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ABSTRACT.

The energy bal ance of groundwater flow devel oped by Qosterbaan, Boonstra and
Rao (1994), and used for the groundwater flow in unconfined aquifers, is
applied to subsurface drainage by pipes or ditches with the possibility to
i ntroduce entrance resistance and/or (layered) soils wth an-isotropic
hydraulic conductivities. Oning to the energy associated with the recharge
by downward percolating water, it is found that use of the energy bal ance
leads to | ower water table elevations than when it is ignored.

The energy bal ance cannot be solved analytically and a conputerized
nureri cal method is needed. An advantage of the nunerical nmethod is that the
shape of the water table can be described, which was possible with the
traditional methods only in particular situations, Ilike drains wthout
entrance resistance, resting on an inpermeable |layer in isotropic soils

1. 1 NTRODUCTI ON

Qost erbaan, Boonstra and Rao (1994) introduced the -energy balance of
groundwater flow It is based on equating the change of hydraulic energy
flux over a horizontal distance to the conversion rate of hydraulic energy
into to friction of flow over that distance. The energy flux is calculated
on the basis of a nmultiplication of the hydraulic potential and the flow

velocity, integrated over the total flow depth. The conversion rate is

determined in analogy to the heat |oss equation of an electric current.
Assuming (1) steady state fluxes, i.e. no water and associ ated energy

is stored, (2) vertically two-dinensional flow, i.e. the flow pattern

repeats itself in parallel vertical planes, (3) the horizontal conponent of
the flow is constant in a vertical cross-section, and (4) the soil's
hydraul i ¢ conductivity is constant fromplace to place, they found that:



dJ Vg R(J-Jp)

(1)
dX Ky Vy J

wher e:
J is the level of the water table at distance X, taken with
respect to the level of the inperneable base of the aquifer

(m

Jr is areference value of level J (M

X is a distance in horizontal direction (n)

Vx is the apparent flow velocity at X in horizontal X-direction
(m day)

Ky is the horizontal hydraulic conductivity (m day)

R is the steady recharge by downward percol ati ng water stenm ng
fromrain or irrigation water (mday)

dX is a small increment of distance X (m

dJ is the increnment of level J over increnent dX (n)

dJ/dX is the gradient of the water table at X (mm

The last term of Equation 1 represents the energy associated with the
recharge R Wen the recharge Ris zero, Equation 1 yields Darcy's equation.
The negative sign before Vyx indicates that the flow is positive when the
gradient dJ/dX is negative, i.e. the flow follows the descendi ng gradient,
and vice versa.

Figure 1 shows the vertically two-dinensional flow of ground water to
parallel ditches resting on a horizontal inperneable base of a phreatic
aqui fer recharged by evenly distributed percolation fromrainfall or irri-
gation (R0, mday). At the distance X=N (n), i.e. mdway between the
ditches, there is a water divide. Here the water table is horizontal.

At the distance X<N, the di scharge of the aquifer equals:

Q=-RIN-X (nt/ day)

where the mnus sign indicates that the flowis contrary to the X direction.
Fromthis water bal ance we find:

Vg = QJ = -RINX)/J (m day)
Wth this expression for the velocity Vg, Equation 1 can be changed into:
dJ R(N-X) Jr-J

= - (2)
dX Ky J N- X

Setting F = J-Jg, and Fr = J;-J, where Jg is the value of J at X=0, i.e. at
the edge of the ditch, it is seen that F represents the level of the water -

table with respect to the water level in the ditch (the drainage |evel).
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Applying the condition that dF/dX=0 at X=N, we find from Equation 2 that
Fr=Fn, where Fn is the value of F at X=N, and:

dF R(N-X) Fn-F
= - (3)

dX Ky J N- X

Introducing the drain radius C (n), and integrating Equation 3 from X=C to
any value X, gives:

X (N-X) X Fn-F
F=g dX - dX (4)
C Ky J C NX

Integration of the last termin Equation 4 requires advance know edge of the
level F, but it is unknown. To overcone this problem a nunerical solution
and a trial and error procedure must be sought. Qosterbaan et al. gave a
nmet hod of nunerical solution and an exanple fromwhich it was found that the
water table is lower than calculated according to the traditional nmethod,
except at the place of the ditch.

In the following, the equations wll be adjusted for calculating
subsurface drainage with pipe drains or ditches that do not penetrate to the
i mpermeabl e base, while entrance resistance may occur and the soil's
hydraul i ¢ conductivity may be an-isotropic.
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Figure 1. Vertically two-dinmensional flow of ground water to parallel
ditches resting on the inperneable base of a phreatic aquifer recharged by
evenly distributed percolation fromrainfall or irrigation.



2. PI PE DRAI NS

Figure 2 shows the wvertically two-dinensional flow of ground water to
parallel pipe drains with a radius C (m, placed at equal depth in a
phreatic aquifer recharged by evenly distributed percolation from rainfall
or irrigation (R>0, mday). The inperneable base is taken horizontal with a
depth D>C (n) below the centre point of the drains. At the distance X=N (m),
i.e. mdway between the drains, there is a water divide. Here the water
table is horizontal .

W consider only the radial flow approaching the drain at one side,
because the flow at the other side is symetrical, and also only the flow
approaching the drain from bel ow drain | evel.

According to the principle of Hooghoudt (1940), the ground water near
the drains flows radially towards them 1In the area of radial flow the
cross-section of the flow at a distance X fromthe drains is forned by the
circumference of a quarter circle with a length *nX. This principle 1is
conceptualised in Figure 2 by letting an inmmginary inperneable |ayer slope

away from the centre of the drain at an angle with a tangent ?*sm.
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Figure 2. Vertically two-dinmensional flow of ground water to parallel pipe
drains placed at equal depth in a phreatic aquifer recharged by evenly
distributed percolation fromrainfall or irrigation.

The depth of the imaginary sloping layer at distance X, taken wth respect
to the centre point of the drain, equals Y = ¥nX (m), so that the vertical
cross-section of the flow is equal to that of the quarter circle. At the
drain, where X = C, the depth Y equals Yc = »nC, which corresponds to a
gquarter of the drain's circunference.

The sloping imaginary l|ayer intersects the real inpermeable base at
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t he di stance:
Xi = 2D/m (5)

The area of radial flow is found between the distances X=C and X=X;. Beyond
di stance X=X;, the vertical cross-section equals Y=D.

To include the flow approaching the drain from above the drain |evel,
the total vertical cross-section in the area of radial flow is taken as
J=Y+F.

The horizontal conponent Vyx of the flow velocity in the vertical
section is taken constant, but its vertical conponent need not be constant.
Now, Equation 4 can be witten for two cases as:

X R(N-X) X Fn-F

C<X<X; - F=] ———dX - g dX (6a)
C Ky (F+4mX) C N-X
X R(N-X) X Fn-F

Xi <X<N: F=] ——dX - g dX (6Db)
C Ky(F+D) C NX

3. NUMERI CAL | NTEGRATI ON

For the nunerical integration, the horizontal distance N is divided into a
nunmber (T) of equally small elenents with length U so that U=NT. The
el ements are nunbered S =1, 2, 3, ...., T

The height F at a distance defined by the largest value of distance X
in element S is denoted as Fs. The change of height F over the S-th el enent
is denoted as Gs, and found from

G =Fs- Fsa
The average val ue of height F over the S-th elenent is:

Fs = Fs1 + Vi,
For the first step (S=i, see Equation 10 below), the value of Fs=F nust be
determined by trial and error because then the slope Gsi1= G.; i s not known.

The average value of the horizontal distance X of the S-th elenent is
found as:

Xs = US-0. 5)



The average val ue of depth Y over the S-th elenment is:

Ys = bmXs when  C<Xe<Xi (7a)
Ys = D when  Xi <Xe<N (7b)

Equati on 3 can now be approxi mated by:

G = U AstBs) (8)
wher e:

As = R(N-X9)/ Zs
with

Zs = Kx(YstFs) when  C<Xs<Xi (9a)

Zs = Kx(D+Fg) when  Xi <X«<N (9b)
and:

Bs = (EsF)/ (N-X9)

where Fr is the value of Fs when S=T. The factor Zs can be called transms-
sivity (nf/day) of the aquifer.

Now, the height of the water table at any distance X can be found,
conformto Equati ons 6a and 6b, from

S
Fs =3 & (10)
i
where i is the initial value of the summations, found as the integer value
of :
i =1+ CU (11)

so that the summation starts at the outside of the drain.

Since Fs depends on Bs and Bs on Fs and Fy, which is not known in
advance, Equations 8 and 10 nust be solved by trial and error.

Oritting the last ternms of Equations 6a and 6b, i.e. ignoring part of
the energy balance, and further in sinilarity to the above procedure, a
val ue G* can be found as:

G* = RUN X))/ Zs* (12)
wher e:

Zs* = Kx(YstFs*) when C<Xe<X

Zs* = Kx(D+Fs*) when Xj <Xs<N
and:



Fs*=Fs 1* +Y45 1*

Thus the height of the water table, in conformity to Equation 10, is:

Fs* = 2 Gs* (13)
I

This equation wll be used for conparison with Equation 10 and with
traditional solutions of Hooghoudt's drai nage equati ons.

4. EXAMPLE OF A NUMERI CAL SOLUTI ON

To illustrate the nunerical solutions we use the sane data as in an exanple
of drain spacing calculation with Hooghoudt's equation given by Ritzema
(1994):

N = 325 m C =01 m
K« = 0.14 miday R = 0.001 niday
D = 4.8 m F* = 1.0 m

The calculations for the nunerical solutions were made on a conputer wth
the EnDrain program The results are presented in Tables 1 and 2 and in
Fi gure 3.

Table 1 gives the values of height Fs (m) and gradients GJ/p, As, Bs at
sone sel ected val ues of distance X, using Equations 8 and 10 (i.e. using the
energy balance) with steps of U=0.05 m so that in total 650 steps are taken
with a large nunber of iterations. Snaller values of step U do not vyield
significantly different results.

Table 2 gives the values of height Fs* and gradient G*/p, at the sane
sel ected values of distance X of Table 1 and 2, using Equations 12 and 13
(i.e. ignoring part of the energy bal ance).

It is seen from Table 2.2 that the Fny* value (i.e. the value of F* at
X=N=32.5 m equals 0.99 m This is in close agreenent with the value Fn*=1.0
m used by Ritzena.



Table 1. Results of the calculations of the height of the
water table at sone sel ected distances with a nunerical and
iterative solution of the hydraulic energy bal ance for the
condi tions described the exanple of Section 4, using Equations
8 and 10 with steps U=0.01 m

Di stance Hei ght G adi ent G adi ent Adj ust nment
from of the of F needed for of A due to
drain wat er - the flow t he energy
centre tabl e Gu A of recharge
X (m F(m (m'm (m'm B (nm
0.75 0. 229 0. 146 0. 162 -0.017
1.5 0. 302 0. 069 0. 084 -0.015
3 0. 369 0.028 0. 042 -0.013
6 0. 446 0.024 0. 036 -0.012
9 0. 515 0.021 0.032 -0.010
12 0.574 0.018 0. 027 -0. 009
15 0. 625 0. 015 0.023 -0. 008
18 0. 667 0.013 0. 019 -0. 006
21 0.701 0. 010 0. 015 -0. 005
24 0.727 0. 007 0.011 -0. 004
27 0. 745 0. 005 0. 007 -0. 002
30 0. 755 0. 002 0.003 -0.001
32.5 0. 758 0. 000 0. 000 0. 000

Table 2. Results of the calculations of the |evel
the water table at sone sel ected di stances using a
nureri cal sol ution of Equations 12 and 13 (i.e.
ignoring part of the energy bal ance), with steps
U=0.05 m for the conditions described in the exanple
of Section 4.

Di stance from Hei ght of the G adi ent

drain centre wat er tabl e of F*
X (m P (m G/U (nm
0.75 0. 240 0. 161
1.5 0. 324 0. 083
3 0. 410 0. 042
6 0.524 0. 036
9 0.624 0. 031
12 0.710 0. 027
15 0.784 0. 022
18 0. 845 0.018
21 0. 894 0.014
24 0.931 0.011
27 0. 958 0. 007
30 0.972 0. 003
32.5 0. 976 0. 000
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Figure 3. The shape of the water table calculated with the energy bal ance
equation and the Darcy equation (traditional) for the conditions given in
t he exanple. G aph produced by the EnDrain program

Conparison of the tables learns that the F, value (i.e. the value of F at
X=N=32.5 nm) of Table 1 (Fy=0.76) is considerably snaller than the Fp* val ue
(0.98 n) of Table 2 (i.e. without energy balance). This is also shown in
Fi gure 3.

Wien a value of elevation Fn=1.0 m is accepted, the spacing can be
consi derably wider than 65 m

5. DI TCHES

The principles of calculating the groundwater flow to ditches are simlar as
those to pi pe drains.

Wien the width of the water body in the ditch (W) is twice its depth
(Dg), then the principles are exactly the same (the ditches are neutral).
Only the radius C of the drain nust be replaced by an equival ent radius
Ce=Dg="A¥; (Figure 4). In confornmty to the flow near pipe drains, the water
enters the ditch fromone side radially over a perimeter nCe. The nuneri cal
cal culations start at the distance X=A\ fromthe central axis of the ditch.
This neans that the initial value i (Equation 11) is changed into the
i nteger val ue of:



i'=1+ N/ U (14)
The correspondi ng val ue of the horizontal distance X is indicated by X'.
The depth Y of the sloping inperneable layer is taken with respect to the
water level in the drain. Oherwise the calculations are the sane as for
pi pes.
For other situations (Figure 4), we distinguish wi de ditches (Y A\>Dy)
from narrow ditches (“A\<Dy).

; narrow/desp drain
neutral drain

g g
: =
: Wwidd 2= i
Dd 3 !
 Dd !
I o '
| = |
E |
wide/shallow drain odl 5 |
Wid [ I
= |
water level | wid/2 — \L [
t T 1
L Wes ' Dd b ot g e
e, =
D'j/vl\ S wd/i2Dd | c e
T | T
I I
wids2

Figure 4. Vertical and horizontal dinensions of ditch drains.

For wide ditches, we replace the radius C by an equival ent radius G~Dyg, and

we define the excess width as W = “A\-Dg. The initial value i is again
changed into i' of Equation 14. Further, the value Ys in Equation 7a changes
i nto:

Xs' = bnXg [ ]AM<XS<Xi ! ] ( 15)

and the value of Zs in Equation 9a changes into:
Zs = Kx(FEstYs' +W) [ YA<Xs<Xj " ] (16)

For narrow ditches, the radius C is replaced by an equivalent radius G, =
1AM, and we define the excess dept as De = Dd-AM. Like before, the initial
value i is changed into i'. Further, the factor Zs in Equation 9a is changed
i nto:

Zs" = Kyx(Fst+YstDe) [ Dg<Xs<Xj '] (17)

An exanmple of results of calculations with the energy balance is given in
10



Table 3 for different ditches but otherwise with the same data as in the
exanple for pipe drains. All ditches have a wetted surface area of 2 m .

Table 3. Results of the calcul ations of the height Fn of
the water table, taken with respect to the drainage |evel,

m dway between ditches of different shapes, using a nunerical
and iterative solution of the hydraulic energy bal ance for
the conditions described the exanple of Section 4, using
Equations 8 and 10 with steps W=0.01 m and naki ng the

adj ustnents as described in Section 5.

W dt h Dept h Equi val ent Type of El evati on
W Dy radi us ditch Fn
(m (m (m (m
2 1 1 Neut r al 0.55
3 0. 667 0. 667 W de/ shal | ow 0.52
1 2 0.5 Nar r ow deep 0.52

Fromthe table it is seen that the elevations F, of the water table m dway
bet ween the ditches are about 70% of the F, value (0.76) calculated for pipe
drains. Reasons are the larger equivalent radius, which reduces the
contraction of and resistance to the radial flow, and the larger surface
wi dt h, which reduces the width of the catchnent’s area.

6. ENTRANCE RESI STANCE.

Wien entrance resistance is present, the water level just outside the drain
is higher than inside by a difference Fg, the entrance head. Now, the first
value Fj of Fs is changed into Fj'=Fj+Fe. Qtherw se the cal cul ati on procedure
remai ns unchanged.

An exanple of the results of calculations with the energy bal ance for
pi pe drains with varying entrance heads, but otherwi se with the same data as
in the first exanple for pipe drains, is shown in Table 4. It is seen that
the increment of elevation F, is a fraction of the entrance head Fe.
However, with increasing heads Fg, the fraction increases sonewhat: from 56%
(for Fe=0.1) to 69% (for Feg=0.5). Hence, the adverse effect of entrance head

i ncreases nore than proportionally.
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Table 4. Results of the cal cul ations of the height Fn of
the water table, taken with respect to the drainage | evel
m dway between drain pipes, with different entrance heads,
using a nunerical and iterative solution of the hydraulic
energy bal ance for the conditions described the exanple of
Section 4, using Equations 8 and 10 with steps U=0.01 m
and meki ng the adjustnents as described in Section 6.

Entrance El evati on Increnent (i) of Fp
head L o e
Fe (M (m i =Fp-0. 755 i/Fe in %
0.0 0. 757 - -

0.1 0. 813 0. 056 56

0.2 0.878 0.121 60

0.3 0. 950 0.193 64

0.4 1.025 0. 268 67

0.5 1.103 0. 346 69

7. AN SOTROPY

The hydraulic conductivity of the soil may change with depth and be
different in horizontal and vertical direction. W wll distinguish a
hori zontal conductivity Ka of the soil above drainage level, and a
hori zontal and vertical conductivity Ky and Ky bel ow drainage |evel. The
following principles are only valid when K,>R otherwise the recharge R
percol ates downwards only partially and the assuned water bal ance Q- R(N X)
i s not applicable.

The effect of the conductivity Ky is taken into account by introducing
the anisotropy ratio A=y(Kp/ Ky), as described for exanple by Bounans (1979).
The conductivity Ky is divided by this ratio, yielding a transformed conduc-
tivity: K = Ko/ A = V(Kp.Ky). As normally Ky<Kp, we find A>1 and Ki<Kp. On
the other hand, the depth of the aquifer below the bottomlevel of the drain
is multiplied with the ratio. Hence the transfornmed depth is: Di=A. D The
di stance Xj =2D0/n (Equation 5) of the radial flow now changes into X;=2D /m.
Wien A>1, the transfornmed distance X is larger than Xj. The effect of the
transformation is that the extended area of radial flow and the reduced
conductivity K¢ increase the resistance to the flow and enlarges the height
of the water table.

I ncluding the entrance resistance, the transmssivity Zs (Equations 9a
and 9b), for different types of drains, now becones:
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a) pipe drains: Zs = wmKi. Xs + (Kp-Ki) Dy

+ Ka. Fs [ C<Xs<Xt]
b) neutral ditches: Zs = wnKi. Xs + (Kp- Ki) Dy

+ Ka. Fs [ Ce<Xs<Xt]
c) wide ditches: Zs = wnKi. Xs + (Kp- Ki) Dy

+ Ky. W + Ka. Fs [ CGawsXs<Xt ]
d) narrow ditches: Zs = wnKi. Xs - Y. W

+ Kp. Dg + Ka. Es [ Cr<Xs<Xt]
e) all drains: Zs = Ki. Dy + Kg. Fs [ X <Xs<N|

The suggestion of Boumans to use the wetted perineter of the ditches to find
the equivalent radius, without naking a distinction between wi de and narrow
drains, is not followed as this would lead to erroneous results for narrow
and very deep drains, especially when they penetrate to the inperneable
layer. In the latter case there is no radial flow but the use of the wetted
perimeter would introduce it. The proposed nethod does not.

Table 5 gives an exanple of energy balance calculations for pipe
drains in soils with an-isotropic hydraulic conductivity using Kz=Kp=0.14,
as in the previous exanples, and K, = 0.14, 0.014 and 0.0014. This yields
anisotropy ratios A = 1, 3.16, and 10 respectively. Al other data are the
sane as in the previous exanpl es.

The table shows that the height F, increases with increasing ratio A
and the increase is higher for the smaller pipe drains than for the |arger
ditches. This is due to the nore pronounced contraction of the flow to the
pi pe drains than to the ditches and the associated extra resistance to flow
caused by the reduction of the hydraulic conductivity for radial flow from
Ko to K.

The narrow deep ditches show by far the smallest increase of the
hei ght Fn, due to their deeper penetration into the soil by which they nake
use of the higher horizontal conductivity Kb. Unfortunately, it is
practically very difficult to establish and maintain such deep drains at
field |l evel.

Wien the height Fn would be fixed, one would see that the spacing in
an-isotropic soils is by far the largest for the narrow and deep ditches.
Neutral drains would have snaller spacing than wide drains, i.e. the
advant age of wide ditches in isotropic soils vanishes in an-isotropic soils.

13



The pi pe drains would have the snal | est spacing.

Table 5. Results of the calculations of the height Fy (m of the
water table, taken with respect to the drainage | evel, m dway

bet ween pipe drains and ditches in an-isotropic soils with a fixed
val ue of the horizontal hydraulic conductivity Kp=0.14 ni day,
using a nunerical and iterative solution of the hydraulic energy
bal ance for the conditions described the previ ous exanpl es,

usi ng Equations 8 and 10 with steps U=0.01 m and making the

adj ustnents as described in Section 7.

Hei ght Fn of the water table (n)

Vertical s e e e e i e—iaaooas
hydraul i c Di t ches
conductivity e
Pi pe drains Neut r al W de Nar r ow
C0.1m Wi=2 m Wi=3 m W=l m
Ky (ntfday) Dg=1 m Dg=0.667 m  Dg=2 m
0.14 0.76 0.55 0.52 0.52
0.014 1.13 0.69 0.73 0.59
0. 0014 1.63 1.00 1.11 0.74

8. LAYERED (AN)| SOTROPI C SO LS

The soil may consist of distinct (an)isotropic layers. In the follow ng
nodel , three layers are di scerned.

The first layer reaches to a depth D; below the soil surface, corres-
ponding to the depth Wi of the water level in the drain, and it has an
isotropic hydraulic conductivity K. The layer represents the soil
condi ti ons above drai nage | evel.

The second layer has a reaches to depth Dy below the soil surface
(Dp>Dq). It has horizontal and vertical hydraulic conductivities Koy and Koy
respectively with an anisotropy ratio Ap. The transformed conductivity is Kot
= Kox/ Ao.

The third layer rests on the inperneable base at a depth D3 (D3>Dp).
It has a thickness T3=D3-D» and horizontal and vertical hydraulic
conductivities Kzxy and Kzx respectively with an anisotropy ratio Az. The
transformed conductivity is Kz3t=Kzx/ Az, and the transforned thickness is T3t
= A3. T3

When the thickness T3=0 and/or the conductivity K3=0 (i.e. the third
| ayer has zero transmissivity and is an inperneable base), the depth Do may
be larger or snmaller than the bottom depth Dy of the drain. Qherwi se, the
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depth Dp nust be greater than the sum of bottom depth and the (equivalent)
radius (C- = C, G, Gy or Gy of the drain, lest the radial flow conponent

to the drain is difficult to cal cul ate.
For pipe drains, neutral and wide ditch drains, and with Dy > D#C =

Dyt Dy, the transformed thickness of the second soil |ayer below drainage
| evel becones Tot = Ap(Dp-Dy). For narrow ditches we have simlarly Tio =
A2( D- D ¥¥\j+Dy)

Wth the introduction of an additional soil layer, the expressions of

transm ssivity Zs in Section 7 need again adjustment, as there may two
di stances X (X1t and Xot) of radial flow instead of one, as the radial flow

may occur in the second and the third soil |ayer:
X1t = 2Tt/ n
Xot = Xyt + 2Tgt/m

Wth these boundaries, the transmissivity becones:

a) pipe drains:

Zs = ¥mKpt. Xs + (Kox-Kot) Dy + Ka. Fs [ C<Xs<X1t]

b) neutral ditches:

Zs = ¥mKpt. Xs + (Kox-Kot) Dy + Ka. Fs [ Ce<Xs<Xi1t]

c) wide ditches:

Zs = %mKpp. Xs + (Kox-Kot) Dy + Koy. W+ Ka. Fs [ Ca<Xs<X1t ]

d) narrow ditches:

Zs = ¥mKpp. Xs - YKot . W + Kox. Dg + Ka. Fs [ Ch<Xs<Xt]

e) all drains:

Zs = Kpt.Tot + *mKzt. Xs + Ka. Fs [ X1t <Xs<X2t ]

Zs = Kpt. Tt + K3t. T3t + Ka. Fs [ Xs>Tot +T3t ]

An exanple will be given for pipe drains situated at different depths within
the relatively slowy permeable second |ayer having different anisotropy
ratios and being underlain by an isotropic, relatively rapidly perneable,
third layer with different conductivities. W have the foll owi ng data:
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N =38 m C =0.05m R = 0.007 m day

DL =1.0m Db =2.0m D3 =6.0m

N =38 m Kox = 0.5 mf day Kgx = 1.0 mf day

Ka = 0.5 niday Koy = 0.5 mf day Kgy = 1.0 nmf day

and vari ations: Koy = 0.1 niday Koy = 0.05 ni day
Kax = Kzy =2.0 ni day Kax = K3y = 5.0 nfday

The results are shown in Table 6.

Table 6. Results of the cal culations of the height Fy (m
of the water table, taken with respect to the drainage

| evel, m dway between pipe drains in a |ayered soil of

whi ch the second | ayer, in which the drains are situated,
has varying anisotropy ratios with a fixed value of the
hori zontal hydraulic conductivity Kox=0.5 m day, using a
nurmerical and iterative solution of the hydraulic energy
bal ance for the conditions described the exanple of Section
8, using Equations 8 and 10 with steps U=0.01 m and maki ng
the adjustnments as described in Section 8.

Hydr. cond. Vert. hydr. Anisotropy Hei ght Fn of the

3rd | ayer cond. Koy ratio Ao wat er tabl e above
Kax=Kay 2nd | ayer 2nd | ayer dai nage | evel
(n day) (n day) (-) (m
1.0 0.5 1.0 0.54
1.0 0.1 2.24 0.75
1.0 0. 05 3.13 0. 86
2.0 0.5 1.0 0. 45
2.0 0.1 2.24 0. 67
2.0 0. 05 3.13 0.79
5.0 0.5 1.0 0. 37
5.0 0.1 2.24 0. 60
5.0 0. 05 3.13 0.74

The results indicate that both the conductivity of the 3rd layer and the
anisotropy of the 2nd layer, in which the drains are situated, exert a
consi derabl e i nfluence on the hei ght Fp.
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In the Netherlands, it is customary to prescribe a mnimum perm ssible
depth of the water table of 0.5 m at a discharge of 7 nmiday, which is
exceeded on average only once a year. In the exanple, with a drain depth of
1.0 m this condition is fulfilled when the height F, is at nost 0.5 m
Here, this occurs when Ky, is at least 0.5 niday and when Kzx = K3y is at
least 2.0 m To neet the prescription in the other cases of the exanple,
either the drain depth shoul d be deeper or the drain spacing narrower.

GENERAL CONCLUSI ONS

Application of the energy balance of groundwater flow to pipe and ditch
drains leads to lower elevations of the water table or, if the elevation is
fixed, to wider drain spacing. Also, it can give the shape of the water
table. Further, it can take entrance resistance and ani sotropy of the soil's
hydraulic conductivity into account. Calculations with the energy balance
need be done on a conputer because of the cunbersonme iterative, numnerical
procedure required.

REFERENCES

Bourmans, J.H (1979). Drainage calculations in stratified soils using the
an-isotropic soil nodel to sinulate hydraulic conductivity conditions.
In: J.Wesseling (Ed.), Proceedings of the International Drainage Wrkshop,
p. 108-123. Publ. 25, ILRI, \Wageni ngen, The Net herl ands.

Qosterbaan, R J., J.Boonstra and K V.G K Rao (1996). The energy bal ance of
groundwater flow. In: V.P.Singh and B. Kumar (Eds.), Subsurface-VWater
Hydrol ogy, p. 153-160. Kluwer Academnmi c Publishers, The Netherl ands.
(Reprint available at ILRI, e-mail ilri@lri.nl)

Ritzema, H P. (1994). Subsurface flowinto drains. In: HP. Rtzema (Ed.),
Drai nage Principles and Applications, p. 263-304. Publ 16, ILR, Wage-
ni ngen,
The Net her | ands.

17



