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ABSTRACT.  

The energy balance of groundwater flow developed by Oosterbaan, Boonstra and 

Rao (1994), and used for the groundwater flow in unconfined aquifers, is 

applied to subsurface drainage by pipes or ditches with the possibility to 

introduce entrance resistance and/or (layered) soils with an-isotropic 

hydraulic conductivities. Owing to the energy associated with the recharge 

by downward percolating water, it is found that use of the energy balance 

leads to lower water table elevations than when it is ignored. 

 The energy balance cannot be solved analytically and a computerized 

numerical method is needed. An advantage of the numerical method is that the 

shape of the water table can be described, which was possible with the 

traditional methods only in particular situations, like drains without 

entrance resistance, resting on an impermeable layer in isotropic soils 

 

 

1. INTRODUCTION 

 

Oosterbaan, Boonstra and Rao (1994) introduced the energy balance of 

groundwater flow. It is based on equating the change of hydraulic energy 

flux over a horizontal distance to the conversion rate of hydraulic energy 

into to friction of flow over that distance. The energy flux is calculated 

on the basis of a multiplication of the hydraulic potential and the flow 

velocity, integrated over the total flow depth. The conversion rate is 

determined in analogy to the heat loss equation of an electric current. 

 Assuming (1) steady state fluxes, i.e. no water and associated energy 

is stored, (2) vertically two-dimensional flow, i.e. the flow pattern 

repeats itself in parallel vertical planes, (3) the horizontal component of 

the flow is constant in a vertical cross-section, and (4) the soil's 

hydraulic conductivity is constant from place to place, they found that: 
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  dJ    Vx R(J-Jr) 
  ——— = —————————      (1) 
  dX     Kx Vx J 

 

where: 

  J  is the level of the water table at distance X, taken with  

     respect to the level of the impermeable base of the aquifer 

     (m) 

  Jr is a reference value of level J (m) 

  X  is a distance in horizontal direction (m) 

  Vx is the apparent flow velocity at X in horizontal X-direction  

     (m/day) 

  Kx is the horizontal hydraulic conductivity (m/day)  

R  is the steady recharge by downward percolating water stemming 

   from rain or irrigation water (m/day) 

  dX is a small increment of distance X (m) 

  dJ is the increment of level J over increment dX (m) 

  dJ/dX is the gradient of the water table at X (m/m) 

 

The last term of Equation 1 represents the energy associated with the 

recharge R. When the recharge R is zero, Equation 1 yields Darcy's equation. 

The negative sign before Vx indicates that the flow is positive when the 

gradient dJ/dX is negative, i.e. the flow follows the descending gradient, 

and vice versa. 

 Figure 1 shows the vertically two-dimensional flow of ground water to 

parallel ditches resting on a horizontal impermeable base of a phreatic 

aquifer recharged by evenly distributed percolation from rainfall or irri-

gation (R>0, m/day). At the distance X=N (m), i.e. midway between the 

ditches, there is a water divide. Here the water table is horizontal. 

At the distance X≤N, the discharge of the aquifer equals: 
 

  Q = -R(N-X)    (m2/day) 

 

where the minus sign indicates that the flow is contrary to the X direction. 

From this water balance we find:  

 

  Vx = Q/J = -R(N-X)/J  (m/day) 

 

With this expression for the velocity Vx, Equation 1 can be changed into: 

 
  dJ   R(N-X)     Jr-J 
  —— = ——————  -  ————       (2) 
  dX    Kx J       N-X 

 

Setting F = J-Jo, and Fr = Jr-J, where Jo is the value of J at X=0, i.e. at 

the edge of the ditch, it is seen that F represents the level of the water -

table with respect to the water level in the ditch (the drainage level). 
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Applying the condition that dF/dX=0 at X=N, we find from Equation 2 that 

Fr=Fn, where Fn is the value of F at X=N, and: 

 

  dF   R(N-X)     Fn-F 
  —— = ——————  -  ————       (3) 
  dX    Kx J      N-X 

Introducing the drain radius C (m), and integrating Equation 3 from X=C to 

any value X, gives: 

 
      X (N-X)       X  Fn-F 

  F = ∫  ————— dX -  ∫  ———— dX    (4) 
      C  Kx J       C   N-X 

 

Integration of the last term in Equation 4 requires advance knowledge of the 

level Fn but it is unknown. To overcome this problem, a numerical solution 

and a trial and error procedure must be sought. Oosterbaan et al. gave a 

method of numerical solution and an example from which it was found that the 

water table is lower than calculated according to the traditional method, 

except at the place of the ditch. 

 In the following, the equations will be adjusted for calculating 

subsurface drainage with pipe drains or ditches that do not penetrate to the 

impermeable base, while entrance resistance may occur and the soil's 

hydraulic conductivity may be an-isotropic. 

 

 

   
Figure 1. Vertically two-dimensional flow of ground water to parallel 

ditches resting on the impermeable base of a phreatic aquifer recharged by 

evenly distributed percolation from rainfall or irrigation. 
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2. PIPE DRAINS 

 

Figure 2 shows the vertically two-dimensional flow of ground water to 

parallel pipe drains with a radius C (m), placed at equal depth in a 

phreatic aquifer recharged by evenly distributed percolation from rainfall 

or irrigation (R>0, m/day). The impermeable base is taken horizontal with a 

depth D>C (m) below the centre point of the drains. At the distance X=N (m), 

i.e. midway between the drains, there is a water divide. Here the water 

table is horizontal.  

 We consider only the radial flow approaching the drain at one side, 

because the flow at the other side is symmetrical, and also only the flow 

approaching the drain from below drain level.  

 According to the principle of Hooghoudt (1940), the ground water near 

the drains flows radially towards them. In the area of radial flow, the 

cross-section of the flow at a distance X from the drains is formed by the 

circumference of a quarter circle with a length ½πX. This principle is 
conceptualised in Figure 2 by letting an imaginary impermeable layer slope 

away from the centre of the drain at an angle with a tangent ½π.  
 

  
 

Figure 2. Vertically two-dimensional flow of ground water to parallel pipe 

drains placed at equal depth in a phreatic aquifer recharged by evenly 

distributed percolation from rainfall or irrigation. 

 

 

The depth of the imaginary sloping layer at distance X, taken with respect 

to the centre point of the drain, equals Y = ½πX (m), so that the vertical 
cross-section of the flow is equal to that of the quarter circle. At the 

drain, where X = C, the depth Y equals Yc = ½πC, which corresponds to a 
quarter of the drain's circumference. 

 The sloping imaginary layer intersects the real impermeable base at 
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the distance: 

 

  Xi = 2D/π       (5) 

 

The area of radial flow is found between the distances X=C and X=Xi. Beyond 

distance X=Xi, the vertical cross-section equals Y=D. 

 To include the flow approaching the drain from above the drain level, 

the total vertical cross-section in the area of radial flow is taken as 

J=Y+F. 

 The horizontal component Vx of the flow velocity in the vertical 

section is taken constant, but its vertical component need not be constant. 

Now, Equation 4 can be written for two cases as: 

 
       X  R(N-X)        X  Fn-F 

 C<X<Xi: F = ∫  ———————— dX  - ∫  ———— dX   (6a) 

       C Kx(F+½πX)      C  N-X 
 
 
 
       X  R(N-X)        X  Fn-F 
 Xi<X<N: F = ∫   —————— dX  -  ∫  ———— dX   (6b) 

       C  Kx(F+D)       C  N-X 

 

 

3. NUMERICAL INTEGRATION 

 

For the numerical integration, the horizontal distance N is divided into a 

number (T) of equally small elements with length U, so that U=N/T. The 

elements are numbered S = 1, 2, 3, ...., T.  

 The height F at a distance defined by the largest value of distance X 

in element S is denoted as FS. The change of height F over the S-th element 

is denoted as GS, and found from: 

 

  GS = FS - FS-1 

 

The average value of height F over the S-th element is: 

 

  FS = FS-1 + ½GS-1 

 

For the first step (S=i, see Equation 10 below), the value of FS=Fi must be 

determined by trial and error because then the slope GS-1 = Gi-1 is not known. 

 The average value of the horizontal distance X of the S-th element is 

found as: 

 

  XS = U(S-0.5) 
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The average value of depth Y over the S-th element is: 

 

 

 

  YS = ½πXS   when  C<XS<Xi   (7a) 

 

  YS = D   when  Xi<XS<N   (7b) 

 

Equation 3 can now be approximated by: 

 

  GS = U(AS+BS)       (8) 

where: 

  AS = R(N-XS)/ZS 

with: 

  ZS = Kx(YS+FS) when  C<XS<Xi   (9a) 

 

  ZS = Kx(D+FS)  when  Xi<XS<N   (9b) 

and: 

  BS = (FS-FT)/(N-XS) 

 

where FT is the value of FS when S=T. The factor ZS can be called transmis-

sivity (m2/day) of the aquifer. 

 Now, the height of the water table at any distance X can be found, 

conform to Equations 6a and 6b, from: 

 
       S 
  FS = Σ GS       (10) 
       i 

 

where i is the initial value of the summations, found as the integer value 

of: 

 

  i = 1 + C/U       (11) 

 

so that the summation starts at the outside of the drain. 

 Since FS depends on BS and BS on FS and FT, which is not known in 

advance, Equations 8 and 10 must be solved by trial and error.  

 Omitting the last terms of Equations 6a and 6b, i.e. ignoring part of 

the energy balance, and further in similarity to the above procedure, a 

value GS* can be found as: 

 

  GS* = R.U(N-XS)/ZS*      (12) 

where: 

  ZS* = Kx(YS+FS*)    when    C<XS<Xi 

 

  ZS* = Kx(D+FS*)     when    Xi<XS<N 

and: 
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  FS*=FS-1*+½GS-1*  

 

Thus the height of the water table, in conformity to Equation 10, is: 

 

   S 
  FS* = Σ GS*        (13) 
   i 

 

This equation will be used for comparison with Equation 10 and with 

traditional solutions of Hooghoudt's drainage equations. 

 

 

4. EXAMPLE OF A NUMERICAL SOLUTION 

 

To illustrate the numerical solutions we use the same data as in an example 

of drain spacing calculation with Hooghoudt's equation given by Ritzema 

(1994): 

 

 N   =   32.5    m   C   =  0.1    m 

 Kx  =    0.14   m/day  R   =  0.001  m/day 

 D   =    4.8    m   Fn* =  1.0    m 

 

The calculations for the numerical solutions were made on a computer with 

the EnDrain program. The results are presented in Tables 1 and 2 and in 

Figure 3. 

 Table 1 gives the values of height FS (m) and gradients GS/p, AS, BS at 

some selected values of distance X, using Equations 8 and 10 (i.e. using the 

energy balance) with steps of U=0.05 m, so that in total 650 steps are taken 

with a large number of iterations. Smaller values of step U do not yield 

significantly different results. 

 Table 2 gives the values of height FS* and gradient GS*/p, at the same 

selected values of distance X of Table 1 and 2, using Equations 12 and 13 

(i.e. ignoring part of the energy balance). 

 It is seen from Table 2.2 that the Fn* value (i.e. the value of F* at 

X=N=32.5 m) equals 0.99 m. This is in close agreement with the value Fn*=1.0 

m used by Ritzema.  
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Table 1.  Results of the calculations of the height of the 
water table at some selected distances with a numerical and  
iterative solution of the hydraulic energy balance for the  
conditions described the example of Section 4, using Equations 
8 and 10 with steps U=0.01 m. 
------------------------------------------------------------ 
Distance     Height     Gradient    Gradient     Adjustment 
  from       of the       of F     needed for    of A due to  
 drain       water-                 the flow     the energy  
 centre      table        G/U          A         of recharge 
  X (m)      F (m)       (m/m)       (m/m)        B (m/m) 
------------------------------------------------------------ 
   0.75      0.229       0.146       0.162       -0.017 
   1.5       0.302       0.069       0.084       -0.015 
   3         0.369       0.028       0.042       -0.013 
   6         0.446       0.024       0.036       -0.012 
   9         0.515       0.021       0.032       -0.010 
  12         0.574       0.018       0.027       -0.009 
  15         0.625       0.015       0.023       -0.008 
  18         0.667       0.013       0.019       -0.006 
  21         0.701       0.010       0.015       -0.005 
  24         0.727       0.007       0.011       -0.004 
  27         0.745       0.005       0.007       -0.002 
  30         0.755       0.002       0.003       -0.001 
  32.5       0.758       0.000       0.000        0.000 
----------------------------------------------------------- 
 
 
 
 
Table 2.  Results of the calculations of the level  
the water table at some selected distances using a  
numerical solution of Equations 12 and 13 (i.e.  
ignoring part of the energy balance), with steps  
U=0.05 m, for the conditions described in the example 
of Section 4. 
---------------------------------------------------- 
 Distance from      Height of the          Gradient 
 drain centre        water table            of F* 
   X (m)               F* (m)             G*/U (m/m) 
---------------------------------------------------- 
    0.75               0.240                0.161 
    1.5                0.324                0.083 
    3                  0.410                0.042  
    6                  0.524                0.036  
    9                  0.624                0.031  
   12                  0.710                0.027  
   15                  0.784                0.022 
   18                  0.845                0.018 
   21                  0.894                0.014  
   24                  0.931                0.011  
   27                  0.958                0.007  
   30                  0.972                0.003  
   32.5                0.976                0.000 
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Figure 3. The shape of the water table calculated with the energy balance 

equation and the Darcy equation (traditional) for the conditions given in 

the example. Graph produced by the EnDrain program. 

 

 

Comparison of the tables learns that the Fn value (i.e. the value of F at 

X=N=32.5 m) of Table 1 (Fn=0.76) is considerably smaller than the Fn* value 

(0.98 m) of Table 2 (i.e. without energy balance). This is also shown in 

Figure 3. 

 When a value of elevation Fn=1.0 m is accepted, the spacing can be 

considerably wider than 65 m. 

 

 

5. DITCHES 

 

The principles of calculating the groundwater flow to ditches are similar as 

those to pipe drains. 

 When the width of the water body in the ditch (Wd) is twice its depth 

(Dd), then the principles are exactly the same (the ditches are neutral). 

Only the radius C of the drain must be replaced by an equivalent radius 

Ce=Dd=½Wd (Figure 4). In conformity to the flow near pipe drains, the water 

enters the ditch from one side radially over a perimeter ½πCe. The numerical 
calculations start at the distance X=½Wd from the central axis of the ditch. 

This means that the initial value i (Equation 11) is changed into the 

integer value of: 
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   i'= 1 + ½Wd/U       (14) 

The corresponding value of the horizontal distance X is indicated by Xi'. 

The depth Y of the sloping impermeable layer is taken with respect to the 

water level in the drain. Otherwise the calculations are the same as for 

pipes. 

  For other situations (Figure 4), we distinguish wide ditches (½Wd>Dd) 

from narrow ditches (½Wd<Dd). 

 

  
Figure 4. Vertical and horizontal dimensions of ditch drains. 

 

  

For wide ditches, we replace the radius C by an equivalent radius Cw=Dd, and 

we define the excess width as We = ½Wd-Dd. The initial value i is again 

changed into i' of Equation 14. Further, the value YS in Equation 7a changes 

into: 

 

  YS' =  ½πXS      [½Wd<XS<Xi']   (15) 

 

and the value of ZS in Equation 9a changes into: 

 

  ZS' = Kx(FS+YS'+We)   [½Wd<XS<Xi']   (16) 

 

For narrow ditches, the radius C is replaced by an equivalent radius Cn = 

½Wd, and we define the excess dept as De = Dd-½Wd. Like before, the initial 

value i is changed into i'. Further, the factor ZS in Equation 9a is changed 

into: 

 

  ZS" = Kx(FS+YS+De)   [Dd<XS<Xi']   (17) 

 

An example of results of calculations with the energy balance is given in 
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Table 3 for different ditches but otherwise with the same data as in the 

example for pipe drains. All ditches have a wetted surface area of 2 m
2 .  

 

Table 3.  Results of the calculations of the height Fn of 

the water table, taken with respect to the drainage level,  

midway between ditches of different shapes, using a numerical 

and iterative solution of the hydraulic energy balance for 

the conditions described the example of Section 4, using 

Equations 8 and 10 with steps U=0.01 m and making the  

adjustments as described in Section 5. 

----------------------------------------------------------- 

 Width     Depth     Equivalent     Type of      Elevation 

  Wd        Dd         radius        ditch          Fn 

  (m)       (m)         (m)                         (m) 

----------------------------------------------------------- 

   2        1           1         Neutral          0.55 

   3        0.667       0.667     Wide/shallow     0.52 

   1        2           0.5       Narrow/deep      0.52 

----------------------------------------------------------- 

 

 

From the table it is seen that the elevations Fn of the water table midway 

between the ditches are about 70% of the Fn value (0.76) calculated for pipe 

drains. Reasons are the larger equivalent radius, which reduces the 

contraction of and resistance to the radial flow, and the larger surface 

width, which reduces the width of the catchment’s area.  

 

 

6. ENTRANCE RESISTANCE. 

 

When entrance resistance is present, the water level just outside the drain 

is higher than inside by a difference Fe, the entrance head. Now, the first 

value Fi of FS is changed into Fi'=Fi+Fe. Otherwise the calculation procedure 

remains unchanged. 

 An example of the results of calculations with the energy balance for 

pipe drains with varying entrance heads, but otherwise with the same data as 

in the first example for pipe drains, is shown in Table 4. It is seen that 

the increment of elevation Fn is a fraction of the entrance head Fe. 

However, with increasing heads Fe, the fraction increases somewhat: from 56% 

(for Fe=0.1) to 69% (for Fe=0.5). Hence, the adverse effect of entrance head 

increases more than proportionally. 
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Table 4.  Results of the calculations of the height Fn of 

the water table, taken with respect to the drainage level, 

midway between drain pipes, with different entrance heads,  

using a numerical and iterative solution of the hydraulic 

energy balance for the conditions described the example of 

Section 4, using Equations 8 and 10 with steps U=0.01 m 

and making the adjustments as described in Section 6. 

-------------------------------------------------------- 

 Entrance      Elevation       Increment (i) of Fn 

 head             Fn        -------------------------- 

 Fe (m)          (m)         i=Fn-0.755     i/Fe in % 

-------------------------------------------------------- 

  0.0           0.757            -             - 

  0.1           0.813          0.056          56 

  0.2           0.878          0.121          60 

  0.3           0.950          0.193          64 

  0.4           1.025          0.268          67 

  0.5           1.103          0.346          69 

-------------------------------------------------------- 

 

 

 

7. ANISOTROPY 

 

The hydraulic conductivity of the soil may change with depth and be 

different in horizontal and vertical direction. We will distinguish a 

horizontal conductivity Ka of the soil above drainage level, and a 

horizontal and vertical conductivity Kb and Kv below drainage level. The 

following principles are only valid when Kv>R, otherwise the recharge R 

percolates downwards only partially and the assumed water balance Q=-R(N-X) 

is not applicable. 

 The effect of the conductivity Kv is taken into account by introducing 

the anisotropy ratio A=√(Kb/Kv), as described for example by Boumans (1979). 
The conductivity Kb is divided by this ratio, yielding a transformed conduc-

tivity: Kt = Kb/A = √(Kb.Kv). As normally Kv<Kb, we find A>1 and Kt<Kb. On 
the other hand, the depth of the aquifer below the bottom level of the drain 

is multiplied with the ratio. Hence the transformed depth is: Dt=A.D The 

distance Xi=2D/π (Equation 5) of the radial flow now changes into Xt=2Dt/π. 
When A>1, the transformed distance Xt is larger than Xi. The effect of the 

transformation is that the extended area of radial flow and the reduced 

conductivity Kt increase the resistance to the flow and enlarges the height 

of the water table. 

 Including the entrance resistance, the transmissivity ZS (Equations 9a 

and 9b), for different types of drains, now becomes: 
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a) pipe drains:  ZS = ½πKt.XS + (Kb-Kt)Dd 
 
                    + Ka.FS     [C<XS<Xt] 

 

b) neutral ditches:  ZS = ½πKt.XS + (Kb-Kt)Dd  
 
             + Ka.FS      [Ce<XS<Xt] 

 

c) wide ditches:  ZS = ½πKt.XS + (Kb-Kt)Dd  
 
         + Kv.We + Ka.FS   [Cw<XS<Xt] 

 

d) narrow ditches:   ZS = ½πKt.XS - ½Kt.Wd  
 
         + Kb.Dd + Ka.FS   [Cn<XS<Xt] 

 

e) all drains:    ZS = Kt.Dt + Ka.FS         [Xt<XS<N] 

 

 

The suggestion of Boumans to use the wetted perimeter of the ditches to find 

the equivalent radius, without making a distinction between wide and narrow 

drains, is not followed as this would lead to erroneous results for narrow 

and very deep drains, especially when they penetrate to the impermeable 

layer. In the latter case there is no radial flow but the use of the wetted 

perimeter would introduce it. The proposed method does not. 

 Table 5 gives an example of energy balance calculations for pipe 

drains in soils with an-isotropic hydraulic conductivity using Ka=Kb=0.14, 

as in the previous examples, and Kv = 0.14, 0.014 and 0.0014. This yields 

anisotropy ratios A = 1, 3.16, and 10 respectively. All other data are the 

same as in the previous examples. 

 The table shows that the height Fn increases with increasing ratio A 

and the increase is higher for the smaller pipe drains than for the larger 

ditches. This is due to the more pronounced contraction of the flow to the 

pipe drains than to the ditches and the associated extra resistance to flow 

caused by the reduction of the hydraulic conductivity for radial flow from 

Kb to Kt. 

 The narrow/deep ditches show by far the smallest increase of the 

height Fn, due to their deeper penetration into the soil by which they make 

use of the higher horizontal conductivity Kb. Unfortunately, it is 

practically very difficult to establish and maintain such deep drains at 

field level. 

 When the height Fn would be fixed, one would see that the spacing in 

an-isotropic soils is by far the largest for the narrow and deep ditches. 

Neutral drains would have smaller spacing than wide drains, i.e. the 

advantage of wide ditches in isotropic soils vanishes in an-isotropic soils. 
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The pipe drains would have the smallest spacing. 

 

Table 5.  Results of the calculations of the height Fn (m) of the  

water table, taken with respect to the drainage level, midway  

between pipe drains and ditches in an-isotropic soils with a fixed  

value of the horizontal hydraulic conductivity Kb=0.14 m/day,  

using a numerical and iterative solution of the hydraulic energy  

balance for the conditions described the previous examples,  

using Equations 8 and 10 with steps U=0.01 m and making the  

adjustments as described in Section 7. 

---------------------------------------------------------------- 

                       Height Fn of the water table (m) 

Vertical       ------------------------------------------------- 

hydraulic                                    Ditches 

conductivity                  ---------------------------------- 

               Pipe drains     Neutral     Wide          Narrow 

               C=0.1 m         Wd=2 m      Wd=3 m        Wd=1 m 

Kv (m/day)                     Dd=1 m      Dd=0.667 m    Dd=2 m 

---------------------------------------------------------------- 

   0.14           0.76          0.55        0.52          0.52 

   0.014          1.13          0.69        0.73          0.59 

   0.0014         1.63          1.00        1.11          0.74 

---------------------------------------------------------------- 

 

 

 

8. LAYERED (AN)ISOTROPIC SOILS 

 

The soil may consist of distinct (an)isotropic layers. In the following 

model, three layers are discerned. 

 The first layer reaches to a depth D1 below the soil surface, corres-

ponding to the depth Wd of the water level in the drain, and it has an 

isotropic hydraulic conductivity Ka. The layer represents the soil 

conditions above drainage level. 

 The second layer has a reaches to depth D2 below the soil surface 

(D2>D1). It has horizontal and vertical hydraulic conductivities K2x and K2v 

respectively with an anisotropy ratio A2. The transformed conductivity is K2t 
= K2x/A2. 

 The third layer rests on the impermeable base at a depth D3 (D3>D2). 

It has a thickness T3=D3-D2 and horizontal and vertical hydraulic 

conductivities K3x and K3x respectively with an anisotropy ratio A3. The 

transformed conductivity is K3t=K3x/A3, and the transformed thickness is T3t 

= A3.T3 

 When the thickness T3=0 and/or the conductivity K3=0 (i.e. the third 

layer has zero transmissivity and is an impermeable base), the depth D2 may 

be larger or smaller than the bottom depth Db of the drain. Otherwise, the 
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depth D2 must be greater than the sum of bottom depth and the (equivalent) 

radius (C* = C, Ce, Cw, or Cn) of the drain, lest the radial flow component 

to the drain is difficult to calculate. 

 For pipe drains, neutral and wide ditch drains, and with D2 > Dw+C* = 

Dw+ Dd, the transformed thickness of the second soil layer below drainage 

level becomes T2t = A2(D2-Dw). For narrow ditches we have similarly Tt2 = 

A2(D2-Dw-½Wd+Dd) 

 With the introduction of an additional soil layer, the expressions of 

transmissivity ZS in Section 7 need again adjustment, as there may two 

distances Xt (X1t and X2t) of radial flow instead of one, as the radial flow 

may occur in the second and the third soil layer: 

 

  X1t = 2T2t/π 
 

  X2t = X1t + 2T3t/π 
 

With these boundaries, the transmissivity becomes: 

 

a) pipe drains: 
 
 ZS = ½πK2t.XS + (K2x-K2t)Dd + Ka.FS        [C<XS<X1t] 

 

b) neutral ditches: 
 
 ZS = ½πK2t.XS + (K2x-K2t)Dd + Ka.FS      [Ce<XS<X1t] 

 

c) wide ditches: 
 
 ZS = ½πK2t.XS + (K2x-K2t)Dd + K2v.We+ Ka.FS     [Cw<XS<X1t] 

 

d) narrow ditches: 
 
 ZS = ½πK2t.XS - ½K2t.Wd + K2x.Dd + Ka.FS     [Cn<XS<Xt] 

 

e) all drains: 
 
  ZS = K2t.T2t + ½πK3t.XS + Ka.FS     [X1t<XS<X2t] 
 
    ZS = K2t.T2t + K3t.T3t + Ka.FS     [XS>T2t+T3t] 

 

An example will be given for pipe drains situated at different depths within 

the relatively slowly permeable second layer having different anisotropy 

ratios and being underlain by an isotropic, relatively rapidly permeable, 

third layer with different conductivities. We have the following data: 
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N  = 38 m   C   = 0.05 m     R   = 0.007 m/day 

D1 = 1.0 m   D2  = 2.0 m     D3  = 6.0 m 

N  = 38 m   K2x = 0.5 m/day    K3x = 1.0 m/day 

Ka = 0.5 m/day  K2v = 0.5 m/day        K3v = 1.0 m/day 

and variations:   K2v = 0.1 m/day    K2v = 0.05 m/day 

                     K3x = K3v =2.0 m/day   K3x = K3v = 5.0 m/day 

 

 

The results are shown in Table 6. 

 

 

Table 6.  Results of the calculations of the height Fn (m) 

of the water table, taken with respect to the drainage 

level, midway between pipe drains in a layered soil of 

which the second layer, in which the drains are situated, 

has varying anisotropy ratios with a fixed value of the 

horizontal hydraulic conductivity K2x=0.5 m/day, using a 

numerical and iterative solution of the hydraulic energy 

balance for the conditions described the example of Section 

8, using Equations 8 and 10 with steps U=0.01 m and making 

the adjustments as described in Section 8. 

---------------------------------------------------------- 

Hydr. cond.   Vert. hydr.  Anisotropy    Height Fn of the 

3rd layer     cond. K2v    ratio A2      water table above 

 K3x=K3v      2nd layer    2nd layer     dainage level 

 (m/day)       (m/day)        (-)              (m) 

---------------------------------------------------------- 

  1.0           0.5           1.0         0.54 

  1.0           0.1           2.24             0.75  

  1.0           0.05          3.13                  0.86 
 
 

  2.0           0.5           1.0         0.45 

  2.0           0.1           2.24             0.67 

  2.0           0.05          3.13                  0.79 
 

 

  5.0           0.5           1.0         0.37 

  5.0           0.1           2.24             0.60 

  5.0           0.05          3.13                  0.74 

---------------------------------------------------------- 

 

The results indicate that both the conductivity of the 3rd layer and the 

anisotropy of the 2nd layer, in which the drains are situated, exert a 

considerable influence on the height Fn. 
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 In the Netherlands, it is customary to prescribe a minimum permissible 

depth of the water table of 0.5 m at a discharge of 7 mm/day, which is 

exceeded on average only once a year. In the example, with a drain depth of 

1.0 m, this condition is fulfilled when the height Fn is at most 0.5 m. 

Here, this occurs when K2v is at least 0.5 m/day and when K3x = K3v is at 

least 2.0 m. To meet the prescription in the other cases of the example, 

either the drain depth should be deeper or the drain spacing narrower. 

 

 

GENERAL CONCLUSIONS 

 

Application of the energy balance of groundwater flow to pipe and ditch 

drains leads to lower elevations of the water table or, if the elevation is 

fixed, to wider drain spacing. Also, it can give the shape of the water 

table. Further, it can take entrance resistance and anisotropy of the soil's 

hydraulic conductivity into account. Calculations with the energy balance 

need be done on a computer because of the cumbersome iterative, numerical 

procedure required. 
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