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ABSTRACT 

The purpose of this document is to describe important 
tire characteristics and their effect on vehicle 
performance.  Characteristics considered are those that 
the Formula SAE judges have deemed important for 
discussion on tires at competition and include coefficient 
of friction, slip angle, slip ratio, camber angle, cornering 
stiffness, camber stiffness, self-aligning torque, normal 
load sensitivity, load transfer sensitivity and pneumatic 
trail.  Every effort has been made to list sample values to 
give the reader a general idea for common values of the 
considered characteristics.  Values relating to a typical 
FSAE vehicle are also listed for available data.  

INTRODUCTION 

The importance of the tire’s contribution to a racing 
vehicle cannot be overstated.  Tires are required to 
produce the forces necessary to control the vehicle.  
Given that the tire is the only means of contact between 
the road and the vehicle, they are at the heart of vehicle 
handling and performance.   

Insight into the discussed parameters will help the FSAE 
student in various ways.  Knowledge of these 
characteristics and their effects on racecar performance 
can give the engineer insight into performance 
optimization.  A firm grasp on what influences a tire’s 
behavior and what these characteristics mean in terms 
of vehicle dynamics terminology will better prepare the 
student to score higher during design judging at 
competition. 

This document only covers one small piece of a very 
complex assembly.  However, the tire itself is also 
extremely complex.  The information contained within 
should allow the reader to grasp the vehicle dynamics 
terminology considering tires with much less effort than if 
the tire had to be researched independently.    

TIRE BACKROUND 

While the wheel may have been one of man’s first 
inventions, the rubber tire is definitely not one of the 
simplest components to analyze.  The rubber tire is a 
complex composite consisting mainly of vulcanized 
rubber, which more specifically is an elastomer with a 
high number of sulfur cross-links between the polymer 
chains.  The composite also contains carbon black, oil 
extenders and layered reinforcing strands or fabrics 
called plies.  These strands are normally made of Nylon, 
Terylene, Rayon or steel cords and are oriented in 
various configurations (Ref 1).  While much attention is 
paid to the rubber itself, the reinforcing cords also 
deserve attention.  These cords have a higher modulus 
of elasticity and less creep and therefore carry the load 
while the rubber skin serves to seal the air.  An in depth 
study of tire construction would show that cord 
orientation (radial or bias ply) can have a significant 
effect on tire characteristics.  Racing tires are set up in a 
bias ply configuration, providing strength in the three 
planes simultaneously (Ref 2). 

Rubber tires have been present for quite some time and 
have seen many improvements such as the use of 
Vulcanization by Goodyear in 1839 and the addition of 
carbon black by Pirelli in 1907 (Ref 1).  With these 
improvements, the rubber tire has produced superior 
control and durability when compared with other 
substitutes that have been attempted over the years.   

NOTATION 

It is important first to review a tire in its most general 
orientation and consider the forces acting on a tire.  The 
SAE tire axis terminology is shown in Figure 1.  The axis 
system is not the same as the axis system on the 2004 
Platform racecar.  The SAE system (SAE J670e) 
denotes the X being forward, Y to the right and Z 
downward.  The 2004 FSAE Platform racecar uses X 
forward, Y left, and Z upward. 
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Figure 1 - SAE Axes Terminology (from Ref 4) 

There are several forces, moments and angles that 
prove to be very important in tire behavior.  All these 
forces can be seen as the forces and moments acting on 
the tire from the road.  First, there are two main angles to 
consider, the camber angle and the slip angle.  The 
camber angle is the inclination angle from its vertical 
position while the slip angle is the difference in wheel 
heading and direction.  These two angles are associated 
with the lateral force.  Forces include the longitudinal 
force in the X direction, the lateral force in the Y direction 
and the normal force in the Z direction.  Longitudinal 
force (FX) is the result of the tire exerting force on the 
road and becomes negative during braking.  The lateral 
force (FY) is the resultant of the forces produced by a 
non-zero camber angle and by a non-zero slip angle 
during cornering.  Normal force (FZ) can also be viewed 
as the negative of the upward vertical force.  Moments 
include the overturning moment, the rolling resistance 
moment, the wheel torque and the aligning moment.  
The overturning moment (MX) is caused by a lateral shift 
of the vertical load during cornering.  Rolling resistance 
(MY) is created by various factors that lead to a loss of 
energy.  The aligning moment (MZ), also known as the 
self-aligning torque, produces a restoring moment on the 
tire to realign the direction of travel with the direction of 
heading when the slip angle is non-zero.  It should also 
be noted that there is also a moment produced by the 
axle on the wheel.  As a final point, it may be noted that 
when the camber angle is zero, the wheel torque (Tin), 
points in the negative Y direction. 

A list of acronyms and abbreviations is included at the 
end of this paper for reference. 

PRINCIPLE TIRE MODELS 

As stated earlier, tires are a complex composite 
comprising many layers of materials (see Figure 2 (Ref 
3)).  A tire is very anisotropic.  It is for this reason that tire 

behavior is not derived from the material properties and 
structure of a tire.  Simplifications are therefore made in 
order to create empirical models for a tire.  The three 
foremost models used to understand tire forces, 
deflection and footprint behavior through the corning 
process are the elastic foundation model, the string 
model and the beam model (Ref 1).  While none of these 
models truly addresses the complexity of a physical tire, 
realistic results can be obtained when empirical stiffness 
values are used. 

 

Figure 2 - Section of the Common Tire (Ref 3) 

Each small element in the elastic foundation model is 
considered to act independently of the other elements 
(see Figure 3).  The aspect that each element acts as a 
simple spring, independent of the other elements, makes 
this model the simplest of the three.  It is interesting to 
note that the force found under the curve of the lateral 
force distribution is equal to the lateral force measured at 
the axle (Ref 4).  This supports the belief that although 
this model may be the simplest, it can be very useful in 
predicting and illustrating various tire behaviors, as is 
done by Dixon (Ref 1).  The elastic foundation model 
also allows for discontinuity in the distribution of 
displacement and in the slope of the centerline.  
Conversely, in the string model, lateral displacement is 
also resisted by a tension between the elements.  It also 
allows for discontinuity in slope, however, discontinuity in 
displacement is not allowed.  Similar to the string model 
is the beam model, where each element has an effect on 
the surrounding elements.  In the beam model, each 
element creates bending moments on the elements next 
to it.  This allows no discontinuity in slope or 
displacement.  The beam model has been found to be 
superior for radial ply or for belted bias ply tires (Ref 1).  
Often times a combination of these models will be 
combined to gain a better model (as was done by the 
U.S. Army Engineer Research and Development Center 
in their testing (Ref 5)). 
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Figure 3 - Top View of Tire’s Lateral Center Line 
Displacement During Cornering and Corresponding 

Foundation Stiffness Model (Ref 1) 

COEFFICIENT OF FRICTION 

The coefficient of friction is defined as a unitless ratio of 
friction force to normal force.  It is generally considered 
true that the resulting friction force is not proportional to 
the surface area of contact.  However, this is far from the 
truth when a rubber tire is considered.  This dissimilar 
behavior is due to the viscoelastic nature of rubber.  
Thus, as force is applied, deformation occurs both 
elastically and plastically in a non-linear fashion due to 
the mechanical behavior of polymer chains (Ref 6).  
Viscoelasticity also explains why the coefficient of friction 
of a tire is load dependent.  As a tire is loaded, the 
surface area grows larger increasing the total friction 
force but lowering the coefficient of friction (Ref 1).  
Since a tire does not follow Newton’s laws of friction, a 
coefficient of friction above unity can be obtained.  For 
example, given a 500 lb normal load on a tire, it would 
not be uncommon for a tire to produce 800 lb of force 
giving a coefficient of friction of 1.6.  Under ideal 
conditions, this would make the vehicle capable of pulling 
1.6 g’s (Ref 2).  However, ideal conditions are rarely 
achieved because the coefficient of friction depends on 
many transients.  

The coefficient of friction can depend on many unknown 
variables such as atmospheric dust, humidity, 
temperature, vibration and the extent of contamination 
(Ref 7).  It may also depend on the angularity of the road 
surface, speed, and even skid duration.  As a tire skids 
further, the temperature rises above the optimal value, 
and the coefficient of friction begins to drop.  Similarly, as 
the speed increases, temperature increases and the 
coefficient of friction again begins to decrease after 
reaching an optimum value (plotting coefficient of friction 
vs. velocity yields a curve that closely resembles a 
normal distribution).  A final component that should not 
be overlooked is the molecular bonding that occurs 
which lends to total friction.  While this adhesion between 
the road and tire does not require energy to create the 
bond, energy is dissipated when the bonds are broken.  
This becomes important in dry conditions.  Conversely, 
the tire elastically conforming to the road becomes more 
important in wet conditions. (Ref 1) 

Finally, some effects of the coefficient of friction 
changing with speed should be discussed.  When slip 
angle become large, the rear of the footprint begins to 
slide and thus has a lower coefficient of friction.  
Therefore, the cornering force will top out at a modest 
slip angle and then begin to decline.  This phenomenon 
is more dramatic in a locked wheel when braking.  Since 
the wheel is locked, the local temperature rise is greater 
and the relative sliding speed is greater than for a 
rotating wheel.  In either case, the decreased coefficient 
of friction contributes to a negative self aligning moment. 
(Ref 1) 

For a more in-depth understanding of friction interactions 
with rubber tires, one can reference items 1 and 2 under 
Recommended Reading. 

SLIP ANGLE 

If the direction of travel differs from the wheel heading (if 
the wheel’s angular displacement is different from the 

path the tire is following), the slip angle (α) produces a 
component of lateral force (FY).  This lateral force will act 
through a point behind the center of the wheel in a 
direction such that it attempts to re-align the tire.  It 
should be noted that the slip angle is not the same as the 
steering angle.   

As can be seen from the elastic foundation model, there 
is a final fiction limited value of the lateral force due to 
slip angle that is reached (Ref 1).  

c d⋅
µ FV⋅

l
≤

    Equation 1  

This equation, with c being the foundation stiffness, d 
being the tire centerline displacement and l being the tire 
footprint length, must be satisfied for no sliding.  It then 
follows that the lateral force is roughly proportional to the 
slip angle.  This then gives the maximum non-slide force. 

FY
1

2
c⋅ l

2
⋅ α⋅

    Equation 2 

1

2
c⋅ dm⋅ l⋅

1

2
c⋅ l⋅

µ FV⋅

c l⋅









⋅
1

2
µ⋅ FV⋅

 Equation 3 

Therefore, the lateral force is proportional to the slip 
angle up to half the maximum total friction limit (Ref 1).  
This can be seen in Figure 4, which graphs lateral force 
against slip angle for some example values that were 
chosen to be similar to a typical FSAE tire.  These values 
are a 200 lbf (890 N) normal force, a coefficient of friction 
of 1.5, a foundation stiffness of 725 psi (5 MPa) and a 
contact patch length of 8.5 in (216 mm).  The actual 
calculations can be seen in the appendix.   
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As can be seen in Figure 4, the upper limit is reached 

very quickly with the maximum force occurring at 90° 
when the wheel is fully sideways.  Generally, a racing tire 
will achieve maximum lateral force at slip angles in the 

range of 3°-7° (Ref 4).  In the figure below, the force at 3° 
is 95% of maximum.  At high slip angles, the rear of the 
print actually slides laterally along the surface of the 
road, which contributes to less capacity for lateral force 
and reduces the stabilizing self-aligning torque (Ref 4). 

 

Figure 4 - Lateral Force vs. Slip Angle 

It may be important to realize that when not completely 
sliding, the lateral force is not dependent on the 
coefficient of friction, although this provides the upper 
limit; instead, it depends on the foundation stiffness.  An 
alternate way to look at this is to say that the lateral force 
is not dependent on coefficient of friction until the tire has 
“broken away”, indicating a large slip angle (Ref 4).  It is 
also sometimes convenient to define the lateral force due 
to slip angle in terms of other coefficients as seen in 
equations 4 and 5. 

FY Fα Cα α⋅ CS FV⋅ α⋅
  Equation 4 

Cα CS FV⋅
    Equation 5 

CS is the cornering stiffness coefficient and Cα is the 
cornering stiffness.  Generally, typical values for the 
cornering stiffness coefficient are 0.12/deg for bias-ply 
tires and 0.16/deg for radial ply tires. (Ref 1) 

CORNERING STIFFNESS 

The cornering stiffness can also be defined on a per 
radian basis as shown in equation 6. 

Cα
1

2
c⋅ l

2
⋅

    Equation 6 

Cornering stiffness can also be seen to be the initial 
slope of the lateral force curve.  Typical values for 

cornering stiffness’ are around 195 
lbf

/deg (867 
N
/deg) (Ref 

1).  However, this value can be much higher.  For 
example, an Indy Road tire and a Formula 1 tire may 

have a Cα of 833 
lbf

/deg (3.7 
KN

/deg) at 1800 lbf (8 KN) 
normal load and 750 

lbf
/deg (3.4 

KN
/deg) at 1000 lbf (4.5 KN) 

normal load respectively (Ref 4).  A tire for formula SAE 

would have a Cα around 165 
lbf

/deg (734 
N
/deg) for a 330 lbf 

(1.5 KN) tire load as can be seen in Figure 15 (also see 
Avon Tire Curves in the Appendix).  Notice how the 
cornering stiffness is sensitive to the range of slip angle 
used to find the slope on the lateral force curve.  This 
further emphasizes that one should use caution when 
using cornering stiffness values in calculations, or at 
least realize its potential inaccuracies.  As an additional 
point, the cornering stiffness is normally 5-6 times 
greater than camber stiffness for traditional bias tires 
(Ref 4). 

Since the central/drag force ratio (see Equation 7 and 
Figure 5) reduces with slip angle, higher cornering 
stiffness is desirable.  The reason for this is that a given 
central force will be achieved at smaller slip angles and 
therefore results in lower tire drag force.  The 
central/drag ratio is given as follows (Ref 1): 

2 c l⋅  2

FS

FD

Cα α⋅ cos α( )⋅

µR FV⋅ Cα α⋅ sin α( )⋅+
  Equation 7 

In this formula, µR is the rolling resistance, FD is the drag 
force in the direction of travel, and FS is the force 
component perpendicular to travel.  FD and FS make up 
the components of the resultant lateral force FY.   

 

Figure 5 - Force Components for Undriven Tire   (Ref 
1) 

V α 

FS 

FD 

FY 
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The preceding formulas are valid primarily in the linear 
lateral force region.  However, when more aggressive, 
larger camber angles are employed, as with a two-
wheeled vehicle, the cornering stiffness may be reduced 
dramatically.  When camber angle is included in the 
cornering stiffness, a new equation for cornering 
stiffness can be used. 

 
Cα Cα0 kCαγ γ⋅−

    Equation 8 

Given that   
kCαγ

0.005

deg







  

This equation is virtually linear up to about 60° (Ref 1).  
However, in a wide racing tire, large camber angles are 
rarely used as this would begin to lift one side of the tire 
off the ground.  More on camber angle will be discussed 
in the following sections.  

When trying to model the cornering coefficient 
accurately, it becomes evident that it is dependent on 
vertical load.  The model that best fits analytical data is 
the exponential equation 9 as given below (Ref 1). 

Cα Cα1

FV

FV1

⋅ e

KCSFV

FV

FV1

1−








−

⋅

 Equation 9 

The unitless value of KCSFV is the sensitivity of CS to FV.  
The maximum cornering stiffness occurs when the 
vertical force is equal to the reference load over the 
sensitivity (FV1/KCSFV).  

SLIP RATIO (% SLIP) 

In contrast to slip angle, which is slip in the transverse 
plane, the slip ratio is the slip in the longitudinal plane.  
The slip ratio affects acceleration and breaking and 
therefore bears analogy to the slip angle in the sense 
that as slip angle is related to lateral force, slip ratio is 
related to longitudinal force and traction capacity.  
Generally speaking, the coefficient of friction will change 
with changing slip ratio.  A plot of coefficient of friction vs. 
percent slip increases nearly linearly up to about 5% slip, 
peaks near 10% slip and then falls of in a nonlinear 
fashion (Ref 2). 

The slip ratio can be defined empirically as a function of 
angular velocity of the driven wheels and angular velocity 
of the free rolling wheels.  The slip ratio is defined in 
equation 10 (Ref 4). 

SR
Ω Ω 0−

Ω 0

Ω Re⋅

V cos α( )⋅
1−

  Equation 10 

The angular velocity of the driven wheel is Ω, the angular 

velocity of the free rolling wheel is Ω0, Re is the effective 
rolling radius and V is the velocity.  Thus, for free rolling, 
SR = 0 while when locked under breaking SR = -1.  For 
dynamic, real time testing, the effective radius cannot be 
measured; therefore, the loaded rolling radius is 
commonly used in its place.  Slip percentage is simply 
the slip ratio expressed as a percentage (slip ratio 
multiplied by 100). 

As stated earlier, longitudinal forces, tractive and 
breaking, are functions of the slip ratio.  As the slip ratio 
increases, the longitudinal forces rise rapidly and then 
fall off after the maximum is reached in a range of 0.10 
to 0.15 slip ratio (Ref 4).  It can also be seen from 
Equation 10 that as the slip angle increases, the tractive 
or breaking force will decrease. 

The definition of slip ratio used here is the equivalent of 
the SAE definition.  Many other definitions and variations 
of slip ratio have been used and can be found in Ref 4. 

CAMBER ANGLE 

Camber angle is equal to inclination of the wheel from its 
vertical position.  Or more precisely, camber is the 
inclination from a plane perpendicular to the ground.  A 
positive camber angle is defined to be an outward lean 
such that the top of the tire leans outward from the 
vehicle centerline.  A non-zero camber angle produces a 
camber force directed laterally toward the low axis side, 
producing another component of lateral force.  Thus, a 
negative camber angle increases the lateral or cornering 
force of the tire.  Generally, the lateral force produced 
from camber is a function primarily of tire stiffness, 
vertical force and camber angle.  While there are other 
secondary forces present, such as friction effects and 
path curvature, these are small and can be neglected for 
most applications.  Camber force can also be affected by 
the shape of the crown.  A very round profile develops 
maximum lateral force with negative camber angles and 

a small slip angle while camber angles in the 0° - 4° 
negative range are better when a flatter crown is used 
(Ref 1).  For wide street radial tires, camber force tends 

to fall off at camber angles above 5° (Ref 4). 

With the combination of the preceding parameters, a 
new tire characteristic, camber stiffness, can be defined 
as the rate of change of camber force with change in 
camber angle.  The equation for the lateral force 
component due to camber is seen in equation 11 (Ref 1). 

FY Fγ Cγ γ⋅ CC FV⋅ γ⋅
  Equation 11 

FY is the lateral force, FV is the normal force, γ is the 

camber angle, Cγ is the camber stiffness and CC is 
defined to be the camber stiffness coefficient.  A typical 
CC value would be 0.018/deg for bias-ply tires and 
0.008/deg for radial ply tires (Ref 1).  While the camber 
force is usually less than the lateral force due to slip 
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angle (see Figure 6 and Figure 9), camber force can 
have a significant impact on vehicle handling, especially 
as suspension geometry may change. 
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Figure 6 - Lateral vs. Normal Force for Varying 
Camber Angle 

CAMBER STIFFNESS 

The camber stiffness is the rate of change of camber 

force with camber angle (∆FY/∆γ) (Ref 4).  A common 
value for camber stiffness is approximately 8 

lbf
/deg (35.6 

N
/deg) which may be reduced significantly at speeds 

above 65 mph (104 
km

/hr) (Ref 1).  The camber stiffness 
also decreases for large slip angles near the maximum 
lateral force.  Generally, the camber stiffness is 5-6 times 
less than cornering stiffness for bias ply tires (Ref 4). 

Camber force is due to lateral distortion in the contact 
patch of the tire.  Thus, camber stiffness is often very 
small for radial tires due to the stiffness of the belt and 
the flexibility of the radial cords in the sidewall that 
prevent the lateral contact patch distortion (Ref 4). 

TOTAL LATERAL FORCE 

Now with the components of lateral force known, the 
total later force for small angles can be computed using 
superposition.  Total lateral force is given in equations 
12-14. 

FY Fα Fγ+ Cα α⋅ Cγ γ⋅+
  Equation 12 

FY Cs FV⋅ α⋅ CC FV⋅ γ⋅+
  Equation 13 

FY FV CS α⋅ CC γ⋅+( )⋅
   Equation 14 

Path curvature is not included in these equations for 
lateral force.  Path curvature is a small contribution and 
is often neglected for most cases (Ref 1).  It may also be 
convenient to define a total lateral coefficient CY as 
shown in equations 15 and 16. 

CY CS α⋅ CC γ⋅+
   Equation 15 

FY FV CY⋅
    Equation 16 

It can be seen that at maximum lateral force, camber 
force has only a small effect since the camber coefficient 
reduces for large slip angles. 

COMBINED LATERAL AND LONGITUDINAL FORCES 

It has been seen that the lateral force is highly correlated 
with the slip angle and the camber angle while the 
longitudinal force shows correlation with the slip ratio.  
Now it can be seen how these two forces affect the 
thrust or drag of the vehicle.  Thrust or drag is defined in 
equation 17 (Ref 4). 

TorD FX cos α( )⋅ FY sin α( )⋅−
  Equation 17 

Formulation of an equation for rolling resistance (a drag 
force) can now also be seen in equation 18 (Ref 4): 

FR SR 1+( )
Tin

Rl









FX−








cos α( )⋅ FY sin α( )⋅−

 

     Equation 18 

In this equation, FR is the rolling resistance, Tin is the 
input torque to the wheel, and Rl is again the loaded 
radius of the tire.  Through inspection, it can be seen that 

the term FXcos(α) is the traction/braking component; 

FYsin(α) is the induced drag due to lateral force, and FR 
is the net rolling resistance (Ref 4). 

A relationship for longitudinal force can also be 
formulated based on wheel input torque, wheel 
moments, camber angle and angular acceleration.  This 
relationship is given in equation 19 (Ref 1). 

•

Ω=+++− IMMRFT
ZYlXin

)sin()cos( γγ  

     Equation 19 

This equation can also be useful in calculating the 
longitudinal force.  Note that when the camber angle is 
small, as well as the acceleration and rolling resistance, 
then the input torque is equal to the longitudinal force 
times the loaded radius (Ref 1). 

SELF-ALIGNING TORQUE 

Self-aligning torque, also known as self-aligning moment, 
is the resultant of the lateral force and the moment arm 
known as pneumatic trail, t.  It is a restoring moment that 
attempts to return the wheels to a zero slip angle state 
(strait running).  Essentially, the presence of the self-
aligning torque exposes the fact that a tire likes to head 
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in the direction it is presently running.  It may be 
important to note that the self-aligning torque may be 
influenced by a mechanical trail induced from 
suspension geometry.  For example, more mechanical 
trail and therefore more self-aligning torque can be 
induced with the presence of caster and kingpin offset 
(Ref 4).  Trail may also be affected by camber, which can 
induce a small destabilizing force (Ref 4).  However, this 
is also small and often neglected.  This discussion 
assumed no mechanical trail or trail effects due to 
camber. 

Empirical equations for this torque have been derived 
from the foundation stiffness model and are as follows 
(Ref 1):  

MZ FY t⋅
FY l⋅

6

c l
2

⋅ tan α( )⋅

12
2 3

  Equation 20 

6 12

MZ

µ
2

FV
2

⋅

4 c⋅ l⋅ tan α( )⋅

µ
3

FV
3

⋅

6 c
2

⋅ l
3

⋅ tan α( )( )2
⋅

−

 Equation 21 

It should be noted that the above equations are for slip 
angles greater than the non-slide limit.  The relationships 
defined by Equation 21 can be seen by graphing self-
aligning torque over slip angle for various values of 
normal load as is done in Figure 7. 

 

Figure 7 - Self-Aligning Torque vs. Slip Angle For 
Varying Normal Force 

Many important relationships can be drawn from Figure 
7.  Potentially the most important is that as slip angle 
increases, thus increasing lateral force, the self-aligning 
torque decreases.  This means that the driver’s feel of 
the road through steering wheel torque is in essence 
removed as lateral force begins to reach its limit prior to 
sliding.  However, this removal of feel gives the driver 
warning of front tire breakaway (Ref 2).  Maximum 
warning of breakaway would occur when all the steering 
torque comes from the pneumatic trail.  Mechanical trail 
substantially reduces the steering wheel torque (Ref 4). 

The self-aligning torque can also be influenced by tire 
pressure.  As the pressure is decreased, the contact 
patch lengthens and thus gives a longer moment arm, 
which in turn increases the aligning torque (Ref 4). 

PNEUMATIC TRAIL 

The pneumatic trail is essentially the moment arm 
through which the lateral force acts.  As predicted by the 
foundation stiffness model, the lateral force acts behind 
the centerline of the tire.  This is the result of the near-
triangular contact patch distribution as shown earlier in 
Figure 3.  The model predicts that this distance t is equal 
to the ratio of self-aligning moment to lateral force, or 

1
/6 

of the contact patch length as seen in equation 22.  

t
MZ

FY

l

6
    Equation 22 

While this model is reasonably accurate, larger values 
are commonly found when the slip angle is small. (Ref 1) 

When using the foundation stiffness model to investigate 
further, Equation 23 is obtained for slip angles greater 
than the non-slide limit.  This allows more relationships 
about the pneumatic trail to be distinguished.  It can be 
seen that the pneumatic trail decreases once sliding 

beings and approaches zero when the slip angle is 90° 
(Ref 1).   

t
3 µ⋅ FV⋅ c⋅ l

2
⋅ tan α( )⋅ 2 µ

2
⋅ FV

2
⋅−

12 c
2

⋅ l
3

⋅ tan α( )( )2
⋅ 6 µ⋅ FV⋅ c⋅ l⋅ tan α( )⋅−

 Equation 23  

Part of the reason for the decrease in pneumatic trail, 
and the resulting reduction in self-aligning torque, is the 
increase in rear contact patch sliding.  As the slip angle 
increases, more of the rear section of the contact patch 
beings to slide laterally.  Since the footprint is sliding, it 
has less ability to stabilize the wheel.  In this case, the 
aligning toque is reduced to near zero and may even 
reverse sign (Ref 4).  The effects of the change in 
pneumatic trail and thus the location that the force acts 
on the contact patch can be seen in Figure 8, which 
shows how the force components change depending on 
steering.  Figure 8 also shows a pressure distribution for 
the contact patch.  Notice that for normal cornering the 
pneumatic trail is behind the centerline on the trailing 
edge side (TE).  For severe cornering, the pneumatic 
trail is actually slightly ahead of the centerline toward the 
leading edge (LE). 
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Figure 8 - Contact Patches for Various situations 
(Ref 3) 

 

NORMAL LOAD SENSITIVITY 

Normal load sensitivity is defined to be the rate of 
change of lateral force with the change in vertical force at 
a constant slip angle.  The load sensitivity, CFV, is 
defined in equation 24 (Ref 1): 

CFV

δFY

δFV





α     Equation 24 

When plotting lateral force vs. normal load, it can be 
seen that there is not a proportionally greater increase in 
lateral force for an increase in vertical load, as can be 

seen in Figure 9.  It should be noted that Figure 9 is 
based on empirical equations that are good for lower 
load ranges and actual data shows a nonlinear 
stabilization at higher loads and larger slip angles. 
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Figure 9 - Lateral vs. Normal Load for Varying Slip 
Angle 

The load sensitivity tends to decrease as the normal load 
increases.  This coefficient may run as high as 1.8 for 
current Grand Prix tires.  Tire load sensitivity is more or 
less independent of speed.  It can be increased by using 
a tire compound that is more “sticky” and by keeping 
temperatures in the desirable ranges.  (Ref 4) 

Using the 2005 CSU FSAE race car as an example, the 
normal load on a tire can change by as much as 116 lbf 
(516 N) for a 700 lbf (3.1 kN) car in a 1.5g turn as found 
by Adam Skaggs (Ref 8).  Reference 4 can be consulted 
on calculating actual load transfer for a vehicle.  An 
example of calculating normal load sensitivity for the 
Avon tire data can be found in the appendix. 

LOAD TRANSFER SENSITIVITY 

Load transfer can have a great impact on vehicle 
handling.  Increasing the amount of uneven load 
distribution laterally from load transfer (such as having a 
non-central center of gravity) decreases the total lateral 
force that can be achieved.  This effect is amplified at 
large lateral accelerations.  The load transfer sensitivity 
between two wheels is defined mathematically in 
equation 25 (Ref 1). 

CFT

δFY2

δFVT





α FV2,

   Equation 25 

FY2 is the total side force for two wheels, and FVT is the 
transferred vertical force.  It is assumed that the total 

vertical load (2FV) is constant as is the slip angle (α).  
This reduction in total lateral force is a second order 
effect since tire force varies nonlinearly with normal load 
(Ref 2).  Even though load transfer always results in less 
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total force, load transfer may not be an undesirable 
phenomenon.  If the load transfer is from the front to the 
rear wheels (longitudinal instead of lateral), the rear, 
heavier loaded pair of tires, now has an increased 
traction ability and can therefore accelerate more with 
less slip.  This would be desirable if the car only had to 
accelerate forward.  For a racecar that must corner, 
accelerate and break, it is more desirable to have the 
load transferred evenly over all the wheels. 

The load transfer sensitivity and the normal load 
sensitivity are highly correlated.  Since there are an 
enormous number of factors involved, it is difficult to list 
all relationships.  However, it is generally the case that 
tires with a higher CFV tend to let go or break away faster 
(Ref 4). 

EXAMPLE CALCULATIONS 

A few calculations are provided in order to give another 
set of example values and illustrate how one would use 
tire data.  The example calculations can be seen in their 
entirety in the Appendix.  Example calculations are 
based on data from the Avon tires, a tire that one of the 
CSU FSAE teams has been considering for use. 

The calculations begin by assuming a few known values 
or values at a point of interest.  These values include a 

slip angle of 1.3°, a camber angle of 1° (using data from 
Figure 13 and Figure 14), a 150 kg normal tire load and 

a coefficient of friction of 1.5.  Since the slip angle is 1.3°, 
a point not shown in the figures, absolute values of data 
points from around this value were taken and used in a 
quadratic interpolation for higher accuracy.  Lateral force 
and self-aligning torque were then calculated to be 187 
lbf (831 N) and 23 ft*lbf (31.5 N*m) respectively.  Using 
equation 22, the pneumatic trail and contact patch length 
were calculated to be 1.49 in (37.9 mm) and 8.95 in 
(227.3 mm) respectively.  Equation 4 was then used for 
approximating the cornering stiffness, which was 
determined to be 143 

lbf
/deg (639.5 

N
/deg).  As a final 

consideration, the normal load sensitivity was found to be 
0.582 using equation 24.  The data used for this 
calculation was taken from Figure 14 in order to 
determine the lateral load at a vertical load of 150 kg and 

250 kg at a 1.5° slip angle.   

These values are hard to compare to other FSAE type 
tires due to lack of tire data.  Therefore, no conclusion 
can be made about the Avon tires at this time.  However, 
these values may be helpful in dynamic analysis 
concerning tires or wheels.  It is also expected that as 
more data becomes available, these values will be 
helpful in choosing the best tire for the CSU FSAE 
racecar. 

OTHER CONSIDERATIONS 

TIRE PRESSURE 

Tire pressure is one of the few parameters that the 
vehicle’s operator can control.  This may be part of the 
reason that it is one of the most common changes in 
setting up a racecar (Ref 4).  Tire pressure can affect the 
tire’s characteristics in a variety of ways.  Being that the 
stiffness coefficients are essentially a measure of the 
elasticity of the tire, an increase in tire pressure will 
increase the stiffness of the tire.  This will in turn 
increase the lateral force.  If an inflation pressure 70% 
above the design value is used, a 20% gain in tire 
stiffness can be obtained.  Increasing pressure above 
this will then decrease stiffness (Ref 1).  Pressure 
variation from front to rear is often used to make minor 
adjustments in under/over steer balance of the vehicle 
(Ref 4).  Tire drag is also decreased as pressure is 
increased.   

In contrast to lowering pressure, raising the pressure will 
decrease the coefficient of friction.  As mentioned earlier, 
lowering pressure will raise the coefficient of friction by 
reducing contact patch pressure and increasing the size 
of the contact patch.  The increased contact patch also 
increases the self-aligning torque, as discussed earlier.  
Lowering the pressure also decreases the tire life and 
reduces the vehicles handling or feel (Ref 1). 

Another consideration to deal with pressure is “ride”.  
The pressure significantly affects the tire “ride”, which is 
essentially a reflection of the tire’s spring rate.  It is often 
the case that a specific overall spring rate for an entire 
car is a design parameter (Ref 4).  Therefore, the tire 
pressure may be constrained depending on the 
adjustability of the vehicles suspension system.  Spring 
rate data for the Hoosier tire (the current FSAE tire) is 
given in the appendix.  

There are tradeoffs in deciding what pressure to run at.  
Low tire pressures may benefit lap times due to better 
conformity; however, low pressures, or running with a 
slow leak, may lead to excessive tire temperatures.  If 
pressure is too high, cornering power, acceleration and 
breaking may be adversely affected (Ref 2).  As a result 
of the many factors, there is no one right pressure to run 
at.  Individuals must experiment with their own setup to 
determine the optimal pressure for the application.  As a 
final comment, it may also be noteworthy to point out that 
pressure and temperature relations may not be as 
expected depending on the moisture content of the 
compressed air used to fill the tire.  Therefore, dry air is 
preferable (Ref 1). 

TIRE TEMPERATURE 

Tire temperature can change tire characteristics in a 
variety of ways.  Specifically, temperature most heavily 
influences the forces produced by the tire but also affects 
the life of the tire.   
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The temperature affects the tire’s stiffness, and therefore 
force, in at least two different ways.  As the temperature 
changes, the modulus of elasticity will change thus 
changing the stiffness of the tire (Ref 4).  Similarly, when 
tires run hot for extended periods, the pressure may also 
increase which again changes the tire stiffness.  Dixon 
notes that the warmed-up pressure is typically 4.3psi 
(30kPa) higher than cold-set values (Ref1).  The 
temperature will also influence the tire’s force capability 
due to change in the coefficient of friction of the tire with 
changing temperature. 

Pressure, speed and operating forces will affect tire 
temperature.  High temperatures can be achieved with 
excessive camber, running with low inflation pressures 
(or a slow leak), or by using a tire made from a 
compound that is too soft for the track (such as using 
rain tires on a dry track) (Ref 2).   

FRICTION CIRCLES AND G-G DIAGRAMS 

There is much discussion about how many lateral g’s a 
vehicle can withstand.  What some may overlook is when 
the driver is at the maximum number of lateral g’s and 
brakes or accelerates, the vehicle’s tires may break 
away.  Breaking or accelerating produces a longitudinal 
component of force that must be considered with the 
lateral force vector.  Since the resultant force, or 
acceleration, is greater than either component alone, the 
introduction of either when driving at the vehicle’s 
handling limits may cause tire break away.  The resultant 
force, regardless of direction, is limited by the product of 
the vertical load and coefficient of friction.  It is for this 
reason that friction circles (or ellipses) and “g-g” 
diagrams are constructed.  These diagrams provide the 
user with information on the vehicles limitations 
(maximum force capability) over a range of possibilities.  
A friction circle or g-g diagram in vehicle handling is 
analogous to Mohr’s Circle for structures.  The friction 
circle and g-g diagram could be viewed as the practical 
way to use many of the tire characteristics discussed 
above. 

The friction circle often plots slip ratios against lateral 
force while the g-g diagrams plot lateral acceleration vs. 
longitudinal acceleration, both for a given set of 
conditions.  The friction circle is limited by the coefficient 
of friction where as the boundary of the g-g diagram 
depends on the speed of the vehicle.  Some of these 
diagrams may show a theoretical boundary that is further 
outside the plot than the actual boundary (Figure 10 b).  
Vehicles cannot reach this boundary due to traction 
limitations, load transfer effects, suspension effects, 
limiting stability balance, and brake balance (Ref 4).  
Examples of g-g diagrams are shown in Figure 10.   

 

Figure 10 – Example G-G Diagrams (Ref 4) 

Data can be taken to obtain actual g-g diagrams for 
individual vehicles at the tested conditions.  This is done 
using accelerometers and data sampling 
instrumentation.  Reference 4 should be consulted for 
more information on the application and use of g-g 
diagrams and where to obtain measurement equipment. 
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CONCLUSION 

The tire is one of the most important components on a 
racecar.  Knowledge of how the tire operates can give 
the engineer insight into design considerations and can 
yield information on the capabilities of a vehicle.  
Knowing these capabilities can be the difference 
between winning a race, or having tires break away 
through a turn and finishing last. 

Thorough knowledge of how the above characteristics 
affect a vehicles capabilities and handling can be very 
useful.  Specifically, the use of tire slip curves, either 
published from the manufacturer or determined by the 
user’s testing, can be very useful.  Knowledge of the 
principle forces involved in tire dynamics as well as 
weight transfer sensitivity, self-aligning torque and g-g 
diagrams can also be vitally useful tools for the engineer.  

These characteristics are those deemed important by the 
design judges for formula SAE.  It is the intent of the 
author that this short discussion of tire terminology will 
benefit future Colorado State FSAE students in two 
ways; it will allow them to quickly grasp the concepts and 
considerations dealing with tires, but it is also anticipated 
that the specific examples and numbers will give 
students a feel for what the values of the different 
parameters may be for a typical FSAE vehicle.  While the 
capabilities were not available to the author at the time of 
composition, it would be a worthwhile task to model the 
Colorado State University FSAE tire in Adams/Tire® and 
compare the results with measured data.  Modeling the 
tire either with simple formulas or with a computer 
program such as Adams could also become useful in tire 
selection if ample data is available. 
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DEFINITIONS, ACRONYMS, ABBREVIATIONS 

γ - Camber Angle [deg] 

µ - Coefficient of Friction [-] 

α - Slip Angle [deg] 

µR – Coefficient of Rolling Friction [-] 

c – Foundation Stiffness [psi] 

Cγ - Camber Stiffness [
lbf

/deg] 

Cα - Cornering Stiffness [
lbf

/deg] 

CC – Camber Stiffness Coefficient [
1
/deg] 

CFT – Load Transfer Sensitivity [-] 

CFV – Ratio of Change in FY to FV [-] 

CS – Cornering Stiffness Coefficient [
1
/deg] 

CY – Lateral Force Coefficient [-] 

CSU – Colorado State University 

FD – Tire Drag Force [lbf] 

FS – Tire Central Force [lbf] 

FV – Normal Force [lbf] 

FVT – Transferred Vertical Load [lbf] 

FX – Longitudinal Force [lbf] 

FY – Lateral Force [lbf] 

FZ – Vertical Force [lbf] 

FSAE – Formula SAE 

KCSFV – Sensitivity of CS to FV [-] 

l – Tire footprint length [in] 

MZ – Self Aligning Torque (Moment) [lbf * ft] 

t – Pneumatic Trail [in] 

Ω0 – Angular velocity of free rolling wheel [
rad

/s] 

Ω - Angular velocity of driven wheel [
rad

/s] 

•

Ω  - Angular velocity of wheel [
rad

/s
2
] 

V – Velocity [
ft
/s] 

Re – Effective radius of free rolling tire [ft] 

Rl – Loaded Tire Radius [ft] 

T – Thrust [lbf] 

D – Drag [lbf] 

FR – Rolling Resistance [lbf] 

Tin – Input torque to wheel [lbf * ft] 

SAE – Society of Automotive Engineers. 
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APPENDIX 

INFORMATION CONTAINED IN APPENDIX: 

1. Avon Tire Data 

2. Hoosier Tire Data 

3. Example Calculations Using Given Avon Tire Data 

4. Example Calculations Using A Few Selected Equations  

AVON TIRE CURVES 

Presented here is technical data given for Avon Tires (Ref 9).  This tire is very similar to that used by many FSAE Teams.  

The CSU 2004 FSAE team will be using Hoosier tires with a 2° camber (available data is shown below in Table 1).  While 
the tires are not the same, the following information should give the reader an estimate of what the lateral force and self-
aligning moments could be. 

Project: RC353STB Size: 7.0/20.0-13 Camber: 2° 

Spec: 10998  Tyre: 3 ply Pro Series Pressure: 

26 

P.S.I. 

Tested: 31/07/01   Rim: 6 x 13   Speed: 

20 

KPH 
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Figure 11 - Self-Aligning Torque vs. Slip Angle (Ref 9) 
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Figure 12 - Cornering Force vs. Slip Angle (Ref 9) 
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Project: RC353STB   Size: 7.0/20.0-13   Camber: 1° 

Spec: 10998   Tyre: 

3 ply Pro 

Series   Pressure: 

26 

P.S.I. 

Tested: 31/07/01   Rim: 6 x 13   Speed: 

20 

KPH 
 

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

-7
.0

-6
.0

-5
.0

-4
.0

-3
.0

-2
.0

-1
.0 0.

0
1.

0
2.

0
3.

0
4.

0
5.

0
6.

0
7.

0

Slip Angle (deg)

S
el

f 
A

li
g

n
in

g
 T

o
rq

u
e 

(N
m

)

150 kg

250 kg

350 kg

 

Figure 13 - Self-Aligning Torque vs. Slip Angle (Ref 9) 
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Figure 14 - Cornering Force vs. Slip Angle (Ref 9) 

Lateral Force vs Slip Angle At 1deg Camber and 330 lbf (150kg) Normal Load
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Figure 15 - Lateral Force vs. Slip Angle for Different Ranges of Slip Angle (Data taken from Ref 9) 

 

HOOSIER TIRE DATA  

TIRE SIZE: 20.0 x 7.0 - 13 

COMPOUND = R25A 

RIM WIDTH = 8" 

PRELOAD = 0  

AIR = 

18 PSI  

DEFLECTION 

(in) 

ACTUAL 

LOAD (lbs) 

SPRING RATE 

(lbs/in) 

 0.2 144 720 

 0.4 314 785 

 0.6 490 816.67 

 0.8 655 818.75 

 1 821 821 

     

AIR = 

16 PSI  

DEFLECTION 

(in) 

ACTUAL 

LOAD (lbs) 

SPRING RATE 

(lbs/in) 

 0.2 123 615 

 0.4 288 720 

 0.6 451 751.67 

 0.8 618 772.5 

 1 783 783 

        

AIR = 

14 PSI  

DEFLECTION 

(in) 

ACTUAL 

LOAD (lbs) 

SPRING RATE 

(lbs/in) 

 0.2 123 615.00 

 0.4 275 687.50 

 0.6 430 716.67 

 0.8 582 727.50 

 1 749 749.00 

    

Table 1 – Hoosier Tire Data (Ref 10) 



 18 

FY 1.3 deg⋅( ) 831.323N=

Self Aligning Torque: MZ 1.3 deg⋅( ) 23.233lbf ft⋅= MZ 1.3 deg⋅( ) 31.499N m⋅=

Pneumatic Trail t
MZ 1.3 deg⋅( )

FY 1.3 deg⋅( )
:= t 1.492in= t 37.89mm=

Contact Patch Length l 6 t⋅:= l 8.951in= l 227.343mm=

Approximate Cornering Stiffness Cα

FY 1.3 deg⋅( )

1.3 deg⋅
:= Cα 143.761

lbf

deg
= Cα 639.479

N

deg
=

Normal Load Sensitivity:

Tire Data: α1 1.5 deg⋅:= FY1 203.64lbf⋅:= FV1 150 kg⋅ g⋅:= FV1 330.693lbf=

α2 1.5 deg⋅:= FY2 332 lbf⋅:= FV2 250 kg⋅ g⋅:= FV2 551.156lbf=

CFV

FY2 FY1−

FV2 FV1−
:= CFV 0.582=

Example Calculations for the Avon Tire

Point of interest: Slip angle: α 1.3 deg⋅:=

Camber Angle: γ 1 deg⋅:=

Load on Tire FV 150 kg⋅ g⋅:= FV 330.693lbf=

Coefficient of Friction µ 1.5:=

Known Lateral Load and Moments:

Slip angle: α1 1.5 deg⋅:= Lateral Force: FY1 203.64lbf⋅:=

α2 1 deg⋅:= FY2 156.59lbf⋅:=

α3 0.5 deg⋅:= FY3 92.3 lbf⋅:=

Self Aligning Torque:

MZ1 23.32 lbf⋅ ft⋅:=

MZ2 22.516lbf⋅ ft⋅:=

MZ3 19.76 lbf⋅ ft⋅:=

Quadratic Spline Interpolation:

FY α( )
α α2−( ) α α3−( )⋅

α1 α2−( ) α1 α3−( )⋅
FY1⋅

α α1−( ) α α3−( )⋅

α2 α1−( ) α2 α3−( )⋅
FY2⋅+

α α1−( ) α α2−( )⋅

α3 α1−( ) α3 α2−( )⋅
FY3⋅+:=

MZ α( )
α α2−( ) α α3−( )⋅

α1 α2−( ) α1 α3−( )⋅
MZ1⋅

α α1−( ) α α3−( )⋅

α2 α1−( ) α2 α3−( )⋅
MZ2⋅+

α α1−( ) α α2−( )⋅

α3 α1−( ) α3 α2−( )⋅
MZ3⋅+:=

Lateral Force: FY 1.3 deg⋅( ) 186.889lbf=
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FY 3 deg⋅( )

FY 90 deg⋅( )
0.945=

0 5 10 15 20
0
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Lateral Force Vs. Slip Angle

Slip Angle (deg)

L
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e 

(l
b

f)

FY α( )

lbf

α

deg

α 0 0.001, 20 deg⋅..:=Slip Angle Range:

FY α( ) µ FV⋅
µ

2
FV

2
⋅

2 c⋅ l
2

⋅ tan α( )⋅

−:=Lateral Force:

l 215.9mm=l 8.5 in⋅:=Contact Patch Length

c 725.189psi=c 5 10
6

⋅ Pa⋅:=Foundation Stiffness

Coefficient of Friction
µ 1.5:=

FV 889.644N=FV 200lbf=FV
800 lbf⋅

4
:=Vertical Load:

Lateral Force From Slip angle
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Camber Angle

Camber Stiffness Coefficient CC
0.018

deg
:=

Normal Load Range Fv 50 50.1, 500..:=

Lateral Force FY γ Fv,( ) CC Fv⋅ γ⋅:=

100 200 300 400 500
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FY 2 deg⋅ Fv,( )

FY 3 deg⋅ Fv,( )

FY 4 deg⋅ Fv,( )

FY 5 deg⋅ Fv,( )

Fv

 

Self Aligning Torque

MZ α FV,( )
µ

2
FV

2
⋅

4 c⋅ l⋅ tan α( )⋅

µ
3

FV
3

⋅

6 c
2

⋅ l
3

⋅ tan α( )( )2
⋅

−:=
α 0 0.001,

π

2
..:=
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Pneumatic Trail

FY α( ) µ FV⋅
µ

2
FV

2
⋅

2 c⋅ l
2

⋅ tan α( )⋅

−:=
Normal Load FV 200 lbf⋅:=

Pneumatic Trail (Equation 21) t α( )
MZ α FV,( )

FY α( )
:=

0 1 2 3 4
0

5

10

15

20
Pneumatic Trail  With Equation 21

Slip Angle (deg)

T
ra

il
 (

in
) t α( )

in

α

deg

Pneumatic Trail (Equation 22) 
t α( )

3 µ⋅ FV⋅ c⋅ l
2

⋅ tan α( )⋅ 2 µ
2

⋅ FV
2

⋅−

12 c
2

⋅ l
3

⋅ tan α( )( )2
⋅ 6 µ⋅ FV⋅ c⋅ l⋅ tan α( )⋅−

:=

0 1 2 3 4
0

5

10

15

20
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Load Transfer Sensitivity

CS
0.14

deg
:=

FY α Fv,( ) CS Fv⋅ α⋅:=

Fv 50 50.1, 500..:=
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