
Variants of Turing Machines
Teodor Rus

rus@cs.uiowa.edu

The University of Iowa, Department of Computer Science

Computation Theory – p.1/49

Robustness

Robustness of a mathematical object (such as proof,
definition, algorithm, method, etc.) is measured by its
invariance to certain changes

To prove that a mathematical object is robust one needs
to show that it is equivalent with its variants

Question: is the definition of a Turing machine robust?

Computation Theory – p.2/49

TM definition is robust

Variants of TM with multiple tapes or with
nondeterminism abound

Original model of a TM and its variants all have the
same computation power, i.e., they recognize the same
class of languages.

Hence, robustness of TM definition is measured by the in-

variance of its computation power to certain changes

Computation Theory – p.3/49

Example of robustness

Note: transition function of a TM in our definition forces the
head to move to the left or right after each step. Let us vary
the type of transition function permitted.

Suppose that we allow the head to stay put, i.e.;
δ : Q × Γ → Q × Γ × {L,R, S}

Does this feature allow TM to recognize additional
languages? Answer: NO

Sketch of proof:

1. An S transition can be represented by two transitions: one that
move to the left followed by one that moves to the right.

2. Since we can convert a TM which stay put into one that has no
this facility the answer is No.

Computation Theory – p.4/49

Equivalence of TMs

To show that two models of TM are equivalent we need to

show that we can simulate one by another.

Computation Theory – p.5/49

Multitape Turing Machines

A multitape TM is like an ordinary TM with several tapes

Each tape has its own head for reading/writing

Initially the input is on tape 1 and other are blank

Transition function allow for reading, writing, and
moving the heads on all tapes simultaneously, i.e.,

δ : Q × Γk → Q × Γk × {L,R}k

where k is the number of tapes.

Computation Theory – p.6/49

Formal expression

δ(qi, a1, . . . , ak) = (qj , b1, . . . , bk, L,R, . . . , L)

means that:

if the machine is in state qi and heads 1 through k are reading sym-

bols a1 through ak the machine goes to state qj , writes b1 through

bk on tapes 1 through k respectively and moves each head to the le ft

or right as specified by δ

Computation Theory – p.7/49

Theorem (3.8) 3.13

Every multitape Turing machine has an equivalent single
tape Turing machine.

Proof: we show how to convert a multitape TM M into a sin-

gle tape TM S. The key idea is to show how to simulate M

with S

Computation Theory – p.8/49

Simulating M with S

Assume that M has k tapes

S simulates the effect of k tapes by storing their
information on its single tape

S uses a new symbol # as a delimiter to separate the
contents of different tapes

S keeps track of the location of the heads by marking
with a • the symbols where the heads would be.

Computation Theory – p.9/49

Example simulation

Figure 1 shows how to represent a machine M with 3 tapes
by a machine S with one tape.

S # 000 •

1 0 1 0 # b •

a #
•

b
a # . . .

?

M

b a ⊔ . . .
?
b a ⊔ . . .

?
0 1 0 1 0 ⊔ . . .

?

Figure 1: Multitape machine simulation

Computation Theory – p.10/49

General construction

S = "On input w = w1w2 . . . wn

1. Put S(tape) in the format that represents M(tapes):

S(tape) = #
•

w1 . . . wn#
•

⊔ # . . .#
•

⊔ #

2. Scan the tape from the first # (which represent the left-hand end) to
the (k + 1)-st # (which represent the right-hand end) to determine
the symbols under the virtual heads. Then S makes the second pass
over the tape to update it according to the way M ’s transition function
dictates.

3. If at any time S moves one of the virtual heads to the right of # it
means that M has moved on the corresponding tape onto the unread
blank portion of that tape. So, S shifts the tape contents from this cell
until the rightmost #, one unit to the right, and then writes a ⊔ on the
free tape cell thus obtained. Then it continues to simulates as
before".

Computation Theory – p.11/49

Corollary 3.15

A language is Turing recognizable iff some multitape Turing
machine recognizes it

Proof:

if: a Turing recognizable language is recognized by an
ordinary TM. But an ordinary TM is a special case of a
multitape TM.

only if: This part follows from the equivalence of a Turing
multitape machine M with the Turing machine S that
simulates it.
That is, if L is recognized by M then L is also recognized by the TM
S that simulates M

Computation Theory – p.12/49

Nondeterministic TM

A NTM is defined in the expected way: at any point in a
computation the machine may proceed according to
several possibilities

Formally, δ : Q × Γ → P(Q × Γ × {L,R})

Computation performed by a NTM is a tree whose
branches correspond to different possibilities for the
machine

If some branch of the computation tree leads to the
accept state, the machine accepts the input

Computation Theory – p.13/49

Theorem 3.16

Every nondeterministic Turing machine, N , has an
equivalent deterministic Turing machine, D.

Proof idea: show that a NTM N can be simulated with a DTM
D.

Note: in this simulation D tries all possible branches of N ’s

computation. If D ever finds the accept state on one of these

branches then it accepts. Otherwise D simulation will not

terminate

Computation Theory – p.14/49

More on NTM N simulation

N ’s computation on an input w is a tree, N(w).

Each branch of N(w) represents one of the branches of
the nondeterminism

Each node of N(w) is a configuration of N .

The root of N(w) is the start configuration

Note: D searches N(w) for an accepting configuration

Computation Theory – p.15/49

A tempting bad idea

Design D to explore N(w) by a depth-first search

Note:

A depth-first search goes all the way down on one branch before
backing up to explore next branch.

Hence, D could go forever down on an infinite branch and miss an
accepting configuration on an other branch

Computation Theory – p.16/49

A better idea

Design D to explore the tree by using a breadth-first search

Note:

This strategy explores all branches at the same depth before going to
explore any branch at the next depth.

Hence, this method guarantees that D will visit every node of N(w)

until it encounters an accepting configuration

Computation Theory – p.17/49

Formal proof

D has three tapes, Figure 2:

1. Tape 1 always contains the input and is never altered

2. Tape 2 (called the simulation tape) maintains a copy of N ’s
tape on some branch of its nondeterministic
computation

3. Tape 3 (called address tape) keeps track of D’s location in
N ’s nondeterministic computation tree

Computation Theory – p.18/49

Deterministic simulation of N

D

1 2 3 3 2 3 1 2 1 1 3 ⊔ . . .

address tape

x x # 1 x ⊔ . . .

simulation tape

0 0 1 0 ⊔ . . .

input tape

?

-
6

Figure 2: Deterministic TM D simulating N

Computation Theory – p.19/49

Address tape

Every node in N(w) can have at most b children, where
b is the size of the largest set of possible choices given
by N ’s transition function

Hence, to every node we assign an address that is a
string in the alphabet Σb = {1, 2, . . . , b}.

Example: we assign the address 231 to the node reached by
starting at the root, going to its second child and then going to that
node’s third child and then going to that node’s first child

Computation Theory – p.20/49

Note

Each symbol in a node address tells us which choice to make next
when simulating a step in one branch in N ’s nondeterministic
computation

Sometimes a symbol may not correspond to any choice if too few
choices are available for a configuration. In that case the address is
invalid and doesn’t correspond to any node

Tape 3 contains a string over Σb which represents a branch of N ’s
computation from the root to the node addressed by that string,
unless the address is invalid.

The empty string ǫ is the address of the root.

Computation Theory – p.21/49

The description ofD

1. Initially tape 1 contains w and tape 2 and 3 are empty

2. Copy tape 1 over tape 2

3. Use tape 2 to simulate N with input w on one branch of its
nondeterministic computation.

Before each step of N , consult the next symbol on tape 3 to
determine which choice to make among those allowed by N ’s
transition function

If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4.

If a rejecting configuration is reached go to stage 4; if an
accepting configuration is encountered, accept the input

4. Replace the string on tape 3 with the lexicographically next string and
simulate the next branch of N ’s computation by going to stage 2.

Computation Theory – p.22/49

Corollary 3.17

A language is Turing-recognizable iff some nondeterministic
TM recognizes it

Proof:

if: If a language is Turing-recognizable it is recognized by a DT M.
Any deterministic TM is automatically a
nondeterministic TM.

only if: If language is recognized by a NTM then it is Turing-recogniz able .
This follow from the fact that any NTM can be simulated
by a DTM.

Computation Theory – p.23/49

Corollary 3.19

A language is decidable iff some NTM decides it

Sketch of a proof:

if: If a language L is decidable, it can be decided by a DTM. Since a
DTM is automatically a NTM, it follows that if L is decidable it is
decidable by a NTM.

only if: If a language L is decided by a NTM N it is decidable. This
means that ∃DTM D′ that decides L. D′ runs the same algorithm as
in the proof of theorem 3.16 with an addition stage:
reject if all branches of nondeterminism of N are exhausted.

Computation Theory – p.24/49

The description ofD′

1. Initially tape 1 contains w and tape 2 and 3 are empty

2. Copy tape 1 over tape 2

3. Use tape 2 to simulate N with input w on one branch of its
nondeterministic computation.

Before each step of N , consult the next symbol on tape 3 to
determine which choice to make among those allowed by N ’s δ.

If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4.

If a rejecting configuration is reached go to stage 4; if an
accepting configuration is encountered, accept the input

4. Replace the string on tape 3 with the lexicographically next string and
simulate the next branch of N ’s computation by going to stage 2.

5. Reject if all branches of N are exhausted.

Computation Theory – p.25/49

D′ is a decider forL

To prove that D′ decide L we use the following theorem:

Tree theorem: if every node in a tree has finitely many children and any
branch of the tree has finitely many nodes then the tree itself has finitely
many nodes.

Proof:

1. If N accepts w, D′ will eventually find an accepting branch and will
accept w as well.

2. If N rejects w, all of its branches halt and reject because N is a
decider. Consequently each branch has finitely many nodes, where
each node represents a step in N ’s computation along that branch.

3. Consequently, according to the tree theorem, entire computation tree
is finite, and thus D′ halts and rejects when the entire tree has been
explored

Computation Theory – p.26/49

Enumerators

An enumerator is a variant of a TM with an attached
printer

The enumerator uses the printer as an output device to
print strings

Every time the TM wants to add a string to the list of
recognized strings it sends it to the printer

Note: some people use the term recursively enumerable language for lan-

guages recognized by enumerators

Computation Theory – p.27/49

Computation of an enumerator

An enumerator starts with a blank input tape

If the enumerator does not halt it may print an infinite
list of strings

The language recognized by the enumerator is the
collection of strings that it eventually prints out.

Note: an enumerator may generate the strings of the lan-

guage it recognizes in any order, possibly with repetitions.

Computation Theory – p.28/49

Theorem 3.21

A language A is Turing-recognizable iff some enumerator
enumerates it

Proof:

if: If A is recognizable in means that there is a TM M that recognizes
A. Then we can construct an enumerator E for A. For that consider
s1, s2, . . . , the list of all possible strings in Σ∗, where Σ is the alphabet
of M .

E = "Ignore the input.

1. Repeat for i = 1, 2, 3, . . .

2. Run M for i steps on each input s1, s2, . . . , si

3. If any computation accepts, prints out the corresponding sj"

Computation Theory – p.29/49

Note

If M accepts s, eventually it will appear on the list generated
by E.

In fact s will appear infinitely many times because M runs from the begin-

ning on each string for each repetition of step 1. I.e., it appears that M

runs in parallel on all possible input strings

Computation Theory – p.30/49

Proof, continuation

only if: If we have an enumerator E that enumerates a
language A then a TM M recognizes A. M works as
follows:
M = "On input w:

1. Run E. Every time E outputs a string, compare it with w.

2. If w ever appears in the output of E accept."

Clearly M accepts those strings that appear on E’s list.

Computation Theory – p.31/49

Problems

Now we solve two problems from the textbook:

Problem 3.11 asking to show that a Turing machine with
double infinite tape is equivalent to an ordinary Turing
machine

Problem 3.14 asking to show that a queue automaton is
equivalent to an ordinary Turing machine.

Computation Theory – p.32/49

TM with double infinite tape

A Turing machine with double infinite tape is like an
ordinary Turing machine but its tape is infinite in both
directions, to the left and to the right.

Assumption: the tape is initially filled with blanks except for

the portion that contains the input. Computation is defined

as usual except that the head never encounters an end to

the tape as it moves leftward.

Computation Theory – p.33/49

Problem

Show that a TM D with double infinite tape can simulate an

ordinary TM M and an ordinary TM M can simulate a TM D

with double infinite tape.

Computation Theory – p.34/49

Simulating M by D

A TM D with double infinite tape can simulate an ordinary
TM M by marking the left-hand side of the input to detect
and prevent the head from moving off of that end.

This is done by:

1. Mark the left-hand end of the input. Let this mark be ⊥6∈ ΓD.

2. Each transition δD(q,⊥) = (q′, a, L) performs as follows:
qi ⊥ v |= q′ ⊥ av

Computation Theory – p.35/49

Simulating D by M

We show first how to simulate D with a 2-tape TM M which
was already shown to be equivalent to an ordinary TM.

The first tape of the 2-tape TM M is written with the input string and
the second tape is blank.

Then cut the tape of the doubly infinite tape TM into two parts, at the
starting cell of the input string.

The portion with the input string and all the blank spaces to its right
appears on the first tape of the 2-tape TM. The portion to the left of
the input string appears on the second tape, in reverse order,
Figure 3

Computation Theory – p.36/49

ReplacingD-tape by 2M -tapes

⊔ ⊔ . . . ⊔ . . .

M-tape, T2

1 2 k

w1 w2 . . .wn ⊔ . . .

M-tape, T1

. . . ⊔ . . . ⊔ ⊔ w1 w2 . . .wn ⊔ . . .

D-tape

k 2 1

Figure 3: Representing D tape by 2 M -tapes

Computation Theory – p.37/49

Deterministic Queue Automata

A DQA is like a push-down automaton except that the stack
is replaced by a queue.

A queue is a tape allowing symbols to be written only on the left-hand
end and read only at the right hand-end.

Each write operation (called a push) adds a symbol to the left-hand
end of the queue

Each read operation (called a pull) reads and removes a symbol at
the right-hand end.

Note: As with a PDA, the input of a DQA is placed on a sep-

arate read-only input tape, and the head on the input tape

can move only from left to right.

Computation Theory – p.38/49

More on the DQA

Initial condition: the input tape of a DQA contains a cell
with a blank symbol following the input, so that the end
of the input can be detected.

Computation: A queue automaton accepts its input by
entering a special accept state at any time.

Problem: Show that a language can be recognized by a
deterministic queue automaton, DQA, iff the language
is Turing-recognizable.

Computation Theory – p.39/49

Solution sketch

Show that any DQA Q can be simulated with a 2-tape
TM M

Show that any single-tape deterministic TM D can be
simulated by a DQA Q.

Computation Theory – p.40/49

Simulating a DQA Q by a TM M

The first tape of M holds the input, and the second tape of M holds
the queue.

To simulate reading Q’s next input symbol, M reads the symbol
under the first head and moves to the right.

To simulate a push a, M writes a on the leftmost blank cell of the
second tape.

To simulate a pull, M reads the rightmost symbol on the second tape
and shifts the tape one symbol leftward.

Note: Multitape TM-s are equivalent to single tape TM-s, so we can con-

clude that if a language is recognized by DQA is is recognized by a TM.

Computation Theory – p.41/49

Simulating a TM M with a DQA Q

M = (Qm, Σ, ΓM , δM , qM
0

, qM
a , qM

r)

Q = (QQ, Σ, ΓM ∪ Γ̂M , δQ, q
Q
0

, {qM
a , qM

r })

For each symbol c of M ’s tape alphabet ΓM , the alphabet ΓQ of Q

has two symbols: c and ĉ.

We use ĉ to denote c with M ’s head over it.

In addition ΓQ has an end-of-tape marker symbol denoted $.

Computation Theory – p.42/49

The simulation

Q simulates M by maintaining a copy of the M ’s tape in
the queue.

Q can effectively scan the tape from right to left by
pulling symbols from the right-hand end of the queue
and pushing them back on the left-hand end side, until $
is seen.

When a ĉ symbol is encountered, Q can determine M ’s
next move, because Q can record M ’s current state in
its control.

Computation Theory – p.43/49

Computation simulation

If M ’s tape head moves leftwards, the updating of the queue is done
by writing the new symbol c instead of the old ĉ and moving theˆone
symbol leftwards.

Formally: if current configuration is u a b̂ t v and δ(q, b) = (q′, c, L) then
the next configuration is u â c t v and is obtained by:

pull v; push v;

pull t; push t;

pull hat(b); push c; pull a; push hat(a);

pull u; push u

Computation Theory – p.44/49

Computation simulation

If M ’s tape head moves rightward, the updating is harder because
theˆmust go to the right.

By the time ĉ is pulled from the queue, the symbol which receives the
ˆhas already been pushed onto the queue.

Computation Theory – p.45/49

Solution

The solution is to hold tape symbols in the control for an extra move,
before pushing them onto the queue. This gives Q enough time to move
theˆrightward if necessary.

Formally: if current configuration is u a b̂ t v and δ(q, b) = (q′, c, R) then the
next configuration is u a c t̂ v and is obtained by:

pull v; push v;

pull t; hold (t);

pull hat(b); push hat(t); push(c);

pull u; push u;

Computation Theory – p.46/49

Equivalence with other models

There are many other models of general purpose
computation.
Example: recursive functions, normal algorithms, semi-thue systems,
λ-calculus, etc.

Some of these models are very much like Turing
machines; other are quite different

All share the essential feature of a TM: unrestricted
access to unlimited memory

All these models turn out to be equivalent in
computation power with TM

Computation Theory – p.47/49

Analogy

There are hundreds of programming languages

However, if an algorithm can be programmed using one
language it might be programmed in any other language

If one language L1 can be mapped into another
language L2 it means that L1 and L2 describe exactly
the same class of algorithms

Computation Theory – p.48/49

Philosophy

Even though there are many different computational
models, the class of algorithms that they describe is
unique

Whereas each individual computational model has
certain arbitrariness to its definition, the underlying
class of algorithms it describes is natural because it is
the same for other models

This has profound implications in mathematics

Computation Theory – p.49/49

	Robustness
	TM definition is robust
	Example of robustness
	Equivalence of TMs
	Multitape Turing Machines
	Formal expression
	Theorem (3.8)
3.13
	Simulating M with S
	Example simulation
	General construction
	Corollary 3.15
	Nondeterministic TM
	Theorem 3.16
	More on NTM N simulation
	A tempting bad idea
	A better idea
	Formal proof
	Deterministic simulation of N
	Address tape
	Note
	The description of D
	Corollary 3.17
	Corollary 3.19
	The description of $D^prime $
	$D^prime $ is a decider for L
	Enumerators
	Computation of an enumerator
	Theorem 3.21
	Note
	Proof, continuation
	Problems
	TM with double infinite tape
	Problem
	Simulating M by D
	Simulating D by M
	Replacing D-tape by 2 M-tapes
	Deterministic Queue Automata
	More on the DQA
	Solution sketch
	Simulating a DQA Q by a TM M
	Simulating a TM M with a DQA Q
	The simulation
	Computation simulation
	Computation simulation
	Solution
	Equivalence with other models
	Analogy
	Philosophy

