximate MMSE LE (I)
were set to and for the MMSE
DFE to .

For the EXIT charts, 10 randomly chosen equiprobable
symbols were generated and transmitted over the ISI
channel. The correspondinga priori LLRs given a preset

were generated as in Section VI-B. The equalizer processed
the received symbols together with . The quantity
is computed from and is computed from the output LLRs

as in Section VI-B.

D. BER Estimation

In [36], the EXIT analysis is also used to estimate the infor-
mation BER , where is given by (4), of the MAP
decoders as part of a PCCC system considered there. This es-
timation is based on the Gaussian assumption (15) yielding a
unique corresponding to a parameter or , re-
spectively, of the decoder output LLRs . For more in-
formation on how to estimate this error probability, we refer to
[36].

We use simulation to assign a BER to each
obtained for the decoder EXIT chart, since the chart

itself is based on simulation yielding the BER as a side product.
Fig. 10 displays the BER as a function of the expression
on logarithmic scales for the rate codes from Sec-
tion VI-B using the same simulation parameters. The curves for
several code memories and that for the punctured rate
codes (not shown here) were almost identical, which verifies the
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Fig. 10. Information BER of MAP decoding as a function ofI .

Fig. 11. Receiver EXIT chart at 4 dBE =N .

result in [36] that alone can be used to estimate
independently of the chosen code.

E. Application to the Iterative Receiver Algorithm

In the turbo equalization-based receiver, equalization and
decoding steps are iterated by passing the LLRs and

between the receiver components. Using our analysis,
we can describe this mechanism just by the evolution of the
distribution of the r.v.s and describing the LLRs
and . Using (15), this density evolution is completely
described by the change of to or to , respectively.
To distinguish between equalizer and decoder, the quantities
and are augmented with the superscripts(equalizer) and

(decoder).
The iterative process starts with an initial equalization, where

, , and therefore . Next, the output LLRs
described by are fed into the decoder yielding

LLRs described by which are fed back to
the equalizer and so forth. This procedure is described with a
singlereceiverEXIT chart combining Figs. 8 and 9 as shown in
Fig. 11, where the decoder chart is flipped along the
line. The iteration process is a trace between the transfer curves
of the two receiver components.

Fig. 11 shows such a receiver EXIT chart at 4 dB ,
where the receiver uses a MAP equalizer or one of the
MMSE-based equalizers and a MAP decoder for the code

. In the example trace, a turbo equalization system
using a MAP equalizer needs only two iterations (equaliza-
tion/decoding tasks after one initial equalization/decoding
task) to nearly reach at the decoder output, which
corresponds to a zero BER. Surprisingly, with the exact MMSE
LE the same performance is achieved, only after four iterations
(for clarity, the trace is not shown here). The approximate
MMSE LE (II) is also capable of achieving the MAP equalizer
performance for large values of , but it has a very poor
gain in for small values of . The severe ISI caused by
the channel (18), which acts as noise disrupting the output
estimates of the equalizer, is not reduced at all fora priori
LLRs close to 0, yielding the poor values of . The
system thus cannot find a trajectory leading to a largeusing
the code and stops improving the performance
after around three iterations and remains in the fixed point

. The approximate MMSE LE (I) starts with
the same performance as the MMSE LE [both algorithms are
identical for , ], but shows poor performance
for large values of . The fixed point of the receiver is here

. The MMSE DFE shows a poorer performance
than the linear counterpart (exact MMSE LE) for small values
of and becomes better for . The performance is
even better than that of a MAP equalizer for , which
likely stems from the hard decision element in this algorithm.

Fig. 11 also reveals that a MAP equalizer, the exact MMSE
LE, and the approximate MMSE LE (II) yield the same value

for perfecta priori information , which corre-
sponds to . This is due to (3) and (5) to compute the
output LLRs , which prohibit that itself is used
to compute . It follows that for the ISI
disturbing a received symbol can be removed completely,
since all , , are known. According to (11), the equal-
ized estimate

remains, yielding the output LLR

The variance of the
r.v. describing and hence derived from are a
function of and , only. Using Fig. 7, the upper bound on

attained for at 4 dB is . Thus, the
MAP decoder receives LLRs with at most ,
which is the matched filter bound for the turbo equalization
system considered here, i.e., the asymptotic performance of the
receiver is at best the performance of the MAP decoder alone
for transmission over an AWGN channel. This bound is over-
come by adding a rate-1 recursive precoder to the transmitter
[42], which can improve the system performance tremendously
[38], [43].
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TABLE II
EXPECTEDBER AFTER 0, 1, 2,OR1 ITERATIONS OF ARECEIVER USING

VARIOUS SISO EQUALIZERS AND A MAP DECODER

The receiver EXIT chart in Fig. 11 suggests a hybrid approach
for equalization, which is to use one of the two approximate
MMSE LEs (I) or (II) depending on thea priori information
constellation, i.e., the value of . At 4 dB , using (I)
as an equalization algorithm for at least three initial iterations
followed by (II) for the successive iterations gives a trace that
remarkably reaches the performance of the MAP equalizer re-
quiring a very low computational complexity (see Table I). With
the hybrid approach, we can combine the good starting behavior
of (I) (small ) and the good performance of (II) for large
values of . A simple criterion to optimally switch between
different SISO equalizers is to pick the equalizer yielding the
largest given a specific . Since is monotonically in-
creasing in (see Fig. 7), the equalizer yielding the largest,
where for the SISO equalizers based on
MMSE equalization (16), should be selected. For the approxi-
mate MMSE LE (I) and (II), the mean is constant and the
variance varies in . Consequently, the criterion changes
to selecting the equalizer maximizing the average variance

(20)

given estimates , . This average variance
can be approximated with the lower bound

where the denominator is the time averageof the variance
computed in (10) and (12).

Following the traces of the receiver for all SISO equalizers
yields values for after each iteration. Using Fig. 10, we can
compute estimates of the BER of the iterative re-
ceiver algorithm given in Table II.

The receiver EXIT chart also helps to choose a suitable
code for the system. Fig. 12 displays the tradeoff in selecting a
code, which ideally enables the iterative algorithm to converge
at SNRs as low as possible to a BER as low as possible. The
transfer curve of the MAP equalizer in Fig. 12 touches the
curve of the code at dB and therefore
prohibits the iterative system to converge, whereas there is
still a path through the bottleneck using the code .

Fig. 12. Receiver EXIT chart at 0.8 dBE =N for various codes.

TABLE III
SNR THRESHOLD INE =N FOR SIGNIFICANT PERFORMANCEIMPROVEMENT

OF A RECEIVERUSING DIFFERENTSISO EQUALIZERS AND A MAP DECODER

However, the code yields a lower error floor after
convergence, since the transfer curve approaches faster.
A similar problem, i.e., to find convolutional codes with a good
tradeoff between early convergence (at low SNRs) and a small
error floor after convergence, exists in turbo coding. Here,
techniques such as choosing a generator with feedforward
polynomials of degree much larger than that of the feedback
polynomial [44] or systematic doping [45] are available and
can be applied to turbo equalization also.

Table III gives SNR thresholds in for significant per-
formance improvement of a receiver using different SISO equal-
izers and a MAP decoder for the code . The thresholds
were obtained by generating equalizer EXIT charts at varying
SNRs until the transfer curve touched or intersected the flipped
decoder transfer curve at or less, which corresponds
to a fixed point of the system with a BER of 0.08 or
more (using Fig. 10). Since the equalizer and the flipped decoder
transfer curve have a similar slope, increasing the SNR, which
nearly results in a parallel upshift of the equalizer transfer curve,
yields a quickly moving fixed point in the area around .
The corresponding BER changes quickly too, which
is the usually observed “water fall” region in the performance
plot (BER versus ) of a turbo equalization system.



764 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 5, MAY 2002

Fig. 13. BER performance of receivers applying turbo equalization.

VII. V ERIFICATION OF THEANALYTICAL RESULTS

We present BER performance results by simulating data
transmission using the receiver introduced in Section III and
analyzed in Section VI. The transmitter (see Fig. 2), the ISI
channel (18), the decoder (MAP decoding), and the inter-
leaver/deinterleaver are identical for all systems.
They differ only in the SISO equalizer, which is either a MAP
equalizer, an exact MMSE LE (derived in Section IV-A1),
an approximate MMSE LE (I) (Section IV-A-2) or (II) (Sec-
tion IV-A-2), or an MMSE DFE (Section IV-B).

We use a recursive, systematic encoder for the code
, where the first generator is the feedback part, to encode

length blocks of data bits . The code symbols are
interleaved using a permutation obtained by an -random
construction [15] with . Both the channel im-
pulse response (18) and the noise variancedetermined from
the SNR defined in (19) are known to the receiver, which
facilitates turbo equalization. As suggested in Section VI-E, we
include a hybrid approach using the approximate MMSE LEs
(I) and (II) and switch between them by evaluating the average
variance as in (20) prior to each equalization step.

The number of performed iterations (one equalization/de-
coding task after one initial equalization/decoding task) is 14
for all systems and SNRs, which is a conservative choice. For
example, the analysis in Section VI-E predicts convergence

after two to three iterations using a MAP equalizer at 4 dB
(see Fig. 11). The number of iterations after which

the BER eventually ceases to improve is a function of the
block length , the interleaver , the SNR, and the used
equalization and decoding algorithms. Some suitable stopping
criteria for the iterative process have been considered by Bauch
for ML/MAP-based algorithms [46], based on the change of the
hard decisions , the cross entropy of the LLRs communicated
between the equalizer and the decoder, or the reliability of the
information bit decisions.

Fig. 13 shows the BER performance for the block length
. The upper left plot shows the performance of sepa-

rate or one-time equalization and decoding, which exhibits the
expected behavior: a system using a MAP equalizer is best, fol-
lowed by the MMSE DFE (for above 7.7 dB) and the
MMSE LE. These results are the same as would be obtained
using the SISO equalizers presented here in the absence ofa
priori information, i.e., , . With this constraint, the
exact MMSE LE and the approximate MMSE LE (I) are iden-
tical. The approximate MMSE LE (II) was not considered. A
lower bound on the BER performance is that of coded data trans-
mission over an AWGN channel at the same as shown
in Section VI-E.

Using iterative equalization and decoding, after 1 (top
right), 2 (bottom left), and 14 iterations (bottom right), the
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TABLE IV
BER AFTER 0, 1, 2,OR 14 ITERATIONS OF ARECEIVER USING DIFFERENTSISO EQUALIZERS AND A MAP DECODER

Fig. 14. Receiver EXIT charts with traces of iterative algorithms.

performance order changes drastically. A system using a MAP
equalizer is still best, followed by the exact MMSE LE and the
hybrid approximate MMSE LE (I)/(II). The receiver using the
MMSE DFE provides only a minor performance improvement.
The approximate MMSE LE (II) alone was not considered due
to its poor starting behavior. Using the approximate MMSE LE
(I) alone provides good performance, however, with the hybrid
approach, which does not alter the computational complexity,
the performance is rather remarkable, approaching the AWGN
bound.

Since the receiver performed only 14 iterations and the block
length is finite, the SNR thresholds from Table III are some-
what too optimistic. However, for the MAP equalizer, the exact
MMSE LE, the approximate MMSE LE (I), and the hybrid ap-
proach the derived SNR thresholds and match exactly (within
0.1 dB) the actual threshold for which holds after
performing all 14 iterations. The analysis fails for the MMSE
DFE.

The BERs over successive iterations for each receiver algo-
rithm at 4 dB are shown in Table IV and indicate the de-
gree to which the BER analysis matches the actual performance.
The predicted BER values in Table II closely match the simu-
lated results for all SISO equalizers except for the MMSE DFE.
This discrepancy becomes most obvious by looking at receiver

Fig. 15. Receiver EXIT charts with traces of a receiver using hybrid linear
MMSE equalization.

EXIT charts at 4 dB SNR including the trace of the iteration
process. The traces were obtained by computingor from
10 equalizer/decoder output LLRs or , respec-
tively, over several blocks as inSection IV-B. Figs. 14 and 15 de-
pict receiver EXIT charts together with the simulated traces of
the corresponding iterative algorithm at 4 dB . The trace
of the system using an MMSE DFE does not follow the transfer
curves of equalizer and decoder alone. Therefore, the EXIT
chart analysis cannot be applied to this algorithm. Moreover,
the performance is worse than that of the linear counterpart, the
exact MMSE LE, at the same computational complexity, a re-
sult which was obtained for a number of different channels. The
only difference between the equations used to obtain the output
LLRs with the exact MMSE LE (8) or the MMSE DFE
(14) is to replace the means , , with the past
decided estimates while computing and (when
and are set appropriately for the MMSE LE). While this step
often provides performance gains forseparateequalization and
decoding, the early use of hard decisions appears to be detri-
mental in an iterative algorithm.

Figs. 16 and 17 depict the performance of the receiver
for varying block lengths . For short , repeated inter-
leaving causes short cycles leading to dependencies within



766 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 5, MAY 2002

Fig. 16. Receiver EXIT charts with traces of a receiver using linear MMSE
equalization at two block lengthsK .

Fig. 17. BER of the receiver at 4 dBE =N using exact MMSE linear
equalization for several iterations and block lengthsK .

the LLRs communicated between the equalizer and de-
coder. For example, we looked at the BER of a receiver
using the exact MMSE LE at 4 dB for block lengths

(Fig. 17) and showed
the trace of the iteration process for and
(Fig. 16). The EXIT chart analysis is still valid (the trace
follows the transfer curves of the receiver components), but
only for the number of iterations for which the independence
requirements are matched. After that, the gains in and

decline and the BER stops to decrease over the iterations.
Finally, the system trajectory rests in a fixed point within the
area between the two transfer curves occurs.

VIII. C ONCLUSION

The preceding sections introduced and analyzed several
algorithms for turbo equalization, which are applied to coded
data transmission over ISI channels. In addition to the original
ML/MAP-based method, several new approaches based on
MMSE equalization have been developed. The approaches
using linear MMSE equalization, especially a novel hybrid

approach using two approximate versions of linear MMSE
equalization, perform as well as the BER-optimal MAP
equalizer, only requiring a few more iterations to achieve a
similar BER performance. However, the results also showed
that a receiver using a MAP equalizer can achieve considerable
performance improvement through iteration over SNR ranges
where all other approaches fail. The system employing decision
feedback MMSE equalization did not provide satisfactory
results. The BER performance of the decoder for transmission
over an AWGN channel is a lower bound on the performance
of the receiver performing turbo equalization. This bound can
be overcome by introducing a precoder [42], which makes the
“inner code,” i.e., the conactenation of the precoder plus the
ISI channel, recursive.

The EXIT chart analysis tool was shown to provide signifi-
cant insight into the behavior of these iterative algorithms. This
analysis also enables the selection of appropriate equalization
methods and error correction codes for a given scenario, such
as the channel response, the SNR, and complexity constraints.
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