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A long history of analogy making between neoclassical economics and physical thermodynamics
has unfortunately served to obscure two important relations between the two fields: their definitions
of equilibria stem from essentially the same three axioms for the mathematical representations of
systems, while the classes of transformation each has chosen to emphasize, and their responses to
the problem of path dependence, have led them to very different interpretations of duality in those
representations. Despite these conventional differences, we show that economies in which all agents
have preferences quasi-linear in some good have a trading-constraint structure isomorphic to the
structure of physical systems with classical thermodynamic equations of state. Exact equivalents
of thermodynamic potentials, including entropy, can be constructed, and function as the economic
counterparts to free energies. Quasi-linear economies are the most general in which the Walrasian
idea of price formation as an analog of force balance can be realized. More general economic
models raise the same methodological problems as more complex physical models that exhibit path-
dependence. We show how the degree of aggregatability of an economic model corresponds to which
properties of equilibria retain path-independence, and to the extent to which a social-welfare function
exists. A new contour money-metric utility defines the maximal generalization of social-welfare
functions in arbitrary economies, but depends on the endowments and composition of the economy in
non-quasi-linear cases, and is limited to one-dimensional contours of equilibria in non-aggregatable
cases. The differences between economic and thermodynamic methodology lies in the economic
focus on the irreversible movement from initial disequilibrium endowments to equilibrium through
voluntary trade, in contrast to the thermodynamic recognition that only reversible transformations
lead to measurement of system structure. The consequences of respecting reversibility for economic
method are sketched, and alternative interpretations of the Walrasian notion of wealth preservation
are presented.
JEL categories: B0, D5, D6
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I. INTRODUCTION

The relation between economic and physical (particu-
larly thermodynamic) concepts of equilibrium has been
a topic of recurrent interest throughout the development
of neoclassical economic theory. As systems for defin-
ing equilibria, proving their existence, and computing
their properties, neoclassical economics [1, 2] and clas-
sical thermodynamics [3] undeniably have numerous for-
mal and methodological similarities. Both fields seek to
describe system phenomena in terms of solutions to con-
strained optimization problems. Both rely on dual rep-
resentations of interacting subsystems: the state of each
subsystem is represented by pairs of variables, one vari-
able from each pair characterizing the subsystem’s con-
tent, and the other characterizing the way it interacts
with other subsystems. In physics the content variables
are quantities like a subsystem’s total energy or the vol-
ume in space it occupies; in economics they are amounts
of various commodities held by agents. In physics the
interaction variables are quantities like temperature and
pressure that can be measured on the system boundaries;
in economics they are prices that can be measured by an
agent’s willingness to trade one commodity for another.

The significance attached to these similarities has

changed considerably, however, in the time from the first
mathematical formulation of utility [4] to the full axiom-
atization of general equilibrium theory [5]. Léon Walras
appears [7] to have conceptualized economic equilibrium
as a balance of the gradients of utilities, more for the sake
of similarity to the concept of force balance in mechanics,
than to account for any observations about the outcomes
of trade. Irving Fisher (a student of J. Willard Gibbs) at-
tempted to update Walrasian metaphors from mechanics
to thermodynamics [8], but retained Walras’s program of
seeking an explicit parallelism between physics and eco-
nomics.

As mathematical economics has become more sophis-
ticated [5] the näıve parallelism of Walras and Fisher has
progressively been abandoned, and with it the sense that
it matters whether neoclassical economics resembles any
branch of physics. The cardinalization of utility that
Walras thought of as a counterpart to energy has been
discarded, apparently removing the possibility of com-
paring utility with any empirically measurable quantity.
A long history of logically inconsistent (or simply unpro-
ductive) analogy making (see section /refsec:litrev below)
has further caused the topic of parallels to fall out of fa-
vor. Paul Samuelson summarizes well [12] the current
view among many economists, at the end of a one of the
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few methodologically sound analyses of the parallel roles
of dual representation in economics and physics:

The formal mathematical analogy between
classical thermodynamics and mathematic
economic systems has now been explored.
This does not warrant the commonly met at-
tempt to find more exact analogies of physi-
cal magnitudes – such as entropy or energy –
in the economic realm. Why should there be
laws like the first or second laws of thermody-
namics holding in the economic realm? Why
should “utility” be literally identified with en-
tropy, energy, or anything else? Why should a
failure to make such a successful identification
lead anyone to overlook or deny the mathe-
matical isomorphism that does exist between
minimum systems that arise in different dis-
ciplines?

The view that neoclassical economics is now mathemat-
ically mature, and that it is mere coincidence and no
longer relevant whether it overlaps with any body of
physical theory, is reflected in the complete omission the
topic of parallels from contemporary graduate texts [1].

We argue here that, despite its long history of dis-
cussion, there are important insights still to be gleaned
from considering the relation of neoclassical economics
to classical thermodynamics. The new results concern-
ing this relation we present here have significant impli-
cations, both for the interpretation of economic theory
and for econometrics. The most important point of this
paper (more important than the establishment of formal
parallels between the thermodynamics and utility eco-
nomics) is that economics, because it does not recognize
an equation of state or define prices intrinsically in terms
of equilibrium, lacks the close relation between measure-
ment and theory physical thermodynamics enjoys.

A. Structure of the paper

It has been our experience that the conceptual mis-
match between thermodynamics and neoclassical eco-
nomics makes it very difficult for readers familiar with
one field to grasp the organizational framework of the
other, a situation only rendered more confusing by their
superficial formal similarities. Therefore we begin in Sec-
tions II and III with brief reviews of the theories of eco-
nomic exchange and classical thermodynamics. These
sections fix terminology and notation, and also estab-
lish a conceptual orientation needed to understand the
correspondence between the two theories. Here we also
introduce canonical examples that are developed in pro-
gressively more detail throughout the rest of the paper.

By the end of Sec. III we will have shown that quasi-
linear economies include an entropy function and a form
of path independence identical to those of thermody-
namic systems, but will not yet have demonstrated that

these are the only economies that do, or explained why.
We choose to begin with these constructions, which are
the most important of the paper, so the reader can see
where we are going, and then to descend in Sec. IV to
the deeper assumptions underlying the correspondence.
Here we show that the three basic “laws” defining clas-
sical thermodynamics have exact counterparts for quasi-
linear economies, and in which respects they are weak-
ened for path-dependent systems, both physical and eco-
nomic. We then finish the correspondence of the full dual
structure between classical thermodynamic systems and
quasi-linear economies.

Sec. V makes explicit some crucial methodological im-
plications of the demonstrated equivalences for economic
theory. In particular the treatment of market disequilib-
rium in much of economics is flawed by the assumption
that well-defined market prices exist when the economy
as a whole is out of equilibrium, and the Walrasian cor-
respondence between initial endowments and final equi-
librium allocations on which much economic reasoning is
based is flawed by its failure to respect the distinction
between reversible and irreversible transformations.

By this point in the paper the reader will have seen the
largest domain within neoclassical theory for which de-
terministic predictions can be made without an explicit
theory of dynamics – the domain for which the corre-
spondence to classical thermodynamics goes through en-
tirely. In Sec. VI we consider the problem of generaliz-
ing these insights to non-quasi-linear economies, where
path dependence sets in. (Since this section raises more
technical mathematical issues than the rest of the pa-
per, the reader may choose to omit it on a first read-
ing.) We show that the concept of Gorman aggregata-
bility is intermediate between the strong aggregatabil-
ity of quasi-linear economies, and the non-aggregatability
of the general case. Closed Gorman economies preserve
path-independence of equilibrium prices, and admit en-
tropies and social welfare functions that provide useful
descriptions of effeciency and the value of trade. How-
ever, all of these constructions depend on the composition
and endowments of each particular economy, so Gorman
aggregatability is not strong enough to admit the equiva-
lent of a thermodynamic equation of state. For economies
less aggregatable than Gorman forms, we show that the
generalization of the Negishi construction of social wel-
fare is the best one can do, but that it says nothing about
the indeterminacy of equilibria.

We draw together our findings in Sec. VII and relate
them briefly to the literature on this problem.

II. ECONOMIC FUNDAMENTALS

In this section we present the basic theory of an ex-
change economy.
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A. Commodities, utility and offer prices

In an economy with n + 1 commodities, a commodity
bundle can be written x = (x0, x1, . . . , xn), and a sys-
tem of prices p = (p0, p1, . . . , pn). An economic agent,
j, has a preference ordering over non-negative commod-
ity bundles that can be represented by a quasi-concave,
differentiable ordinal utility function uj [.] : Rn+1 → R.
At any commodity bundle xj , the gradient of the util-
ity function, uj′[x], is a vector of marginal utilities, and
the agent’s marginal rate of substitution between goods i
and k is uj′

i [x] /uj′
k [x]. The marginal rate of substitution,

which has the dimensions units of commodity k per unit
of commodity i, is the ratio of the maximum amount of
commodity k the agent will voluntarily exchange for a
small amount of commodity i, and can also be thought
of as the agent’s offer price for commodity i in terms of
commodity k. The utility function is ordinal in the sense
that any strictly monotonic transformation of uj [.] will
represent the same preference ordering, and define the
same system of marginal rates of substitution. In what
follows we will suppress the superscript j indicating the
individual agent in contexts where no confusion is likely.

The mathematical dual to an agent’s utility function
is the expenditure function:

e [p,U ] ≡ min
x

[p · x | u [x] ≥ U ] , (1)

where p · x ≡
∑

i pixi. Its general variation is

δe = δp · x + p ·
∂x

∂U

∣

∣

∣

∣

p

δU , (2)

as p · δx|U ≡ 0 about xh ≡ argminx [p · x | u[x] ≥ U ].
The expenditure function is derived from the La-

grangian

L[x, λ] ≡ p · x − λ (u [x] − U) (3)

by solving the first-order conditions

∂L

∂x
= p − λu′ [x] = 0

∂L

∂λ
= U − u [x] = 0. (4)

Economists refer to the inverse 1/λ of the Lagrange
multiplier as the marginal utility of wealth. In general λ
depends on the utility level, U , and these n+2 equations
must be solved simultaneously for x, λ. The commodity
bundle at which expenditure is minimized, xh[p,U ], is
the Hicksian demand function.1

1 In writing the first-order conditions as equalities we are implic-
itly assuming that the minimum is interior to the nonnegative
orthant of the commodity space.

1. Example 1: Cobb-Douglas utility

The Cobb-Douglas (CD) utility function for two-
commodities is:

uCD[x1, x2] = α1 log[x1] + α2 log[x2] , (5)

where we will use the ordinal property of the utility func-
tion to set α1 + α2 = 1.

The offer prices for the Cobb-Douglas utility with re-
spect to commodity 1 are u′

CD[x] = (1, (α2/α1) (x1/x2)).
The expenditure function is eCD[p1, p2,U ] = λ =
eU(p1/α1)

α1(p2/α2)
α2 , with Hicksian demand functions

(

xh
1 = α1eCD/p1, x

h
2 = α2eCD/p2

)

. Note that the ratio
of consumption of the two goods is completely deter-
mined by the price ratio, since x2/x1 = (α2/α1) (p1/p2).

B. Quasi-linearity

Of great interest in understanding the relationship be-
tween thermodynamics and economic utility theory is the
class of quasi-linear preferences where the ordinal utility
function can be transformed by a monotonic transforma-
tion to the form:

uj
[

xj
]

= xj
0 + ūj

[

x̄j
]

, (6)

where x̄ ≡ (x1, . . . , xn). The gradient of the quasi-linear
utility function u′[x] = (1, ū′[x̄]) has the same dimen-
sions as a price system referenced to p0. In the quasi-
linear case the linear commodity x0 is often referred to
as “money”. We will refer to the other commodities as
non-linear commodities.

The first-order conditions in the Lagrangian (3) be-
come:

∂L

∂x0
= p0 − λ = 0

∂L

∂x̄
= p̄ − λū′ [x̄] = 0

∂L

∂λ
= U − u [x] = 0. (7)

Thus with quasi-linear ordinal utility, the inverse of the
marginal utility of wealth, λ, is equal to p0 regardless
of the utility level U . Thus the Hicksian demands for
the non-linear commodities are determined uniquely (as-
suming smooth differentiability and strict concavity of
the nonlinear component of the utility function) by the
first-order conditions p̄/p0 = ū′[x̄] and we have x̄h[p̄], in-
dependent of the utility level U . The Hicksian demand
for the linear commodity is just xh

0 [p,U ] = U − ū
[

x̄h[p̄]
]

.
The expenditure function for quasi-linear preferences is:

eQL[p,U ] = p0

(

U − ū
[

x̄h[p̄]
])

+ p̄ · x̄h [p̄] . (8)

When utilities are quasi-linear, the individual agents’
indifference surfaces are preserved under translations of
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the form (1/p0, 0̄), so that not only the first-order condi-
tions, but all constraints on future paths of trading (such
as could result from later aggregation with new agents or
change in total endowment) carry no memory of the path
to the trade set. In this case Uj itself is not directly rel-
evant to the constraints on the demands for nonlinear
commodities, which depend only on ūj

[

x̄j
]

.

1. Example 2: Quasi-Linear CD utility

The Quasi-Linear CD (QLCD) utility function for
three-commodities is:

uQLCD[x0, x1, x2] = x0 + α1 log[x1] + α2 log[x2] . (9)

The offer prices for the QLCD utility with respect to
commodity 0 are u′

QLCD[x] = (1, α1/x1, α2/x2). The ex-
penditure function is

eQLCD[p0, p1, p2,U ] = p0[U − α1 log[α1p0/p1] −
α2 log[α2p0/p2] + α1 + α2], with Hicksian demand
functions (xh

0 = U − α1 log
[

xh
1

]

− α2 log
[

xh
2

]

, xh
1 =

α1p0/p1, x
h
2 = α2p0/p2). Note that the Hicksian de-

mands for commodities 1 and 2 are independent of the
utility level. The Hicksian demand for the linear com-
modity may be negative, indicating that when confronted
by some price systems the agent will supply an amount
of the linear commodity to the market, that is, incur a
debt in the linear (money) commodity.

C. Economic exchange

The economic theory of exchange economies considers
a system of m < ∞ agents, each with its own utility
function, exchanging a fixed total bundle of commodi-
ties, w = {w0, . . . , wn}. The state of such a system can
be described by an allocation x =

{

x1, . . . , xm
}

, where

Σjx
j = w. An allocation is interpreted as describing the

current ownership or holdings of each agent.
In general at an arbitrary allocation, the offer prices

(marginal rates of substitution) of agents will differ. Un-
der these circumstances two or more agents given the op-
portunity to exchange goods can find (in general many)
mutually advantageous exchanges, which conserve the to-
tal quantity of commodities, but reallocate them from
one agent to another. This process can be visualized
for a pair of agents as in Figure 1. The dimensions of
the box represent the total available commodites, and
any point in the box an allocation. An arbitrary allo-
cation at which offer prices are unequal appears in the
lower-lefthand corner of the figure, with the correspond-
ing indifference curves for the two agents drawn through
it. Any exchange that leads to an allocation in the lens
between these indifference curves puts both agents on a
higher indifference curve, at a higher utility level. (Such
exchanges are called Pareto-improvements.)

The allocations that cannot be overturned by volun-
tary exchange of commodities among the agents are the

P.S.

1

2

x1

x2

FIG. 1: The “Edgeworth-Bowley” box for a pure exchange
economy with two types of agents and two goods. Axes are
quantities of goods, x1 and x2. Origin for agents of type 1 is
in the lower right, and for agent of type 2 in the upper left.
The Pareto set (short-dash) is labeled P.S. Indifference curves
are the heavy black lines, and the trade set is the subset of
P.S. in the interior of the lens formed by these. Straight ray is
the Walrasian path from initial endowments to the Walrasian
allocation. Wavy ray is an arbitrary, utility-improving trading
path the agents could actually take. Long-dashed curves are
segments of indifference curves through the Pareto allocations
attained by either path.

Pareto allocations (PA), assignments of private owner-
ship rights to the economy’s resources at which the offer
prices (marginal rates of substitution) of all the economic
agents are proportional, and there are no mutually ad-
vantageous trading opportunities. The Pareto allocations
are the dynamic equilibria of the voluntary exchange pro-
cess. At a Pareto allocation the offer prices of the agents
are proportional and their ratios constitute an equilib-
rium price system for the economy as a whole. The
Pareto set is the the set of all Pareto allocations.2 We
will refer to the subset of Pareto allocations at which ev-
ery agent prefers its commodity bundle to its endowment
as the trade set.3

In general exchange economies the set of Pareto allo-
cations is a continuum on which the equilibrium price
system, the allocations of all commodities among agents,
and agents’ realized utilities all vary. This signals that
the process of voluntary exchange by itself is indeter-
minate in allocating resources and forming equilibrium
prices.

The problem was recognized by Hahn and Negishi [20],

2 Economists often call Pareto allocations “Pareto-optima”, to em-
phasize the idea that Pareto allocations are efficient in realizing
all of the possible gains from voluntary exchange. In fact this
property of efficiency holds only under other restrictive assump-
tions, in particular, the absence of external effects such as pol-
lution which affect agent welfare outside the exchange of com-
modities.

3 The trade set appears as the “contract set” in settings of bilateral
negotiation between two agents.
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and is illustrated in Fig. 1. The movement from an initial
endowment to a Pareto allocation in a closed economy is
not completely determined by the constraint of voluntary
exchange. There are infinitely many distinct, continuous
histories of transacting, terminating in a Pareto alloca-
tion in the trade set.

This problem of indeterminacy led Léon Walras to fo-
cus attention on those Pareto allocations at which the
value of each agent’s bundle of commodities at the equi-
librium price system is equal to the value of the agent’s
endowment. We will refer to these allocations as Wal-
rasian allocations (WA).4 Walras apparently hoped that
real world voluntary exchange would lead to a Walrasian
allocation, thus establishing the determinacy of the vol-
untary exchange process. We will argue below that
the Walrasian allocations have no special properties not
shared by other Pareto allocations5. Our consideration of
parallel problems in physics will show that the Walras’s
general project of establishing determinacy of voluntary
exchange outcomes by specifying the path of trade effec-
tively conflated two very different types of problems.

1. Example 1 continued: Exchange in a Cobb-Douglas

economy

To see the implications of these general points, con-
sider a two-commodity economy with an endowment

(w1, w2) consisting of a large number m of agents di-
vided into two equal groups, A and B, each of which
has a Cobb-Douglas utility function with different coef-
ficients

(

αA
1 , αA

2

)

and
(

αB
1 , αB

2

)

respectively, each sum-
ming to 1. At a Pareto allocation all agents will
have the same offer prices. As we can see from sec-
tion II A 1, this implies that in equilibrium every agent
of the same type will hold the commodities in the same
proportions. The amount of the commodities held can
vary among the agents of each type subject only to
the constraint that the utility exceed the utility of the
agent’s endowment. Thus we can characterize a Pareto
allocation in a Cobb-Douglas economy by the total
amount of commodities held by the agents of each type,
{(

xA
1 , xA

2

)

,
(

xB
1 , xB

2

)}

, where
(

(m/2)xB
1 , (m/2)xB

2

)

=
(

w1 − (m/2)xA
1 , w2 − (m/2)xA

2

)

to respect the endow-
ment constraint. At a Pareto allocation the weighted
sum of the utilities of each type is maximized:

4 In the economic literature, Walrasian allocations are often called
“competitive equilibria”. It would be most natural in an eco-
nomic context to reserve the term “equilibrium” for Pareto al-
locations, since the Pareto allocations are the rest points of the
dynamic process of voluntary exchange, and this usage would
conform to the use of the term “equilibrium” to describe the
rest points of dynamical systems in physics. Because economists
associate the term “equilibrium” so closely with Walrasian allo-
cations, we hope to avoid confusion by using a terminology that

distinguishes the whole set of Pareto allocations from the subset
of Walrasian allocations.

5 Walras even appreciated, in a way, that whether one equilibrium
is privileged over others depends on the particular algorithm as-
sumed for market clearing. The Walrasian allocation may be
privileged if markets clear through mechanisms akin to Walras’s
“auctioneer”, whose process of tatônnement was introduced to
give economic plausibility to this particular allocation.

max
(xA

1
,xB

1 )
λ
(

αA
1 log

[

(m/2)xA
1

]

+ αA
2 log

[

(m/2)xA
2

])

+ (1 − λ)
(

αB
1 log

[

w1 − (m/2)xA
1

]

+ αB
2 log

[

w2 − (m/2)xA
2

])

(10)

The equilibrium relative price is

p2

p1
=

w1

w2

λαA
2 + (1 − λ) αB

2

λαA
1 + (1 − λ) αB

1

As the weight λ varies from 0 to 1,
(

xA
1 , xA

2

)

varies from
(0, 0) to (w1, w2), and the equilibrium price varies from
(

αB
2 /αB

1

)

(w1/w2) to
(

αA
2 /αA

1

)

(w1/w2). Whenever αA
1 6=

αB
1 , the equilibrium price system will be indeterminate

over an interval.

2. Exchange in quasi-linear economies

We define a quasi-linear economy as an exchange econ-
omy in which all the agents have quasi-linear ordinal util-
ities with the same linear commodity, which we will re-
fer to as “money”. We will continue to call the other
commodities “nonlinear commodities”. The Pareto al-
locations of a quasi-linear economy all share the same
allocation of the nonlinear commodities, and, most sig-
nificantly, the same equilibrium price system. They differ
only in the distribution of the linear commodity (money)
among the agents. In a quasi-linear economy equilibrium
prices are determinate, not because there is a unique
Pareto allocation, but because the Pareto set is degener-
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ate in this sense. Figure 2 illustrates the Pareto set for a
quasi-linear economy.

x

P.S.

δS

1

2

x0

FIG. 2: All Pareto allocations for a quasi-linear economy have
the same allocation of nonlinear goods, and the same equilib-
rium price system, and differ only in the allocation of the
linear good (money) among the agents. The trade set illus-
trates the process by which an external speculator can extract
wealth from a quasi-linear economy of two types of agents
having no internal trade. Trades along indifference surfaces
(heavy) are the worst agents will accept, and take place at
changing prices. At the termination of trade, agents in the
economy have identical (equilibrium) prices, and have lost
wealth equal to the sum δS of their economic entropies at the
original allocation to the speculator.

For a given endowment, all Pareto allocations of a
quasi-linear economy have the same allocations of the
non-linear goods,

(

x̄1∗, . . . , x̄m∗
)

among the agents. This
property follows from the facts that the equilibrium com-
modity bundle of the non-linear goods for each agent is a
function only of the price vector for the nonlinear goods,
p̄, and that at equilibrium the sum of these demands
is equal to the social endowment of nonlinear goods, w̄.
Thus the Pareto allocations for a quasi-linear economy
differ only in the distribution of the linear good (money)
among the agents, x1

0, . . . , x
m
0 . The Pareto set can be

visualized for a quasi-linear economy with two types of
agents as in Figure 2. The Pareto set of a quasi-linear
economy is a hyperplane (in the two-agent type case a
line) in the subspace of the allocation space restricted
to allocations of the linear good. (The trade set is the
subset of this line bounded by the indifference surfaces
that pass through the endowment.) The prices of the
non-linear commodities p̄∗ = p0ū

j′
[

x̄j∗
]

are invariant on
the Pareto set. The Hahn-Negishi indeterminacy of the
path from the endowment to an equilibrium is reflected
only in the final distribution of the linear good among
the agents. This distribution is important and relevant
economically (it determines the subjective welfare of the
agents) but in the quasi-linear case has no impact on
the equilibrium price system, or each agent’s holding of
the non-linear goods (or indeed on any possible future
trades).

In a quasi-linear economy the difference between the
non-linear component of an agent’s utility at any alloca-

tion and on the Pareto set,

Sj
QL = ūj

[

x̄j
]

− ūj
[

x̄j∗
]

, (11)

is an unambiguous measure of the agent’s potential gains
from exchange. We define this quantity as the agent’s
economic entropy.6

Immediately

δSj
QL = δx̄j ·

p̄

p0

∣

∣

∣

∣

p=p[xj ]

. (12)

The gradient of the economic entropy gives the agent’s
relative offer price p̄/p0 at the commodity bundle xj .

The sum of the agents’ economic entropies in a quasi-
linear economy is maximized on the Pareto set. The eco-
nomic entropy of the whole economy is strictly speaking
well-defined only at Pareto allocations and is equal to
this maximized value. At a Pareto allocation, by the well-
known variational principle economists call the “envelope
theorem”, the derivatives of the maximized sum of agent
entropies with respect to the quantities of commodities
available to the whole economy are the equilibrium prices.
Thus the economy obeys a relation equivalent to Eq. (12)
obeyed by individual agents.

The sum of economic entropies is also well-defined at
non-Pareto allocations, and is non-decreasing along any
path from the initial endowment to the Pareto set on
which the utilities of individual agents are non-decreasing
(that is on paths of voluntarily acceptable exchange

among the agents), because on those paths xj
0 + ūj

[

x̄j
]

is increasing for every j and Σjx
j
0 = w0 is constant. (It

is possible, however, for individual agents’ economic en-
tropies to decrease along such a path, since an agent
may gain utility from increasing its holdings of the lin-
ear good.) The sum of agent entropies is a quantitative
measure of how close the economy is to the Pareto set,
since the difference between its value at any allocation
and the maximum value it attains on the Pareto set is an
unambiguous (distribution-free) measure of the economic
surplus still realizable through voluntary transactions.

To measure the value of an allocation
{

xj
}

to the
agents in a quasi-linear economy, we suppose for a mo-
ment that they cannot trade internally, and introduce the
device of an external speculator who can mediate trade
in x̄ through x0, but who holds no stock of the non-linear
goods herself.

The speculator’s goal is to extract the largest wealth
from the economy possible by voluntary trade, which
she accomplishes by exchanging x0 for x̄ with the agents
along their indifference surfaces (their least-favorable ac-
cepted trades), as shown in Fig. 2. What the speculator
buys of x̄j from one agent she sells to the others at higher
prices, maintaining zero inventory of x̄.

6 For the general derivation, see Sec. VID below.



7

Because equilibrium prices for each agent in a quasi-
linear economy do not depend on x0, the speculator can
move the agents to prices for x̄ equivalent to their prices
at any equilibrium, at the minimal acceptable xj

0 for each
agent j. She can then decouple from the economy with
surplus x0 leaving the economy with no further advan-
tageous trades. The wealth obtained by the speculator
is the sum of the agents’ entropies at the initial alloca-
tion, because agent utilities do not increase during the
extraction.

We now observe, however, that by construction the be-
havior of the sum of the agent economic entropies is the
same when they trade with such an external speculator
and when they trade with each other. In other words, if
the agents can trade x̄ internally to any Pareto allocation,
the sum of the gains in their utilities equals the money-
value of x0 that they have thereby prevented an external
speculator from extracting. Moreover, for any combi-
nation of speculative extraction and internal trade, the
sum of x0 extracted and welfare gained is constant. The
sum of the economic entropies is thus an intrinsic money-
metric welfare measure of the allocation in an economy,
equal to its potential to deliver wealth in the form of the
linear good to an external speculator or the equivalent
utility value to the agents themselves through voluntary
trade.

3. Example 2 continued: Quasi-linear exchange

To see the structure of exchange in a quasi-linear econ-
omy, consider a three-commodity economy with an en-
dowment (w0, w1, w2) consisting of a large number, m, of
agents divided into two equal groups, A and B, each of
which has a QLCD utility function with x0 as the linear
commodity, but with different coefficients

(

αA
1 , αA

2

)

and
(

αB
1 , αB

2

)

respectively. At a Pareto allocation all agents
will have the same offer prices, p = (1, p1, p2). As we can
see from section II B 1, this implies that in equilibrium
every agent of type A will hold the same bundle of non-
linear commodities, ¯xhA[p] =

(

p0α
A
1 /p1, p0α

A
2 /p2

)

, and
similarly for agents of type B. Since the total amount of
the nonlinear commodities availabe is (w1, w2), the equi-
librium prices must satisfy:

(m/2) p∗0
(

αA
1 + αB

1

)

w1
= p∗1

(m/2) p∗0
(

αA
2 + αB

2

)

w2
= p∗2

These equilibrium prices also uniquely determine the
agents’ holdings of the nonlinear commodities at any
Pareto allocation:

xA∗

1 =
αA

1

p∗1
=

αA
1 w1

(m/2)
(

αA
1 + αB

1

) ,

xA∗

2 =
αA

2

p∗2
=

αA
2 w2

(m/2)
(

αA
2 + αB

2

) ,

xB∗

1 =
αB

1

p∗1
=

αB
1 w1

(m/2)
(

αA
1 + αB

1

) ,

xB∗

2 =
αB

2

p∗2
=

αB
2 w2

(m/2)
(

αA
2 + αB

2

) .

The allocation of the linear commodity can vary on the
Pareto set across agents of different types and among
agents of the same type arbitrarily subject to the con-
straint:

Σm
j=1x

j
0 = w0.

The economic entropy of an agent at any bundle of
nonlinear commodities is equal to the difference between
the nonlinear component of utility on the Pareto set and
the nonlinear part of the utility at the bundle, and for
the QLCD system takes the form:

Sj
QL

[(

xj
1, x

j
2

)]

= αj
1 log

[

xj
1

xj∗
1

]

+ αj
2 log

[

xj
2

xj∗
2

]

.

III. THERMODYNAMIC FUNDAMENTALS

A. State relations and path independence in

classical thermodynamics

Classical thermodynamics is based on the concept of a
state function.

The macroscopic physical systems that are the domain
of classical thermodynamics, such as confined fluids, are
generally characterized instantaneously by a large num-
ber of configuration variables, and typically a small num-
ber of dynamically conserved quantities. The conserved
quantities that scale together, as measures of the “size”
of the system, are variables like energy E or volume V ,
and are referred to as extensive variables.

The remainder of the configuration variables, whose
values change rapidly as a result of the system’s internal
dynamics, are described statistically in terms of a dis-
tribution. General distributions have well-defined values
of the Shannon/Boltzmann entropy S. This description
belongs to the domain of statistical mechanics, and pre-
sumes nothing about stationarity, reversibility, or equi-
librium.

We will use the example of a “perfect” gas confined in
a container of given volume in this exposition to illustrate
the methods of classical thermodynamics. The configura-
tion variables microscopically specifying the state in this
case are the positions and momenta of the molecules that
constitute the gas. The total energy of the gas is the sum
of the kinetic energies of these molecules, and is higher
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the more rapidly on average the molecules are moving.
The elementary analysis of the behavior of this simple
system requires us to consider only the total energy E
and the volume V as conserved quantities.

Statistical mechanics characterizes the equilibrium of
a thermodynamic system (such as a perfect gas in a con-
tainer) by a distribution over the microscopic configu-
ration variables (in the case of the contained gas, the
positions and momenta of the molecules) that maximizes
informational entropy S among those distributions pos-
sible at given the conserved quantities E and V . These
conserved values are the sole constraints on distributions
so defined [18], in which role they are interpreted as ex-
tensive state variables.7 The maximizing value of infor-
mational entropy S[E, V ] is a state function of the other
extensive state variables, and is itself extensive if the sys-
tem in question interacts with other thermodynamic sys-
tems only through the boundary conditions defined by
(E, V ), so that such interacting systems do not other-
wise influence the distributions over the remaining inter-
nal degrees of freedom.

The hypersurface of distributions S = S[E, V ] as
(E, V ) is varied is called the surface of state. Systems
such as contained perfect gases converge (or “relax” in
physics jargon) to this statistical mechanical equilibrium
very rapidly. As a result, macroscopic observation of
thermodynamic systems normally enounters them at or
very close to their equilibrium state, and therefore on the
surface of state. Our interest in this paper is the interac-
tion of macroscopic physical systems exchanging energy
and volume, each of which remains at or close to equilib-
rium at all times. We take no position on whether there
are economic parallels to the statistical mechanical pro-
cesses that keep physical systems such as confined gases
close to equillibrium.8

Once the state function is known for some system, its
equilibria are completely characterized within classical
thermodynamics, without further reference to statistical
mechanics. Two properties from the statistical theory
will remain of interest to us, however, which have clas-
sical consequences. First, the definition of S[E, V ] as a
maximum subject to constraints implies the classical Sec-
ond Law of Thermodynamics, that entropy increases as
energy and volume constraints are loosened or systems

7 The state variable corresponding to energy E is generally de-
noted U , which helps to emphasize its different role from the
average energy of a general statistical distribution. We will not
employ the notation shift here, because it has no counterpart for
volume or other comparable constraints – notation has evolved
haphazardly in physics, as in economics – and because it risks
confusion with utility.

8 It is possible to imagine economic models in which trading agents
could be in internal disequilibrium (for example, where the agent
is a household consisting of several individuals, and the house-
hold’s collective willingness to exchange depends on its internal
allocation of goods), but we do not pursue this line of thinking
here.

V1

p1 p2

V2

Load

reservoir (T)

piston

FIG. 3: Work extraction by a movable piston separating
two chambers (e.g., of an ideal gas) of fixed overall volume
V 1 + V 2

≡ V . The piston is connected to a load, allowing it
to maintain differential pressures p1 and p2 in the two cham-
bers while trading volume between them, equivalent to differ-
ential prices under exchange of commodities. A reservoir at
temperature T permits reversible transformations while the
other variable V is conserved.

are aggregated. Second, the existence of multiple paths
through the space of general distributions (E, V,S) allows
many transformations to interpolate between the same
initial and final equilibrium states, a fact recognized but
not easily understood purely within the classical thermo-
dynamic theory.

Equilibrium thermodynamic systems are characterized
by duality between the extensive state variables and a
parallel set of intensive state variables, whose values do
not scale with overall system size. Duals are defined
through the tangent plane to the surface of state at any
point. Thus for example, temperature T ≡ ∂E/∂S|V is
the energetic dual to entropy, pressure p ≡ −∂E/∂V |S
is the energetic dual to volume. For purposes of compar-
ison to the economic theory, it is more useful to recog-
nize 1/T ≡ ∂S/∂E|V as the entropic dual to energy, and
p/T ≡ ∂S/∂V |E as the entropic dual to volume.

B. Example 3: Interaction of confined gases

When two thermodynamic systems with different tem-
perature or pressure are brought into contact the ex-
change of energy or volume between them will continue
until their temperatures and pressures are equalized. Fig-
ure 3 show a stylized experimental apparatus to illustrate
this equilibration. Two perfect gases are confined in the
two chambers of the apparatus, separated by a moveable
piston. Initially the chambers are insulated from each
other and the heat reservoir so that no energy can enter
or escape, and the piston is immobilized. The gas in each
chamber will relax to equilibrium at its own temperature
and pressure. If the two subsystems are brought into
thermal contact they can exchange energy in the form
of heat, and if the piston is allowed to move freely, they
can exchange volume. The problem of classical thermo-
dynamics is to predict what configuration the interacting
systems will reach.

We will discuss the similarity between this thermody-
namic exchange and economic exchange in detail below.
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Notice that each chamber of gas is independent of the
other once the position of the piston and temperature
of the reservoir (one state variable from each dual pair)
are specified. We will therefore begin the comparison by
considering the effect on a single chamber of changing its
boundary conditions (say V 1), and suppress the super-
script in the following subsection.

C. Reversible and irreversible transformations

The pitfalls of pursuing purely formal analogies be-
tween utility theory and thermodynamics, without being
careful about how the formalism is constructed, are il-
lustrated by the following types of thought-experiments:
Consider a perfect gas confined to a cylinder by a movable
piston. Given its energy, E, and the volume determined
by the position of the piston, V , it comes into equilib-
rium with an entropy S[E, V ] determined by the perfect
gas law, and a well-defined temperature T and pressure,
p given by the dual relations defined above.9

In the first experiment, the cylinder is maintained at a
constant temperature by being brought into contact with
a large thermal reservoir with which it can exchange en-
ergy in the form of heat. If the piston is slowly pulled
outward, so that the system stays close to equilibrium,
energy flows out of the system as work linked to the in-
crease in volume, and flows into the system as heat from
the reservoir, conserving the energy of the system.10 At
constant E and higher V , the system has a higher en-
tropy. This experiment is visualized in Fig. 4 as the mo-
tion along the constant-E contour in the surface of state.
This experiment looks familiar to an economist. The
thermodynamic system appears to be trading volume for
entropy with the rest of the world along an indifference
surface, resulting in a fall in its marginal rate of substi-
tution between entropy and volume, p/T .

For physicists a central property of the equation of
state is that it can also be used to analyze a second exper-
iment, in which the cylinder is not connected to a thermal
reservoir, and therefore cannot exchange heat. In this ex-
periment the piston is pulled out so rapidly that it loses
contact with the gas, which consequently does no work
on the piston, so that internal energy is conserved. The
gas is temporarily released into a disequilibrium internal
configuration with respect to the larger available volume,
but relaxes eventually into equilibrium with its original

9 Economists may be intrigued by the fact that the entropy
state relation for the perfect gas law has the form: S[E, V ] =
A log[E] + Blog [V ], that is, a Cobb-Douglas function.

10 A property of the perfect gas law, which can be derived from
footnote 9 and the relation 1/T ≡ ∂S/∂E|V of Sec. III A, is
that the internal energy is a function only of its temperature.
Thus the maintenance of a constant temperature through contact
with the thermal reservoir implies the conservation of the internal
energy of the gas in the experiment.

Open-system,

            reversible

Closed-system,

       irreversible

S = S(V,E)

S

V

E

FIG. 4: Different transformations can interpolate between the
same thermodynamic initial and final states. One transfor-
mation, indicated by the thick solid path along the surface
of state, takes place at fixed temperature in contact with a
thermal reservoir. A second transformation, indicated by the
dashed line, interpolating between the same initial and final
states takes place in thermal and mechanical isolation, but
conserves the internal energy of the gas.

energy at the new volume. According to the equation
of state it must relax to the same entropy as in the first
experiment, and hence to the same state as described by
the extensive and intensive variables. This visualization
of the second experiment is troubling to the economist
because it appears to have moved the system to a higher
indifference surface (by providing it with more volume),
yet the physicist locates the system on the same contour
and indeed at the same point in the state space as af-
ter the first experiment. Thus it is clear that, despite
their similar generation of duals, the economic indiffer-
ence surface is not quite the same as a surface of state,
and the statistical-mechanics coordinate system of Fig. 4
cannot correspond to an economic demand space.

The latter was to be expected, on the grounds that the
non-equilibrium values of S in Fig. 4 have no interpreta-
tion in classical thermodynamics, and no role in assigning
its duality relations, whereas every point in an economic
demand space lies within some indifference surface, and
through it is assigned some dual price system. The reso-
lution of this paradox begins by replacing the coordinate
S in a space of the same dimension, with another quan-
tity that has a classical thermodynamic interpretation,
but behaves differently depending on whether the system
is undergoing a reversible or irreversible transformation.
As all state variables of the system (E, V ) are already
drawn, the new coordinate must be a property of the en-
vironment in which the system makes its transformation.

We choose to use the reservoir, which may be cou-
pled to the cylinder-piston system to varying degrees, but
whose internal dynamics we assume remains near equilib-
rium no matter how the system transforms. Then we may
embed the coordinates (E, V ) in a space whose (n + 1)

st

coordinate, Σ, cumulates the loss of entropy from the
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reservoir. One could think of this in economic terms as
the system’s cumulated net “entropy debt”. From Σ and
S [E, V ] we could construct a “utility function” for the
perfect gas, which has a quasi-linear form:

U = Σ + S [E, V ] . (13)

The entropy loss from a reservoir in equilibrium at tem-
perature T equals −dQ/T , where dQ is an increment of
heat sent out through the reservoir boundary (in through
the system boundary). Thus we set

Σ = −

∫

dQ

T
, (14)

and recognize that for the reversible transformation, −δΣ
is the entropy gain δS by the system, formalizing the re-
versibility condition as δU = 0 and justifying the con-
sideration of U as a “utility”. The system maintains its
temperature and energy balance by incurring an entropy
debt to the thermal reservoir.11

In the second experiment, the system is isolated from
the reservoir, so it cannot increase or decrease its entropy
debt, and Σ remains constant. In this case the exper-
imenter moves the thermodynamic system to a higher
indifference surface by providing it with an additional
endowment of volume, V . This raises the S[E, V ] com-
ponent of the utility, without a compensating fall in Σ.

The source of entropy change in a classical thermal
system does not matter (there is only one “kind” of en-
tropy, arising ultimately from the statistical measure of
uncertainty S). Thus Σ cannot be a state variable of the
system itself. To create a utility diagram, for any pair
(E, V ), we construct an “indifference surface” through
(E, V, Σ) from the state relation that results if the system
reaches equilibrium at (E, V ) as a result of a transforma-
tion exchanging Σ, and is then probed with reversible
transformations through that point. In the quasi-linear
form (13) on the extended state space only the nonlinear
component S[E, V ], like ū[x̄], determines the dual vari-
ables, (1/T, p/T ) (like ū′[x̄]) independently of the utility
and the amount of the linear component, Σ (like x0). A
classical thermodynamic system exhibits no “memory”
of its past interactions with the rest of the world, just as
an agent with a quasi-linear utility exhibits no behavioral
reaction in its demands for x̄ to its holdings of the linear
good, x0.

11 If a physical system out of equilibrium interacts with other sys-
tems out of equilibrium, temperature, and thus this entropy
debt, may not be well-defined physically. But even if the subsys-
tem itself is not in equilibrium, as long as it is interacting with
other systems that are in equilibrium, they will have well-defined
temperatures at which the heat flows between the systems can
be cumulated to a well-defined entropy debt. Thus the paral-
lel between classical thermodynamic systems and quasi-linear
economies strictly speaking holds only for physical systems which
interact with other physical systems that are in equilibrium.

D. Thermodynamic potentials

One of the powerful insights of thermodynamics is that
it is possible to generate a whole family of dual poten-
tials to the entropy for a system. Each dual potential
is a state function for the system subject to particular
boundary conditions (or as economists say, “closures”).
A thermodynamic system might, for example, be con-
strained by constant pressure rather than constant vol-
ume, and in this case it is natural to express the equation
of state in terms of energy and pressure rather than en-
ergy and volume. Analogously, a small open economy
trading one nonlinear commodity for money with a large
world market faces a constraint on the price of that non-
linear commodity, not on its quantity. For a state func-
tion S[E, V ], the Legendre transform is the difference
between the function and the product of one or more of
the extensive variables with its corresponding intensive
variable, for example S[E, V ] − ∂S/∂E|V E. Differenti-
ation shows that this transform has arguments V and
∂S/∂E|V = 1/T , thus producing a new potential relat-
ing V and 1/T .

To show how Legendre transformation generates new
potentials from the entropy in a thermodynamic sys-
tem, we work through one particular transformation.
The entropy function of extensive variables S[E, V ], as
noted in Sec. III A, has the variations ∂S/∂E|V = 1/T ,
∂S/∂V |E = p/T , so that the variation of its Legendre
transform in both E and V is

δ

(

1

T
E +

p

T
V − S

)

= E δ

(

1

T

)

+ V δ
( p

T

)

. (15)

The Legendre Dual may also be written (1/T )F , where
F = E + pV − TS is the Gibbs Free Energy, to which
we will return below. F emerges in the context of trans-
forming systems using p as the control at constant T , in
which

∂F

∂p

∣

∣

∣

∣

T

= V. (16)

The gradients of potentials at equilibrium define the
duality relations of a thermodynamic system. These po-
tentials are evaluable at points along (a restricted set
of) transformation paths, and extremized12 on the set of
equilibria (the contract set). The potentials are defined
for each subsystem, and the individual potentials add to

12 The sign conventions in physics for Legendre transforms, like
that in Eq. (15), cause maximization of entropy to correspond to
minimization of the various free energies. The intuition behind
this choice is that free energies are the thermodynamic gener-
alization of mechanical energies, which give the appearance of
being minimized at equilibria. It was this mechanical analogy, in
an era before thermodynamics had been understood, that misled
Walras into thinking his utility functions followed the model of
energies.
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a system-wide potential under aggregation and equilibra-
tion of subsystems. We will further consider, in the rest
of the paper, the conditions under which economic poten-
tials with similar properties can be defined. A summary
of the correspondence for the quasi-linear case is provided
in Table I.

IV. PARALLELS BETWEEN

THERMODYNAMICS AND ECONOMICS IN

THE REPRESENTATION OF SYSTEMS

In physics it is conventional not to regard models of
particular thermodynamic systems as fundamental, but
to abstract the theory into a small collection of laws
that restrict how models can be built so as to be consis-
tent with a thermodynamic mode of description. From
the preceding abbreviated reviews of exchange economies
and simple (E, V )-type thermal systems, we are in a po-
sition to observe that the three most fundamental as-
sumptions about system representation in economics and
thermodynamics are in fact the same. The assumptions
called “laws” in thermodynamics correspond to funda-
mental “axioms” of neoclassical economics.

A. The three laws of thermodynamics and utility

theory

0th
law (encapsulation):

Thermodynamic systems in equilibrium have
well-defined values of some set of state vari-
ables. These state variables are of two types:
to each extensive variable (such as energy and
volume), there corresponds a conjugate inten-
sive variable (such as temperature and pres-
sure). If two systems are brought into con-
tact, they undergo no macroscopic changes
if and only if the intensive state variables
conjugate to all exchangeable quantities have
the same values. In this case the extensive
variables characterizing the joint system take
on values equal to the sums of the exten-
sive variables of the interacting subsystems,
and the intensive variables characterizing the
joint system are equal to the common values
for the intensive variables of the interacting
subsystems.

Economic agents are characterized by their
bundle of commodities. An economic agent
has well-defined offer prices for all commodi-
ties, its marginal rates of substitution at its
current bundle. If two agents are given the
opportunity to trade, their holdings will re-
main unchanged if and only if their marginal
rates of substitution for all exchangeable com-
modities are equal. In this case the economy

consisting of the two agents has a total com-
modity bundle equal to the sum of the in-
dividual agents’ bundles, and the marginal
rates of substitution of the individual agents
remain unchanged.

This law defines the category of “classical” thermody-
namic systems, as those which exercise or receive con-
straints from other systems only through the interfaces
defined by the state variables. Systems capable of car-
rying “memory” of past transformations that is not re-
flected in the state variables [15–17], but can affect future
transformations, do not satisfy this criterion.

Thermodynamics explicitly considers the possibility
that a subsystem of a larger system might not be in equi-
librium. Systems not in equilibrium do not in general
have well-defined values for the conjugate intensive vari-
ables, mandating the qualification in the 0th law “ther-
modynamic systems in equilibrium”. Statistical mechan-
ics studies the microscopic configurations of thermody-
namic systems, and provides an understanding of the
process by which a thermodynamic system out of equi-
librium converges (or “relaxes”) to an equilibrium state
with well-defined values of the conjugate intensive vari-
ables.

Economic utility theory does not generally consider
the possibility of individual economic agents being out
of equilibrium in this sense, so that in utility theory the
offer prices (marginal rates of substitution) of an eco-
nomic agent are always well-defined. Thus at the level of
representation, economic agents can only be considered
analogous to thermodynamic subsystems in thermody-
namic equilibrium. On the other hand, thermodynamic
subsystems in contact do not retain an equilibrium rep-
resentation unless their intensive state variables take the
same values in all the subsystems. There is no thermo-
dynamic equivalent of an economic “trading path”, along
which agents are individually given equilibrium represen-
tations even though their intensive state variables (offer
prices) differ.

At an equilibrium economics and thermodynamics con-
cur in both the interpretation of dual structure and
the conditions of equality on intensive state variables.
They differ in the treatment of transformations, which
of course arise in most of the interesting questions in
both fields. By emphasizing reversible transformations,
classical thermodynamics consistently requires equality
of intensive state variables as a condition for equilibrium
representation of subsystems. As a consequence energy
or some other extensive quantity must be allowed to enter
or leave the system, as we saw in the examples with heat
flow. Utility theory has chosen to keep the equilibrium
representation of agents under all conditions, but by em-
phasizing conservation of endowments for trades taking
place away from equilibrium, has removed the condition
that agents share a price system, or that their offer prices
should coincide with the actual rates of exchange.

1st
law (constraint):
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Energy is conserved under arbitrary transfor-
mations of a closed thermodynamic system.

Commodities are neither created nor de-
stroyed by the process of exchange.

2nd
law (preference):

There is a partial ordering of configurations
of state variables of a thermodynamic system
(which can be indexed by its entropy at each
configuration), and transformations that de-
crease the entropy of a closed system do not
occur.

There is a partial ordering of commodity bun-
dles for an economic agent (which can be
indexed by an ordinal utility function), and
agents never voluntarily accept trades that
reduce their utility.

The three laws introduce the dual structure we have
seen in the representation of agents, define special roles
for conservation of extensive quantities, and separate
these two functions from rules specifying which way
aggregates of subsystems or agents may spontaneously
change. The most direct way to understand why utility
cannot be a counterpart to energy is to recognize that
energy, along with volume or other conserved quantities,
defines the surface of possible configurations of aggre-
gated systems. The function of utility is more similar to
that of entropy: it identifies in which direction exchanges
are permitted to occur.

We saw in sec. III C that utility is not the same as en-
tropy, though, because entropy is a function of state that
cannot remember everything that a “utility” like Eq. (13)
for the same system could be constructed to remem-
ber. This difference has deep conseqences for both ther-
modynamics and economics. An aggregate of thermo-
dynamic subsystems can undergo transformations that
the systems in isolation could not, because global en-
tropy increase is less constraining when systems can ex-
change heat, allowing individual-system entropy to de-
crease. Similarly, agents in an economy can achieve allo-
cations that the agents in isolation cannot, because util-
ity increase can correspond to increase or decrease of the
economic entropy (11), when “money” can also be ex-
changed.

B. State and conservation-based descriptions

The different uses of duality in economics and classical
thermodynamics may be related back to the methodolog-
ical differences in the two fields by distinguishing “state-
based” from “conservation-based” diagrams, as indicated
in Fig. 5. State-based diagrams (the (a) panels) attempt
to identify unique equilibrium functions of boundary con-
ditions. In classical thermodynamics, intermediate con-
figurations off the surface of state have no assigned du-
ality relations. Utility diagrams may be projected into a

state-based form by a utility-offsetting map of all equilib-
ria onto some reference equilibrium bundle. The duality
relations associated with different (utility-distinguished)
equilibria may or may not respect such a projection, ei-
ther in the first-order conditions or in higher moments.
For (quasi-linear) systems that do respect the projection,
the duality relations may be considered properties of the
equivalence class under the projection, rather than of the
individual equilibrium allocations.

(off state

 relation)

S = S(V,E)

dS > 0

dV = 0

dS = 0

dV > 0
dS > 0

dV > 0

S

V

E

U(x) = U1

dx0 = 0

dx2 > 0

dU > 0

dx0 < 0

dx2 > 0

dU = 0

U(x) = U2 > U1

x0

x2

x1

∫ dQ/T= 0

dV > 0
dS = ∫ dQ/T> 0

                   dV > 0

pullback of state by 

dS = - ( dS -∫ dQ/T )

V

E Σ = −∫
 
dQ / T

U(x) = U1    U2

dx2 = 0

dU > 0

d(x0 - U) < 0

            dx2 > 0

dx0 = 0

dx2 > 0

(no econ.

 meaning)

x0 - U

x2

x1

a) b)

FIG. 5: State-based (a) and conservation-based (b) diagram-
ming, the default representations of thermodynamics and neo-
classical theory, respectively. One converts the utilitarian di-
agram to a state-based diagram by replacing one allocation
coordinate (here x0), with x0 − U for suitably cardinalized
utility U . Conversely, one converts the thermal diagram to a
conservation-based diagram by replacing non-equilibrium en-
tropy S with entropy flow from a reservoir Σ ≡ −

∫

dQ/T ,
a coordinate capable of recording change in the state of the
external world as well as the system. From the combination
of these two correspondences one obtains the interpretations
of utility and heat flow in the text. As in Fig. 4, dashed
lines are off-state transformations, and here dot-dash denotes
modifications, either by projection (economic) or pull-back
(thermal).

In contrast, in keeping with emphasis on closed-
economy conservation of endowments, economics empha-
sizes “conservation-based” diagrams (Fig. 5 (b) panels).
For a general utility problem, there is no expectation of
degeneracy in the duality relations at equilibria resulting
from different trading paths. To extend the thermody-
namic state to a function defined on all relaxation histo-
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ries, a pullback of the duality relations by some “entropy
debt” variable external to the classical system (such as
Σ) is required to supplement the system description to
include information about the environment.

C. Dual potentials in economic systems

We can calculate the full suite of dual potentials to
economic entropy in the quasi-linear economy. One such
dual places the dependence on all nonlinear components
of prices through the transformation:

F j
QL = p̄ · x̄j − p0S

j
QL. (17)

The variation of this object, which economists will rec-
ognize as the non-linear component of the expenditure
function plus the economic surplus the agent can gain by
moving to the trade set, is:

δF j
QL = (δp̄) · x̄j +

(

p̄ − p0ū
j′[x̄j ]

)

· δx̄j . (18)

Since p̄ = p0ū
j′[x̄j ] in equilibrium we see that the deriva-

tives of F j
QL with respect to the prices of non-linear

goods are indeed the Hicksian demands for the non-linear
goods.

Various other mixed duals have natural economic in-
terpretations in terms of a quasi-linear economy trading
some subset of goods with a world market, thereby fixing
the relative prices of those goods.

D. The missing degree of freedom in the duality

relation

If we define the intensive state variables in thermody-
namics as the gradients of the entropy with respect to
the extensive variables, as in the last line of Sec. III A,
all of the state variable pairs represent measurable quan-
tities. This property of thermodynamics differs from the
most general view of utility theory, which uses both mea-
surable and unmeasurable quantities. Marginal rates
of substitution, which correspond to relative prices as
long as agents trade along their indifference surfaces, are
measurable properties of contracts. The utility and the
numéraire for prices are not directly measurable in this
way, and the latter is assumed not even to be mean-
ingful in neoclassical theory. The equivalence relation
that maps classes of indifference surfaces in quasi-linear
economies onto thermodynamic equations of states rec-
onciles this difference by keeping only the combination
Uj − xj

0 = ūj
[

x̄j
]

, the economic entropy function recon-

structable from the allocations x̄j and their associated
relative offer prices p̄j/p0.

If we wish to describe the duality between x̄j and p̄j/p0

directly, there is no reason to introduce p0 as a variable
component of prices. We may use x0 as numéraire and
consider the natural dual (1/p0)F

j
QL to economic entropy

Sj
QL

13 Using Eq. (18) and the cancellation of the coeffi-

cient of δx̄j , the resulting gradient is

δ

(

F j
QL

p0

)

= δ

(

p̄

p0

)

· x̄j . (19)

We will return to the problem of constructing a dual
theory, involving only the measurable marginal rates of
substitution, for more general economies in Sec. VI C.

E. Quasi-linear economies and classical

thermodynamic systems

These results demonstrate the exact formal equivalence
of quasi-linear economies to classical thermodynamic sys-
tems14, and identify the economic forms of entropy and
other potentials in the quasi-linear case. Perhaps the
best way to describe this equivalence is our observation
above that classical thermodynamic systems, with state
spaces extended to include entropy debts to reservoirs,
are quasi-linear economies in which the linear good is
the cumulated entropy debt of the system to the rest of
the world.

Later in this paper we investigate in detail how far it
is possible to generalize the analytical methods of classi-
cal thermodynamics to systems that do not have a linear
good. It is important to realize that this issue is not pe-
culiar to economic systems. Physical systems that do not
exhibit path-independence, and therefore retain a mem-
ory of the path through which they reached equilibrium
(for example, in their micro-state) pose the same analyt-
ical problems as more general economies. In such sys-
tems the equilibrium boundary forces can depend on the
path by which the system relaxed, and there is no well-
defined entropy, nor equation of state linking aggregate
system contents such as volume and energy rigorously
to observable boundary forces holding the system in its
pseudo-equilibrium.

13 We introduced Fj

QL
in Equations (17,18) because it corresponds

strictly to the familiar physical Gibbs free energy F appearing
in Eq. (16). While in physics energy connects thermodynam-
ics to many other descriptions such as mechanics, and it is ex-
perimentally convenient to compute intensive state variables as
gradients of the internal energy at equilibrium, from the infor-
mational viewpoint in which entropy is the privileged extensive
state variable, it is more natural to consider the elementary dual
(1/T ) F corresponding to (1/p0)Fj

QL
.

14 More precisely, the equivalence class of utility surfaces modulo x0

holdings, which determines prices and the unambiguous alloca-
tions x̄ at equilibria, is equivalent to the description of a classical
thermodynamic system.
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V. ECONOMIC AND THERMODYNAMIC

METHOD

Both the existence of an exact correspondence of quasi-
linear economies to classical thermodynamic systems,
and the non-existence of such a correspondence for more
general economies (demonstrated in later sections by the
failure of the quasi-linear correspondence to generalize in
all respects) carry important implications for economic
theory and method. In physics, the failure of classical
thermodynamics to make correct predictions for systems
that do not obey the laws of Sec. IV indicates the need
for more explicit theories of dynamics. The same is a for-
tiori true for non-quasi-linear economies, a fact that has
not been acknowledged in general equilibrium theory.

A. Economy-wide prices exist only near

equilibrium

The essential insight from the 0th law in Sec. IV is that
thermodynamic systems only have well-defined intensive
state variables that can be predicted from their extensive
state variables when they are at (or very near) equilib-
rium. This restriction follows from the understanding,
arising ultimately from statistical mechanics [18], that
intensive state variables reflect constraints placed on the
system by its boundary conditions (which may include
interactions with other thermodynamic systems). Only
when a thermodynamic system has relaxed to the point
that its state variables represent its only constraints, can
the intensive and extensive values be predicted from each
other using the equation of state. Thermodynamic sys-
tems like the two chambers of gas in Fig. 3 can have well-
defined intensive state variables that differ, only if they
are individually in equilibrium with different boundary
conditions provided by a separator like the piston.

General equilibrium theory seeks to predict economy-
wide prices from endowments and the structure of agent
preferences, and like intensive state variables, these prices
are well-defined for economic equilibria (Pareto alloca-
tions). However, general equilibrium theory continues to
represent agents has having well-defined prices (their of-
fer prices) at non-Pareto allocations, even though those
prices differ among agents, and even when they are not
taken to reflect the presence of explicit constraints on the
individual agents’ holdings. This weaker requirement for
the existence of “prices”, than the requirement for in-
tensive thermodynamic state variables, has created the
widespread tendency of economists to conceptualize mar-
kets out of equilibrium as having a well-defined price (al-
beit not the equilibrium price). At disequilibria “price”
thus comes to refer to logically different and sometimes
inconsistent concepts.

One root of these inconsistencies is a persistent confu-
sion in economic thinking between two different logical
experiments. In the first experiment we start with an
economy close to equilibrium, so that equilibrium prices

are well-defined, and a single small economic agent is per-
turbed away from its equilibrium configuration, say, by
a shock to the agent’s commodity bundle. This agent
finds itself with offer prices different from the economy’s
equilibrium prices. In this situation it makes sense to
suppose that the agent will trade back to equilibrium at
the economy’s equilibrium prices, moving on a budget
set that passes through the agent’s perturbed endow-
ment point. The agent’s final position in this experi-
ment is well-determined by the equilibrium prices, the
agent’s utility function, and the perturbed endowment
point. This analysis makes sense precisely because the
economy as a whole is close to equilibrium and large com-
pared to the perturbed agent, so that it can absorb the
agent’s adjustment process with a negligible disturbance.

In the second experiment we imagine a shock that
changes the offer prices of all of the economic agents in
different ways. In this experiment the whole economy
has been moved far from equilibrium, and as a result
well-defined economy-wide prices do not exist. Volun-
tary exchange among the agents can restore equilibrium
by bringing agents’ offer prices into equality or propor-
tionality, but this process is not determinate, and can-
not be represented by the movement of each agent along
a well-defined budget set. The logical confusion at the
heart of the Walrasian theory of equilibrium arises from
the attempt to conflate these two experiments.

B. Reversible and irreversible transformations

Fig. 4 shows that the understanding of prices as con-
straints, such as those that arise at equilibria, remains
compatible with finite transformations as long as they are
conducted reversibly. Reversible transformations in ther-
modynamics are those that move each subsystem within
its surface of state. In economics they are the transfor-
mations that move each agent within a single indifference
surface.

Thermodynamics categorically distinguishes reversible
from irreversible transformations. It generates determin-
istic predictions by measuring system structure through
reversible transformations. Outcomes of irreversible
transformations can then be predicted only if they suf-
fer no path dependence and therefore coincide with the
outcomes of other transformations that could be per-
formed reversibly. Many physical systems, such as spin
glasses [15], granular matter [16], and other materials
with friction [17] can posess large sets of equilibria con-
sistent with a single macroscopic boundary condition, but
reached by different paths. For these there is no macro-
scopic identification of preferred outcomes, and a spe-
cific theory of dynamics is needed. The indeterminacy
of the Hahn-Negishi trading process in Fig. 1 results in
the same way from the irreversibility of trade to a Pareto
allocation in a closed economy. Only when the inevitable
path dependence of the equilibrium is limited to a degen-
erate coordinate under an equivalence relation (such as
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x0-equivalence in the quasi-linear economy) are the re-
maining properties of equilibrium determinate (i.e., they
could be obtained through an alternative reversible trans-
formation). If there is no such degeneracy, prices and
possibly higher-order derivatives of the indifference sur-
face can vary among Pareto allocations, and some more
detailed description of the dynamics of trade is required
to predict the rates of exchange along actual trading his-
tories and at the resulting equilibrium.

We have operationalized reversible transformations in
economics in Sec. II C with the device of the external
speculator, who can make small transactions with the
agents of the economy, gradually inducing agents to ex-
change one commodity for another by offering terms of
trade just a little better than their offer prices. The
speculator can in this way vary the total holdings of the
economy without allowing agents to move to higher util-
ity levels15. The manifold revealed by reversible trans-
formations summarizes the structure of the economy in
the same sense that it reveals the equation of state of a
thermodynamic system, with the caveat that in path-
dependent economies indifference surfaces at different
utility levels may not be degenerate in any of the al-
location components.

The basic scenario of Walrasian economics envisions a
group of economic agents each of whom initially holds an
endowment bundle of commodities at which their offer
prices differ, trading through markets to an equilibrium
at which their offer prices coincide. Trade from a non-
Pareto endowment to a Pareto allocation is inherently
irreversible, since it is impossible to induce economic
agents to voluntarily accept transactions that move them
to a lower indifference surface. While the existence the-
orems for Walrasian allocations claim to treat only fi-
nal allocations and not transformations, the definition of
“wealth preservation” that assigns a particular Pareto al-
location (or a discrete set of Pareto allocations) to any
endowment is necessarily that realized by one particular
trading path, the path described by Walrasian auction.

Walrasian theory thus attempts to overcome Hahn-
Negishi indeterminacy by combining a theory of prices
and equilibria with particular assumptions about the dy-
namics of irreversible trading. The goal of economic gen-
eral equilibrium theory is to derive a particular Pareto
allocation directly from the endowments and preferences
of individual agents. The correspondence we have es-
tablished between economics and thermodynamics shows
that this goal is as unattainable as the goal of predicting
the exact path of irreversible transformations in thermo-
dynamic systems. While the Pareto set itself is derivable
purely from the preferences of economic agents and the

15 This scenario may not be as abstract as it might at first seem.
A central bank making very small changes in the interest rate
on bank reserves by absorbing the excess supply or demand of
reserves might be viewed as approximating such an external spec-
ulator.

aggregate economic endowment, the path from an arbi-
trary non-Pareto endowment allocation to the Pareto set
is not determined by purely by preferences and endow-
ments. Only at Pareto allocations do preferences directly
imply a law of one price, and there is no principle imply-
ing the same constraint on arbitrary, utility-improving
trades.

C. Interpreting economies close to the Pareto set

Adopting the analytical assumption that an econ-
omy is at or close to the Pareto set requires some re-
thinking of the interpretive substructure of economic the-
ory and econometrics. Much economics implicitly or
explicitly adopts the interpretation of Hicks’ Value and
Capital [21], in which economic time is periodized into
“weeks”. On Sunday night of each Hicksian week all
the agents receive their endowment of commodities, and
are thus on Monday morning far from the Pareto set.
On Monday a market occurs, which reallocates the ini-
tial endowments (through what we realize now is an irre-
versible transformation) to final Pareto allocation com-
modity bundles, and the agents spend the rest of the week
actually consuming those bundles. Within the framework
of this parable, the actual measured transaction flows of
the economy correspond to the irreversible transforma-
tions associated with the achievement of a Pareto alloca-
tion (or, with the auxiliary hypothesis of the Walrasian
auction, a Walrasian allocation).

If we want to adopt the point of view of reversible
transformations, it makes more sense to interpret the
commodity bundles of agents as stocks, such as stocks
of consumer durables (the food in the refrigerator, for
example). The availability of well-organized markets per-
mits agents to keep close to their desired stocks at equi-
librium prices at all times. Since agents are human be-
ings who get hungry, wear out clothes, and in general
deplete stocks, it is necessary for them to make transac-
tions more or less continuously to keep close to their de-
sired stocks (selling their labor-power, paying their rent,
buying food, and so forth). These transactions, which
generate national income, are not in this way of think-
ing the result of irreversible movements from far-from-
Pareto endowments to a Pareto allocation, but the result
of agents’ constant effort to maintain their desired stocks
given equilibrium prices. Something like Hicks’ Sunday
night, in which the economy and its agents are suddenly
moved to a point far from the Pareto set, occurs only
rarely as the result of external shocks to the system.

If we regard actual data on economic transactions as
arising in this way, conventional specifications of de-
mand functions in which flow transactions are a function
of market prices and incomes are inappropriate. The
prices at which transactions in a close-to-Pareto alloca-
tion economy take place are in fact equilibrium prices,
which we can thus observe directly. The quantities trans-
acted, however, depend on the dynamics of consumption
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and depreciation of stocks, which require specific model-
ing.

The assumption that agents generally remain close to
desired stocks, and that the economy can as a result be
analyzed with the concept of reversible transformations,
is a strong abstraction. For example, an agent who loses
her job typically feels that she has been forcibly (irre-
versibly) moved to a lower utility level. Real economies
experience shocks (wars, revolutions, depressions, and
technological innovations, for example) that intuitively
seem to be best understood as irreversible transforma-
tions. The gradual processes of economic growth and
development move agents to higher indifference surfaces,
but on a time scale much longer than that of the estab-
lishment of market prices. We would like to emphasize
the notion that the method of reversible transformations
is best adapted to analyzing ongoing economies operating
more or less normally.

VI. THERMODYNAMIC POTENTIALS AND

PATH DEPENDENCE IN GENERAL

ECONOMIES

In sections II and III we demonstrated by construc-
tion the equivalence of quasi-linear economies, in which
indifference surfaces are redundant under translation, to
classical thermodynamic systems, and observed that the
thermodynamic surface of state should be understood
as the equivalence class of quasi-linear indifference sur-
faces modulo the quantity of the linear good x0. Non-
classical thermal systems [15–17] correspond to more gen-
eral economies than the quasi-linear class in that they ap-
pear externally to be governed by the same set of exten-
sive state variables, but under transformations are found
to have significant path-dependence, exhibiting endpoint
memory, hysteresis, and other phenomena that macro-
scopically would be associated with a multi-valued state
relation on (E, V ). Similarly, economies that are not
quasi-linear in any commodity have at least one degree
of freedom per agent that distinguishes among equilib-
ria, and on which prices or more complex constraints on
subsequent trade can depend.

A. The strong aggregatability of quasi-linear

economies

Quasi-linear economies are equivalent to thermody-
namic systems because they are aggregatable in a very
strong sense, as economists have appreciated for decades.
Any agent has the equivalent of an entropy, her ūj

[

x̄j
]

,
which is independent of the economy in which she is em-
bedded and in particular independent of the preferences
and endowments of other agents. These economic en-
tropy analogues aggregate in the same way as thermody-
namic entropies, because they are non-arbitrary money
measures of (part of) the utility. Their sum is related

to a so-called “social welfare” function (to which we re-
turn in Sec. VI D), which for any economy takes a unique
maximum value on all of the economy’s Pareto alloca-
tions. The equivalence class of the Pareto allocations
corresponds to the uniquely defined thermodynamic equi-
librium.

Thus the problem of “micro-foundations” for a quasi-
linear economy is completely and convincingly resolved.
The economic entropy and related potentials derived
from it by Legendre transformation give a transparent
understanding of the dynamics of trade in such an econ-
omy and the relation between the behavior of individual
agents and aggregate economic objects such as equilib-
rium prices. On the other hand, this aggregation is not
simply a process of “adding up” the individual agents
in the economy. They do interact to form equilibrium
prices, and there is an emergent property of the economy
which cannot be reduced to or deduced from the proper-
ties of the individual agents: the distribution of wealth
at the Pareto allocation finally reached.

B. Transformations in general economies

With these clarifications in hand, we examine how
a combination of structure determination based on re-
versible economic transformations, and the projection of
economic equilibria onto appropriate utility-equivalence
classes, can be used to describe the common features of
general voluntary trading paths from non-Pareto endow-
ments to a Pareto allocation. Along the way we will iden-
tify the maximal generalization of the Negishi construc-
tion of social welfare functions and its relation to Gorman
aggregatability, the extent to which the Walrasian idea
of a potential whose gradients are prices can be realized,
and the proper relation of that potential to thermody-
namic concepts including energy and entropy. We follow
the logical sequence from simplest to most complex sys-
tems, starting with the determination of structure and
redundancy for a single agent, relating that structure to
the movement of a collection of agents to a Pareto alloca-
tion in a closed economy, and then extending the treat-
ment to economies in contact with large external markets
that serve as reservoirs for commodities.

We will find that the useful features of the thermo-
dynamic correspondence are not lost all at once as one
relaxes the assumption of quasi-linearity. Rather, a nat-
ural social welfare function, and path-independent prices
and Walrasian potentials on the Pareto set, are retained
for the class of Gorman-aggregatable economies, though
higher derivatives of the indifference surfaces at equilibria
generally become path dependent. If we abandon Gor-
man aggregatability, equilibrium prices can also become
path dependent, and the concept of Walrasian potentials
and social welfare functions are constructable only along
one-parameter contours within the Pareto set.
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C. Price boundary conditions and measurement of

system structure

The thermodynamic equivalent to the economic con-
cept of “revealing preference” is the determination of the
state relation by manipulating a system to achieve re-
versible transformations. The simplest economic system
in which to measure such structure is an individual agent
facing well-defined transaction prices who is allowed to
adjust her stocks of goods to their desired level at those
prices.

Two problems, which we were able to avoid for quasi-
linear economies, introduce path dependence in general
economies and cause revealed preferences to be less pre-
dictive than thermodynamic equations of state. The
numéraire for prices is arbitrary, so that the number of
economically meaningful price components is one fewer
than the number of components of the allocation bundle
xj . Duality alone therefore cannot determine xj unam-
biguously. The extra coordinate that specifies xj in neo-
classical theory is the level of utility (or equivalently the
marginal utility of wealth), but unlike a thermodynamic
state variable, utility is not assumed to be measurable
in general. We therefore ask what is the best we can do
to remove the unmeasurable numéraire and utility level
from a theory of dual structure for general economies.

The variation (2) of the expenditure function (1) gives
n out of n + 1 components of the Hicksian demand
xh

i (p,U) corresponding to any n relative price compo-
nents of p, which we are free to choose. For quasi-linear
economies we escaped the need to identify the last com-
ponent from a dual relation because U and a particu-
lar component xh

0 were degenerate quantities under an
equivalence relation on indifference surfaces. As a result
it was also possible to use transformations within indif-
ference surfaces to infer properties of utility-increasing
exchanges. The degeneracy in x0 identified the price
component p0 as the one it is unnecessary to vary, so
that x0 effectively became numéraire.

As suggested by the lower panel of Fig. 5(a), no equiva-
lence relation will map the full set of indifference surfaces
to a well-defined state relation with respect to all alloca-
tions, for a general utility function. We can, however, re-
gard a one-parameter family of allocations as equivalent
for some purposes. Suppose we do this for a contour of
Pareto allocations of some exchange economy, so that we
may regard the difference between equilibria along that
contour as changes in a degenerate “heat flow” coordi-
nate, analogously to the degeneracy of the Pareto set for
quasi-linear economies. It does not matter which com-
ponent pi we use as normalization, as long as utility is
increasing in the conjugate commodity xi (so that xi can
be used as an index for the utility level).

Now separate the normalization from relative price
variations by writing δp = (δpi) p/pi + piδ (p/pi). From

Eq. (2) it then follows that

δ

(

e

pi

)

= δ

(

p

pi

)

· x +
p

pi

·
∂x

∂U

∣

∣

∣

∣

p

δU . (20)

xi is effectively numéraire in the relative expenditure
function (e/pi) (though we need not assume that pi is
held constant as a normalization condition, or even rela-
tive to other agents at distributions far from the Pareto
set).

As in the quasilinear case e can vary with U , but
this variation can be canceled by working instead with
an expenditure function (e [p,U ] /pi − uc,i [U ]) offset by
a suitable cardinalization uc,i [U ] of ordinal U , as was
done to form the economic Gibbs potential in Sec. IVD.
Given any contour c that intersects each indifference sur-
face only once transversally, a contour-dependent cardi-
nal utility of money-metric form in numéraire xi is de-
fined by

uc,i [U ] ≡

∫ u[xc]=U

dxc ·

(

p

pi

)

. (21)

Here dxc is the differential commodity vector along con-
tour c, p is the agent’s offer price vector defined by du-
ality through the indifference surface at the bundle xc,
and the integration contour terminates on the value of
xc in the indifference surface u[x] = U . Intuitively we
measure the utility of the agent by the distance along
the contour from a reference commodity bundle.16 At
arguments (p,U) dual to x on this contour it follows that
(p/pi) · ∂x/∂U|c ≡ duc,i/dU . For smooth indifference

surfaces, p[xc] ·
(

∂x/∂U|c − ∂x/∂U|p

)

= 0 (by transver-

sality), and U-dependence is removed from the variation
of (e [p,U ] /pi − uc,i [U ]) along c. It then follows from
Eq. (20) that

δ

(

e

pi

− uc,i

)

= δ

(

p

pi

)

· x, (22)

the generalization of Eq. (19). We thus obtain some-
thing that looks like a utility-independent state relation
by removing the dependence on xi, but in general can
accomplish this only for points in the arbitrarily chosen
contour c.

Eq. (22) has the form of a Legendre transformation of
an economic entropy, though in general it depends on a
contour c which in turn is chosen for each agent within
the Pareto set of the economy in question. With these
restrictions, and up to a reference scale for prices that

16 In the most general case pi may be defined with respect to a
basis that depends on position in the contour c, but the contour
utility construction is only particularly useful in cases where pi

is fixed either by contour or by boundary condition, so we do not
pursue the more general case here.
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will be determined from context, the expenditure func-
tion offset by utility is the economic equivalent to a Gibbs
potential for an individual agent. Before considering vari-
ations in general open systems, however, we relate the
characterization of system structure gained from interac-
tion with a single agent, to the process through which
a collection of such agents trade from a non-Pareto en-
dowment to a Pareto allocation, in a conventional closed
economy. These will in part determine how the entropy
can be naturally defined from its dual.

D. Trading to the Pareto set in a closed economy

In a closed thermal system, equilibrium is defined by
the condition that the sum of entropies of the compo-
nent subsystems is maximized, on the space of configu-
rations preserving the initial totals of the extensive vari-
ables (energy, volume, etc). The maximizing value must
be unique, if the equilibrium is to be path-independent.
The equivalent to entropy maximization in economics is
social welfare maximization, and the existence of a well-
defined entropy requires the same conditions as existence
of a well-defined welfare function, though the two are in
general not identical.

If (e/pi − uc,i) is the equivalent of a Gibbs potential,
the economic entropy is its Legendre dual, by the re-
verse of the construction used in Sec. IVC. To make
sense, such an entropy must be invariant on the trade
set, independent of the path of trading or its terminal
Pareto allocation. Clearly any single component xi sat-
isfies

∑

j xj
i = wi under arbitrary exchanges within a

closed economy. Moreover, if the contour cj defining
utility uj

c,i for each agent j is the projection of a sin-
gle contour in the Pareto set onto j’s allocation variables
xj , the sum of utilities

∑

j uj
c,i of Eq. (21) is invariant

under change of Pareto allocation remaining within that
contour. (This sum of contour utilities defines an intrin-
sic money-measure of the total contour c in numéraire
xi.)

If we write p = (pi, p̄) with respect to the (as yet un-
specified) coordinates of Sec. VI C, the relative-price de-
grees of freedom p̄/pi define a basis for Legendre trans-
form of (e/pi − uc,i). Specifically, the Legendre trans-
form of e is e− p̄ · x̄ = pixi in this basis, and a candidate
for an xi-metric entropy for agent j is defined by

−Sj
c,i =

ej
[

p,Uj
]

− p̄ · x̄j

pi

− uj
c,i

[

Uj
]

∣

∣

∣

∣

∣

p=p[xj],Uj=uj[xj ]

= xj
i − uj

c,i

[

Uj
[

xj
]]

. (23)

From Eq. (22) it follows immediately that about any
point in c,

δSj
c,i = δx̄j ·

p̄

pi

∣

∣

∣

∣

p=p[xj ]

. (24)

Since all agents j have common dual prices at any Pareto
allocation, we also immediately obtain the desired prop-
erty

∑

j

δSj
c,i = 0, (25)

for movements among Pareto allocations within c.
For allocations not in c, the sum of individual agent en-

tropies preserves the property of monotone increase with
a (local) maximum on c, though its derivatives with x̄
are no longer in general properly normalized prices as
in Eq. (24). (Since

∑

j xj
i = wi for all closed-economy

trades, the only change in
∑

j Sj
c,i comes from utility

changes, which are individually nondecreasing.)
So far, no restriction has been made on the metric

xi for Sj
c,i. For trade to equilibrium in the most gen-

eral closed exchange economy, there may be no preferred
choice, and the Sj

c,i add no particular insight to what is
already specified by the trade set. For such cases the
Sj

c,i are mostly interesting as the widest possible gen-
eralization of the Negishi construction of social welfare
functions [19]. We may make them degenerate along a
one-dimensional set of equilibria for each agent, because
a monotone rescaling of ordinal utility admits an arbi-
trary function of one real variable. There are, however,
intermediate degrees of aggregatability short of quasi-
linearity, for which appropriately chosen Sj

c,i provide nat-
ural money measures of the value of trade.

E. Gorman aggregatability

If we choose commodity coordinates so that p̄∗ ≡ 0̄ at
an equilibrium price system p∗, the Legendre conjugate
demand variations δx̄j for each agent j are locally un-
constrained by the preferences of other agents, and from
Eq. (24) it follows that each agent maximizes Sj

c,i over

her own commodity holdings x̄j independently (see Fig. 6
below). In the quasi-linear case if we take pi = p0 of the
linear good, the x0 independence implied by Eq. (24) on
the Pareto set extends to the whole demand space, and
with it independence of the utility level Uj .

Generalizing from the quasi-linear case, Terence Gor-
man [22] has shown that the demand functions of a col-
lection of different economic agents will coincide with the
demand function of a single economic agent (so that the
economy is aggregatable in the Gorman sense) if and only
if the indirect utility17 for each agent can be put in the
form [2]

vj
[

p, mj
]

= b[p] mj + a
j [p] . (26)

17 The indirect utility is defined as a function of prices and a wealth
constraint v(p, m). The value of the wealth coordinate m equals
the expenditure function e[p,U ] at the maximal U affordable at
that (p, m).
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The function b[p] is common to all the agents in an ag-
gregatable economy. The function a

j [p] is idiosyncratic
to each agent. The equivalent expression for the expen-
diture function is

ej
Agg

[

p,Uj
]

=
1

b[p]

(

Uj − a
j [p]
)

. (27)

quasi-linear utility satisfies the Gorman conditions with
b[p] = 1/p0 and a

j [p] = ūj
[

x̄jh[p]
]

− (1/p0) p̄ · x̄jh[p].
The demand function for agent j in a Gorman economy

is then

xj
[

p, mj
]

= β[p] mj + αj [p] , (28)

with β[p] = −b
′

[p] /b[p], and αj [p] = −a
j′ [p] /b [p]. The

aggregate demand of the economy has the same form, by
construction:

x[p, M ] = β[p] M +
∑

j

αj [p] , (29)

with M =
∑

j mj .18

For commodity vector w held collectively in a Gorman
economy, the equilibrium price system p∗ satisfies:

β[p∗] e[p∗,U∗] = w −
∑

j

αj [p∗] . (30)

By an affine transformation of the commodity space, we
may set b[p∗] ≡ 1, a

j [p∗] ≡ 0 if we wish, in which case
the indirect utility (26) becomes the money-metric utility
at equilibrium prices [2].

Pareto allocations in Gorman economies are related
by redistribution of bundles proportional to β[p∗] among
the agents, a change in xjh that preserves p = p∗ in
Eq. (28). The set of expenditures mj and utility values
Uj changes under such a re-allocation, but not the first-
order conditions, so that the equilibrium price has no
memory of the path taken to the trade set.

Non-quasi-linear Gorman economies exhibit a much
weaker degree of equivalence to classical thermody-
namic systems than quasi-linear economies, so that wel-
fare functions are defined for closed economies only in
endowment- and preference-dependent forms, and Wal-
rasian potentials for prices are only guaranteed to give
the correct normalization within the Pareto set. The

18 Note that b[p] and aj [p] cannot be quite arbitrary functions.

Utility vj
[

p, mj
]

should be homogeneous of order zero in prices,
or

0 =
∂

∂ǫ
vj
[

(1 + ǫ) p, (1 + ǫ)mj
]

∣

∣

∣

ǫ=0

= b[p]
[

(1 − p · β[p]) mj − p · αj [p]
]

.

Since p and mj vary independently, vj
[

p, mj
]

is homogeneous

at all arguments iff p · β[p] = 1, p · αj [p] = 0.

first-order conditions at equilibria are path-independent,
but higher-order derivatives of the indifference surfaces
will differ at different Pareto allocations.

In a Gorman economy, any contour utility in the
Pareto set equals (up to an additive constant) the di-
rect money-metric utility at equilibrium price p∗, so that
all
∑

j Sj
c,i have c-independent degenerate maxima on the

Pareto set, and we may drop the c index on S. To consis-
tently treat this similarity of Gorman to quasi-linear sys-
tems, it is natural to make the Gorman bundle (the basis
element in the simplex of Pareto allocations) the wealth
transfer on which prices do not depend, by normalizing
prices so that p · β[p∗] ≡ 1. To study the individual
entropy-maximizing problem of agents, the natural met-
ric for entropy is p∗ · xj , and the corresponding normal-
ization p∗i in Eq. (23) may be replaced by a coordinate-
independent form p∗ · β[p∗] ≡ 1 (with an overall scaling
depending on the endowments, which in other circum-
stances may not be appropriate). The individual agent
entropy is then

Sj
Agg = e

[

p∗,Uj
[

xj
]]

− p∗ · xj

=

[

(b[p] p − b[p∗] p∗) · xj + a
j [p] − a

j [p∗]
]

b[p∗]

∣

∣

∣

∣

∣

p=p[xj]

.

(31)

As we have seen above, for an economy of agents with
utilities quasi-linear in a specific commodity x0, β[p∗]
does not depend on w or the idiosyncratic ūj

[

x̄j
]

. If
we use x0 rather than p∗ · x as numéraire, replacing a
Gorman-form entropy which is individually maximized
with an entropy independent of x0 and U at all x, Eq. (23)
reduces to

Sj
QL = p∗0

(

ūj
[

x̄j
]

− ūj
[

x̄j∗
])

. (32)

Immediately

δSj
QL = p∗0 δx̄j ·

p̄

p0

∣

∣

∣

∣

p=p[xj ]

. (33)

If x0 is numéraire this variation gives properly normal-
ized prices at all demands. If not, because quasi-linear
utilities are aggregatable without respect to total endow-
ments or other-agent ūj

[

x̄j
]

, it is generally preferable to
remove the normalization p∗0 (added through p∗ · β[p∗]
for notational convenience in the more general Gorman
case (31)), to produce Sj

QL as in Sec. II C, with gradi-

ent (12) giving relative price p̄/p0 dual to x̄j in any econ-
omy.

The function of entropy is independent of which of
these conventions we choose. For economies where all
relative prices are invariant among equilibria, it amounts
to a convention for the units of measurement. In cases
where we can construct entropies independent of a wealth
coordinate, however, we gain the interpretation of eco-
nomic equivalents to thermodynamic effective potentials
in open systems, where irreversible and reversible trans-
formations can be compared directly.
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x0

β(p*)
p*

p*.  x δx

(p0,0)

FIG. 6: The choice of reference price permits several differ-
ent maximized entropies for a closed system trading from a
non-Pareto endowment to a Pareto allocation. Numéraire
p∗

· x (natural for general Gorman case, well-defined but
endowment-dependent for the quasi-linear special case) de-
scribes the individual’s optimization of the relatively defined
δx̄ as a taker of externally-given prices. Numéraire x0 (quasi-
linear only) defines endowment- and other agent preference-
independent entropy with no functional dependence on either
x0 or U . Such context independence is not possible for more
general Gorman economies, because the equilibrium price sys-
tem p∗ depends on the endowment and agent preferences. Be-
cause a quasi-linear example is shown here, the linear good
(x0, 0) also defines the Gorman bundle β[p∗].

F. Micro-foundations again

These reflections reveal that Gorman economies are
aggregatable only in a limited and methodologically in-
complete sense. The problem is that while it is possible
to define entropy-like functions for individual agents in a
particular non-quasi-linear Gorman economy, these func-
tions depend on the economy-wide endowment of com-
modities and the preferences of all the agents who par-
ticipate. They provide no real micro-foundation for an-
alyzing the outcome in a Gorman economy. We cannot
define individual agent entropies in terms of which we
can analyze the dynamics of trade to the Pareto set, in-
dependent of the economic context in which the agents
are embedded. Although Gorman hoped, and some later
economists assumed, that Gorman aggregatability would
provide rigorous micro-foundations for macroeconomics
(in the form of a “representative agent” paradigm), these
observations show that this hope is not actually fulfilled.

G. Transformations in partly open economies

Reversible transformations preserving the economy’s
aggregate endowment of commodities are not possible
in closed systems. A boundary condition with at least
one fixed price and open demand coordinate is needed to
compare reversible and irreversible transformations di-
rectly. Fixed price for some goods introduces the no-
tion of a trading “reservoir”. The idealized reservoir, in

which prices do not change under any finite exchange of
demands, is not only an analytical convenience; it can
be a good first approximation for situations like that of
a small-country economy trading some commodities but
not others with a world market. The world market ef-
fectively fixes prices in the small economy for the traded
commodities. We now relate trading to equilibrium in
such an economy to the closed-economy entropy maxi-
mization.

For a closed economy we can arrive at any point on a
contour c within the Pareto set by maximizing the con-
strained Lagrangian

δ





∑

j

Sj
c,i

[

xj
]

− η ·





∑

j

xj − w







 = 0. (34)

The construction of the contour utilities (21) gives im-
mediately that in the vector η of Lagrange multipliers,
ηi = 0 and η̄ = p̄[xc] /pi[xc] at any equilibrium xc ∈ c.
The optimization procedure does not discriminate Pareto
allocations, just as the Hahn-Negishi procedure of con-
tinuous transacting does not.

∑

j Sj
c,i

[

xj
]

is the maxi-
mal generalization of the Negishi social welfare function,
capable of identifying all equilibria on a one-parameter
family within the Pareto set, rather than only a discrete
subset as in the original Negishi construction.

Suppose, now that we consider such an economy em-
bedded in a world market exchanging two goods xi′ and
xi at fixed price pi′/pi|Res. This time let one of the goods
(xi′ ) be numéraire and the other (xi) the metric for en-
tropy. Write the resulting vector of goods (xi, xi′ , x̃), and
similarly for w, p, and η. Equilibrium of the reservoir-
coupled economy is given by

δ





∑

j

(

Sj
c,i

[

xj
]

−
pi′

pi

∣

∣

∣

∣

Res

xj
i′

)

− ηi





∑

j

xj
i − wi



− η̃ ·





∑

j

x̃j − w̃







 = 0.

(35)

Variation of the contour utility sets pi′ [xc] /pi[xc] =
pi′/pi|Res, and as before ηi = 0 and η̃ = p̃[xc] /pi[xc].

If the economy consists of a single agent, all demand
components except xi and xi′ are fixed, and the quantity

Sj
c,i

[

xj
]

−
pi′

pi

∣

∣

∣

∣

Res

xj
i′ = uc,i [U ] − xi −

pi′

pi

∣

∣

∣

∣

Res

xj
i′ (36)

is maximized over xi and xi′ . The construction (36) cor-
responds to physical S−(1/T )E ≡ − (1/T )A, where A ≡
E − TS is called the Helmholtz Free Energy. pi/pi′ |Res
corresponds to the temperature T (the energy-price, or
numéraire-price, of entropy) set by the reservoir. Phys-
ical equilibria with boundaries on extensive quantities
other than energy, and a fixed-temperature (intensive)
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boundary condition setting ∂S/∂E = 1/T are identi-
fied by minimization of A. Likewise, economic equilibria
on an arbitrary contour c consistent with relative-price
boundary conditions on two commodities are identified
with minimization of

∑

j

Aj
c,i′ ≡

∑

j

xj
i′ −

pi

pi′

∣

∣

∣

∣

Res

Sj
c,i

=
∑

j

xj
i′ +

pi

pi′

∣

∣

∣

∣

Res

(xi − uc,i [U ]) , (37)

subject to whatever additional (extensive) constraints
apply to non-traded goods. (The generalization of the
contour appropriate to agents interacting with a reser-
voir, in which xi and xi′ are not individually conserved,
but the combination pixi + pi′xi′ is conserved, is taken
up in the appendix.)

From Eq. (24), it follows that about any equilibrium

δAj
c,i′ = −δx̃j ·

p̃

pi′

∣

∣

∣

∣

p̃=p̃[xj ,pRes]

. (38)

Aj
c,i′ is a Walrasian potential of the fixed components of

the allocation, whose gradient gives the conjugate com-
ponents of price, independent of whether the variations
correspond to reversible or irreversible transformations.
Note that Aj is neither the utility nor the entropy, but
rather a dual defined in the context of a partly open sys-
tem enabling reversible transformations, through which
the duality relations are defined as the allocation bound-
ary conditions change. Eq. (38) is the economic equiva-
lent of the physical variation

∂A

∂V

∣

∣

∣

∣

T

= −p (39)

which identifies the gradient of the Helmholtz potential
as (minus) the force conjugate to volume.

In the general case there is no natural discrimination
in the choice of xi′ for numéraire and xi for entropy met-
ric. Moreover, the usefulness of the Walrasian potential
interpretation (24) is limited, both because of the depen-
dence on contour c and the possibility of an x-dependent
factor scaling prices even in Gorman economies away
from the Pareto set. However, in quasi-linear economies
with a natural choice x0 (the degenerate coordinate in
the equation of state) for entropy measure and any other
numéraire, the Walrasian interpretation of Aj as a price
potential leads to another interpretation equivalent to
the physical concept of “free energy” in a thermal sys-
tem. Suppose that the reservoir trades a numéraire good
x1 for x0, so that the temperature T ↔ p0/p1 becomes
the money price of entropy in the small market, and
x1 + (p0/p1)x0 defines its balance-of-payments budget
constraint. From such a case we can identify

∑

j A
j
[

xj
]

as an intrinsic money measure of the value of endowments
{

xj
}

, equivalent to a physical measure of available po-
tential energy.

H. Transformations with all derivative constraints

Equilibria with all price boundary conditions, immedi-
ately, are defined by extremization of the full Legendre
dual to entropy:

δ





∑

j

(

Sj
c,i

[

xj
]

−
p̄

pi

∣

∣

∣

∣

Res

x̄j

)



 = 0 (40)

As noted in Sec. VI D, when we first constructed the
contour entropy

Sj
c,i

[

xj
]

−
p̄

pi

∣

∣

∣

∣

Res

· x̄j = uj
i,c

[

xj
]

−
p

pi

∣

∣

∣

∣

Res

· xj (41)

may be regarded as equivalent to − (1/T )F , where F =
E + pV − TS is the the Gibbs free energy introduced in
Sec. III D. Its economic equivalent,

F j
c,i′ ≡

p

pi′

∣

∣

∣

∣

Res

· xj −
pi

pi′

∣

∣

∣

∣

Res

uc,i [U ] , (42)

is the potential minimized at equilibria under all inten-
sive boundary constraints. F j shares with Aj the in-
terpretation of a potential for profit extraction, only in
the context of trades through which price, rather than
volume, is the controlling interface to the goods x̃.

With the Gibbs potential we have come full circle, to
the original familiar problem of maximizing utility sub-
ject to a constraint on prices. The difference of this
construction from conventional economic definitions of
the expenditure function or the indirect utility is that
the endowment wealth constraint does not appear in the
maximization; only relative prices appear. This weaken-
ing of the extremization problem is what allows Eq. (41)
to specify all equilibria in a contour c (or in the Pareto
set of a Gorman economy), rather than a single Pareto
allocation associated with a particular wealth constraint.

I. Summary of duality and transformations

The physical entropy and its various duals, together,
provide a suite of thermodynamic potentials through
which the state relations and transformation structure
of classical thermodynamics are defined. Temperature is
distinguished among the intensive state variables (and
therefore used as the scale factor for the Gibbs and
Helmholtz potentials) because it relates entropy changes
to changes in energy, the fundamental (extensive) con-
straint on the space of accessible states and the physi-
cal equivalent of the numéraire and balance-of-payments
constraint.

The thermodynamic potentials are constructed so that
the gradient of each with respect to its arguments is
the energetic dual vector (see Eq. (16) and Eq. (39)).
For this reason the thermodynamic potentials also de-
fine limits of available energy under transformations of
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their arguments as boundary conditions. The gradients
of Helmholtz-type potentials (the mixed duals to the en-
tropy) with respect to their extensive arguments produce
the conjugate forces, whose balance identifies thermody-
namic equilibria. It was therefore to be expected that, in
those cases where an economic entropy has a natural def-
inition, the economic Helmholtz potentials constructed
from it would be implementations of Walrasian poten-
tials for utilitarian “force balance”. The correspondence
is exact for quasi-linear economies, and valid at the level
of first-order conditions in Gorman economies.

However, the Walrasian potentials (free energies) do
not correspond to physical energies, though the goods in
which they are denominated do; remember from Sec. IV
that the function of energy is to constrain the possible
configurations. Nor do they correspond to utilities (re-
member that even the quasi-linear economic entropy is
not the utility). The essential difference between utility
and entropy is that entropy can be exchanged through
heat (or money) flow, while utility cannot. Thus it can be
stipulated that utility increases for agents whether they
are isolated or embedded in economies, whereas the en-
tropies of idividual agents embedded in economies can in-
crease or decrease, under suitable circumstances. The in-
equivalence of entropy and utility captures the way mar-
kets make advantageous trades available to agents, while
respecting the global constraint that all trades must be
volutary.

J. How restrictive is quasi-linearity?

Our analysis has touched on, but not thoroughly dis-
cussed, several issues concerning aggregatability that
may yet result in confusion. A final example that ties
them together can aid interpretation, and also address
questions of applicability.

Economists have already well understood that quasi-
linearity buys strong aggregatability, but have regarded
the loss of generality from assuming quasi-linear utilities
too great a price to pay for some additional path inde-
pendence of the properties of equilibria. Quasi-linearity
also distinguishes one good (x0) from all others, and we
may ask what characteristics of real markets create such
a distinction. Concerning this question, our characteri-
zation of x0 as “money” in Sec. II B may be misleading,
depending on which concepts are included in the notion
of “money”.

Recall that x0 is the one degenerate commodity un-
der the equivalence class of quasi-linear indifference sur-
faces, and the one commodity that does not have the
interpretation of a “state variable” of the economy, un-
der the thermodynamic correspondence. We must extend
our notion of state to include an “entropy debt” to the
environment, in a somewhat artificial way, to construct
a thermodynamic system in which the counterpart to x0

has meaning. In the neoclassical theory of pure exchange,
this is an acceptable interpretation for a medium of ex-

change, in keeping with arbitrariness of x0 as numéraire.
The remaining “state variables” of the economy are the
non-money commodities whose holdings have nontrivial
effects on relative prices.

Yet in many economic models, money is a commod-
ity in its own right, often serving as the measure of
wealth. In such cases there is no reason why utility should
be quasi-linear in money any more than in other com-
modities. If we want some measure of wealth to serve
as numéraire, then x0 should be a different commod-
ity, whose holding by any agent does not directly affect
prices, but which can continue to serve as a medium of
exchange and the metric for economic entropy, as was
assumed in Sec. VI G. The following example will show
that the most natural contexts for quasi-linearity often
motivate such a separation.

We consider familiar dividend-discount models from
finance. A risky asset returns dividends, drawn indepen-
dently from a stationary distribution at a sequence of
times with interval δt. There is a market for the asset
and also for money, which may be borrowed in return for
a promise to pay service on all outstanding debt. Now δt
may be a property of the asset, responsible for its stochas-
tic returns, but suppose we do not wish to assume that
δt is a property of the market’s institutional structure.
In other words, the decisions to borrow or repay capital,
or to buy or sell the risky asset, may be made at any
time. Such an assumption is appropriate for many finan-
cial (and other) markets, which may exchange a range of
risky assets characterized by different intrinsic intervals
δt. If M is an agent’s (money) wealth, and the agent
borrows δM , the only debt service incurred per period,
consistent with the assumption of time continuity of the
markets, is δD = δM rδt. The interest rate r need not be
the same for all periods, but it must be a smooth function
of time as δt → 0.

Let N be the number of shares of the risky asset some
agent holds in any period of length δt. We will show
that a natural utility model for the problem of pricing
the asset is based on a commodity bundle (x0, x1, x2) ≡
(−D, M, N). Capital can change by purchase of shares
at price pN as well as by borrowing, so that a general
exchange satisfies

δM = −pNδN +
1

rδt
δD. (43)

Prices in M -metric are thus (p0, p1, p2) ≡ (1/rδt, 1, pN),
and correspond under the thermodynamic association to
physical (T, 1, p)19. The accounting identity (43) corre-
sponds to the physical constraint of energy conservation,

δE = −p δV + δQ, (44)

with δQ = TδS if the transformation is reversible.

19 We have denoted share price pN to distinguish it from the ther-
mal equivalent, pressure p.
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We now ask what class of utilities can mirror the time
continuity provided by the market. We suppose that the
only intrinsic value of the asset on very short times is
its dividend, for which we let d denote the value in the
current timestep in a single realization. Any cardinal
intertemporal utility capable of evaluating the holding of
assets for an arbitrarily short time must be a function of
Nd − D for the current period, and must have regular
limit as Nd−D → 0. If we express the utility as a power
series in Nd − D, and divide by its first derivative at
Nd−D = 0, the remaining term takes a form equivalent
to a wealth change in the period

∆W ≡ Nd − D + φ[M ] . (45)

φ[M ] may come from a deterministic component of in-
come accruing to money M in the period, but may also
reflect any possible future utility of wealth that is im-
pacted by holding M through the current period. Higher-
order terms in Nd− D are O

(

δt2
)

(in expectation), and
vanish as δt → 0. Terms at lower order in δt are incom-
patible with a sensible continuum limit, meaning that a
succession of short periods of total length Kδt in which
no action is taken must have the same utility as if the ba-
sic period were Kδt and the dividend process were simply
accumulated through the period.

We can remove the uncertainty about the dividend pro-
cess in a number of ways, of which the Constant Absolute
Risk Aversion (CARA) model is an algebraically conve-
nient example. CARA transforms ∆W of Eq. (45) into
a cardinal form

ucard ≡ − exp {−∆W/ν} , (46)

and assumes that dividends d are distributed normally,

with mean 〈d〉 ≡ d̄ and variance
〈

(

d − d̄
)2
〉

≡ d̄2σ2. ν is

the agent’s risk tolerance, measured in units of M . The
ordinal utility resulting from averaging Eq. (46) over d is

uord = − exp

{

−

[

Nd̄

(

1 −
Nd̄

2ν
σ2

)

− D + φ[M ]

]

/ν

}

,

(47)
equivalent under monotone transformation to the so-
called certainty equivalent of wealth20

U ≡ Nd̄

(

1 −
Nd̄

2ν
σ2

)

− D + φ[M ] . (48)

The utility U differs from the QLCD utility (9) only in
having a polynomial rather than logarithmic dependence
on N (x2) and arbitrary (concave) dependence φ on M
(x1).

20 A better name in this case would be “certainty equivalent of
income”.

The expenditure function is

e [p,U ] = M + pNN

−

[

φ [M ] + Nd̄

(

1 −
Nd̄

2ν
σ2

)

− U

]

/rδt, (49)

where the minimizing values of M and N satisfy

rδt =
∂φ

∂M
(50)

and

(rδt) pN = d̄

(

1 −
Nd̄

ν
σ2

)

. (51)

These marginal rates of substitution are also the rates of
exchange in reversible trades (43).

The U- and D-independent entropy is then

S ≡ U + D = Nd̄

(

1 −
Nd̄

2ν
σ2

)

+ φ [M ] = ū [x1, x2] ,

(52)
in the notation of Eq. (32). Like the ideal gas of thermo-
dynamics, the entropy (52) is separable. From Eq. (49),
the Gibbs potential is

F = M + pNN −
1

rδt
S, (53)

and the corresponding Helmholtz potential

A = M −
1

rδt
S. (54)

Eq (50) and (51) give immediately upon differentiation
that

pN = −
∂A

∂N

∣

∣

∣

∣

rδt

(55)

for arbitrary transformations. Thus A is the Walrasian
potential for price.

We see from this example, and in particular the
forms (52-54), that the debt service D is the natural
quasi-linear commodity and metric for entropy, though
it is not the measure of wealth, the store of value across
periods, or even the numéraire, all of which roles are filled
by M . The characteristics that generically lead to util-
ity linear in D make it equally intuitive that D should
be a degenerate coordinate of the indifference surfaces.
D maps value across time, but itself has arbitrary scale
proportional to δt. Unlike a stock variable like M or
N , it is a flow used to maintain equilibrium in the other
commodities.

VII. DISCUSSION

Classical thermodynamics came to formulate its dual
variables as state variables, related through a concep-
tually central function called entropy. The entropy,
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which expresses the forces as functions of the coordinates
through a relation called the equation of state, came to be
understood as serving this role only for systems at equi-
librium. Thus the very existence of a dual representation
for thermodynamic systems came to be tied intrinsically
to the condition of equilibration. The use of thermo-
dynamic equilibrium does not preclude transformations,
but it is restricted to paths that lie within the surface
traced out by equilibrium equation of state, the reversible
transformations. Reversible transformations are used to
measure the values of all the state variables and to deduce
the equation of state, which characterizes the structure
of the thermodynamic system at all possible equilibria,
and through all possible reversible transformations.

While only reversible transformations can be used to
measure system structure, thermodynamic prediction is
not restricted to cases in which only reversible trans-
formations have occurred. The endpoints of irreversible
transformations – those for which intermediate configu-
rations may be far from equilibrium – can be predicted
if they are known to be path-independent, and could
thus have been reached by alternative reversible trans-
formations. Classical thermodynamics applies to those
systems for which the equation of state is a complete de-
scription at equilibrium, meaning that there are no other
hidden quantities capable of retaining a memory of paths
of transformation.

Neoclassical economics, in contrast, has not come to
limit the use of dual representations of agents to condi-
tions of equilibrium, but rather assumes that such repre-
sentations exist under all conditions. It has also come
to emphasize transformations to equilibrium in closed
economies, a class of transformations that are incompat-
ible with maintaining conditions of equilibrium along the
transformation paths. Because of these choices, economic
theory has not developed a role for concepts equivalent
to reversible transformations, or a special class of path-
independent systems.

These differences matter because it is well-known in
physics that the thermodynamic formalism cannot pre-
dict the outcomes of irreversible transformations in path-
dependent systems (of which many kinds have been stud-
ied [15–17]). The same is true in economics: the prices
and allocations that result from trading from initial non-
equilibrium endowments to an equilibrium cannot be de-
duced purely from the dual representation of the prefer-
ences of agents. Yet this is the stated goal of general equi-
librium theory [5], which purports to achieve it by adding
to the dual representation of preferences the Walrasian
condition for wealth preservation at eventual equilibrium
prices during disequilibrium trading.

Wealth preservation as it is used in the fundamental
theorems of general equilibrium theory is not implied by
economic axioms defining utility, and can be empirically
wrong even if a dual representation of preferences is jus-

tified21. Unfortunately, this means that the theoretical
device of wealth preservation doesn’t really overcome the
problem of indeterminacy in path-dependent economies.

General equilibrium theory simultaneously identifies
prices with the structure of agent preferences and the
dynamic process of disequilibrium trading. Doing so
changes the interpretation of prices from the thermody-
namic concept of state variables to the economic concept
of transactions ratios along paths leading from nonequi-
librium endowments to an equilibrium. But whereas
state variables measured in reversible transformations are
deterministic consequences of the structure of thermody-
namic systems, the transaction ratios of trades to equi-
librium are not deterministic and need not coincide with
the prices derived from general equilibrium theory, since
the latter arise from a false solution to the problem of
indeterminacy.

We have derived in this paper the interpretation of
equilibria, transformations, and price systems that arises
from a consistent methodological correspondence in the
representation of agent preferences and thermodynamic
systems. We find that, in economics as in thermody-
namics, there is a useful role for reversible transforma-
tions, and an important class of path-independent sys-
tems (comprising subsets of observables in the the so-
called quasi-linear economies) for which deterministic
predictions of an important subset of equilibrium vari-
ables (the prices and allocation of the nonlinear com-
modities) can be made. The thermodynamic correspon-
dence cannot overcome the problem of indeterminacy in
more general path-dependent economies, but it allows us
to understand the differing categories of path dependence
that are possible and their relation to the economic no-
tion of aggregatability, and clarifies the circumstances in
which the auxiliary notion of wealth preservation from
general equilibrium theory applies.

We have shown that the formal structure of utility the-
ory already includes functional analogues to thermody-
namic quantities like energy and entropy, which is inter-
esting in its own right because it emphasizes how much
of the representation of inanimate systems economics has
adopted for the modeling of rational agents. For path-
independent economies the correspondences are strict
and constructive. Utility is not entropy, but it is related
to a well-defined economic entropy that expresses prices
as functions of quantities of goods held, and identifies
which transformations are possible under voluntary ex-
change, the same functions entropy performs in thermo-
dynamics. Though energy occupies a privileged position
in much of physics, it is only one of many state vari-
ables within the thermodynamic formalism, whose roles

21 We have shown in Sec. V that wealth preservation is intrinsi-
cally a theory of market function and not of preferences, and the
existence of real trading systems that produce very different out-
comes automatically implies that any single algorithm for wealth
preservation can be valid for at most one of them.
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are collectively to specify which states it is possible for
combined systems to adopt. The quantities of commodi-
ties held perform the equivalent function for exchange
in closed economies. Entropy ceases to exist as a well-
defined function of the state of path-dependent systems
in both physics and economics, but in cases where some
of its properties are preserved, a generalization of the
construction from quasi-linear economies continues to be
possible. In these cases again we observe that it is not
the differences between inanimate objects and rational
agents that has distinguished thermodynamics and util-
ity theory, but the approach they have taken to path
dependence and indeterminacy.

A. A century of analogy-making between

economics and physics

Walras [4] apparently thought of utility as a measur-
able quantity analogous to potential energy in mechanics,
whose gradient (with a minus sign) is the force exerted
by a system on its boundaries. Economic equilibrium
was to correspond to force balance, and vector equality
of forces to equality of prices. There were two flaws in the
Walrasian correspondence, one surmountable, one fatal.

The surmountable flaw was that Walras sought a corre-
spondence with rational mechanics [7], the physics of his
day. We now understand that mechanics cannot cause
convergence to equilibrium. Purely mechanical systems
started at rest with all forces balanced can remain in
that state, but systems started away from equilibrium
will oscillate about it forever. A mechanical analogue in
economics would require not only forces, but dynamical
equivalents to inertia.

This flaw was recognized and corrected by Fisher [8]
after it was understood that thermodynamics, and not
mechanics, is the correct physical theory to explain how
disequilibrium systems can converge to equilibrium and
remain there. The thermodynamic law of increase of en-
tropy subject to constraints (on total energy, volume,
etc.) [18] explains how systems can leave disequilibrium
regions of configuration space and never return, so that
eventually the equilibrium configurations are the only
ones left available to them. The potential minimized at
physical equilibria is not the energy, as was believed in
Walras’s time, but a quantity called free energy, which
also receives contributions from the entropy.

Fisher’s doctoral advisor was J. W. Gibbs, one of the
principle architects of the new field of statistical mechan-
ics, which was just then providing a microscopic foun-
dation for the rules of thermodynamics, in particular the
law of increase of entropy. Fisher went on from correcting
Walras’s error of analogy, in light of new physical under-
standing, to commit an even more elementary logical er-
ror, in proposing a point-by-point formal correspondence
of utility theory with elements not only from thermo-
dynamics, but also from Gibbs’s statistical mechanics.
Fisher proposed that the economic agent corresponds to

the microscopic particle, but continued to compare the
agent’s commodities and utility to thermodynamic state
variables like energy and entropy. The error is that mi-
croscopic particles in statistical mechanics are stochas-
tic objects, and the thermodynamic state variables are
deterministic functions obtained from averages over dis-
tributions of microscopic particle states. Fisher was thus
drawing analogies of the economic agent to both stochas-
tic and deterministic physical objects at the same time.

We emphasize here that thermodynamics is a classical,
deterministic formal system, which is internally consis-
tent whether or not it is derived from a statistical me-
chanics foundation [3]. To the extent that utility theory
has correspondences with physics, they are with ther-
modynamics and not statistical mechanics. Much cur-
rent work in “econophysics” is devoted to replacing the
assumptions of utility theory with statistical models of
agents and markets, but that is not what this paper
is about. Statistical mechanics has been important in
physics because, in addition to explaining equilibrium
thermodynamics, it has provided some mechanisms to
predict the behavior of nonequilibrium transformations.
It is an interesting question whether there is a similar sta-
tistical foundation for neoclassical theory that can also
be extended to disequilibrium trading, but we take no
position on that question here.

The fatal flaw in the Walrasian correspondence was
the assumption that cardinal forms for utilities could be
constructed a priori, whose gradients would equal prices
for all the equilibria of arbitrarily composed economies.
Such a condition is equivalent to requiring that equilib-
ria be maxima of a global social welfare function, which
is the sum of the utilities of all agents in an economy.
This amounts to postulating a universal addition rule for
cardinal utilities.

In the neoclassical theory of preferences, price nor-
malization is arbitrary,22 and utility gradients need only
be parallel in equilibrium. This fact was exploited by
Negishi [19] to represent Walrasian allocations as max-
ima of social welfare functions constructed by adding ar-
bitrary cardinal utilities after multiplying these by ap-
propriate scalar weights. We develop in Sec. VI C a
maximal generalization of Negishi’s construction by in-
troducing a new contour money-metric utility, which al-
lows us to define a social welfare function on an arbitrary
one-parameter set of equilibria for any economy, rather
than an arbitrarily chosen single equilibrium as in the
Negishi construction. Though some aspects of the util-
ity/potential correspondence can be salvaged in this way,
the lack of a natural cardinalization for general utilities
reflects the deeper fact that welfare functions simply do
not exist for general path-dependent economies.

Lisman [9] recognized Fisher’s logical inconsistency,
and (correctly) associated the economic agent with the

22 See discussion in Ref. [5], p. 28.
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quasi-deterministic macroscopic thermal system, as we
will do here. He labeled utility an “analogon” to entropy,
but proposed no specific relation between the two. He
also (correctly) identified the function of resource con-
straints with that of energy conservation in thermody-
namics: specifying the surface of possible configurations
within which utility or entropy is maximized. Lisman
then fell back into the trap of formal analogy, by propos-
ing that the expenditure function p ·x corresponds to the
term pV in the physical ideal gas equation of state, be-
cause both are products of dual state variables. We show,
starting in Sec. IV, what the expenditure function means
under the correct correspondence, and that in general it
has nothing to do with the particular equation of state
of the ideal gas.

Other formal analogies have been pursued without any
basis in methodological correspondence. Bryant [10] at-
tempts to reproduce the ideal-gas equation of state by in-
venting a quantity “productive content” as a placeholder
for temperature in that equation. “Productive content”
is assigned a number but is not measurable even in prin-
ciple, in contrast to temperature, which is the foremost
measurable quantity in thermodynamics, usually consid-
ered the object of its “0th law” (discussed in Sec. IVA).
More recently Saslow [11] has proposed a somewhat eclec-
tic mapping between thermodynamic and economic vari-
ables, which, however, leaves the exact relation of utility
and entropy and the range of models in which it holds
undefined.

A few authors have found correct associations without
proposing specious analogies, though all have stopped
short of a methodological correspondence or complete
interpretation. Bródy [13] et. al., in macroeconomics,
recognize that resource conservation constrains the sur-
face of possible configurations for coupled subsystems,
and thus corresponds functionally to energy in thermo-
dynamics. Candeal [14] et. al., demonstrate the mathe-
matical equivalence of the utility representation problem
to that of entropy representation in physics, though they
propose no specific relation of the two functions.

Samuelson’s [12] is the most complete (correct) relation
of the theories of thermodynamic and economic equilib-
rium, emphasizing duality of state variables and the cor-
respondence of expenditure functions to certain thermo-
dynamic free energies. His concern is measurability of
preferences and identification of equilibria, and thus the
interpretation of economic dual variables, but not trans-
formations or economies in which the equilibrium allo-
cations change as a result of net flow of goods. Trans-
formations are, however, essential, because they provide
the mechanism for measuring the values of state variables
and empirically inferring the equation of state.

VIII. CONCLUSIONS

In representing the behavior of individuals (or house-
holds) as the maximization of well-behaved utility func-

tions (which represent transitive, convex preference or-
derings) under constraints, marginalist and neoclassical
economics effectively regards individuals as equilibrated
thermodynamic systems in which a well-defined equa-
tion of state links extensive variables (commodity bun-
dles) to intensive variables (marginal rates of substitu-
tion). This point of view has become very widely propa-
gated through its adoption as the foundation of the eco-
nomics curriculum and as the starting point for an enor-
mous theoretical-empirical literature on economic prob-
lems. This conception of the individual leads to an anal-
ysis of real economic phenomena as the interaction of the
individual agents (analogous to equilibrated subsystems
in thermodynamics) and hence as a version of thermody-
namic equilibrium.

History seems to show that no economist has had a
clear understanding of the full methodological implica-
tions of this thermodynamic perspective for economics
as an explanatory science. The stumbling blocks ap-
pear to have been that in thermodynamics there is no
natural role for accumulated heat flow as a state vari-
able, and thus no reason to expand the equation of
state into a quasi-linear function akin to a utility. Con-
versely, economists have appropriately regarded quasi-
linear economies as too constrained to represent the full
range of economic phenomena. As a result economics
has developed a general theory (Walrasian general equi-
librium theory), but on methodologically flawed founda-
tions which foreclose the tight and scientifically fertile
connection between theory and measurement enjoyed by
thermodynamics.

Economics unwittingly found itself coping with the
complex phenomenon of path-dependency in its attempt
to theorize general economic interactions not constrained
to the quasi-linear case. The device of the Walrasian
auctioneer is an unsuccessful attempt to finesse the is-
sues raised by path-dependency without coming to grips
with them (through positing a determinate transactions
path for irreversible transformations from disequilibrium
endowments to the Pareto set). In the process both eco-
nomics and physics lost sight of the common ground that
underlies their approach to complex systems. We hope
that a better understanding of the fact that physics and
economics face the same problems in applying thermo-
dynamic reasoning to path-dependent systems can foster
a more fertile interchange of ideas.

This paper takes no stand on how appropriate the ab-
stract thermodynamic point of view is to understanding
real economic phenomena. It is possible to argue that
the formal equivalence of utility-based economics and
thermodynamics reveals the inadequacy of this approach
to deal with human social phenomena. It is also possi-
ble to argue that a correct application of the methodol-
ogy implied by the thermodynamic approach can greatly
strengthen the empirical explanatory power of economic
theory. However one argues, though, those economists
who commit themselves to utility theory as a basic frame-
work of analysis will posess a clearer conceptual system
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when the theory of preferences and duality is disentan-
gled from the problems associated with disequilibrium,
dynamics, and inevitably institutions.
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APPENDIX A: ECONOMIC INTERPRETATION

OF THE HELMHOLTZ “FREE ENERGY”

Here we generalize the case diagrammed in Fig. 2, of
a speculator interacting with an economy of agents with
utilities quasi-linear in x0, to include a reservoir. The
agents can freely trade x1 for x0 with a world market
at price p0/p1, giving us a well-defined counterpart to
temperature. Under this correspondence, the problem
of the speculator, the economy, and the world market
is the counterpart to the system of piston, gases, and
thermal reservoir shown in Fig. 3. Again we suppose
that the agents cannot trade internally, and that only
capital (x1 or x0 interconvertible through the reservoir)
is of interest to the speculator, who can mediate trade in
x̃. The physical counterparts are that the gases cannot
exchange energy except through the mediating piston or
the thermal reservoir, and energy is the only quantity
that the piston can extract from the system.

The speculator exchanges x1 + (p0/p1)x0 for x̃ with
the agents along their indifference surfaces as shown in
Fig. 7, again maintaining zero inventory of x̃. Thus x̃j

plays for each agent j the role of volume (V ) shared be-
tween two chambers in Fig. 323. Work can be extracted
from the system if the initial pressures (energy-prices of
volume) are different, by trading volume between the two
chambers, at pressures that differ on the two sides of the
piston, with the excess

∫ (

p1 − p2
)

dV 1 extracted by the
load.

Because equilibrium prices for each agent in the small
economy do not depend on x0, the speculator can move
the agents to prices on x1, x̃ equivalent to their prices
at any closed-economy Pareto allocation, at the minimal
acceptable xj

0 for each agent j. She can then decouple
from the economy with surplus x0 convertible to x1 by
the reservoir, leaving the small economy with no further
advantageous trades. The wealth obtained by the specu-
lator is −

∑

j δAj = (p0/p1)
∑

j δxj
0, because agent utili-

ties did not increase during the extraction.

23 In the closed-economy analysis of Sec. II C, the speculator com-
prised both reservoir and load together, and since in all cases the
condition in which she left the economy when she finally decou-
pled had common x̄, only net x0 in the system differed between
internally-obtained equilibria and maximal extraction, to serve
as a measure of wealth.

P.S.

−δA

1

2

x1+(p0/p1)x0

x~

FIG. 7: An external speculator extracts wealth from a small
economy of two agents having no internal trade. x̄ = (x1, x̃).
If x̃ is the controlled variable, the instantaneously equilibrated
x1[x̃] is determined by the indifference surfaces and the reser-
voir price p0/p1. Trades along indifference surfaces (heavy)
are the worst agents will accept, and take place at different
prices. At the termination of trade, agents in the small econ-
omy have identical prices, and have lost wealth equal to −δA
to the speculator.

As for the entropy in Sec. II C, δAj depends only on
δx1, δx̃, and does not discriminate reversible from irre-
versible transformations. For any combination of specu-
lative extraction and internal trade, the sum of capital
extracted and welfare gained is a function only of δx1,
δx̃ of the transformation. The economic Helmholtz po-
tential is an intrinsic money-metric welfare measure of
the allocation of an economy in contact with a reservoir,
equal to its potential to deliver money wealth (now a
nonlinear good) to an external market through voluntary
trade (generally through a combined loss of x1 and x0

mediated by the reservoir). This interpretation coincides
with the interpretation of the physical Helmholtz poten-
tial Aj as the maximum work extractable from a system
through change of a volume boundary, when the system
also contacts a reservoir for heat (energy accompanied
by entropy). Aj differs from the mechanical energy in
the system (here equivalent to the balance-of-payments

constraint
∑

j xj
1), and is called the free energy of the

reservoir-coupled system.

The interpretation of the Helmholtz free energy as a
maximum potential for profit extraction remains gener-
ally valid with respect to any contour c of equilibria, as
shown in the Appendix, though in general it comes to de-
pend on the endowments and preferences of other agents,
and on the contour chosen. In the problem of aggregating
only two sub-economies, each internally equilibrated, the
Pareto set is one dimensional, so well-defined entropies
with respect to that aggregation problem exist for arbi-
trary reservoirs.
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1. Example 1 continued: Cobb-Douglas entropies

and the valuation of trade

The ability to define entropy and contour-independent
free energies as individual agent functions, which are in-
dependent of the endowment and preferences of other
agents in the economy in which they are embedded, is
lost even for simple Gorman-aggregatable utilities such
as Cobb-Douglas. However, the interpretation of the en-
tropy component of the free energies as a money-metric
welfare measure remains useful to assign an intrinsic
value to the outcomes of trade, as in Sec. II C. A Cobb-
Douglas example is shown in Fig. 8. The entropy is de-
fined as in Eq. (31), with the Gorman bundle that defines
the Pareto set also defining the wealth measure through
the normalization convention p · β[p∗] ≡ 1. The welfare
gained in trade between any two distributions is the dif-
ference between the change in p∗ ·xj and the the money-
measure of the segment of Pareto set between the indif-
ference surfaces for the distributions. In the example,
“wealth-preserving” trade outcomes are shown, so that
p∗ · xj does not change, and the utility increase is also
the entropy increase.

0 a
0

a

P.S.

NT

NE

CE

PO

PO

(1)

(2)

(2)δS1

NE (1)

FIG. 8: Entropy welfare measure in a Cobb-Douglas econ-
omy for two goods with initial endowment (a, 0) for the agent
shown, and total endowment (a, a). NT is the No-Trade so-

lution. NE(1) and NE(2) are other outcomes, which might
be reached as Nash Equilibria of non-cooperative games, and
CE is the wealth-preserving Walrasian allocation. PO(1) and
PO(2) are Pareto allocations indifferent to the respective non-
cooperative equilibria, and δS1 is the entropy measure of util-
ity of NE(2) over NE(1). The value of NT is asymptotically
that of zero endowment, as indicated by the dashed line.

Assigning money values to outcomes of trade generates
interesting measures of the efficiency of trades that take
agents toward the Pareto set, but may not reach it. These
efficiencies are defined for all allocations in the economy,
and provide one of the more useful applications of eco-

nomic entropy in economies with even weak (Gorman)
aggregatability.

An alternative form to Eq. (5) for the utility of an
arbitrary number of goods to a Cobb-Douglas agent j is

uj
CD

[

xj
]

=
∏

i

(

xj
i

)αi

, (A1)

where {αi} are exponents common to all agents in the
economy. As before, let the endowments in the closed
economy be

∑

j xj
i = wi.

It is straightforward to show that the Hicksian de-
mands for the utilities (A1) are of Gorman form (28),

xjh
i [p] =

α̂i

pi

mj , (A2)

with α̂i ≡ αi/
∑

i′ αi′ , so that for this economy

βi [p] =
α̂i

pi

. (A3)

As required p · β[p] =
∑

i α̂i ≡ 1. a
j [p] and αj [p] are

identically zero.
Equilibrium prices follow from equating the sum of

Hicksian demands to the endowments:

p∗i =
α̂i

wi

(p∗ · w) , (A4)

where (p∗ · w) may be chosen for normalization of prices.
The Gorman bundle at a Pareto allocation is

β[p∗] =
w

p∗ · w
. (A5)

Some algebra gives the expenditure function at equilib-
rium prices,

e
[

p∗,Uj
[

xj
]]

=
∏

i

(

p∗i x
j
i

α̂i

)α̂i

. (A6)

It is helpful to recognize that α̂i defines a normalized
distribution over commodities i, and that another such
distribution is defined by the allocation of wealth to com-
modities at price p∗ and bundle xj :

ω̂j
i ≡

p∗i x
j
i

p∗ · xj
. (A7)

In terms of these distributions we can write

e
[

p∗,Uj
[

xj
]]

=
(

p∗ · xj
)

e−D(α̂‖ω̂j), (A8)

where

D
(

α̂ ‖ ω̂j
)

≡
∑

i

α̂i log
α̂i

ω̂j
i

(A9)

is the positive semidefinite Kullback-Leibler diver-
gence [23]. D

(

α̂ ‖ ω̂j
)

vanishes only on α̂ = ω̂j , the



29

allocation for agent j in the projection of the Pareto set
onto xj .

The Gorman entropy (31) evaluates for Cobb-Douglas
economies to

Sj
CD =

(

p∗ · xj
)

(

e−D(α̂‖ω̂j) − 1
)

. (A10)

The sum over agents j,
∑

j

Sj
CD =

∑

j

(

p∗ · xj
)

e−D(α̂‖ω̂j) − p∗ · w, (A11)

is a sum of the exponentiated distance of each agent’s
wealth allocations at equilibrium prices from the equilib-
rium allocation, weighted by that agent’s overall wealth.
Its maximum, when all agents have bundles proportional
to β[p∗], is zero for all wealth distributions in the Pareto
set.

The variation of the expenditure (A8) is

∂

∂xj
i

e
[

p∗,Uj
[

xj
]]

=
α̂i

xj
i

e
[

p∗,Uj
[

xj
]]

=

(

p∗ · w

p · w

)

(

∑

i

α̂iwi

xj
i

)(

∑

i

α̂ix
j
i

wi

)

e−D(α̂‖ω̂j)pi.

(A12)

If we normalize prices according to p · β[p∗] =
(p · w) / (p∗ · w) ≡ 1, Eq. (A12) and some algebra give

δSj
CD =

[

∑

i

α̂2
i

ω̂j
i

e−D(α̂‖ω̂j)p − p∗

]

· δxj (A13)

In the Pareto set the gradient of Sj
CD is p − p∗ = 0, and

otherwise it gives weight > 1 to the relative prices p̄ ≡
p−p∗, and a residual component proportional to p∗ from
incomplete cancellation in the “numéraire” component.

From the sum of entropies (A11) we may define a
natural and intuitive measure of the efficiency of trade.
Suppose for convenience that initial endowments are dis-
tributed to maximize a failure of the double coincidence
of wants in the economy, by giving each agent at most
one good. The initial entropy (A11) of the economy is
then −p∗ · w. The entropy of any Pareto optimum is
zero, defining an idealized gain from trade of p∗ · w. For
a trade algorithm leading to any distribution

{

xj
}

in the

demand space, the efficiency ε
[{

xj
}]

may be defined as

the ratio of δ
∑

j Sj
CD to the ideal gain p∗ ·w. Its intuitive

evaluation in terms of the Kullback-Leibler divergences
and agent wealths is

ε
[{

xj
}]

=
∑

j

(

p∗ · xj

p∗ · w

)

e−D(α̂‖ω̂j). (A14)

All outcomes have efficiencies ∈ [0, 1], with the maxima
identifying the Pareto set. (More generally we would
normalize the efficiency by the potential gains to trade
from the whatever pre-trade allocation the agents have,
preserving its range ε

[{

xj
}]

∈ [0, 1] for all Pareto-
improvements from the initial allocation.)

2. Helmholtz potentials for general preferences

The construction of Pareto-set contour utilities in
Sec. VI B is straightforward for closed economies, and
reservoir-stabilized trade can be included if the reservoir
is represented as a large equilibrated agent within the
economy. However, the purpose of idealizing a trading
reservoir is to use the symmetries it imposes on prices to
simplify the study of the rest of the economy. These sym-
metries are more transparent when the reservoir is made
a boundary condition rather than an explicitly modeled
agent, and the representation of utilities and equilibria
in the economy changed accordingly. This simplification
is implicit in the definition of the economic equivalents
to thermodynamic potentials.

3. Contour utilities for general preferences

To perform the general construction, consider first the
subspace of demand components for agent j, and sup-
press the superscript. With respect to this subspace,
the formal condition that a parametrized contour c[λ]
intersect every indifference surface of a utility u once,
transversally, is

∂u

∂x

∣

∣

∣

∣

x=c[λ]

·
dc

dλ
6= 0. (A15)

Letting xc correspond to some point c[λ], and writ-
ing dxc for the demand differential (dc/dλ) dλ, the direct
contour utility on c, referenced to units of good xi, is

µc,i[x] ≡ uc,i[u[x]] , (A16)

with uc,i[U ] given by Eq. (21). The relative price along c
in Eq. (21) is given by

p

pi

=
∂u/∂x

∂u/∂xi

∣

∣

∣

∣

xc

. (A17)

A value of λ is assigned to every point in the commod-
ity space by u. Denoted λu[x], it is the point on c with
the same utility as x:

u[c[λ]]|λ=λu[x] ≡ u[x] . (A18)

Reducing notation, we write c[x] ≡ c[λu[x]].
Then by transversality (A15), Eq. (A17) can be written

p

pi

∣

∣

∣

∣

c[λ]

·
dc

dλ
=

du/dλ

∂u/∂xi|c[λ]

, (A19)

from which immediately

∂µc,i[x]

∂x
=

∂u/∂x|x
∂u/∂xi|c[x]

=

(

∂u/∂xi|x
∂u/∂xi|c[x]

)

p

pi

∣

∣

∣

∣

x

. (A20)

(p/pi)|x is the price relative to pi at x, related to the
gradient of µc,i by an x- and c-dependent rescaling.
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4. Edgeworth boxes with reservoirs

A reservoir for two goods defines a constraint

δ (pixi + pi′xi′ ) = 0 (A21)

on all trades in which it participates, with pi′/pi|Res in-
dependent of volume traded. As in the text, we take
xi′ to be numéraire, and xi to denominate entropy.
a ≡ xi′ + (pi/pi′)xi is a balance-of-payments coordinate,
not changed by reservoir trade, while some independent
combination like b ≡ xi′−(pi/pi′)xi, measures the extent
of trade with the reservoir. We transform from coordi-
nates (xi, xi′ , x̃) of the text to “diagonal” coordinates

x ≡ (a, b, x̃) . (A22)

The value of any bundle x at prices p decomposes as

p · x ≡ pi′a + p̃ · x̃. (A23)

Writing in the same basis xc ≡ (ac, bc, x̃c), the contour
utility at constant reservoir prices becomes

µc,i [x] =
pi′

pi

∫ λu[x]

λ0

(dac + p̃[xc] · dx̃c) . (A24)

The most general case in which economic Helmholtz
potentials with the properties of free energies can be de-
fined on the whole Pareto set, with unrestricted utilities,
is that for two agents (interacting with the reservoir),
for which the Pareto set is one-dimensional. This case
is readily visualized in a modification of the Edgeworth
box, projected to the coordinates (a, x̃) conserved in in-
teractions with the reservoir, and effective ordinal utili-
ties on these. The projection works because, in coordi-
nates (a, b, x̃), u is still concave, but no longer monotonic
in b. For any equilibrium supported at price pi′/pi, there
is a bu[a, x̃] for which

∂u

∂b

∣

∣

∣

∣

a,bu[a,x̃],x̃

≡ 0. (A25)

A reservoir effective utility

ur[a, x̃] ≡ u[a, bu [a, x̃] , x̃] (A26)

then satisfies

∂ur

∂a

∣

∣

∣

∣

a,x̃

=
∂u

∂a

∣

∣

∣

∣

a,bu[a,x̃],x̃

,

∂ur

∂x̃

∣

∣

∣

∣

a,x̃

=
∂u

∂x̃

∣

∣

∣

∣

a,bu[a,x̃],x̃

. (A27)

The Edgeworth box for two agent bundles
(

a1, x̃1
)

,
(

a2, x̃2
)

in equilibrium with the reservoir, and effective

utilities u1
r, u2

r, is shown in Fig. 9. Under arbitrary inter-
action of only those two agents and the reservoir, there is
a fixed quantity of a1+a2 ≡ aTOT, and of x̃1+x̃2 ≡ x̃TOT.

p(c)

a

x

x1

x2

P.S.

dc

∆a

1

2

FIG. 9: The Edgeworth box for projected allocations (a, x̃),
in the presence of reservoir lending. Indifference curves are
of ur

1, ur
2, and the associated Pareto set (short-dashed) is

labeled P.S. Maximal profit potential from initial allocations
~x1, ~x2 (shown in projection) is the long-dash segment labeled
∆a.

In particular, the Pareto set for the three-component
economy (the agents and reservoir) projects onto a single
curve in (a, x̃). We may take segments of the curves infe-
rior to indifference surfaces u1

r and u2
r in Fig. 9 to define

the contours c1 and c2 respectively, evaluating b1 and b2

by Eq. (A25). The sum of contour utilities (A24) for any
point shared by the two agents at common dual prices is
a measure of the projection of the Pareto set onto (a, x̃).
Since the sum bu1 + bu2 at a Pareto allocation is not
fixed in general, the pair of curves (ac, bu1 [ac, x̃c] , x̃c),
(ac, bu2 [ac, x̃c] , x̃c) will be called a generalized Pareto set
for this economy.

With this definition of contours cj , the Helmholtz po-
tential for each agent j in Eq. (37) takes the form

Aj
[

xj
]

≡ aj −
pi

pi′

∣

∣

∣

∣

Res

µj
c,i

[

xj
]

. (A28)

We can now state and prove the following theorem:

Theorem 1 For ordinal U1 and U2 representing strictly
convex, insatiable preferences, A1

[

x1
]

+ A2
[

x2
]

has the
following properties:

1. A1 + A2 = const. ∀
(

x1, x2
)

in the generalized
Pareto set.

2. δ
(

A1 + A2
)

≤ 0 for all voluntary trades involving

only x1, x2, and the reservoir, with strict inequality
for initial conditions not in the generalized Pareto
set (δ denotes change in value).

3. The maximum reduction in A1 + A2 from volun-
tary trades, leaving the reservoir-untraded goods
x̃1 + x̃2 = x̃TOT, is the maximum profit an external
trader can extract from the agent-reservoir system
through voluntary trading.

4. This maximum extractable profit is strictly decreas-
ing under any voluntary trades involving only x1
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and x2 and the reservoir, and vanishes on the gen-
eralized trade set.

Proof: By construction of the Edgeworth box, for any
(

a1, x̃1
)

,
(

a2, x̃2
)

in the Pareto set of u1
r, u

2
r, A

1 +A2 de-
pends only on the endpoints of the two utility integration
contours:

A1 + A2 = aTOT −

∫ λ2

0

λ1

0

dac + p̃[xc] · dx̃c

≡ ATOT
CC . (A29)

This proves point 1.
For general a1 + a2 ≡ aTOT, x̃1 + x̃2 = x̃TOT,

A1 + A2 differs only by the length of the segment of the
Pareto set between the indifference surfaces u1

r

[

a1, x̃1
]

and u2
r

[

a2, x̃2
]

(a positive quantity by construction);
hence

A1 + A2 = ATOT
CC +

∫ λu2 [x2]

λu1 [x1]

dac + p̃[xc] · dx̃c. (A30)

From Equations (A20) and (A30) it follows that, for any
trades involving only the agents and reservoir,

δ
(

A1 + A2
)

= −
δu1

∂u1/∂x1
i′ |c1(x1)

−
δu2

∂u2/∂x2
i′ |c2(x2)

.

(A31)
For voluntary trades δu1 ≥ 0, δu2 ≥ 0, with strict in-
equality of one utility for any transformations not in the
generalized Pareto set. For convex preferences xi′ can be
chosen to represent a desirable commodity everywhere,
so both ∂uj/∂xj

i′ are positive, proving 2.
For any trades involving an external agent, if the resid-

ual holdings x̃1 + x̃2 6= x̃TOT, there is no mechanism
to convert the bundle extracted to cash, using only the
agents and reservoir. Therefore the maximum profit ex-
tractable is the

∆a = max
[

aTOT −
(

a1 + a2
)]

(A32)

that occurs on the initial indifference curves, where

∂x̃1

∂a1

∣

∣

∣

∣

u1
r

=
∂x̃2

∂a2

∣

∣

∣

∣

u2
r

(A33)

and x̃1 + x̄2 = x̃TOT. From Eq. (A27) it follows that
the gradients of u1 and u2 are parallel, so that δ (∆a) is
max

[

aTOT −
(

a1 + a2
)]

in the full configuration space,

constrained by x̄TOT and equilibrium with the exchange
reservoir. Since motion along indifference curves pre-
serves µc,i[x], the differential trades between the initial
and final configurations satisfy

δ
(

A1 + A2
)

= δ
(

a1 + a2
)

(A34)

giving 3.
Finally, the expression for the change in aj in

Eq. (A32), from any change in initial configuration, is

δaj =
δuj

r

∂uj
r/∂aj

− p̃ · δx̃j , (A35)

where p̃ is the same for both agents. Since voluntary
trades increase either u1

r or u2
r, and δx̃1 + δx̃2 = 0, it

follows that ∆a ≤ 0 in Eq. (A32) for voluntary changes in
initial conditions, with strict inequality when the initial
state is not in the generalized Pareto set, giving 4. QED.

The theorem demonstrates that functionally in sys-
tems of this type, A is the monetary equivalent of a
free energy, while Eq. (A20) with the definition (A24)
gives the relative scaling of the gradient of A with re-
spect to the components of x̃ from properly normalized
p̃ (no rescaling for x in the generalized Pareto set, or at
any x for utility quasi-linear in xi).
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commodities
(other than x0)

x̄ extensive state
variables

(E, V )

flow of x0 in trade δx0
entropy change
from heat flow

δΣ = −
δQ

T

economic entropy SQL[x̄] ≡ ū[x̄] = U − x0
thermodynamic

entropy
S[E, V ]

offer prices
relative to p0

p̄

p0
≡ ū′[x̄] intensive state

variables

(

1
T

, p

T

)

≡
(

∂S
∂E

∣

∣

V
, ∂S

∂V

∣

∣

E

)

money-metric (x0)
value of trade

δSQL = δx̄ ·
p̄

p0

energy conservation
see Eq. (44)

δS = 1
T

δE + p

T
δV

expenditure
net of utility

e[p,U ]
p0

− U = x̄ ·
p̄

p0
− ū[x̄]

Gibbs free energy
(relative to T )

1
T

F ≡
1
T

E + p

T
V − S

TABLE I: Correspondence of the quasi-linear economy to a
classical thermodynamic system from Sections II and III. We
have set ū[x∗] = 0 to simplify the presentation.


