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Turbo Equalization: Principles and New Results

Michael Tuchler, Ralf Koetter, and Andrew C. Singer

Abstract—We study the turbo equalization approach to coded . .
data transmission ovi/ar channels (\q/vith intersyrﬁgol interference. 9ata — Transmitter - chﬁiilel (D Receiver _:S?i?ltl:;te
In the original system invented by Douillard et al, the data are \r
protected by a convolutional code and the receiver consists of two additive
trellis-based detectors, one for the channel (the equalizer) and one noise

for the code (the decoder). It has been shown that iterating equal-
ization and decoding tasks can yield tremendous improvements Fig. 1. Representation of a data transmission system.
in bit error rate. We introduce new approaches to combining

equalization based on linear filtering with decoding. Through . . . . .
simulation and analytical results, we show that the performance Processing of the recelve_d signal [Iln_e{;\r equalizer (LE)] a_nd
of the new approaches is similar to the trellis-based receiver, while possibly past symbol estimates [decision feedback equalizer

providing large savings in computational complexity. Moreover, (DFE)] [1], [2]. The parameters of these filters can be selected
this paper provides an overview of the design altematives for sing a variety of optimization criteria, such as zero forcing
tL;]rbo elquallzatlon w&h g!venliystem pa;ameters, such as the (ZF) or minimum mean squared error (MMSE) criteria [1],
channet Tesponse orihe signariomnolse fatlo. [2]. Optimal equalization methods for minimizing the bit error
rate (BER) and the sequence error rate are nonlinear and are
based on maximume-likelihood (ML) estimation, which turns
into maximuma posteriori probability (MAP) estimation in

. INTRODUCTION the presence df priori information about the transmitted data.

ANY practical communication systems encounter thEfficient algorithms exist for MAP/ML sequence estimation,

problem of data transmission over a channel with intef-9-, the Viterbi algorithm (VA) [1], [3], [4], and MAP/ML
symbol interference (ISI). To protect the integrity of the datdymbol estimation, e.g., the BCJR algorithm [5]. We will refer
to be transmitted, a controlled amount of redundancy is addé@dfhese estimation methods as MAP/ML equalization.
(encoding) using an error correction code (ECC). In this paper,Significant improvements in BER performance are possible
we assume a coherent, symbol-spaced receiver front-end ¥ coded data transmission using an ECC. Communicating
precise knowledge of the signal phase and symbol timing, sR9ft information between the equalizer and the decoder, instead
that the channel can be approximated by an equivalent, discréghard information (symbol estimates only), improves the BER
time, baseband model, as shown in Fig. 1, where the transRfifformance but usually requires more complex decoding al-
filter, the channel, and the receive filter are represented by a d#§¥ithms. State-of-the-art systems for a variety of communica-

crete-timelinear filter, with the finite-length impulse responselion channels employ convolutional codes and ML equalizers
(FIR) together with an interleaver after the encoder and a deinterleaver

before the decoder [6], [7]. Interleaving shuffles symbols within
a given time frame or block of data and thus decorrelates error
hln] = Z hi6n — k] @ events introduced by the equalizer between neighboring sym-
k=0 bols. These error “bursts” are hard to deal with using a con-
of length M. The coefficientsh;, are assumed to be time-in-yolutional decoder alone. Some applications exploit coding to
variant and known to the receiver. overcome deficiencies of the chosen equalizer, e.g., the use of a
In a typical implementation of the system of Fig. 1, th®FE and a high-rate code to deal with the effects of error prop-
received symbols are processed with an equalizer or detectoagition [8].
combat the effects of ISI. The equalizer produces estimates ofn the receiver, an optimal joint processing of the equaliza-
the data and, for complexity reasons, typically consists of line@én and decoding steps is usually impossible due to complexity
considerations. A number of iterative receiver algorithms repeat
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all these systems, MAP-based techniques, most often a VA pro- Cnl Inter— | T ISI

ducing soft output information [19], are used exclusively for data—s Encoder [ Jeaver [ channel % n
both equalization and decoding [16], [17]. The more complex

BCJR algorithm [5] was implemented in [17]. Combined turbo

coding and equalization [20], [21] includes three or more layergg. 2. Transmitter section of the data transmission system.

two or more coding layers as in conventional turbo coding ap-

plications and the channel equalizer. _lyzed yielding estimates of the BER performance of the system
The MAP/ML-based solutions often suffer from highyng suggestions on how to select appropriate codes and SISO
computational load for channels with long memory or larggqyalizers. These results are verified and compared to existing

constellation sizes (expensive equalizer) or convolutiong,tions [12], [16]-[18], [23]-[25] in Section VIl and summa-
codes with long memory (expensive decoder). This situationjsed in Section VIII.

exacerbated by the need to perform equalization and decoding
several times for each block of data. A major research issue
is thus the complexity reduction of such iterative algorithms.
Avriyavisitakul and Li [22] proposed a joint coding-equalization To simplify the derivations, all systems to be investigated con-
approach, distinct from turbo equalization, working witfiain the same transmitter depicted together with the ISI channel
convolutional coding and a DFE. Here, within the DFE, sofft Fig. 2. The (binary) data is encoded with a (binary) convolu-
information from the DFE forward filter and tentative (hardjional encoder yielding the code symbe}s which are mapped
decisions from the decoder using the VA are fed back. Wai@the alphabet of the signal constellation. In this paper, for
and Poor [12] proposed a turbo equalization-like system 8knplicity we assume binary phase shift keying (BPSK), i.e.,
part of a multiuser detector for CDMA. This iterative schem& = {+1, —1}, and that the channel impulse response coeffi-
is based on turbo equalization using an LE to reduce ISENtsh; and the noise samples, are real valued. A frame-
and MAP decoding. The MAP equalizer is thus replacediork to develop algorithms for higher order constellations and
with an LE, whose filter parameters are updated for evefpmplex-valuedy;, andw,, is presented in [27].

output symbol of the equalizer. In [23], the MAP equalizer The transmission and receiving tasks are applied to blocks
in the turbo equalization framework is exchanged with a so¥ data bitsb; € {0, 1} of length K. They are encoded to
interference canceler based on linear filters with very lod. = Ka/R + K, code symbols,,, n = 1,2, ..., K.,
computational complexity, whose coefficients are obtainead € 5B, whereR € [0, 1] is the code rate an&, > 0 is
using a least-mean-square (LMS)-based update algoriti®y overhead introduced by the encoder, e.g., a termination se-
This idea is enhanced in [24], where the filter coefficients aence. The interleaver permutes theand outputsi. sym-
obtained using the LMS algorithm to match the output of BOISz,,n =1, ..., K., z, € B, to be transmitted over the IS|
MAP equalizer. For varying signal-to-noise ratios (SNRs) arfdhannel. This operation is denotegd = 11(c,, ), wherell(-) is a
feedback information constellations, a linear estimate of tfiged random permutation of’. elements. For more informa-
MAP equalizer is stored in a table and used for equalizatié®n onTI(-) (see, for example, [15]). The permutatibim*(-),

in the receiver. The approach in [25] is similar to that of [23the deinterleaver, reverses tfi¢-) operation. The noise is mod-
but assumes a (known) impulse response of a partial respofi§l as additive white Gaussian noise (AWGN), i.e., the noise
channel occurring in magnetic recording applications. TH&mplesw, are independent and identically distributed (i.i.d.)
equalizer filter output is assigned a reliability measure enabliMgth normal probability density function (pdf)

the receiver to decide whether the linear algorithm should be

used instead of MAP equalization. Another common technique Jo(w) = ¢p(w/ow)/ow )

to decrease the complexity of the MAP equalizer is to reduce . )

the number of states in the underlying trellis, which was appliéid independent of the data, whexe:) = e~ /*//27. Given

to turbo equalization in [26]. The approaches in [23]-[25] and). the receiver input,, is given by

those proposed in this paper address a major shortcoming of Mol

the classical turbo equalization scheme [16]-[18], which is 2 = <Z hw”_}g) tw,.

Wn

Il. NOTATION AND SYSTEM DEFINITION

the exponentially increasing complexity of the equalizer for
channels with a long impulse response or large signal alphabets.
We replace the MAP equalizer with an LE and a DFE, where Before proceeding with a description of the different methods
the filter parameters are updated using the MMSE criterion. for turbo equalization, some frequently used notation is intro-
The paper is organized as follows. A brief definition of aluced. Vectors are written in bold letters and are considered to
coded data transmission system applying turbo equalizationbi@ column vectors. Matrices are specified by bold capital let-
the receiver is given in Sections Il and Ill. In Section IV, we deters. Time-varying quantities are augmented with a time index
scribe the general structure of a soft-in soft-out (SISO) equalizeras the subscript. The x j matrix 0,5, contains all zeros,
based on MMSE equalization and derive four different implend1;,; contains all oned; is thei x ¢ identity matrix. The
mentations of this general approach using an LE or a DFE. CooperatorE(-) is the expectation with respect to the joint pdf
plexity considerations are explored in Section V. In Section V&f z,, andw,,. The covariance operat@iov(x, y) is given by
the two receiver components and the overall system are afigx y’) — E(x)E(y"), where()¥ is the Hermitian oper-

k=0
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Fig. 3. A receiver performing turbo equalization. Fig. 4. A SISO equalizer based on MMSE equalization.
) . . Applying the turbo principle, after an initial detection of a block

ator. TheL-value operatod.(x) is applied to quantities € ot received symbols, blockwise decoding and equalization oper-
{+1, -1} and is given by ations are performed on the same set of received data. A suitably
A chosen termination criterion stops the iterative process.

L(z) = In(P(z = +1)/P(z = -1))
. . . _ IV. TURBO EQUALIZATION USING MMSE EQUALIZATION
i.e., the log likelihood ratio (LLR). The operatf¥iag(-) to be Q o EQ _
applied to a lengttL vector returns ai x L square matrixwith ~ The MAP equalizer in Fig. 3 can be replaced with the SISO

the vector elements a|ong the main diagonaL equalizer shown in Flg 4. The depicted structure leads to a
rather general class of SISO equalizers consisting of an MMSE
IIl. BASIC PRINCIPLE OF TURBO EQUALIZATION equalizer, which computes estimaigsof the transmitted sym-

. ] ) o bols z,, from the received symbols, by minimizing the cost
Fig. 3 depicts the receiver structure for turbo equalization PIRinctionE(|z,, — &,|2). We will apply linear and nonlinear (in-

neered in [16]. All other approaches presented here use the saIli@ing decision feedback) MMSE equalizers. We furthermore
structure and vary only in the type of equalizer. For decodingjyoyy that some instances of the SISO equalizer algorithms re-
we consider only the BER-optimal MAP approach. The MARqyer algorithms by Glavieust al.[23] and Wu and Cioffi [25].

equalizer suitable for turbo equalization, which was shown #g,e 5150 equalizer outputg(z.,,) is obtained using the esti-
perform best in simulations among the trellis-based detectiﬂ{htejn

schemes [17], computes thegposterioriprobabilities (APP’s),

P(z, = alz, ..., 2i.), @ € B, given K. received symbols Le(e) 21n Dlan =+1]2n) ) Plon =+1)
2, n=1,2 ..., K., and outputs tha posterioriLLR minus Pz, =—1|2n) Pz, = —1)
thea priori LLR =1n p(En | zn = +1) )
An n — -1
I . Pz, =41z, ..., 2K.) ! Pz, =+1) . P2 . ) _
p(zn) = In Plan = —1lz1, s 2m)) 1 Plan = —1) instead ofz,,,n = 1, ..., K., which requires the knowledge of
¢ 3) the distributionp(&,, | z,, = «) of &, conditioned onz,, = z,

z € B.

Thea priori LLR, which is L(x,, ), represents prior information ~ To perform MMSE estimation, the statistigs 2 E(z,) and

on the occurrence probability af, and is provided by the de- v, 2 Cov(zy,, z,) of the symbols:,, are required. Usually, the
coder. For the initial equalization step, agriori information z,, are assumed to be equiprobable and i.i.d., which corresponds
is available and hence we haigz,,) = 0, Vn. We empha- to L(z,) = 0, Vn, and yieldsz,, = 0 andv,, = 1. For general
size thatl. g(x,,) is independent of.(x,,). This and the concept L(z,,) € R (thez,, are not equiprobable},, andv,, are ob-

of treating feedback as priori information are the two essen-tained as

tial features of any system applying the turbo principle [13] and _
turbo equalization in particular [16], [17]. The MAP decoder “» = > @ Plan=12) = Plen = +1) = Pz, = —1)
computes the APPB(c, = «|L(c1), ... Liex,)). @ € B, "
given_Kc code bit LLRsL(¢,),n =1, 2, ..., K., and outputs __¢ ) 1 — tanh(L(z)/2)
the difference 14 ell@) 14 ellew)

— i Up = Z |z — E(a:n)|2 Py =x2)=1- |fn|2.
LD(cn) é In P(Cn — +1|L(Cl), ey L(CAC)) et

P(c, = -1|L(¢1), ..., L(ck,)) o

P(c, =+1) After MMSE equalization, we assume that the pelfs,, |z, =

P(c, = —1) ),z € B, are Gaussian with the parameters.. 2 E(@,|zn =
x) ando? 2 Cov(Zn, Tnlz, = ) [12]

n,xn

where the equalizer outpiltx (z,,) is considered to ba priori
LLR L{c, ) for the decoder. The interleavil -) and the deinter- P Zn | 2n =) = O((En — pin,2)/0n,2)]0On, = (6)
leaverI1=1(-) provide the correct ordering of the LLRgc,,) = ) i N )
I~*(Lp(z,)) and L(zn) = I(Lp(e,)), which are input to This assumption tremendously simplifies the computation of

the equalizer and decoder, respectively. The MAP decoder ai8§ SISO equalizer output LLR z(x,). We emphasize that
computes the data bit estimates Lg(x,) should not depend on the particularpriori LLR

L(z,). Therefore, we require that,, does not depend on
b & argmax P(b; = b| L(cy), ..., L(ck.)). (4) L(xn?, which affects the derivation of the MMSE equalization
bC (0,1} algorithms.
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A. Turbo Equalization Using Linear MMSE Equalization

1) Exact ImplementationThe MMSE equalizer for this
novel approach is an LE consisting of a lengthfilter with
time-varyingcoefficientse,, ., & = —Ni, 1 — Ny, ..., Ny,
where N N1 + Ny + 1, which are defined by the
linear MMSE estimatez,, [28] of x,, given the observation

Zn 2 (e Ny ZneNot1 " Znan L
& = BE(z,) +Cov(2y,, 20)CoV(2Z, 2n) 20 —E(22)). (7)
For data transmission over an ISI channel, this becomes
Ep =Tp +unst (02 Iy + HV, HY) (2, — HX,)

whereH is the N x (N + M — 1) channel convolution matrix

har—1 har—a ho 0 0
N 0 hy—1 hy—o -+ ho 0 0
H=
0 0 hy—1 hy—o -+ ho
and
_ A _ _
Xn = [ain—M—N2+1 Tn—M—No42 """ $n+N1]T

A
V., =Diag(vn—M—N,4+1 Unc M—No+2 * * Unt Ny )

A
s=H[O01(n,4m-1) 1 O1xn, 1"

However,z,, depends o(z, ) viaZ, anduv,. In order that:,,
be independent ok (z,,), we setL(x,,) to 0 while computing
Zn, YieldingZz, = 0 andv,, = 1. This changes (7) to
Cov(z,, 2,) = (02Iy + HV, HY 4+ (1 — v,,)ss’),

£y = sHCov(zn, zn)_l(zn - Hx, + (T, — 0)s).
Writing the MMSE LE output as

N

-/i'n = Z cn,k(zn—k - E(zn—k))

k=—N

whereE(z,,)
A .
Cn =[¢h N, G ny_1 o Ch _n, )" IS consequently set to

cn 2 (o2Iny +HV, H" + (1 —v,)ss) 7 's.

This yields the final expressiofy, = cf(z,, — HX,, + T,s),
from which the statisticg,, . ando—,%’ . Of &, are computed

Nn,ac :Cg(E(ZnL’L’n = x) — Hin +§n5) — . Cgs
0721,,,7; =cHCov(z,, 2, |2, = 2)c,
=c(o2Ty +HV, H" —v,s8")c,
=clls(1-s"c,).
The output LLRLE(z,,) follows as
An - Hn n n 2An "
Li(z,) = In </)((3f P, 41)/0n, 1)/ 0n, +1 _ 2 2“ =
d)((xn - un,fl)/O'n?fl)/o'n?il O—n7 4

=2c(z, — HX, +7.5)/(1—-s"¢c,). (8)

ot haT,_y., the vector of the coefficients

757

WhenL(z,) = 0, Vn, e.g., for the initial equalization step,
we havez,, = 0 andv, = 1, Vn, yielding a time-invariant
coefficient vectore,, = ey (NA stands for na priori infor-
mation), the usual MMSE LE solution [1]

cNA é(a,?uIN +HV, HY + (1 - vn)ssH)_ls|L(,;n)=0
=(o2Iy + HHY) !s.

The corresponding output LLR is given by
C)

2) Approximate Implementation IComputingc,, for each
time stepn causes a high computational load for computing
Lg(z,), since anV x N matrix has to be inverted for eaehA
recursive algorithm to computg, frome,,_; devised in [27] re-
duces this load tremendously. A further reduction is possible by
using time-invariant coefficients. We propose a low-complexity
alternative, motivated as an approximation to the exact MMSE
solution, which uses the time-invariant coefficient veatar,
to computet,, given a general.(z,) € R

Lp(z,) =2c, 2, /(1 —stena).

& = o\ (zn — HX, + Tps).

The use of this approximation will be justified by the excellent
complexity/performance tradeoff shown in Sections V and VI.
Given a set of general, nonzerb(z,,), while the MMSE-op-
timal coefficients must vary with, if we restrict complexity
such that the filter coefficients are time-invariant, then after sub-
tracting the nonzero means, this set of coefficients can be viewed
as MMSE optimal by simply ignoring (i.e., setting to zero) the
L(z,). From the statistics

P, 2 = ch(E(zn |z, =) —HX, +Z,8) =x - cflis
» =clCov(zn, Zn|Tn = T)ena

=cl (c2Ixy + HV,H” —v,ss™)ena

2
Jn,

for this approach, the output LLR is given by

_ 25%71,”71,,—1—1 _

24n, 41, (2, — HX,, +T,8)

LE(a:,,)

2 2
0n,+1 an, +1

Computingo—,%Hrl for eachn is computationally expensive. A
possible simplification is to approximate?h 41 With the time
averager? = (1/K.) Yhe, o2 4,

K.

Z (HVnHH — vnssH)> CcNA

n=1

1
52 = CgA <O’3UIN + K

(el

which can be further simplified to

1
72acl, <03)IN + <

K.

K.

>

vn> (HHH — ssH)> CNA

© n=1
(10)
using the  approximation fo;l HV, HY ~
(>-%e. v, )HHE. Simulation results not shown in this paper

2 instead of o2 does not sacrifice

reveal that usings 1

much performance.
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When L(z,,) = 0, Vn, the exact (Section IB-A-1) and thefeedback filter and the precursor ISI with the feedforward filter
approximate implementation | of the MMSE LE are identicalyielding the choice
yielding the same output LLR g(x,,).

3) Approximate Implementation llAnother way to yield a No=0, Ny=M-1, N =N-1
time-invariant coefficient vectoris to leE(z,, )| — oo,V n, i.e.,

for perfecta priori information, yieldingz,, = =,, andw,, = 0 for the filter length parameters [1]. A general expression for the

MMSE DFE output is therefore
CMF é(o’i}IN =+ HVnHH =+ (1 — Un)SSH)715||L(a;n)|—>oo 0

0,1;2SSHO,1;2> s -%n = En + Z Cn, k(zn—k - E(zn—k))

2 Hy—1 —2
= I T = I ;o
(0pIn +s87)7's <0w N7 +o22sHs k=—(N—1)

B 0—2 " ' M-1
~1/ie% +5"5) 5 (X dutta-met) o

which is the matched filter response to the channel impulse re- k=1

H 2 H\—1 H_ i
sponseh[n]Anornj'l\?Eed by(ay, + 7)™, wheres™s is the \ here theid are past decided estimatés obtained using an

energyEy, = >, |hi|? of the channel. The estimatés  appropriate decision function, e.g.,

are computed usingl;. given general.(z,,) € R as follows: . . 50
~d é { ) Tn 2
T, =

En = CAp(2n — HXp, + Tp) (11) -1, z,<0
yielding the statistics for BPSK. We assume that the DFE is error-free, ig., =
o , Zn, V. Using the relationd, , = 70" hico ki, b =
fin,z =% - eyps = - By /(o) + Ep) 1,..., M — 1, between the feedback coefficienfs,, and the
o =cup(onIy + HV,HY — 4,55 )eyr feedforward coefficients,, 5 [1], which also holds in the pres-
= (Eno? +s"HV, H"s — 0, E2) /(02 + Ey)? ence ofa priori information L(z,,) [29], the output equation
¢ R (13) becomes
and the output LLR A )
H Rn S[E_prgr B TnFngs - Tngnoa]”
Lp(z,) = Hnpin, 41 _ 2Eys” (2, — HX,, + Tns) Ty =Tp + Cg(zn - Hx,)

o ~ E,02 +sHHV,Hs — v, E}’
’ where H is the N x (N + M — 1) channel con-

It turns[ou]t (thatin is irt]jentical to tlzt(for)t'he linear SISO e"-lllua|'vo|ution matrix, a

izerin [23] (in case the assumptioh(z,, )| — oo, ¥ n, actually A ) )

holds) and [25]. Thus, the algorithms in [23] and [25] are iffr = [Zn#n+i "Z"+N—_11]T' Applying (7), ie., cif =

stances of the MMSE LE derived in Section IV-A1 under th&®V(Zn; 2n)C0v(2a, 2,)™", we find

constraint thatL(x,,)| — oo, Vn. As in Section IV-A3, the

variancea% 41 can be approximated using the time average

=2 + * * T
Cn - [Cn, 0%n, —1""" an —(N—l)] )

A
V. =Diag (01,(M—1)Un Unt1 " UntN—1) 5
A
« s=H[01m-1) 1 Opxv-1) s
1 e A= He 271 Hy—1 7=
7= 7 E (Bno? +s"AV,Hs — v, E}) /(02 + E3,)? En =Tnt vns” (7, Iy + HV,HT)™ (2, — HX)

n=1

. where the zero row iV, follows because the transmitted sym-
1 - yon =n— —
%<Eh03)+< Z””) (SHHHHS_EIQL)>/(O_3)+E]L)2' bolsz,,,n' =n—-1, ..., n—M+1, are assumed to be known
1

K, & due to the available decided estimaigs yielding v, = 0.
"= (12) The derivation of the MMSE DFE is similar to MMSE estima-
tion using (7) given the observation [29]

WhenL(z,) = 0,V n, for which this approach, as shown later,

~d d
is certainly not suited, the output LLR becomes [

LA YEREERE S EAY ARSI Znan—a]’

As in Section IV-Al, to ensure thait, is independent from
L(z,), we replacet,, andv,, with 0 and 1, respectively, while
computingz:,,:

Le(z,) = 2E,s2, /(B2 + s"HAYs — E2).

B. Tu'rbo.Equahzatlon Using MMSE Decision Feedback Fn=041 s (02Iy + HV, HY 4 (1 — ,)ss)?
Equalization

: : (2, — HX,, + (Z, — 0)s).
The MMSE equalizer for the second novel approach intro-

duced in this paper is a DFE consisting of a lengttieedfor-  With the final expressions for the feedforward filter coefficients,
ward filter with time-varyingcoefficientsc,, x, k = —=N1, 1= ¢ 2 (52Ty + HV,, H¥ + (1 — v,,)ss?)~'s, and the MMSE
Ni, ..., Na, N = Ny + Np + 1, and a strictly causal length estimatez,, = ¢ (z,, — HX,, + 7,s), the statistics

N, feedback filter withtime-varyingcoeﬁicients&;/’k, k =

1,2, ..., N,. Itis natural to address the postcursor ISI with the fin,z = -clls, o2 =cls(1-s"c,)

x
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TABLE |
NUMBER OF REQUIRED OPERATIONSPER RECEIVED SYMBOL PER ITERATION USING VARYING SISO EQUALIZATION ALGORITHMS. M : CHANNEL IMPULSE
RESPONSELENGTH; IV: EQUALIZER FILTER LENGTH; 2*: ALPHABET SIZE OF THE SIGNAL CONSTELLATION

section approach real multiplications real additions
- MAP equalizer 3.2mM 4 9 m gm(M-1) 3.2mM 4 2(m—1)2mM-1
IV-A.l exact MMSE LE 16N2+4M2+10M —4N —4 | SN2 4+ 2M? - 10N +2M +4
IV-A.2 | approximate MMSE LE (I) 4N +8M 4N +4M -4
IV-A.3 | approximate MMSE LE (II) 10M 10M -2
IV-B MMSE DFE 16N?+4M2+10M —4N—4 | 8N24+-2M2— 10N +2M +4
and the output LLR S
: Deinter— Inter—
Lg(x,) = 2cH (2, — HX, +T,s)/(1 — sc,) (14)  Li|Equalizer > leaver Lo  Li—| Decoder i1, cer [ Lo
can be computed as in Section IV-A1l. Fig. 5. The two basic receiver components.
WhenL(z,) = 0,Vn, ¢, is time invariant and equal to the
usual MMSE DFE solution [1] VI. ANALYSIS
cxa 2 (02 Ty + HDiag(0y (1) 11x v )H?) s, A. The EXIT Chart
We describe in this paper an analysis tool called an EXIT
The corresponding output LLR is given by chart to compare the performance of the approaches described
in Section 1V and to ease the selection of system parameters,
Lp(,) = 2cia2n/(1 — s ena). such as the generator of the convolutional code or the equalizer
filter lengths.
A recursive algorithm to efficiently compuis, from c,,_; A large body of research has been undertaken to provide tools

is given in [29]. It is also possible to derive approximate Mg,y choosing design options for turbo codes, e.g., by analyzing
plementations similar to the approaches in Sections IV-A2 aggh effects of the interleaver and bounds on the BER [31], [32].
IV-Q3. However, the resulting suboptimal algorithms exhibitinanother analysis approach is to consider the turbo decoder as
ferior performance to the exact implementation [29], which ig high-dimensional nonlinear dynamic system [33], [34] whose
turn is inferior to the LE-based methods (see Section VII). We,nvergence behavior can be characterized by its fixed points.

therefore omit the corresponding derivations here. These results have proven useful for determining the SNR re-
gions, where the iterative algorithm provides improvement. We
V. COMPLEXITY COMPARISON use the approach of ten Brink for analysis of TCM [35] and par-

An important aspect of these SISO equalizer algorithms allel concatenated convolutional codes (PCCCs) [36] using ex-
their computational complexity. We consider the MAP equa][insicinformation transfer (EXIT) charts for turbo equalization.
izer, the exact MMSE LE (Section IV-Al), the approximatézor the EXIT analysis, the receiver components are modeled as
MMSE LE (I) (Section IV-A2) and (II) (Section IV-A3), and devices mapping a sequence of observatign®qualizer only)
the MMSE DFE (Section IV-B) for comparison. and LLRsL;, thea priori information, to a new sequence of

We assume that the statisties andw,, of ,, are available LLRS L, as shown in Fig. 5. _
for all » and do not consider the computationfof(z,,) [ooth _The sequence of random variables (r.Ls)s assumed to be
Mappingse,,, v, — L(z,)andz, — Lg(z,) strongly depend i.i.d. accor(_jmg to a single parameter conditional pgfl | X =
on B]. Any overhead due to initialization (one-time operation§) for a suitably chosen parame
for all iterations), e.g., to computgy 4, is neglected. All quan- A )
tities are assumed to be complex for this comparison. Table L] X =) = ¢l = wai/2)/ o)/ i, xeB. (19)

shows the required number of real multiplications and additiowe denotef.,(1| X = x) briefly as f1(I| ). This pdf is moti-

per received symbad,, per iteration, given general priori in-
formation L(x,,) € R. The numbers for the MMSE-based apyaieg iﬁg?;ici\t,cgt,\? zhL;_nﬂi(eyl|$v?tﬁ%rggzt§gxg(mwt2h)e:oitf u

proaches follow from the detailed algorithm derivations in [29 : g : v
The MAP equalizer uses the BCJR algorithm [5], where we conQd_'”p“tf € B has a distribution according to (15), where
. ) ; . o7 =4/02
sidered only the computation of the path metrics {tloggiantity) —*
for all trellis sections and the-, {J—regursions. Efficient imple- Liy|z) = In(p(ylz = +1)/p(y|lz = —1)) = 2/0> - 1.
mentations of the BCJR algorithm in the context of the turbo
principle are presented, for example, in [13] and [17]. The al-he crucial observation in ten Brink's analysis is that the se-
gorithms for the approximate MMSE LE’s (1) and (II) can beguence of the output LLRE, is reasonably well approximated
implemented in the frequency domain [30], which further ddsy a single parameter normal distribution of type (15) for a

creases the computational load for specific systems. second parametet?. A MAP equalizer and a MAP decoder are
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Zn ] () receiver component (equalizer, decoder) separately. This anal-
Lg(zn i is is thus asymptotic in that the independence assumptions are
L(z | Deinter— E,(c? 2 ysisisthusasymp o p . . ptions.

( A")_. Equalizer leaver | a‘, — Ba (o) _NT"; assumed to hold over an infinite number of iterations, which is
T ' = e * possible only for an infinite length block lengtk’{ — ~0) and
.................... ( ) an ideal interleavelI(-). For a finite block lengthi., the EXIT

Lp(cn : ¥ 5 chart analysis is still useful over several iterations. While the
L(cn) —= Decod | Inter- 1 D, (o2 ., y . e g
(cn) — Decoder leaver i Do (0i) =0, independence assumption can be satisfied to arbitrary accuracy,

we emphasize that the assumed distribution (15) is only approx-
Fig. 6. Model for analysis of the iterative receiver algorithm. imately satisfied even for large interleaving. The main justifica-
tion for the proposed analysis is the apparent usefulness of the
assumed to match this assumption, which was shown to be ad®¢thod demonstrated in the sequel.
rate in [37] for sum-product decoding algorithms in the general Similar analysis tools for turbo equalization [38], turbo codes

setup of decoding of graph-based codes. [39], low-density-parity-check codes [40], or TCM [41] are
The SISO equalizer algorithms derived in this paper use tRgailable, which are all based on (15) but differ in the observed
Gaussian model (6) to compute the output LIR(z,) = Parameter. For example, the approach in [41] considers the
28 pin, +1/02 11 Using (5). Describing thé (c,,) (after dein- SNR of the LLRs for the analysis, which is to observe transfer
terleaving) with the r.vL, reveals that functions of type
b2, E(Lilzn = )2 (BLo|z, = 2))’
Cov(Lo, Lo |wn = z) = 04—71 Cov(&n, Zn |zn = ) Cov(L;, Li|z, =x)  Cov(L,, Loz = z)
n,+
4 11 4 obtained by passing priori LLRs L,; at some input SNR
=1 In+17 3 through the equalizer and decoder yielding an output SNR
On,+1 Tn,+1 ;
2u7 ’ of the LLRs L,. Ten Brink’s approach computes the mutual
E(L, |2, = ) = 2P B (i, |2, = 2) information
an,-{—l oo
2 7
e Lop g s 0=Y [ sl
o2 41 ) zCB Y=
2f(l]x)

The distribution ofL g (¢, ) exhibits the property that the vari- log di (17)

o . i _ 2+ + fr]-1)
ance is twice the magnitude of the mean similar to LLRs dis-
tributed with f.,(1| ). However, using (15) to analyze the SIsovhereI(L;; X) € [0, 1], between the r.v.d; and X. After
equalizer output is still an approximation, since (6) is an aBassing samples df; through the equalizer or the decoder, at
sumption and the statistigs, 1 ando? ., are not constant the output the mutual informatiof(L,; X) between the r.v.s

in n, as is assumed in (15). L, and X is obtained by applying (17) using the distribution of
Using the definitions above, it is possible to define a single.- This is done in [35] and [36] by observing the histogram of
parameter transfer function?> = E,(o?) of the equalizer theoutputted LLRsto estimate the pdffefand then computing

ando2 = D,(c2) of the decoder. Fig. 6 illustrates how thesd (Lo; X) numerically using (17). Thus, even though the pdf of

transfer functions appear in the iterative decoding process. Lo is assumed to be of type (15), which is crucial to model the
Besides the constraint on the pdf of the output LURgx,)  input LLRs of the following receiver componet L,; X) is

and Lp(c,) of the receiver components, another assumptiétptained without this assumption.

within the EXIT analysis is that the input LLRE(z,) and ~ Wedenotd(L;; X) briefly as/; and/(L,; X) briefly as/,.

L(c,,) conditioned on,, andc,,, respectively, are i.i.d. samplesFrom the definition offz (7| z), we see that; is only a function

of the r.v. ;. This is also taken into account in the derivatio®f o7 With the two extremal valueg (o7 = 0) = 0and’; (o] —

of the equalizer algorithms, whe€@v(z,,, &,,) = 0, n # m, o) = 1 for no and perfect priori information. The EXIT

is assumed. In the receiver, wheiér,, ) is provided by the de- chart is the transfer functiof, = Ewi(Z;) of the equalizer

coder, this assumption is plausible for large interleaver blo€k Lo = Dwi(Z;) of the decoder mapping the input variable

lengths, at least for several iterations. Also the decoding algb-€ [0, 1] to the output variabld, € [0, 1]. The rang€0, 1]

rithm assumes the input code symbol LLRC$c,,) to be in- 0f I, compactly describes the quality of the output LLRs of a

dependent given,,, which is again plausible only in presencdeceiver component and is more convenient fiiano) for the

of the deinterleaver, since tHex(z,,) givenz,, are dependent approaches based off or the SNR.

due to the colored noise disturbing the MMSE equalizer output

#,. The interleaving and deinterleaving process is thus the cfé- EXIT Chart of a MAP Decoder

cial step to approximately provide independence requirements-ig. 8 depicts EXIT charts of a MAP decoder using several

at least locally between neighboring samples, and for severalaptimal (with respect to (w.r.t.) the distance spectrum) fate

erations. 1/2 codes including rat& = 2/3 punctured versions. The octal
For the EXIT chartsa priori informationL(x,,) or L(¢,), re- notationG = [a b] of the code generators is taken from [3]. To

spectively, is generated froly perfectly matching the two re- obtain the EXIT chartsk,. = 107 code symbols;, generated

quirements [i.i.d. according tf (! | «)] and presented to eachfrom randomly chosen equiprobable information bjtand K.
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Fig. 7. Mapping between the parametefsandI;.

02b i ~%— MAP equalizer

1 r T . - : —©— exact MMSE LE
— G={7 5], memory 2 . /x - —8— approximate MMSE LE (f)
— - G=[7 5], punct., R=2/3 4 —6— approximate MMSE LE (il)
—— G=[62 56], memory 4 7 0 . —— MMSIE DFE ]
—x - G=([62 56], punct., R=2/3 :

08T —o~ G=[634 564], memory 6 0 0.2 04 06 08 1
- y i

Fig. 9. EXIT charts of the equalizer at 4-dB SNR.

large performance gains. However, the performance enhance-
ments observed for this channel are representative and qualita-
tively similar to those obtained for a wide variety of fixed and
fading channels [29]. The noise varianeg is determined ac-
cording to the SNRE, /N, defined as

Es A E( Zn 2) o E(|-Tn|2) 'Eh o Eh
No o No o No o 20'3)

(19)

which we setto 4 dB for the chart in Fig. 9. The filter parameters
for the exact MMSE LE and the approximate MMSE LE (1)

_ were set taAN; = 9, N = 5, N = 15) and for the MMSE
Fig. 8. EXIT charts of a map decoder. DFE to(N = 15, N, = 4).

For the EXIT charts, 10 randomly chosen equiprobable
correspondinga priori LLRs L(c,, ) distributed with f(I|z) symbolsz, € B were generated and transmitted over the ISI
given a preset? are used. This is done by randomly generatinghannel. The correspondiagpriori LLRs L(z,) given a preset
K. LLRs L(c,) with the pdff.(I| +1) and flipping the sign of +7 were generated as in Section VI-B. The equalizer processed
all L(c,,) wherec,, = —1 yielding the pdff(I| —1) for those the received symbols, together withZ(z,,). The quantityZ;
LLRs. For the chosen?, the mutual informatiod; is computed is computed fron»? and 1, is computed from the output LLRs
numerically using (17), which is the fixed function depicted il z(x,,) as in Section VI-B.

Fig. 7. To obtain/,, in [35] and [36] the pdfs of the output LLRs

Lp(c,) are estimated by splitting th&,. LLRs Lp(c,) into D. BER Estimation

two groups, where:;, = +1 ande, = —1, respectively. A |4 [36] the EXIT analysis is also used to estimate the infor-
histogram _of tl_1e samplesin eac_h group approximé€s| v), mation BERP(b; # 32‘), whereb; is given by (4), of the MAP

@ € B, which is therefore used in (17) to obtalp. The EXIT  gecoders as part of a PCCC system considered there. This es-
chartis constructed by repeating the procedure above for sevgtaktion is based on the Gaussian assumption (15) yielding a

values ofo? yielding pairs(Z;, I,). unique P(b; # b;) corresponding to a paramete} or I, re-
] spectively, of the decoder output LLRS>(c¢,,). For more in-
C. EXIT Chart of a SISO Equalizer formation on how to estimate this error probability, we refer to

Fig. 9 depicts EXIT charts of the equalizer using MAP equal36]. .
ization and MMSE equalization. We selected the length-5 I1SI We use simulation to assign a BER(b; # b;) to each

channel 1, € [0, 1] obtained for the decoder EXIT chart, since the chart
itself is based on simulation yielding the BER as a side product.
hln] = 0.2276[n] + 0.466[n — 1] + 0.6886[n — 2] Fig. 10 displays the BER as a function of the expressien/,,

+0.468[n — 3] +0.2276[n — 4] (18) on logarithmic scales for the ratg = 1/2 codes from Sec-
tion VI-B using the same simulation parameters. The curves for
from [1] for the EXIT chart analysis and the simulations. Thiseveral code memories and that for the puncturedRate2/3
channel causes severe ISI, enabling turbo equalization to yielsles (not shown here) were almost identical, which verifies the
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10° S — Fig. 11 shows such a receiver EXIT chart at 4 dB/N,
s ST SN RS where the receiver uses a MAP equalizer or one of the
MMSE-based equalizers and a MAP decoder for the code
G = [7 5]. In the example trace, a turbo equalization system
using a MAP equalizer needs only two iterations (equaliza-
R tion/decoding tasks after one initial equalization/decoding
101 e G s memory2 | task) to nearly reaci” = 1 at the decoder output, which
D .| —— G=[62 56], memory 4 corresponds to a zero BER. Surprisingly, with the exact MMSE
| o i o[ =6 G=[634 564], memory 6 LE the same performance is achieved, only after four iterations
107 107 102 10 10° (for clarity, the trace is not shown here). The approximate
-1, MMSE LE (ll) is also capable of achieving the MAP equalizer
performance for large values df®, but it has a very poor
Fig. 10. Information BER of MAP decoding as a function/gf gain in If for small values OﬂiE- The severe ISI caused by
the channel (18), which acts as noise disrupting the output
estimates of the equalizer, is not reduced at all dopriori
LLRs L(z,) close to 0, yielding the poor values &f. The
system thus cannot find a trajectory leading to a ldigeusing
the codeG = [7 5] and stops improving the performance
after around three iterations and remains in the fixed point
IP = IF¥ = 0.095. The approximate MMSE LE (1) starts with
the same performance as the MMSE LE [both algorithms are
identical for L(x,,) = 0, V=], but shows poor performance
for large values of £. The fixed point of the receiver is here
IP = 0.95. The MMSE DFE shows a poorer performance
than the linear counterpart (exact MMSE LE) for small values
of IF and becomes better fd® > 0.55. The performance is

BER

— = Edecoding

. T - - =:equalization

[E=P

- MAP equalizer

ool/ .. L —6- exact MMSE LE ] even better than that of a MAP equalizer #gr > 0.95, which
: —-8—- approximate MMSE LE (1) K .. . . .
: —— approximate MMSE LE (Il) likely stems from the hard decision element in this algorithm.
—— MMSE DFE Fig. 11 also reveals that a MAP equalizer, the exact MMSE
—— MAP decoder, G=[7 5] i )
0 i : : : LE, and the approximate MMSE LE (Il) yield the same value
0 02 04 ep °F 08 ! IF < 1 for perfecta priori information L(zz,,), which corre-
be sponds tal¥ = 1. This is due to (3) and (5) to compute the
Fig. 11. Receiver EXIT chart at 4 dB. /N,. output LLRs L g(x,,), which prohibit thatL(x,,) itself is used

to computeL g (x,,). It follows that for|L(x,,)| — oo the ISI

) , . disturbing a received symbeal, can be removed completely,
result in [36] that/, alone can be used to estimatéh; # b;)  gince allz,, n' # n, are known. According to (11), the equal-
independently of the chosen code. ized estimate

E. Application to the Iterative Receiver Algorithm

N . 2
In the turbo equalization-based receiver, equalization and b = (Ep - 2n +wn)/(En + o)

dLecodlng steps are |terat¢d by passing the Ll_L%féwn) and remains, yielding the output LLR
p(c,) between the receiver components. Using our analysis,
we can describe this mechanism just by the evolution of the
distribution of the r.v.d; and L, describing the LLRL. ()
and Lp(c,). Using (15), this density evolution is completely
described by the change of to o2 or I; to I,,, respectively.
To distinguish between equalizer and decoder, the quanijtiesThe variancer? = Cov(L,, L, |z, = z) = 4E} /o2, of the
andI, are augmented with the superscriisequalizer) and r.v. L, describingL g(z,,) and hencd X derived fromo?2 are a
D (decoder). function of o2 and £}, only. Using Fig. 7, the upper bound on
The iterative process starts with an initial equalization, whedg” attained for/X = 1 at 4 dBE, /Ny is IF < 0.95. Thus, the
L(z,) = 0,Vn, and thereford ¥ = 0. Next, the output LLRs MAP decoder receives LLR&(¢,) with at most/” = 0.95,
Lg(x,)described by ” = I are fed into the decoder yieldingwhich is the matched filter bound for the turbo equalization
LLRs Lp(c,) described byl” = IF which are fed back to system considered here, i.e., the asymptotic performance of the
the equalizer and so forth. This procedure is described witlreceiver is at best the performance of the MAP decoder alone
singlereceiverEXIT chart combining Figs. 8 and 9 as shown irfor transmission over an AWGN channel. This bound is over-
Fig. 11, where the decoder chart is flipped alongtfle= I” come by adding a rate-1 recursive precoder to the transmitter
line. The iteration process is a trace between the transfer cur{&2], which can improve the system performance tremendously
of the two receiver components. [38], [43].

¢((§7n - Eh)/gw)/gw . 2B, .

Lelen) = G B fow)fow ~ o2
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TABLE I
EXPECTEDBER AFTERO, 1, 2,0R 0o ITERATIONS OF ARECEIVER USING
VARIOUS SISO EKQUALIZERS AND A MAP DECODER

SISO equalizer Oth 1st 2nd 00
MAP equalizer 0.070 | 3.5-10-3
exact MMSE LE 0.150 | 0.070 |0.020

=P

approximate MMSE (I) 0.130 | 0.090 |0.050!4.0-10-3
approximate MMSE LE (II) 0.230| 0.220 |0.210| 0.210
hybrid approx. MMSE LE (I)/(II)| 0.150 | 0.090 | 0.050

|E

MMSE DFE 0.180 | 0.130 |0.095 : :
o24/ - - ..... T ........ e R
-8~ MAP equalizer at 0.8 dB SNR
. . . i — G=[7 5], memory 2
The receiver EXIT chartin Fig. 11 suggests a hybrid approach ‘ —— G=[62 56], memory 4
for equalization, which is to use one of the two approximate % 02 04 0o o8 1
MMSE LEs (1) or (Il) depending on tha priori information IF=1°

constellation, i.e., the value df¥. At 4 dB E, /Ny, using (I)

as an equalization algorithm for at least three initial iterationsg. 12. Receiver EXIT chart at 0.8 dB, /N, for various codes.

followed by (Il) for the successive iterations gives a trace that

remarkably reaches the performance of the MAP equalizer re-

quiring a very low computational complexity (see Table I). With TABLE III

the hybrid approach, we can combine the good starting behavid¥R THRESHOLD IN E, /Ny FOR SIGNIFICANT PERFORMANCEIMPROVEMENT
E OF A RECEIVER USING DIFFERENT SISO EQUALIZERS AND A MAP DECODER

of (1) (small /) and the good performance of (ll) for large

values ofIF. A simple criterion to optimally switch between

different SISO equalizers is to pick the equalizer yielding the

largest/F given a specific/Z. Sincel, is monotonically in- MAP equalizer 0.4dB

creasing in2 (see Fig. 7), the equalizer yielding the largest MMSE LE 1.0 dB

whereo} = 4p7 /o7 ., for the SISO equalizers based on approximate MMSE LE (I) 9.3 dB

MMSE equalization (16), should be selected. For the approxi-

mate MMSE LE (1) and (1), the meam?  , is constant and the

variances? ,, varies inn. Consequently, the criterion changes hybrid approx. MMSE LE (I)/(II) 23dB

to selecting the equalizer maximizing the average variance MMSE DFE 2.4 dB

SISO equalizer SNR. threshold

approximate MMSE LE (II) oo dB

K.
7= 4N3L,+1 K Z 1/UZ,+1 (20)  However, the cod& = [62 56] yields a lower error floor after
‘¢ n=1 convergence, since the transfer curve approatfes 1 faster.
given K. estimatest,,, n = 1, ..., K.. This average variance A similar problem, i.e., to find convolutional codes with a good
can be approximated with the lower bound tradeoff between early convergence (at low SNRs) and a small
error floor after convergence, exists in turbo coding. Here,
| K technigues such as choosing a generator with feedforward
/()
1

polynomials of degree much larger than that of the feedback
polynomial [44] or systematic doping [45] are available and
can be applied to turbo equalization also.

where the denominator is the time averageof the variance ~ Table Ill gives SNR thresholds iB, /N, for significant per-

o? ., computed in (10) and (12). formance improvement of a receiver using different SISO equal-
Following the traces of the receiver for all SISO equalizeiigers and a MAP decoder for the co@e= [7 5]. The thresholds
yields values fo P after each iteration. Using Fig. 10, we carwere obtained by generating equalizer EXIT charts at varying
compute estimates of the BER(b; # Ei) of the iterative re- SNRs until the transfer curve touched or intersected the flipped

ceiver algorithm given in Table II. decoder transfer curve &f = 0.5 or less, which corresponds

The receiver EXIT chart also helps to choose a suitable a fixed point of the system with a BER(); # l?i) of 0.08 or
code for the system. Fig. 12 displays the tradeoff in selectingreore (using Fig. 10). Since the equalizer and the flipped decoder
code, which ideally enables the iterative algorithm to convergensfer curve have a similar slope, increasing the SNR, which
at SNRs as low as possible to a BER as low as possible. Tiearly results in a parallel upshift of the equalizer transfer curve,
transfer curve of the MAP equalizer in Fig. 12 touches thgelds a quickly moving fixed pointin the area arouffd = 0.5.
curve of the codé? = [62 56] at~0.8 dB E, /N, and therefore The corresponding BER(b; # b;) changes quickly too, which
prohibits the iterative system to converge, whereas thereisshe usually observed “water fall” region in the performance
still a path through the bottleneck using the cade= [7 5]. plot (BER versust;/Ng) of a turbo equalization system.

K.

n=



764 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 5, MAY 2002

o one-time equalization and decoding 0 one iteration

BER
S

10° i
[¢] 2 4 . 6 8 10 0 2 4 6 8 10
E/NyindB — code over AWGN channel E/N,indB
—g— MAP equalizer
—8— approximate MMSE LE (l)
. . —+— hybrid approx. MMSE LE (1)/(1l) . .
100 two iterations —o— exact MMSE LE 14 iterations
—— MMSE DFE

s

BER
=

o] 2 4 6 8 10 0 2 4 6 8 10
E/N,indB E/N,indB

Fig. 13. BER performance of receivers applying turbo equalization.

VII. V ERIFICATION OF THEANALYTICAL RESULTS after two to three iterations using a MAP equalizer at 4 dB
s/No (see Fig. 11). The number of iterations after which

o - - : - BER eventually ceases to improve is a function of the
transmission using the receiver introduced in Section Il a N .
analyzed in Section VI. The transmitter (see Fig. 2), the | ockilen'gthKc, the mtgrleaveiﬂ(-), the SNR, ar_ld the used.
channel (18), the decoder (MAP decoding), and the inteergua!lzatlon and depodmg algorithms. Some syltable stopping
leaver/deinterleavelil(-)/II-1(.) are identical for all systems criteria for the iterative process have been considered by Bauch
They differ only in the SISO equalizer, which is either a MAFEOr ML/MAP-bgsed algorithms [46], based on the changg of the
equalizer, an exact MMSE LE (derived in Section IV-Al)hard decisions;, the cross entropy of the LLRs communicated
an appro;dmate MMSE LE (1) (Section IV-A-2) or (1) (Sec_between the equalizer and the decoder, or the reliability of the

tion IV-A-2), or an MMSE DFE (Section IV-B). information bit decisions.

We use a recursive, systematic encoder for the ¢@de: Fig. 13 shows the BER performance for the block length
[7 5], where the first generator is the feedback part, to encoffer = 2'°. The upper left plot shows the performance of sepa-
length K, blocks of data bits;. The K. code symbols,, are ate or one-time equalization and decoding, which exhibits the
interleaved using a permutatidf(-) obtained by arf-random expected behavior: a system using a MAP equalizer is best, fol-
construction [15] withS = 0.5,/0.5 - K.. Both the channel im- lowed by the MMSE DFE (for, /N, above 7.7 dB) and the
pu|se response (18) and the noise Variaan%@etermined from MMSE LE. These resplts are the same as Would be Obta|ned
the SNRE, /N, defined in (19) are known to the receiver, whichiSing the SISO equalizers presented here in the abserse of
facilitates turbo equalization. As suggested in Section VI-E, wiiori information, i.e..L(x,,) = 0,V n. With this constraint, the
include a hybrid approach using the approximate MMSE LE&act MMSE LE and the approximate MMSE LE ({) are iden-
(1) and (1) and switch between them by evaluating the avera%jéal- The approximate MMSE LE (Il) was not considered. A
variancez 2 as in (20) prior to each equalization step. ower bound on the BER performance is that of coded data trans-

The number of performed iterations (one equalization/dBlission over an AWGN channel at the saifig/No as shown
coding task after one initial equalization/decoding task) is 18 Section VI-E.
for all systems and SNRs, which is a conservative choice. ForUsing iterative equalization and decoding, after 1 (top
example, the analysis in Section VI-E predicts convergendght), 2 (bottom left), and 14 iterations (bottom right), the

We present BER performance results by simulating da
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TABLE IV
BER AFTERO, 1, 2,0R 14 ITERATIONS OF ARECEIVER USING DIFFERENT SISO EQUALIZERS AND A MAP DECODER

SISO equalizer Oth 1st 2nd 14th
MAP equalizer 0.07412.8-107%|3.2-107%{9.9- 1077
exact MMSE LE 0.146 | 0.082 0.028
approximate MMSE LE (I) 0.146 | 0.093 0.060 |6.5-1073

approximate MMSE LE (II) (alone) |[0.254| 0.243 0.240 0.240
hybrid approximate MMSE LE (I)/(II)| 0.146 | 0.093 0.060
MMSE DFE 0.204| 0.200 0.205 0.267

trajectory using MAP equalizer

o8l - .. TUDUDE LN - A o8F - ......... ......... ......... oy

R ] Y- SRR o =_,l g
o - . o .- 2
2 )
! : : wo
...... 0.4F 5 : : :
: trajectory using MMSE LE : trajectory using approx. MMSE LE (1)
trajecz':tory using MMSE DFE% “trajectory using approxé. MMSE LE%(II)
...................... _V_MAPequalizer 0.2__
—o— exact MMSE LE | —&— approximate MMSE LE (})
—— MMSE DFE :| —~— approximate MMSE LE (iI)
. [.—=—_MAP decoder, G=([7 5] | — MAP decoder, G=[7 5]
0 ' - - ' 0 : : ~ -
0 0.2 0.4 o 0.6 0.8 1 0 0.2 0.4 E_p 0.6 0.8 1
I [+ I Q
Fig. 14. Receiver EXIT charts with traces of iterative algorithms. Fig. 15. Receiver EXIT charts with traces of a receiver using hybrid linear

MMSE equalization.

performance order changes drastically. A system using a MAP
equalizer is still best, followed by the exact MMSE LE and thEXIT charts at 4 dB SNR including the trace of the iteration
hybrid approximate MMSE LE (1)/(Il). The receiver using theprocess. The traces were obtained by computifigr 7 from
MMSE DFE provides only a minor performance improvement0’” equalizer/decoder output LLRSz(,,) or Lp(c,,), respec-
The approximate MMSE LE (Il) alone was not considered du#ely, over several blocks as inSection IV-B. Figs. 14 and 15 de-
to its poor starting behavior. Using the approximate MMSE LEict receiver EXIT charts together with the simulated traces of
(I) alone provides good performance, however, with the hybrttie corresponding iterative algorithm at 4 dB/N,. The trace
approach, which does not alter the computational complexitf,the system using an MMSE DFE does not follow the transfer
the performance is rather remarkable, approaching the AWG@Nrves of equalizer and decoder alone. Therefore, the EXIT
bound. chart analysis cannot be applied to this algorithm. Moreover,
Since the receiver performed only 14 iterations and the blotike performance is worse than that of the linear counterpart, the
length K is finite, the SNR thresholds from Table Il are someexact MMSE LE, at the same computational complexity, a re-
what too optimistic. However, for the MAP equalizer, the exasult which was obtained for a number of different channels. The
MMSE LE, the approximate MMSE LE (l), and the hybrid aponly difference between the equations used to obtain the output
proach the derived SNR thresholds and match exactly (withihRs L (z,,) with the exact MMSE LE (8) or the MMSE DFE
0.1 dB) the actual threshold for whidBZ R < 0.08 holds after (14) is to replace the meamg_;, ¢ = 1, ..., IV;, with the past
performing all 14 iterations. The analysis fails for the MMSHEecided estimateg , while computinge,, andx,, (whenN;
DFE. and.N, are set appropriately for the MMSE LE). While this step
The BERSs over successive iterations for each receiver algidten provides performance gains E@parateequalization and
rithm at 4 dBE, /N, are shown in Table IV and indicate the dedecoding, the early use of hard decisions appears to be detri-
gree to which the BER analysis matches the actual performaneental in an iterative algorithm.
The predicted BER values in Table Il closely match the simu- Figs. 16 and 17 depict the performance of the receiver
lated results for all SISO equalizers except for the MMSE DFEor varying block lengthsi(,;. For shortK,, repeated inter-
This discrepancy becomes most obvious by looking at receileaving causes short cycles leading to dependencies within
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approach using two approximate versions of linear MMSE
equalization, perform as well as the BER-optimal MAP
equalizer, only requiring a few more iterations to achieve a
similar BER performance. However, the results also showed
that a receiver using a MAP equalizer can achieve considerable
performance improvement through iteration over SNR ranges
. ; where all other approaches fail. The system employing decision
e : : feedback MMSE equalization did not provide satisfactory
. ' results. The BER performance of the decoder for transmission
over an AWGN channel is a lower bound on the performance
of the receiver performing turbo equalization. This bound can
be overcome by introducing a precoder [42], which makes the
“inner code,” i.e., the conactenation of the precoder plus the
ISI channel, recursive.

The EXIT chart analysis tool was shown to provide signifi-
cant insight into the behavior of these iterative algorithms. This
analysis also enables the selection of appropriate equalization

methods and error correction codes for a given scenario, such
Fig. 16. Receiver EXIT charts with traces of a receiver using linear MMSEs the channel response, the SNR, and complexity constraints.

equalization at two block lengths ;.

(1

[2]
(3]

[4]

(5]

(6]

0 1 2 3 4 5 6 7 [7]
iteration #

Fig. 17. BER of the receiver at 4 d&,/N, using exact MMSE linear (8l

equalization for several iterations and block lenghhs.

9
the LLRs communicated between the equalizer and de—[ :
coder. For example, we looked at the BER of a receiveli !
using the exact MMSE LE at 4 d&, /N, for block lengths
Ky € {29]i=17,8,9,10, 11, 12, 15} (Fig. 17) and showed
the trace of the iteration process f&f; = 2! andk, = 27 [
(Fig. 16). The EXIT chart analysis is still valid (the trace |1
follows the transfer curves of the receiver components), but
only for the number of iterations for which the independence[13]
requirements are matched. After that, the gains/jh and
IP decline and the BER stops to decrease over the iterations.
Finally, the system trajectory rests in a fixed point within the[14]
area between the two transfer curves occurs.

[15]

VIII. CONCLUSION [16]

The preceding sections introduced and analyzed sevegalln
algorithms for turbo equalization, which are applied to code
data transmission over ISI channels. In addition to the original
ML/MAP-based method, several new approaches based diel
MMSE equalization have been developed. The approaches
using linear MMSE equalization, especially a novel hybrid
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