Report on the Algorithmic Language ALGOL 68

A. VAN WIINGAARDEN (Editor)
B.J. MaiLLoux, J. E. L. PEck and C. H. A. KOSTER

Report of IFIP TC 2 to the General Assembly of IFIP
in the matter of the Algorithmic Language ALGOL 68

Attached will be found the first Report on the Algorithmic Language ALGOL 68, sub-
mitted with a recommendation for publication under IFIP auspices by Technical Com-
miftee 2 in response fo a request from Working Group 2.1 (ALGOL). This Working Group
has been directed, by TC 2, for a number of years towards concern for the design of
common programming languages. During this time, TC 2 has realized the magnitude
and difficulty of this task.

In the course of pursuing its responsibilities, WG 2.1 commissioned and has guided
the work of the four listed authors of the attached Report and has stated its desire fo
acknowledge the considerable effort devoted by these men to their task. This Report,
however, must be regarded as constituting more than simply the work of four authors.
lis content has been influenced throughout and the results are, in the main, a consequence
of discussions within the Working Group.

The Report is, thus, submitted by TC 2 as representing the current consolidated out-
come of WG 2.1 activity. This does not imply that any member of the Working Group
necessarily agrees with every aspect of the undertaking nor guarantees that all relevant
aspects of the problem have been considerated. Indeed, fear has been expressed, in
the form of a Minority Report from the Working Group to TC 2, that the direction taken
in the attached Report will not lead towards the goal of providing appropriate programming
tools for the future. It has, however, been decided by the Working Group, that this work
has reached the proper stage for submission to the crucial tests of implementation and
subsequent use by the computing community. In this opinion, TC 2 concurs. Therefore,
this Report is submitted for publication as representing one of the possible approaches
to the subject, rather than in the spirit of a final answer.

WG 2.1 will be directed fo keep continually under review experience obtained as a
consequence of this publication, so that it may institute such corrections and revisions
to the Report as become desirable. To this end, TC 2 adds its endorsement to the request
of WG 2.1 that all who wish to contribute fo this work should do so through the established
medium of the ALGOL-Bulletin.

In consonance with these declared aims, TC 2 requests that the IFIP General Assembly
take those actions necessary and proper to insure expeditious and widespread publication
of this Report on the Algorithmic Language ALGOL 68 together with this page as a covering
statement.

Numer. Math. 14, 79—218 (1969)

Report on the Algorithmic Language ALGOL 68*

A.vANWIINGAARDEN (Editor), B. J. MaiLroux, J.E.L. PEck and C. H. A. KOSTER

Acknowledgements

{Habent sua fata libelli.
De litteris, Terentianus Maurus.}

Working Group 2.1 on ALGOL of the International Federation for Information
Processing has discussed the development of "TALGOL X", a successor to ALGOL 60
[3] since 1963. At its meeting in Princeton in May 1965, WG 2.1 invited written de-
scriptions of the language based on the previous discussions. At the meeting in St Pierre
de Chartreuse near Grenoble in October 1965, three reports describing more or less
complete languages were amongst the contributions, by Niklaus Wirth {8], Gerhard
Seegmiiller [6], and Aad van Wijngaarden [9]. In [6] and [8], the descriptional
technique of [3] was used, whereas [9] featured a new technique for language design
and definition. Other significant contributions available were papers by Tony Hoare [2]
and Peter Naur [4, 5].

At meetings in Kootwijk near Amsterdam in April 1966, Warsaw in October 1966,
Zandvoort near Amsterdam in May 1967, Tirrenia near Pisa in June 1968, North
Berwick near Edinburgh in July 1968 and Munich in December 1968, a number of
successive approximations to a final report were submitted by a team working in
Amsterdam, consisting first of A. van Wijngaarden and Barry Mailloux [10], later
reinforced by John Peck [11, 12], and finally by Kees Koster [13, 14, 15, 16]. Versions
were used during courses on the language held in Amsterdam [12], Bakuriani [13],
Grenoble [13], Copenhagen [14], Esztergom [14], Calgary [14] and Chicago [16].
These courses served as test cases and the experience gained in explaining the language
to skilled audiences and the reactions of the students influenced the succeeding versions.

The authors acknowledge with pleasure and thanks the whole-hearted cooperation,
support, interest, criticism and violent objections from members of WG 2.1 and many
other people interested in ALGOL. At the risk of embarrassing omissions, special
mention should be made of Jan Garwick, Jack Merncr, Peter Ingerman and Manfred
Paul for [1], the Brussels group consisting of M. Sintzoff, P. Branquart, J. Lewi and
P. Wodon for numerous brainstorms, A. J. M. van Gils of Apeldoorn, G. Goos and
his group of Munich, also for [7], G. S. Tseytin of Leningrad and L. G. L. T. Meertens
and J. W. de Bakker of Amsterdam. An occasional choice of a, not inherently meaning-
ful, identifier in the sequel may compensate for not mentioning more names in this
section.

1. Garwick, J. V., Merner, J. M., Ingerman, P. Z., Paul, M.: Report of the ALGOL-
X-I-O subcommittee, WG 2.1 working paper, July 1966.

2. Hoare, C. A. R.: Record handling, WG 2.1 working paper, October 1965; also
AB.21.3.6, November 1965.

* This Report has been reviewed by Technical Committee 2 on Programming
Languages and approved for publication by the General Assembly of the International
Federation for Information Processing. Reproduction of the Report, for any purpose,
but only of the whole text together with the cover-letter, is explicitly permitted with-
out formality.

[

10.

11.

12.

13.

14.

15.

16.

0.

6%

Report on the Algorithmic Language ALGOL 68 81

. Naur, P. (Editor): Revised report on the algorithmic language ALGOL 60, Regne-

centralen, Copenhagen, 1962, and elsewhere.

. — Proposals for a new language, AB.18.3.9, October 1964.
. — Proposal for introduction on aims. WG 2.1 working paper, October 1965.
. Seegmiiller, G.: A proposal for a basis for a report on a successor to ALGOL 60,

Bavarian Acad. Sci., Munich, October 1965.

. Goos, G., Scheidig, H., Seegmiiller, G., Walther, H.: Another proposal for

ALGOL 67, Bavarian Acad. Sci., Mumch May 1967.

. Wirth, N.: A proposal for a report on a successor of ALGOL 60, Mathematisch

Centrum Amsterdam, MR 75, October 1965.

Wijngaarden, A. van: Orthogonal design and description of a formal language,
Mathematisch Centrum, Amsterdam, MR 76, October 1965.

— Mailloux, B. J.: A draft proposal for the algorithmic language AT.GOL X,
WG 2.1 working paper, October 1966.

— — Peck, J. E.L.: A draft proposal for the algorithmic language ALGOL 67,
Mathematisch Centrum, Amsterdam, MR 88, May 1967.
— — — A draft proposal for the algorithmic language ALGOL 68, Mathematisch
Centrum, Amsterdam, MR 92, November 1967.
— (Editor), Mailloux, B. J., Peck, J. E. L., Koster, C. H. A.: Draft report on the
algorithmic language ALGOL 68, Mathematisch Centrum, MR 93, January 1968.
— — — — Working document on the algorithmic langunage ALGOL 68, Mathe-
matisch Centrum, Amsterdam, MR 95, July 1968.
— — — - Penultimate draft report on the algorithmic language ALGOL 68,
Mathematisch Centrum, MR 99, October 1968.
— (Editor), Mailloux, B. J., Peck, J. E. L., Koster, C. H. A.: Final draft report
on the algorithmic language ALGOL 68, Mathematisch Centrum, Amsterdam,
MR 100, December 1968.
Contents
Introduction . . . Y]
0.1. Aims and prmmples of de51gn . 84

0.1.1. Completeness and clarity of descrlptlon 01 2 Orthogonal deslgn
0.1.3. Security. 0.1.4. Efficiency. 0.1.4.1. Static mode checking. 0.1.4.2. Stat-

ic scope checking. 0.1.4.3. Mode independent parsing. 0.1.4.4. Independent
compilation. 0.1.4.5. Loop optimization. 0.1.4.6. Representations

0.2. Comparison with ALGOL 60 85

0.2.1. Values in ALGOL 68. 0.2.2. Declarat1ons in ALGOL 68 O 2 3 Dy—
namic storage allocation in ALGOL 68. 0.2.4. Collateral elaboration in
ALGOL 68. 0.2.5. Standard declarations in ALGOL 68. 0.2.6. Some par-
ticular constructions in ALGOL 68

. Language and metalanguage 88

1.1. The method of description . . . 88
1.1.1. The strict, extended and representa’clon languages 1 1. 2 The syntax
of the strict language. 1.1.3. The syntax of the metalanguage. 1.1.4. The
production rules of the metalanguage. 1.1.5. The production rules of the
strict language. 1.1.6. The semantics of the strict language. 1.1.7. The ex-
tended language. 1.1.8. The representation language

1.2. The metaproduction rules . . . e 72
1.2.1. Metaproduction rules of modes 1.2,2. Metaproduction rules as-
sociated with modes. 1.2.3. Metaproduction rules associated with phrases
and coercion. 1.2.4. Metaproduction rules associated with coercends.
1.2.5. Other metaproduction rules

1.3. Pragmatics 97
. The computer and the program o8
24.8yntax . .. oL oL L L L L0 L e e oo o8

82 A.van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

2.2. Terminology . . 99
2.2.1. Objects. 2. 2 2 Relatlonshlps 2 2 3 Values 2 2 3. 1 Plaln Values
2.2.3.2. Structured values. 2.2.3.3. Multiple values. 2.2.3.4. Routines and
formats. 2.2.3.5. Names. 2.2.4. Modes and scopes. 2.2.4.1. Modes. 2.2.4.2.
Scopes. 2.2.5. Actions

2.3.8emantics 4 e v e e e e e e e e e e e e e e e e e .. 103
3. Basic tokens and general constructions 105
3.0. Syntax . . . 105

3.0.1. Introductlon 3 0. 2 Letter tokens 3. 0 3 Denotatlon tokens 3. O 4 Ac—
tion tokens. 3.0.5. Declaration tokens. 3.0.6. Syntactic tokens. 3.0.7. Se-
quencing tokens. 3.0.8. Hip tokens. 3.0.9. Extra tokens and comments.
3.0.10. Special tokens

3.1. Symbols e 02
3.1.1. Representatlons 3 1 2 Remarks

4. Identification and the context conditions 113
4.1. Identifiers . . . S B X
4.1.1. Syntax. 4.1. 2 Identlflcatlon of 1dent1f1ers
4.2. Indications . . e e e e e e 114
4.2.1. Syntax. 4.2. 2 Identlflcatlon of 1nd1cat10ns
4.3. Operators . . . I)
4.3.1. Syntax. 4.3. 2 Identlflcatlon of operators
4.4. Context conditions . . . T & 4

4.4.1. The identification condltlons 4.4.2. The uniqueness conditions.
4.4.3. The mode conditions. 4.4.4. The declaration condition

5. Denotations . . . O 910
5.1. Plain denotatlons. .. O 02|
5.1.1. Integral denotatlons 5.1.2. Real denotations. 5.1.3. Boolean de-

notations. 5.1.4. Character denotations

5.2. Bits denotationso .o 123
5.3. String denotations o . ..o 124
5.4. Routine denotations o 124
5.5. Format denotations . . . 125
5.5.1. Syntax. 5.5.2. Syntax of 1ntegral patterns 5 5 3 Syntax of real
patterns. 5.5.4. Syntax of boolean patterns. 5.5.5. Syntax of character
patterns. 5.5.6. Syntax of complex patterns. 5.5.7. Syntax of string pat-
terns. 5.5.8. Transformats
6. Phrases . . . O]
6.1. Serial clauses OO 3¢ 3.
6.2. Collateral phrases. «« .« 137
6.3. Closed clauses« . . . o o 139
6.4. Conditional clauses < .« . o139
7. Unitary declarations 140
7.1. Declarers . . P |
7.2. Mode declaratlons O £
7.3. Priority declarations o000 146
7.4. Identity declarations 146
7.5. Operation declarations 148
8. Unitary clauses« .« « « o4 0 e e e e e .. 148
84.4. SYNtax e e e e e e e e . 148
8.2. Coercends . . . 149

8.2.1. Dereferenced coercends 8 2. 2 Deprocedured coercends 8 2. 3 Pro—
cedured coercends. 8.2.4. United coercends. 8.2.5. Widened coercends.
8.2.6. Rowed coercends. 8.2.7. Hipped coercends. 8.2.8. Voided coercends

10.

12.

10.6. Standard postlude
11. Examples
11.1. Complex square root .
11.2. Innerproduct 1
11.3. Innerproduct 2
11.4. Innerproduct 3
11.5. Largest element .
11.6. Euler summation
11.7. The norm of a vector
11.8. Determinant of a matrix .
11.9. reatest common divisor .
11.10. Continued fraction .
11.11. Formula manipulation .
11.12. Information retrieval
11.13. Cooperating sequential processes .
11.14. Towers of Hanoi .
Glossary . .
12.1. Technical terms .

8.6.

9.1. Comments

9.2. Contractions

9.3. Repetitive statements

9.4. Contracted conditional clauses .

Standard prelude and postlude
10.1. Environment enquiries

Report on the Algorithmic Language ALGOL 68

. Confrontations
8.3.1. Assignations. 8. 3 2 Conformlty relatlons 8 3 3. Identlty relatlons
8.3.4. Casts

. Formulas .
. Cohesions .

8.5.1. Generators 8 5 2. Selectlons

. Extensions .

Bases .
8.6.1. Slices. 8. 6 2 Calls

10.2. Standard priorities and operatlons

10.
10.
10.

12.2. Paranotions .

3.
4.
5.

10.2.0. Standard priorities. 10.2.1. Rows and associated operations.
10.2.2. Operations on boolean operands. 10.2.3. Operations on integral
operands. 10.2.4. Operations on real operands. 10.2.5. Operations on
arithmetic operands. 10.2.6. Operations on character operands. 10.2.7.
Complex structures and associated operations. 10.2.8. Bit structures and
associated operations. 10.2.9. Bytes and associated operations. 10.2.10.
Strings and associated operations. 10.2.11. Operations combined with
assignations

Standard mathematical constants and functions

Synchronization operations

Transput declarations

10.5.0. Transput modes and stralghtemng 10 5 01 Transput modes
10.5.0.2. Straightening. 10.5.1. Channels and files. 10.5.1.1. Channels.
10.5.1.2. Files. 10.5.1.3. Standard channels and files. 10.5.2. Formatless
transput. 10.5.2.1. Formatless output. 10.5.2.2. Formatless input.
10.5.3. Formatted transput. 10.5.3.1. Formatted output. 10.5.3.2. For-
matted input. 10.5.4. Binary transput. 10.5.4.1. Binary output. 10.5.4.2.
Binary input

83

159

. 163
. 164

. 167

. 170
171
171
- 173
- 173

. 174
. 176

176

. 181

181
182

. 204

. 204

. 204
. 204
. 205
. 205
. 205
. 206
. 206
. 206
. 207
. 207
. 208
. 209
.21
. 211

. 212

. 212
. 214

84 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

0. Introduction
0.1. Aims and Principles of Design

a) In designing the Algorithmic Language ALGOL 68, Working Group 2.1 on
ALGOL of the International Federation for Information Processing expresses its
belief in the value of a common programming language serving many people in
many countries.

b) ALGOL 68 is designed to communicate algorithms, to execute them efficiently
on a variety of different computers, and to aid in teaching them to students.

c) The members of the Group, influenced by several years of experience with
ALGOL 60 and other programming languages, accepted the following as their
aims:

0.1.1. Completeness and Clarity of Description

The Group wishes to contribute to the solution of the problems of describing
a language clearly and completely. The method adopted in this Report is based
upon a strict language comprizing a language core, whose description is minimized.
The remainder of the language is described in terms of this core, thereby reducing
the amount of semantic description at the cost of a heavier burden on the syntax.
It is recognized, however, that this method may be difficult for the uninitiated
reader. Therefore, a companion volume, entitled ''Informal Introduction to
ALGOL 68", has been prepared at the request of the Group by C. H. Lindsey
and S. G. van der Meulen, and further companion volumes on specific aspects of
the language may well follow.

0.1.2. Orthogonal Design

The number of independent primitive concepts was minimized in order that
the language be easy to describe, to learn, and to implement. On the other hand,
these concepts have been applied "orthogonally' in order to maximize the ex-
pressive power of the language, and yet without introducing deleterious super-
fluities.

0.1.3. Security

ALGOL 68 has been designed in such a way that nearly all syntactical and
many other errors can be detected easily before they lead to calamitous results.
Furthermore, the opportunities for making such errors are greatly restricted.

0.1.4. Efficiency

ALGOL 68 allows the programmer to specify programs which can be run
efficiently on present-day computers and yet do not require sophisticated and
time-consuming optimization features of a compiler; see, e.g., 11.8.

0.1.4.1. Static Mode Checking

The syntax of ALGOL 68 is such that no mode checking during run time is
necessary except during the elaboration of conformity relations, the use of which
is required only in those cases in which the programmer explicitly makes use of
the flexibility offered by the united mode feature.

Report on the Algorithmic Language ALGOL 68 85

0.1.4.2. Static Scope Checking

The syntax of ALGOL 68 is such that no scope checking during run time is
necessary except in some cases in which the programmer explicitly makes use of
the flexibility offered by the absence of syntactical scope restrictions.

0.1.4.3. Mode-Independent Parsing

The syntax of ALGOL 68 is such that the parsing of a program can be per-
formed independently of the modes of its constituents. Moreover, there is an
algorithm which determines in a finite number of steps whether an arbitrary
given sequence of symbols is a proper program.

0.1.4.4. Independent Compilation

The syntax of ALGOL 68 is such that the main line programs and procedures
can be compiled independently of one another without loss of object-program
efficiency, provided that during each such independent compilation, specification
of the mode of all nonlocal quantities is provided; see the remarks after 2.3.c.

0.1.4.5. Loop Optimization

Iterative processes are formulated in ALGOL 68 in such a way that straight-
forward application of well-known optimization techniques yields large gains
during run time without excessive increase of compilation time.

0.1.4.6. Representations

Representations of ALGOL 68 symbols have been chosen so that the language
may be implemented on computers with a minimal character set. At the same
time implementers may take advantage of a larger character set, if it is available.

0.2. Comparison with ALGOL 60

a) ALGOL 68 is a language of wider applicability and power than ALGOL 60.
Although influenced by the lessons learned from ALGOL 60, ALGOL 68 has not
been designed as an expansion of ALGOL 60 but rather as a completely new
language based on new insights into the essential, fundamental concepts of com-
puting and a new description technique.

b) The result is that the successful features of ALGOL 60 reappear in ALGOL 68
but as special cases of more general constructions, along with completely new
features. It is, therefore, difficult to isolate differences between the two lan-
guages; however, the following sections are intended to give insight into some of
the more striking differences.

0.2.1. Values in ALGOL 68

a) Whereas ALGOL 60 has values of the types integer, real and Boolean,
ALGOL 68 features an infinity of ""modes', i.e., generalizations of the concept
" type " i

b) Each plain value is either arithmetic, i.e., of integral or real mode and then
it is of one of several lengths, or it is of boolean or character mode.

86 A.van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

c) In ALGOL 60, composition of values is possible into arrays, whereas in
ALGOL 68, in addition to such "multiple" values, also "'structured' values,
composed of values of possibly different modes, are defined and manipulated.
An example of a multiple value is the character array, which corresponds ap-
proximately to the ALGOL 60 string; examples of structured values are complex
numbers, machine words considered as sequences of bits or of bytes, and symbolic
formulae.

d) In ALGOL 68, the concept of a ''name'' is introduced, i.e., a value which is
said to ''refer to'' another value; such a name-value pair corresponds to the
ALGOL 60 variable. However, any name may take the value position in a name-
value pair and thus chains of indirect addresses can be built up.

¢) The ALGOL 60 concept of procedure body is generalized in ALGOL 68 to
the concept of "'routine'’, which includes also the formal parameters, and which
is itself a value and therefore can be manipulated like any other value; the
ALGOL 68 concept "format' has no ALGOL 60 counterpart.

f) In contrast with plain values and multiple and structured values composed
of plain values only, the significance of a name, routine or format or of a multiple
or structured value composed of names, routines or formats, possibly amongst
other values, is, in general, dependent on the context in which it appears. There-
fore, the use of names, routines and formats is subject to some natural restrictions
related to their "scope’'.

0.2.2. Declarations in ALGOL 68

a) Whereas ALGOL 60 has type declarations, array declarations, switch dec-
larations and procedure declarations, ALGOL 68 features the ''identity declara-
tion'" whose expressive power includes all of these, and more. In fact, the identity
declaration declares not only variables, but also constants, of any mode, and,
moreover, forms the basis of a highly efficient and powerful parameter mechanism.

b) Moreover, in ALGOL 68, a ''mode declaration" permits the construction of
new modes from already existing ones. In particular, the modes of multiple values
and of structured values may be defined this way; in addition, a union of modes
may be defined for use in an identity declaration allowing each value referred
to by a given name to be of any one of the uniting modes.

¢} Finally, in ALGOL 68, a " priority declaration' and an 'operation declara-
tion'" permit the introduction of new operators, the definition of their operation
and the extension or revision of the class of operands applicable to already
established operators.

0.2.3. Dynamic Storage Allocation in ALGOL 68

Whereas ALGOL 60 (apart from the so-called " own dynamic arrays'') implies
a ''stack''-oriented storage-allocation regime, sufficient to cope with a statically
(i.e., at compile time) determined number of single or multiple values, ALGOL 68
provides, in addition, the ability to generate a dynamically (i.e., at run time)
determined number of values, which ability implies the use of additional storage-
allocation techniques.

Report on the Algorithmic Language ALGOL 68 87

0.2.4. Collateral Elaboration in ALGOL 68

Whereas, in ALGOL 60, statements are 'executed consecutively ', in
ALGOL 68, "phrases" are "elaborated serially' or "collaterally'. This last
facility is conducive to more efficient object programs under many circumstances,
and increases the expressive power of the language. Facilities for parallel pro-
gramming, though restricted to the essentials in view of the none-too-advanced
state of the art, have been introduced.

0.2.5. Standard Declarations in ALGOL 68

The ALGOL 60 standard functions are all included in ALGOL 68 along with
many other standard declarations. Amongst these are ' environment enquiries ",
which make it possible to determine certain properties of an implementation,
and "transput"'' declarations, which make it possible, at run time, to obtain data
from and to deliver results to external media.

0.2.6. Some Particular Constructions in ALGOL 68

a) The ALGOL 60 concepts of block, compound statement and parenthesized
expressions are unified in ALGOL 68 into "closed clause". A closed clause may
be an expression and possess a value. Similarly, the ALGOL 68 'assignation ',
which is a generalization of the ALGOL 60 assignment statement, may be an
expression and, as such, also possess a value.

b) The ALGOL 60 concept of subscription is generalized to the ALGOL 68 con-
cept of "indexing", which allows the selection not only of a single element of
an array but also of subarrays with the same or any smaller dimensionality and
with possibly altered bounds.

¢) ALGOL 68 provides not only the multiple values mentioned in 0.2.1.c, but
also "collateral expressions'' which serve to compose these values or structured
values from other, simpler values.

d) The ALGOL 60 for statement is modified into a more concise and efficient
""repetitive statement '

e) The ALGOL 60 conditional expression and conditional statement, unified
into a "conditional clause', are improved by requiring them to end with a
closing symbol whereby the two alternative clauses admit the same syntactic
possibilities. Moreover, the conditional clause is generalized into a ' case clause"
which allows the efficient selection from an arbitrary number of clauses depending
on the value of an integral expression or of a conformity relation.

f) Some less successful ALGOL 60 concepts, such as own quantities and integer
labels, have not been included in ALGOL 68, and some concepts like designational
expressions and switches do not appear as such in ALGOL 68, but their expressive
power is included in other, more general, constructions.

{True wisdom knows it must comprise some
nonsense as a compromise, lest fools should
fail fo find it wise.

Grooks, Piet Hein}.

88 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

1. Language and Metalanguage
1.1. The Method of Description
1.1.4. The Strict, Extended and Representation Languages

a) ALGOL 68 is a language in which ""programs'' can be formulated for "' com-
puters'’, i.e., "automata' or '""human beings''. It is defined in three stages, the
“strict language ", the "extended language'’ and the ''representation language"'.

b) In the definition, the " English language'' and a ''formal language "' are used.
For both of these languages, as also for the strict language and the extended
language, typographical and syntactic marks are used which bear no immediate
relation to those used for the representation language.

1.1.2. The Syntax of the Strict Language

a) The strict language is defined by means of a "syntax' and 'semantics"'.
This syntax is a set of "'production rules' for ''notions'’; it is expressed in

""small syntactic marks", in this Report "'a", "b", ""c", ""d", "e", "f", "g",

llh'l’ I|i|l’ ”j”, llkl’, l|||l’ llmll’ llnll’ ”Oll, llpll’ ’lqll, |lr||, ”S”, llTll, llull’ ||v|',
”W”, llle, |’yll and IIZII;

"large syntactic marks", in this Report A", "B", "C", "D", "E", "F",
l’Gll, ’lHll, |||||, ||J||’ 1" Kll, llLll’ llM'l, 'IN”’ llOll’ llPll, llQll, llRll’ llSll, ||Tll’
llUll, I'V”, l’Wll’ llel, llYll and llle;

"other syntactic marks", in this Report "." ("' point"), "," (" comma'}), ":"

(""colon'), """ (“'semicolon') and "'*" ("asterisk').

{Note that these marks are in another type font than the marks in this
sentence.}

b) A "protonotion' is a nonempty, possibly infinite, sequence of small syn-
tactic marks; a notion is a protonotion for which there is a production rule;
a "'symbol" is a protonotion ending with 'symbol".

c) A production rule for a given notion consists of that notion, possibly preceded
by an asterisk, followed by a colon, a '"list of notions'" {see d}, and a point, in
that order. The list of notions is said to be a "direct production" of the given
notion.

d) Alist of notions is a nonempty sequence of ''members "' separated by commas;
a member is either a notion and is then said to be 'productive" {, or non-
terminal,} or is a symbol {, which is terminal,} or is empty, or is some other
protonotion {and then the production rule of whose list of notions it is a member
is said to be a "blind alley'}.

e) A "production' of a given notion is either a direct production of that given
notion or a list of notions obtained by replacing a productive member in some
production of the given notion by a direct production of that productive member.

f) A "terminal production" of a notion is a production of that notion each of
whose members is either a symbol or empty.

Report on the Algorithmic Language ALGOL 68 89

{In the production rule

'variable point numeral : integral part option, fractional part.'
(5.1.2.1.b) of the strict language, the list of notions

"integral part option, fractional part'
is a direct production of the notion 'variable point numeral’, and contains two
members, both of which are productive. A terminal production of this same
notion is

'digit zero symbol, point symbol, digit one symbol .
The member 'digit zero symbol' is an example of a symbol, and is terminal.
The protonotion 'twas brillig and the slithy toves' is neither a symbol nor a
notion in the sense of this Report, in that it does not end with 'symbol’ and no
production rule for it is given (1.1.5.b,c).}

1.1.3. The Syntax of the Metalanguage

a) Some production rules of the strict language are given explicitly and others
are obtained with the aid of a "' metalanguage "' whose syntax is a set of production
rules for ""'metanotions''.

b) A metanotion is a nonempty sequence of large syntactic marks.

¢) A production rule for a given metanotion consists of that metanotion followed
by a colon, a "'list of metanotions" {see d}, and a point, in that order. The list
of metanotions is said to be a direct production of the given metanotion.

d) A list of metanotions is a nonempty sequence of ''metamembers"' separated
by blanks; a metamember is either a metanotion and is then said to be productive,
or a, possibly empty, sequence of small syntactic marks.

e) A production of a given metanotion is either a direct production of that
given metanotion or a list of metanotions obtained by replacing a productive
metamember in some production of the given metanotion by a direct production
of that productive metamember.

f) A terminal production of a metanotion is a production of that metanotion
none of whose metamembers is productive.

{In the production rule 'TAG: LETTER.', derived from 1.24.r, '"LETTER"' is
a direct production of the metanotion 'TAG’, and consists of one metamember
which is productive. A particular terminal production of the metanotion 'TAG"
is 'letter x' (see 1.2.1.s,t). In the production rule 'EMPTY : .’ (1.2.1.1), the meta-
notion "EMPTY"' has a direct production which consists of one empty meta-
member. }

1.1.4. The Production Rules of the Metalanguage
The production rules of the metalanguage are the rules obtained from the
rules in Section 1.2 in the following steps:
Step 1: If some rule contains one or more semicolons, then it is replaced by two
new rules, the first of which consists of the part of that rule up to and including
the first semicolon with that semicolon replaced by a point, and the second of

90 A.van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

which consists of a copy of that part of the rule up to and including the colon,
followed by the part of the original rule following its first semicolon, where-
upon Step 1 is taken again;

Step 2: A number of production rules for the metanotion ' ALPHA' {1.2.1.t}, each
of whose direct productions is another small syntactic mark, may be added.

{For instance, the rule

'"TAG : LETTER; TAG LETTER ; TAG DIGIT.',
from 1.2.1.1, is replaced by the rules

'"TAG : LETTER." and 'TAG : TAG LETTER ; TAG DIGIT.,
and the second of these is replaced by

'TAG : TAG LETTER." and 'TAG : TAG DIGIT.',
thus resulting in three rules from the original one.

The reader might find it helpful to read ":'" as "may be a', ","" as ""followed
by a',and '";'" as "or a'.

1.1.5. The Production Rules of the Strict Language

a) A production rule of the strict language is any rule obtained in the following
steps from the rules given in Chapters 2 up to 8 inclusive in the sections whose
heading is, or begins with, " Syntax'':

Step 1: Identical with Step 1 of 1.1.4;

Step 2: One of the rules obtained is considered;

Step 3: If the considered rule contains one or more metanotions, then for some
terminal production of such a metanotion, a new rule is obtained by replacing
that metanotion, throughout a copy of the considered rule, by that terminal
production, whereupon this new rule is considered instead and Step 3 is taken;
otherwise, all blanks in the considered rule are removed and the rule so obtained
is a production rule of the strict language.

b) A number of production rules may be added for 'indicant’, 'dyadic indicant’
and 'monadic indicant' {4.2.1.b,e,f}, each of whose direct productions is a symbol
different from any symbol given in this Report, with the restriction that no
terminal production of 'indicant' is also a terminal production of 'monadic
indicant".

¢) A number of production rules may be added for 'other comment item'
{3.0.9.c} and 'other string item' {5.1.4.1.b} each of whose direct productions is
a symbol different from any terminal production of 'character token' with the
restrictions that no terminal production of 'other comment item' is 'comment
symbol’ and no terminal production of 'other string item' is 'quote symbol’.

{The rule

"actual LOWPER bound : strict LOWPER bound, flexible symbol option.'
derived from 7.1.1.t by Step1 and considered in Step 2 is used in Step 3 to
provide either one of the following two production rules of the strict language:

‘actuallowerbound :strictilowerbound,flexiblesymboloption.' and

"actualupperbound :strictupperbound. flexiblesymboloption.';

Report on the Algorithmic Language ALGOL 68 91

however, to ease the burden on the reader, who may more easily ignore blanks
himself, some blanks will be retained in the symbols, notions and production
rules in the rest of this Report. Thus, the rules will be written in the more read-
able form

‘actual lower bound : strict lower bound, flexible symbol option." and

‘actual upper bound : strict upper bound, flexible symbol option.".

Note that
‘actual fower bound : strict upper bound, flexible symbol option.'

is not a production rule of the strict language, since the replacement of the
metanotion 'LOWPER" by one of its productions must be consistent throughout.

Since some metanotions have an infinite number of terminal productions, the
number of notions in the strict language is infinite and the number of production
rules for a given notion may be infinite; moreover, since some metanotions have
terminal productions of infinite length, some notions are infinitely long. For
examples see 4.1.1 and 8.5.2.2. These infinities should not worry the reader.
From the sequel it follows that in any program only a finite number of notions
and production rules are involved, and that although notions of infinite length
may be involved, their constitution is always determined by a simple substitution
process defined by a finite number of symbols, viz., the program; it is this process
rather than its hypothetical outcome that matters.

Some production rules obtained from a rule containing a metanotion may be
blind alleys in the sense that no production rule is given for some member to
the right of the colon even though it is not a symbol.}

1.1.6. The Semantics of the Strict Language

a) A terminal production of a notion is considered as a linearly ordered sequence
of symbols. This order is termed the "textual order", and "'following "' ("' preced-
ing") stands for "textually immediately following" ("textually immediately
preceding ') in the rest of this Report. Typographical display features, such as
blank space, change to a new line, and change to a new page do not influence
this order {but see 3.1.2.b}.

b) A sequence of symbols (A protonotion) consisting of a second sequence of
symbols (a second protonotion) preceded and/or followed by (a) nonempty se-
quence(s) of symbols (of small syntactic marks) "contains" that second sequence
of symbols (second protonotion).

¢) A "paranotion' when not in a section whose heading is, or begins with,
"Syntax', not between 'apostrophe''s ("' "} and not contained in another
paranotion "denotes' some number of protonotions, its "originals''. A para-
notion is either

1) a symbol and then it denotes itself {, e.g., ""begin symbol "' denotes " begin
symbol "'}, or

i) a notion whose production rule does (rules do) not begin with an asterisk,
and then it denotes itself {, e.g., '"plusminus'' denotes "plusminus'}, or

iii) a notion whose production rule does (rules do) begin with an asterisk, and
then it denotes any of its direct productions {, which, in this Report, always

92 A.van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

is a notion or a symbol, e.g., "trimscript" (8.6.1.1.j) denotes "trimmer" or
"'subscript'}, or

iv) aparanotion in which one or more ""hyphen''s ("'-"") have been inserted and
then it denotes the originals of that paranotion before the inserting {, e.g., "' begin-
symbol'" denotes what '"begin symbol" denotes}, or

v) a paranotion followed by "s' or a paranotion ending with "y'" in which
that "y " has been replaced by "ies'' and then it denotes some number of the
originals of that paranotion before the modification {, e.g., "trimscripts"" denotes
some number of "trimmer''s and/or "'subscript''s and " primaries’' denotes some
number of the notions denoted by ' primary "}, or

vi) a paranotion whose first small syntactic mark has been replaced by the
corresponding large syntactic mark, and then it denotes the originals of that
paranotion before the modification {, e.g., "lIdentifiers" denotes the notions
denoted by "identifiers"}, or

vii) a paranotion in which a terminal production of 'SORT " and/or of 'SOME'
and/or of "MOID' has been omitted, and then it denotes the originals of any
other paranotion from which the given paranotion could be obtained by omitting
a terminal production of 'SORT' and/or of 'SOME' and/or of 'MOID' {, eg.,
"jump" denotes the notions denoted by "MOID jump" (8.2.7.1.c), "declaration"'
denotes the notions denoted by ' SOME declaration" (6.2.1.a,7.0.1.a) and " clause "'
denotes the notions denoted by "SORTETY SOME MOID clause™ (61.1.a,
6.2.1.b,¢,d,1,6.3.1.3,6.4.1.a,c,d,e,8.1.1.a), where ''SORTETY"" ("'SOME", "MOID")
stands for any terminal production of the metanotion 'SORTETY' ('SOME’,
"MOID")}.

{As an aid to the reader, paranotions, when not under Syntax or between
apostrophes, are provided with hyphens where, otherwise, they are provided
with blanks. Rules beginning with an asterisk have been included in order to
shorten the semantics.}

d) Except as otherwise specified {f,g}, a paranotion stands for any ' occurrence "
of any symbol denoted by it and/or of any terminal production of any notion
denoted by it considered as a terminal production of, specifically, that notion.

e) An occurrence O of a terminal production of a notion N is produced by a
tree of specific productions; for this " production tree" are defined:

a "'direct descendent'' of N, i.e., a member of the direct production of N;
a "descendent'' of N, i.e., a direct descendent of either N or a descendent of N;

the "offspring'' of a descendent D of N, i.e., if D is a notion (symbol), then
the occurrence of the terminal production of (the occurrence of) D {which is, or
is contained in, O}; and

a ""direct constituent' of O, i.e., the offspring of a direct descendent of N.

f) A paranotion P which is said to be a direct constituent of a paranotion Q,
stands for all occurrences of symbols denoted by P or of terminal productions
of notions denoted by P which are direct constituents of occurrences of terminal
productions of notions stood for by Q.

Report on the Algorithmic Language ALGOL 68 93

A paranotion P is a descendent of a paranotion Q if it is a direct constituent
of Q or if it is a direct constituent of a descendent of Q.

A paranotion P is a 'constituent" of a paranotion Q if it is a descendent
of Q but not a descendent of a descendent R of Q where R is the same protonotion
as either P or Q.

{Hence, 1:2is a constituent actual-row-of-rower of the actual-declarer [1:2]
struct ([3: 4] real), but 3: 4is not, since it is a descendent of the descendent
actual-declarer [3: 4] real. Also, j:= I is a constituent assignation (8.3.1.1.a)
of the assignation 7:=7:= 1, but not of the serial-clause ti=g:1=1; k:=2
nor of the assignations j:=171 and k:=14:=j:= 1. The assignation j:=1 is
not a direct constituent of the assignation t:=7:=1, but the source j:= I
is (8.3.1.1.a).

g8) A paranotion which is a direct constituent of a second paranotion is a para-
notion of that second paranotion.

{This permits the abbreviation of 'direct constituent of "', which would appear
frequently under Semantics, to "of", "its" or even ''the", e.g., in the assignation
(8.3.1.1.2) 2:= 1, 4 is its destination or 7 is the, or a, destination of the assignation
1:= 1, whereas ¢ is a constituent, but not simply a, destination of the serial-
clause ¢:=1; j:= 23}

h) In sections2 up to 8 under " Semantics'’, a meaning is associated with
occurrences of certain sequences of symbols by means of sentences in the English
language, as a series of processes (the "elaboration" of those occurrences of
sequences of symbols as terminal productions of given notions), each causing a
specific effect. Any of these processes may be replaced by any process which
causes the same effect.

i) Ifan occurrence of a sequence of symbols is the offspring of a direct descendent
D of a notion N which is the only member of a direct production of N, then its
"'preelaboration "', possibly yielding a "prevalue" with a "premode' and a
"'prescope’’, as terminal production of N is its elaboration, possibly yielding a
"value' with a "'mode'" and a "'scope ", as terminal production of D and, except
as otherwise specified {8.2}, its elaboration with value, mode and scope as terminal
production of N is its preelaboration with prevalue, premode and prescope as
terminal production of N.

{The elaboration with value, mode and scope of the reference-to-real-
confrontation (8.3.0.1.a) x:= 3.14 is its preelaboration with prevalue, premode
and prescope which is its elaboration with value, mode and scope as a reference-
fo-real-assignation.

The syntax of the strict language has been chosen in such a way that a given
sequence of symbols which is a terminal production of ‘program’ is so by means
of a unique set of productions, except, possibly, for production rules inducing
at most preelaboration, e.g., derived from rules 6.1.1.g, 6.2.1.e and 6.4.1.d
(balancing of modes) and from rule 7.1.1.cc in combination with 7.2.1.a and 7.4.1.a
(order of terminal productions of 'MOOD 'in a terminal production of 'UNITED")
see also 2.3.a.}

>

94 A, van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

j) A terminal production of a metanotion M is "enveloped' by a notion N if
it is contained once in N but not in another terminal production of M con-
tained in N.

{Thus, 'reference to real' is enveloped as terminal production of 'MODE'
by 'reference to real mode identifier’, but 'real' is not.}

k) If something is left '"undefined" or is said to be undefined, then this means
that it is not defined by this Report alone, and that, for its definition, information
from outside this Report has to be taken into account.

1.1.7. The Extended Language

The extended language encompasses the strict language; i.e., a program in
the strict language, possibly subjected to a number of notational changes by
virtue of '"extensions'' given in Chapter 9, is a program in the extended language
and has the same meaning.

{Thus, real x is a representation of an identity-declaration in the extended
language which means the same as ref real x =loc real which is a representation
of that identity-declaration in the strict language; see 9.2.a.}

1.1.8. The Representation Language

a) Therepresentation language represents the extended language;i.e., a program
in the extended language, in which all symbols are replaced by certain typo-
graphical marks by virtue of ''representations'’, given in section 3.1.1, and in
which all commas {not comma-symbols} are deleted, is a program in the re-
presentation language and has the same meaning.

b) Each version of the language in which representations are used which are
sufficiently close to the given representations to be recognized without further
elucidation is also a representation language. A version of the language in which
notations or representations are used which are not obviously associated with
those defined here, is a '"'publication language' or '"hardware language' {, i.e.,
a version of the language suited to the supposed preference of the human or
mechanical interpreter of the language}.

{e.g., begin, begin, 'BEGIN and 'BEGIN' (3.1.2.b) are all representations of

the begin-symbol (3.1.1.e) in the representation language and some combination
of holes in a punched card may be a representation of it in some hardware

language.}

1.2. The Metaproduction Rules

1.2.1. Metaproduction Rules of Modes
MODE : MOOD ; UNITED.

a)
b) MOOD : TYPE; STOWED.

c) TYPE:PLAIN; format; PROCEDURE ; reference to MODE.
d) PLAIN: INTREAL ; boolean ; character.

e) INTREAL: INTEGRAL ; REAL.

—h
=

INTEGRAL : LONGSETY integral.

Report on the Algorithmic Language ALGOL 68 95

REAL : LONGSETY real.

LONGSETY : long LONGSETY : EMPTY.

EMPTY ..

PROCEDURE : procedure PARAMETY MOID.

PARAMETY : with PARAMETERS : EMPTY.

PARAMETERS : PARAMETER ; PARAMETERS and PARAMETER.

PARAMETER : MODE parameter.

MOID : MODE ; void.

STOWED : structured with FIELDS ; row of MODE.

FIELDS : FIELD ; FIELDS and FIELD.

FIELD : MODE field TAG.

TAG: LETTER ; TAG LETTER ; TAG DIGIT.

LETTER : letter ALPHA ; letter aleph.

ALPHA:G;b;c;d;e;f;g;h;i;j;k;l;m;n;o;p:q;r;s;’r;u;v;w;
XYz

u) DIGIT : digit FIGURE.

v) FIGURE: zero ; one ; two ; three ; four ; five ; six ; seven ; eight ; nine.

w) UNITED : union of LMOODS MOOD mode.

x) LMOODS : LMOOD ; LMOODS LMOOD.

y) LMOOD : MOOD and.

{The reader might find it helpful to note that a metanotion ending with 'ETY"
always has 'EMPTY"' as a production.}

LT LeEEErETEEn

“t
~

1.2.2. Metaproduction Rules Associated with Modes

PRIMITIVE : integral ; real ; boolean ; character : format.

ROWS : row of ; ROWS row of.

ROWSETY : ROWS ; EMPTY.

ROWWSETY : ROWSETY.

NONROW : NONSTOWED ; structured with FIELDS.

NONSTOWED : TYPE ; UNITED.

REFETY : reference to ; EMPTY.

NONPROC : PLAIN ; format ; procedure with PARAMETERS MOID :
reference to NONPROC ; structured with FIELDS ; row of NONPROC :
UNITED.

1) PRAM: procedure with LMODE parameter and RMODE parameter MOID ;

procedure with RMODE parameter MOID.

j) LMODE : MODE.

k) RMODE : MODE.

) LMOOT : MOOD and.

m) LMOODSETY : MOOD and LMOODSETY ; EMPTY.

) RMOODSETY : RMOODSETY and MOOD ; EMPTY.
) LOSETY : LMOODSETY.

p) BOX:LMOODSETY box.

q) LFIELDSETY : FIELDS and ; EMPTY.

r) RFIELDSETY : and FIELDS ; EMPTY.

s) COMPLEX : structured with real field lefter r letter e and real field letter i

letter m.

LaLTe

—
Ras)

ERr

7 Numer. Math,, Bd. 14

96

rzage

=

A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

BITS : structured with row of boolean field LENGTHETY letter aleph.
LENGTHETY : LENGTH LENGTHETY ; EMPTY.

LENGTH : letter | letter o lefter n letter g.

BYTES : structured with row of character field LENGTHETY letter aleph.
STRING : row of character ; character.

MABEL : MODE mode ; label.

1.2.3. Metaproduction Rules Associated with Phrases and Coercion

=oaeoTe

Zx

E = b e

)

PHRASE : declaration ; CLAUSE.

CLAUSE : MOID clause.

SOME : serial ; unitary ; CLOSED ; choice ; THELSE.
CLOSED : closed ; coliateral ; conditional.

THELSE : then ; else.

SORTETY : SORT ; EMPTY,

SORT : strong ; FEAT.

FEAT : firm ; weak ; soff.

STRONGETY : strong ; EMPTY.

STIRM : strong ; firm.

ADAPTED : ADJUSTED ; widened ; rowed ; hipped ; voided.
ADJUSTED : FITTED ; procedured ; united,

FITTED : dereferenced ; deprocedured.

1.2.4. Metaproduction Rules Associated with Coercends

£

ceox

BEgeESEERD

COERCEND : MOID FORM.

FORM : confrontation ; FORESE.

FORESE : ADIC formula ; cohesion ; base.
ADIC: PRIORITY ; monadic.

PRIORITY : priority NUMBER.

NUMBER : one ; TWO ; THREE ; FOUR ; FIVE ; SIX ; SEVEN ; EIGHT ; NINE.
TWO : one plus one.

THREE : TWO plus one.

FOUR : THREE plus one.

FIVE : FOUR plus one.

SIX': FIVE plus one.

SEVEN : SEX plus one.

EIGHT : SEVEN plus one,

NINE : EIGHT plus one.

1.2.5. Other Metaproduction Rules

2eooTe

Na- ¢

VICTAL : VIRACT ; formal.
VIRACT : virtual ; actual.
LOWPER : lower ; upper.
ANY : KIND ; suppressible KIND ; replicatable KIND ;
replicatable suppressible KIND.
KIND :sign; zero ; digit; point; exponent ; complex ; string ; character.
NOTION : ALFHA ; NOTION ALPHA.

Report on the Algorithmic Language ALGOL 68 97

g) SEPARATOR: LIST separator ; go on symbol ; completer ; sequencer.
h) LIST : list ; sequence.
1) PACK: pack; package.

{Rule f implies that all protonotions (1.1.2.b) are productions (1.1.3.e) of the
metanotion (1.1.3.b) 'NOTION'; for the use of this metanotion see 3.0.1.b,c,d,
ghi}

{“ Well, *slithy” means *lithe and slimy’. ...
You see it's like a portmanteau — there are
fwo meanings packed up into one word.”
Through the Looking-glass, Lewis Carroll.}

1.3. Pragmatics

Scattered throughout this Report are "'pragmatic'' remarks included between
the braces { and }. These do not form part of the definition of the language but
are intended to help the reader to understand the implications of the definitions
and to find corresponding sections or rules.

{The rules under Syntax are provided with cross-references to be interpreted
as follows. Let a ""hypernotion'' be either a protonotion or a sequence of one or
more metanotions, possibly preceded and/or separated and/or followed by proto-
notions; then each rule consists of a hypernotion followed by a colon followed
by one or more hypernotions separated by commas or semicolons, and is closed
by a point. By virtue of 1.1.5.a.Step 3, each hypernotion eventually yields one
or more protonotions. In each rule, a hypernotion before (after) the colon is
followed by indicators of the rules in which a hypernotion yielding one or more
protonotions also yielded by the first hypernotion appears after (before) the colon,
or by indicators of the representations in section 3.1.1 of the symbols yielded
by the first hypernotion. Here, an indicator is, in principle, the section number
followed by the letter indicating the line where the rule or representation appears,
with the following conventions:

i) the indicators whose section number is that of the section in which they
appear, are given first and their section number is omitted; e.g., ''3.03.b"
appears as "'b"" in section ''3.0.3"";

i) all points are omitted and 10 appears as A; e.g., ''3.0.3.a" appears as
""303a" elsewhere and ''3.0.10.a"" appears as "30Aa"";

iii) a final 1 is omitted; e.g., ''811a" appears as ''81a "
iv) a section number which is the same as in the preceding indicator is omitted;
e.g., "'821a,821b" appears as ""821a,b"";

v) numerous indicators of the rules 3.0.4.b up to i are replaced by more
helpful indicators; e.g., in 6.1.1.c, ' chain of strong void units separated by go on
symbols{30c}'" appears as ''chain of strong void units{e} separated by go on
symbols{31f}"; also, indicators in Section 3.0.1 are restricted to a bare minimum;

vi) the absence of a production rule for one or more protonotions which are
not symbols and are yielded by the hypernotion appearing after the colon, is
indicated by " —"'; e.g., in 8.3.0.1.a after "' MODE conformity relation'" appears

7*

98 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

{832a,—} since 8.3.2.1.a yields only production rules for "boolean conformity
relation', and no other rule provides the absent productions.}

{Some of the pragmatic remarks are examples in the representation language.
In these examples, identifiers occur out of context from their defining occurrences.
Unless otherwise specified, these occurrences identify those in the standard-
prelude (2.1.b and Chapter 10) (e.g., see 10.3.k for random and 10.3.a for pi),
that in the exit (2.1.e) (viz., exdt), or those in:

int 4, 7, k, m, n; real a, b, %, y; bool p, g, overflow; char ¢, format f;
bytes 7; string s; bits {; compl w, z; ref real xx, yy; [1:#] real x1, y1;
[1:m, I:n] real x2; [1:n, I:n] real y2; [1:n] int i1; [1:m, I:%] int 42;
proc ref real x or y = ref real: (random < .5|x|y);

proc ncos = (int ¢} real: cos (2Xxpi X1 [n);

proc nsin = (int {) real: sin (2Xxpixi[n);

proc g = (real u) real: (arctan (u) —a+u—1);

proc stop = go to exit,

princeton.: grenoble: st pierre de chavtreuse: kootwifk: warsaw. zandvoort:
amsterdam. tirrenia: north berwick: munich: stop .}

{Merely corroborative detail, intended to give
artistic verisimilitude to an otherwise bald
and unconvincing narrative.

Mikado, W. S. Gilbert.}

2. The Computer and the Program

{The programmer is concerned with particular-programs (2.1.d). These are
always contained in a program (2.1.a), which also contains the standard-prelude,
i.e., a declaration-prelude which is always the same (see Chapter 10), possibly
a library-prelude, i.e., a declaration-prelude which may depend upon the im-
plementation, the exit, i.e., ; exif:, which enables the programmer to end the
elaboration of a program anywhere by that of the jump exit, possibly a library-
postiude, and the standard-postlude (10.6).}

2.1. Syntax
a) program : open symbol{31e}, standard prelude{b},
library prelude{c} option, particular program{d}, exit{e},
library postlude{f} option, standard postlude{g}, close symbol{31e}.
b) standard prelude{a} : declaration prelude{61b} sequence,
c) library prelude{a} : declaration prelude{61b} sequence.
d) particular program{a} :
label{61k} sequence option, strong CLOSED void clause{62b,63a,64a}.
e} exit{a}: go on symbol {311},
letter e letter x letter i lefter H{441c}, label symbol{31e}.
f) library postlude{a} : statement interlude{61i}.
g) standard postlude{a} : strong void clause train{61h}.

Report on the Algorithmic Language ALGOL 68 99

2.2. Terminoclogy
{**When I use a word,” Humpty Dumpty
said, in rather a scornful tone, ‘it means
just what I choose it to mean — neither more
nor less.”
Through the Looking-glass, Lewis Carroll.}

The meaning of a program is explained in terms of a hypothetical computer
which performs a set of "actions " {2.2.5}, the elaboration of the program {2.3.a}.
The computer deals with a set of ""objects'" {2.2.1} between which, at any given
time, certain "relationships'' {2.2.2} may "hold".

2.2.1. Objects

Each object is either "external' or "internal". External objects are occur-
rences of symbols or of terminal productions {1.1.2.f} of notions. Internal objects
are "'instances" of values {2.2.3}.

2.2.2. Relationships

a) Relationships either are ' permanent ', i.e., independent of the program and
its elaboration, or actions may cause them to hold or cease to hold. Each relation-
ship is either between external objects or between an external object and an
internal object or between internal objects.

b) The relationships between external objects are: to contain {1.1.6.b}, to be
a direct constituent of {1.1.6.e} and ''to identify" {c}.

¢) A given occurrence of a terminal production of 'MABEL identifier’ {4.1.1.b}
('MODE mode indication' {4.2.1.b} or 'PRIORITY indication' {4.2.1.e}, 'PRAM
ADIC operator' {4.3.1.b,c}) where "' MABEL"" (" MODE", ""PRIORITY", "PRAM",
"' ADIC") stands for any terminal production of the metanotion ' MABEL ' (' MODE ",
'PRIORITY", "PRAM’, ' ADIC') may identify a ''defining occurrence" ("'indica-
tion-defining occurrence ', " operator-defining occurrence") of the same terminal
production.

d) The relationship between an external object and an internal object is: "to
possess ‘.

) An external object considered as an occurrence of a terminal production of
a given notion may possess an instance of a value, termed "the' value of the
external object when it is clear which notion is meant; in general, "an (the)
instance of a (the) value" is sometimes shortened in the sequel to *'a (the) value"'
when it is clear which instance is meant

f) A mode-identifier (operator) may possess a value ({more specifically} a
"routine' {2.2.3.4}). This relationship is caused to hold by the elaboration of
an identity-declaration {7.4.1.a} (operation-declaration {7.5.1.a}) and ceases to
hold upon the end of the elaboration of the smallest serial-clause {6.1.1.a} con-
taining that declaration.

g) An external object other than an identifier or operator {e.g., serial-clause
(6.1.1.a)} considered as a terminal production of a given notion may be caused

100 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

to possess a value by its elaboration as terminal production of that notion, and
continues to possess that value until the next elaboration, if any, of that external
object is "initiated'’, whereupon it ceases to possess that value.

h) The relationships between internal objects are: " to be of the same mode as'',
"to be equivalent to", "to be smaller than", ''to be a component of" and
""to refer to''. A relationship said to hold between a given value and a (an instance
of a) second value holds between any instance of the given value and any (that)
instance of the second value.

i) An instance of a value may be of the same mode as another one; this relation-
ship is permanent {2.2.4.1.a}.

j) A value may be equivalent to another value {2.2.3.1.d,f} and a value may
be smaller than another value {2.2.3.1.c}. If one of these relationships is defined
at all for a given pair of values, then either it does not hold, or it does hold and
is permanent.

k) An instance of a given value is a component of another one if it is a ''field"
{2.2.3.2}, "element" {2.2.3.3.a} or "subvalue' {2.2.3.3.c} of that other one or
of one of its components.

1) Any "name" {2.2.3.5}, except "nil'" {2.2.3.5.a}, refers to one instance of
another value. This relationship {may be caused to hold by an '"assignment"
(8.3.1.2.c) of that instance of that value to that name and} continues to hold
until another instance of a value is caused to be referred to by that name. The
words ''refers to an instance of "' are often shortened in the sequel to ''refers to''.

2.2.3. Values

Values are "plain values" {2.2.3.1}, ''structured values" {2.2.3.2}, "'multiple
values' {2.2.3.3}, routines {2.2.3.4}, ''formats" {2.2.3.4}, and names {2.2.2.1,
2.2.3.5}.

2.2.3.1. Plain Values

a) A plain value is either an "arithmetic value', i.e., an "integer'' or a ''real
number'’, or is a '""truth value'' or a ''character''.

b) An arithmetic value has a "length number", i.e., a positive integer char-
acterizing the degree of discrimination with which the value is kept in the com-
puter. The number of integers (real numbers) of given length number that can
be distinguished increases with the length number up to a certain length number,
the number of different lengths of integers (real numbers) {10.1.a,c}, after which
it is constant.

c}) For each pair of integers (real numbers) of the same length number, the
relationship ''to be smaller than' is defined {10.2.3.a, 10.2.4.a}. For each pair
of integers of the same length number, a third integer of that length number
may exist, the first integer ''minus'’ the other one {10.2.3.g}. Finally, for each
pair of real numbers of the same length number, three real numbers of that
length number may exist, the first real number "minus' ("'times"", ''divided by ")
the other one {10.2.4.g,,m}; these real numbers are obtained "in the sense of

Report on the Algorithmic Language ALGOL 68 101

numerical analysis', i.e., by performing the operations known in mathematics
by these terms on real numbers which may deviate slightly from the given ones
{; this deviation is left undefined in this Report}.

d) Each integer of given length number is equivalent to a real number of that
length number. Also, each integer (real number) of given length number is equiv-
alent to an integer (real number) whose length number is greater by one. These
equivalences permit the "widening' {8.2.5} of an integer into a real number
and the increase of the length number of an integer or real number {10.2.3.q,
10.2.4.n}. The inverse transformations are only possible on those real numbers
(arithmetic values) which are equivalent to an integer {10.2.4.p} (a value of
smaller length number {10.2.3.1, 10.2.4.0}).

e) A truth value is either "'true' or "false".

f) Each character is equivalent to a nonnegative integer of length number one,
its "'integral equivalent'" {10.1.j}; this relationship is defined only to the extent
that different characters have different integral equivalents.

2.2.3.2. Structured Values

A structured value is composed of a number of other values, its fields, in a
given order, each of which is "selected" {8.5.2.2.Step 2} by a specific field-
selector {7.1.1.i}.

2.2.3.3. Multiple Values

a) A multiple value is composed of a " descriptor " and a number of other values,
its elements, each of which is selected {8.6.1.2.Step 7} by a specific integer,
its "index"".

b) The descriptor consists of an "'offset", ¢, and some number, n > 0, of ""quin-
tuples (I;, u;, d;, s;, 1) of integers, i=1,...,n; I; is the i-th "lower bound",
u; the i-th "upper bound", d; the i-th "stride", s; the i-th "lower state' and #,
the i-th "upperstate". If forany i, i=1, ..., n, u;</;, then the number of elements
in the multiple value is zero; otherwise, it is (uy — Iy +1) X... X (u, —1I, +1). The
descriptor "' describes ' each element selected by ¢ +(r;—I;) xd; +... +(r,—I,) xd,
where I; <<r; <u; for each i =1, ..., n.

{To the name referring to a given multiple value a state of which is 1, no
multiple value can be assigned (8.3.1.2.c.Step 4) in which the bound corresponding
to that state differs from that in the given value.}

c) A subvalue of a given multiple value is a multiple value which is referred
to by the value of a slice {8.6.1.1.a} the value of whose primary refers to the
given multiple value.

d) If each element of an instance / of a multiple value M is the same instance
of a value as the corresponding element of an instance J of M, then | and J are
one same instance of M.

2.2.3.4. Routines and Formats

A routine (format) is a sequence of symbols which is the same as some closed-
clause {6.3.1.a} (format-denotation {5.5.1.a}).

102 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

2.2.3.5. Names

a) There is one name, nil, whose scope {2.2.4.2} is the program and which does
not refer to any value; any other name is created by the elaboration of an actual-
declarer {7.1.2.d.Step 8}, a rowed-coercend {8.2.6.2.Step 7} or a skip {8.2.7.2.a}
{, and refers to precisely one instance of a value}.

b) 1f a given name N refers to a structured value {2.2.3.2}, then to each of its
fields there refers a name uniquely determined by N and the field-selector selecting
that field, and whose scope is that of N.

¢) If agiven name N refers to a multiple value M {2.2.3.3}, then to each element
of M (each multiple value composed of a descriptor and elements which are a
proper subset of the elements of M or composed of a descriptor different from
that of M and the elements of M) there refers a name uniquely determined by N
and the index of that element (and that descriptor and those elements), and
whose scope is that of N.

d) If an instance of a name and an instance of a second name refer to one same
instance of a value, then they are instances of one same name.

2.2.4. Modes and Scopes

2.2.4.1. Modes

a) A mode is any terminal production of "MODE' {1.2.1.a}. Each instance of
a value is of one specific mode which is a terminal production of 'MOOD" {1.2.1.b};
furthermore, all instances of a given value V other than nil {2.2.3.5.a} are of one
same mode, the mode of V, and a "'copy' of a given instance | of a value V is
a new instance of V which is of the same mode as /.

b) The mode of a truth value (character, format) is 'boolean' ('character’,
'format").

¢) The mode of an integer (a real number) of length number n is (n —1) times
"long' followed by ‘integral' (by 'real’).

d) The mode of a structured value is 'structured with' followed by one or more
""portrayals'' separated by 'and', one corresponding to each field taken in the
same order, each portrayal being the mode of that field followed by 'field ' followed
by a terminal production of 'TAG' {1.2.1.r} whose terminal production {field-
selector} selects {2.2.3.2} that field; it is ''structured from' a second mode if
the mode in one of its portrayals is, or is structured from, it.

€¢) The mode of a multiple value is a terminal production of 'NONROW ' {1.2.2.¢}
preceded by as many times 'row of' as there are quintuples in the descriptor
of that value.

f) The mode of a routine is a terminal production of 'PROCEDURE" {1.2.1.j}.

g) The mode of a name is 'reference to' followed by another mode; if the name
is not nil, then that other mode is either the mode of the value to which the
name refers, or is united from {4.4.3.a} it. {See 7.1.2.d.Step 8.}

Report on the Algorithmic Langnage ALGOL 68 103

2.2.4.2. Scopes
a) Each value has one specific scope.

b) The scope of a plain value is the program,

that of a structured (multiple) value is the smallest of the scopes of its fields
(elements, if any, and, otherwise, the program),

that of a routine or format possessed by a given denotation D {5.4.1.a, 5.5.1.a}
(of a routine which is the same sequence of symbols as a given cast-pack D or
void-cast-pack-pack D {8.3.4.1.a}) is the smallest range {4.1.1.¢} containing a
defining occurrence {4.1.2.a} (indication-defining occurrence {4.2.2.a}, operator-
defining occurrence {4.3.2.a}) of a terminal production of a notion ending with
‘identifier’ (‘indication', 'operator'), if any, not contained in D but identified
{4.1.2.b (4.2.2.b, 4.3.2.b)} by some applied (indication-applied, operator-applied)
occurrence of that terminal production contained in D, and, otherwise, the
program, and

that of a name is some {2.2.3.5, 8.5.1.2.b} range.

2.2.5. Actions
{Suit the action fo the word, the word fo the
action.
Hamlet, William Shakespeare.}

a) An action is "inseparable", ''serial" or ''collateral"'. A serial action consists
of actions which take place one after the other.

b) A collateral action consists of actions merged in time; i.e., it consists of
inseparable actions each of which is chosen, in a way which is left undefined in
this Report, from amongst the first of the inseparable actions which, at that
moment, according to this Report, would be the continuation of any of the
constituting actions.

¢) The elaboration of any (of the closed-clause following the do-symbol {3.1.1.h}
in any) closed-clause {6.3.1.a} which is a modified copy {8.4.2} of the actual-
parameter of the operation-declaration {7.5.1.a} 10.4.d (10.4.c) is an inseparable
action.

{What other actions are inseparable is left undefined in this Report.}

2.3. Semantics
{*“I can explain all the poems that ever were
invented — and a good many that haven't
been invented just yet.”
Through the Looking-glass, Lewis Carroll.}

a) The elaboration of a program is the elaboration of the strong-closed-void-
clause {6.3.1.a} consisting of the same sequence of symbols.

{In this Report, the syntax says which sequences of symbols are programs
and the semantics which actions are performed by the computer when elaborating
a program. Both syntax and semantics are recursive. Though certain sequences
of symbols may be terminal productions of 'program' in more than one way
(1.1.6.1), this syntactic ambiguity does not lead to a semantic ambiguity.}

104 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

b} In ALGOL 68, a specific notation for external objects is used which, together
with its recursive definition, makes it possible to handle and to distinguish
between arbitrarily long sequences of symbols, to distinguish between arbitrarily
many different values of a given mode (except 'boolean’) and to distinguish
between arbitrarily many modes, which allows arbitrarily many objects to exist
within the computer and which allows the elaboration of a program to involve
an arbitrarily large, not necessarily finite, number of actions. This is not meant
to imply that the notation of the objects in the computer is that used in ALGOL 68
nor that it has the same possibilities. It is, on the contrary, not assumed that the
computer can handle arbitrary amounts of presented information. It is not as-
sumed that these two notations are the same or even that a one-to-one cor-
respondence exists between them; in fact, the set of different notations of objects
of a given category may be finite. It is not assumed that the speed of the computer
is sufficient to elaborate a given program within a prescribed lapse of time, nor
that the number of objects and relationships that can be established is sufficient
to elaborate it at all.

c) A model of the hypothetical computer, using a physical machine, is said to
be an "implementation' of ALGOL 68, if it does not restrict the use of the
language in other respects than those mentioned above. Furthermore, if a language
is defined whose particular-programs are particular-programs of ALGOL 68
and have the same meaning, then that language is said to be a sublanguage of
ALGOL 68. A model is said to be an implementation of a sublanguage if it does
not restrict the use of the sublanguage in other respects than those mentioned
above.

{A sequence of symbols which is not a program but can be turned into one
by deleting or inserting a certain number of symbols and not a smaller number
could be regarded as a program with that number of syntactical errors. Any
program that can be obtained by deleting or inserting that number of symbols
may be termed a ''possibly intended" program. Whether a program or one of
the possibly intended programs has the effect its author in fact intended it to
have, is a matter which falls outside this Report.}

{In an implementation, the particular-program may be "compiled", i.e.,
translated into an "'object program'' in the code of the physical machine. Under
certain circumstances, it may be advantageous to compile parts of the particular-
program independently, e.g., parts which are common to several particular-
programs. If such a part contains mode-identifiers (indications, operators) whose
defining (indication-defining, operator-defining) occurrences (Chapter 4) are not
contained in that part, then compilation into an efficient object program may
be assured by preceding the part by a chain of formal-parameters (5.4.1.e)
(mode-declarations (7.2.1.a) or priority-declarations (7.3.1.a), captions (7.5.1.b))
containing those defining (indication-defining, operator-defining) occurrences.}

{The definition of specific sublanguages and also the specification of actions
not definable by any program (e.g., compilation or initiation of the elaboration),
is not given in this Report. However, the definition of the language allows, for
instance, to let a special representation of the comment-symbol different from

Report on the Algorithmic Language ALGOL 68 105

the ones given in 3.1.1., viz., ¢, £, co or comment, preferably pr or pragmat,
have the effect that by a comment (3.0.9.b) beginning and ending with this
special representation, the computer is invited to implement some such sub-
language or ALGOL 68 itself or to take some such undefinable action, as may be
specified by the comment (e.g., pr algol 68 pr, pr run pr or pr dump pr).}

{pr algol 68 pr
begin
proc pr nonrec pr p= (:p);
b
end
pr run pr pr? pr
Report on the Algorithmic
Language ALGOL 68.}

3. Basic Tokens and General Constructions
3.0. Syntax

3.0.1. Introduction

a) basic foken : letter token{302a} ; denotation token{303a} ;
action token{304a} ; declaration token{305a} ;
syntactic token{306a} ; sequencing token{307a} ;
hip token{308a} ; extra token{309a} ; special foken{30Aa}.
b) NOTION option : NOTION ; EMPTY,
¢) chain of NOTIONSs separated by SEPARATORs{c,d} : NOTION ;
NOTION, SEPARATOR{e,f,31£,61j,1},
chain of NOTIONSs separated by SEPARATORs{c}.

d) NOTION LIST{g} : chain of NOTIONSs separated by LIST separators{c,e,t}.

e) list separator{c,d,g} : comma symbol{31e}.

f) sequence separator{c,d,g} : EMPTY.

g) NOTION LIST proper : NOTION, LIST separator{e,f}, NOTION LIST{d}.

h) NOTION pack : open symbol{31e}, NOTION, close symbol{31e}.

i) NOTION package : begin symbol{31e}, NOTION, end symbol{31e}.
{Examples:

a) a;0;+4;int;if; . ;nil;for;"”;

b) 0; ; (integral-part-options)

¢) 0,1,2; (a chain-of-strong-integral-units-separated-by-list-separators)

d) 0;0,1,2; (strong-integral-unit-lists)

e ,;

g) 1,2, 3; (a strong-integral-unit-list-proper)

h) (1,2,3); (a strong-integral-unit-list-proper-pack)

1) begin x:=3.14; y:= 2.72 end (a strong-serial-void-clause-package) }

3.0.2. Letter Tokens

a)* letter token : LETTER{b}.

b) LETTER{309d,41b,c,d,512h,55h,i,0,q,552b,¢,f,553f,554a,555b,556¢,557¢,71j} :
LETTER symbol{31a}.

106 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

{Examples:
a) a; (see 1.1.4.Step 2)}

{Lefter-tokens either are, or are constituents of, identifiers (4.1.1.a), field-
selectors (7.1.1.i), real-denotations (5.1.2.1.a), formai-denotations (5.5.1.a) and
string-items (5.3.1.d).}

3.0.3. Denotation Tokens

a)x denotation token : number token{b} ; true symbol{31b} ;
false symbol{31b} ; formatter symbol{31b} ; flipflop{e} ; space symbol{31b}.
b} number token{309d} : digit token{c} ; point symbol{31b} ;
times fen to the power symbol{31b}.
¢) digit foken{b,511a} : DIGIT{d}.
d) DIGIT{c,41d,552c} : DIGIT symbol{31b}.

e) flipflop{309d,52c} : flip symbol{31b} ; flop symbol{31b}.
{Examples:

a) 1I;true; false;$;1;.;

by I;.;14;

c) I1;

d)y I;

e} 1;0}

{DenoTaTion—Tokens are, or are constituents of, denotations {(5.0.1.a). Some
denotation-tokens may, by themselves, be denotations, e.g., the digit-foken I,
whereas others, e.g., the formatter-symbol §, serve only to construct denotations.}

3.0.4. Action Tokens

a)x action token : operator token{b} ; equals symbol{31c} ;
times symbol{31c} ; confrontation token{d}.
b) operator token{42e,f} : minus and becomes symbol{31c} ;
plus and becomes symbol{31c} ; times and becomes symbol{31c};
divided by and becomes symbol{31c} ; over and becomes symbol{31c} ;
modulo and becomes symbol{31c} ; prus and becomes symbol{31c} ;
or symbol{31c} ; and symbol{31c} ; differs from symbol{31c} ;
is less than symbol{31c} ; is at most symbol{31c} ;
is at least symbol{34c} ; is greater than symbol{31c} ;
plusminus{c} ; divided by symbol{31c} ; over symbol{31c} ;
modulo symboi{31c} ; th element of symbol{31c} ;
lower bound of symbol{31c} ; upper bound of symbol{31c} ;
lower state of symbol{31c} ; upper state of symbol{31c} ;
plus i times symbol{31c} ; not symbol{31c} ; down symbol{31c} ;
up symbol{31c} ; absolute value of symbol{31c} ; binal symbol{31c} ;
representation of symbol{31c} ; lengthen symbol{31c} ;
shorten symbol{31c} ; odd symbol{31c} ; sign symbol{31c} ;
round symbol{31c} ; real part of symbol{31c} ;
imaginary part of symbol{31c} ; conjugate of symboi{31c} ;
booleans to bits symbol{31c} ; characters to bytes symbol{31c}.
¢) plusminus{b,512i,55p} : plus symbol{31c} ; minus symbol{31c}.

Report on the Algorithmic Language ALGOL 68 107

d)* confrontation token : becomes symbol{31c} ; conforms to symbol{31c} ;
conforms fo and becomes symbol{31c} ; is symbol{31c} ;
is not symbol{31c}; cast of symbol{31c}.

{Examples:

a) +5 = X =

b) —i= 4= Xi=mjli= = ru= b= viAl R << =5 >
+ii=s 0 LG Ly =501 abs; bin; repr; leng; short;
odd; sign; round; re; im; conj; btb; ctb;

¢ +;5—;

d) =i == 0k 0}

{Operator-tokens are constituents of formulas (8.4.1.a). Confrontation-tokens
are constituents of confrontations (8.3.0.1.a).}

3.0.5. Declaration Tokens

a)* declaration token : PRIMITIVE symbol{31d} ; long symbol{31d} ;

structure symbol{31d} ; reference to symbol{31d} ;

flexible symbol{31d} ; either symbol{31d} ; procedure symbol{31d} ;

union of symbol{34d} ; mode symbol{31d} ; complex symbol{31d} ;

bits symbol{31d} ; bytes symbol{31d} ; string symbol{31d} ;

sema symbol{31d} ; file symbol{31d} ; priority symbol{31d} ;

local symbol{31d} ; heap symbol{31d}; operation symbol{31d}.
{Examples:

a) int; long; struct; ref; flex; either; proc; union; mode; compl ; bits;
bytes; string ; sema; file; priority ; loc; heap; op}
{Declaration-tokens either are, or are constituents of, declarers (7.1.1.a),

which specify modes (2.2.4), or of declarations (7.2.1.a, 7.3.1.a, 7.4.1.a, 7.5.1.a).}

3.0.6. Syntactic Tokens

a)* syntactic token : open symbol{31e} ; close symbol{31e} ;
begin symbol{31e} ; end symbol{31e} ; comma symbol{31e} ;
parallel symbol{31e} ; sub symbol{31e} ; bus symbol{31e} ;
up to symbol{31e} ; at symbol{31e} ; if symbol{31e} ;
THELSE symbol{31e} ; fi symbol{31e} ; of symbol{31e} ;
label symbol{31e}.

{Examples:
a) (;);begin;end;,;par;[;];:; @; if; then; fi; of ; - }
{Syntactic-tokens separate external objects or group them together.}

3.0.7. Sequencing Tokens
a)x sequencing token : go on symbol{31f} ; completion symbol{31f} ;
go to symbol{311}.
{Examples:
a) ;;.;goto}
{Sequencing-tokens are constituents of clauses, in which they specify the
order of elaboration (6.1.1.b,c,j,1, 8.2.7.1.c).}

108 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

3.0.8. Hip Tokens

a)x hip token : skip symbol{31g} ; nil symbol{31g}.
{Examples:

a) skip; nil}
{Hip-tokens function as skips and nihils (8.2.7.1.b,d).}

3.0.9. Extra Tokens and Comments

a)x extra token : for symbol{31h} ; from symbol{31h} ; by symbol{31h} ;
to symbol{31h} ; while symbol{31h} ; do symbol{31h} ;
THELSE if symbol{31h}.

b) comment{9.1} : comment symbol{31i}, comment item{c} sequence option,
comment symbol{31i}.

c) comment item{b} : character token{d} ; other comment item{1.1.5.c}.

d) character token{c,514b} : LETTER{302b} ; number token{303b} ;
flipflop{303e} ; plus i times symbol{31c} ; open symbol{31e} ;
close symbol{31e} ; comma symbol{31e} ; space symbol{31b}.

{Examples:

a) for; from; by; to; while; do; thef;

b) # with vespect to ¥ ;

c) w;?;

d) a;1;1505(5);,;.}

3.0.10. Special Tokens
a)* special token : quote symbol{31i} ; comment symbol{31i} ;
indicant{1.1.5.b} ; dyadic indicant{1.1.5.b} ;
monadic indicant{1.1.5.b}.
{Examples:
a) ;% primitive; 7;/}
3.1. Symbols
3.1.1. Representations
a) Letter tokens

symbol representation symbol representation
letter a symbol{302b} letter n symbol{302b} =
letter b symbol{302b} b letter o symbol{302b} o
letter ¢ symbol{302b} ¢ letter p symbol{302b}
letter d symbol{302b} 4 letter g symbol{302b} ¢
letter e symbol{302b} e letter r symbol{302b} #
letter f symbol{302b} f letter s symbol{302b} s
letter g symbol{302b} g letter t symbol{302b} ¢
letter h symbol{302b} 4 letter u symbol{302b}
letter i symbol{302b} < letter v symbol{302b} v
letter j symbol{302b} j letter w symbol{302b} w
letter k symbol{302b} % letter x symbol{302b} =«
letter | symbol{302b} ¢ letter y symbol{302b} ¥
letter msymbol{302b} m letter z symbol{302b} =z

Report on the Algorithmic Language ALGOL 68 109

{No representation for 'letter aleph symbol" is provided and the programmer
cannot provide one himself; see 1.1.4.Step 2, 3.1.2.c.}

b) Denotation tokens

symbol representation
digit zero symbol{303d} 0

digit one symbol{303d,73b} 1

digit two symbol{303d,73c} 2

digit three symbol{303d,73d} 3

digit four symbol{303d,73¢} 4

digit five symbol{303d,73} 5

digit six symbol{303d,73g} 6

digit seven symbol{303d,73h} 7

digit eight symbol{303d,73i} 8

digit nine symbol{303d,73j} 9

point symbol{303b,512d,553c} .

times ten to the power symbol{303b,512h} 10 \

true symbol{513a} true

false symbol{513a} false

formatter symbol{55a} $

flip symbol{303e} 1

flop symbol{303¢} 0

space symbol{309d}

c} Action tokens

symbol representation
minus and becomes symbol{304b} —:= minus
plus and becomes symbol{304b} +:= plus
times and becomes symbol{304b} X:= times
divided by and becomes symbol{304b} [i=div
over and becomes symbol{304b} +~:= overb
modulo and becomes symbol{304b} +::= modb
prus and becomes symbol{304b} +=: prus

or symbol{304b} v or

and symbol{304b} A & and
differs from symbol{304b} S —= ne
is less than symbol{304b} < it
is at most symbol{304b} < <= le
is at least symbol{304b} > >= ge
is greater than symbol{304b} > gt
divided by symbol{304b} /

over symbol{304b} + over
modulo symbol{304b} +: mod

th element of symbol{304b} 0 elem
lower bound of symbol{304b} L Ilwb entier
upper bound of symbol{304b} r upb
lower state of symbol{304b} L Iws
upper state of symbol{304b} (ups

110 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

symbol

plus i times symbol{304b,309d}
not symbol{304b}

down symbol{304b}

up symbol{304b}

absolute value of symbol{304b}
binal symbol{304b}
representation of symbol{304b}
lengthen symbol{304b}

shorten symbol{304b}

odd symbol{304b}

sign symbol{304b}

round symbol{304b}

real part of symbol{304b}
imaginary part of symbol{304b}
conjugate of symbol{304b}
booleans fo bits symbol{304b}
characters to bytes symbol{304b}
plus symbol{304c}

minus symbol{304c}

equals symbol{42e,72a,73a,74a,75a}
times symbol{42e}

becomes symbol{831a}

conforms to symbol{832b}
conforms to and becomes symbol{832b}
is symbol{833b}

is not symbol{833b}

cast of symbol{834a}

d) Declaration tokens

symbol

integral symbol{71c}

real symbol{71c}

boolean symbol{71c}
character symbol{71c}
format symbol{71c}

long symbol{42c,e,{,510b,52b,71d}
structure symbol{71e}
reference to symbol{711,m,n}
flexible symbol{71t,v}

either symbol{71v}
procedure symbol{71w}
union of symbol{71cc,ii}
mode symbol{72a}

complex symbol{42c}

bits symbol{42c}

bytes symbol{42c}

representation

L ! i

— ~ not
J down

4 *k ~ up

41l
g

representation
int

real
bool
char
format
long
struct
ref
flex
either
proc
union
mode
compl
bits
bytes

Report on the Algorithmic Language ALGOL 68

symbol

string symbol{42c}

sema symbol{42c}

file symbol{42c}

priority symbol{73a}

local symbol{851b}

heap symbol{851c}

operation symbol{75b}

e) Syntactic tokens

symbol

open symbol{2a,30h,309d,54b,554b}

close symbol{2a,30h,309d,54b,554b}

begin symbol{30i}

end symbol{30i}

comma symbol{30e,309d,54d,554b,62¢,g,711,q,88,
861b,c}

parallel symbol{62b}

sub symbol{710,p,861a}

bus symbol{710,p,861a}

up to symbol{71r,8611f}

at symbol{861g}

if symbol{64a}

then symbol{64e}

else symbol{64e}

fi symbol{64a}

of symbol{852a}

label symbol{2e,61k}

f) Sequencing tokens

symbol

go on symbol{2e,30¢c,54d,61b,c,j}

completion symbol{611}

go to symbol{827¢c}

g) Hip tokens

symbol

skip symbol{827b}

nil symbol{827b}

h) Extra tokens

symbol

for symbol{9.3.a,b}

from symbol{9.3.a,b,c}

by symbol{9.3.a,b,c}

to symbol{9.3.a,c}

while symbol{9.3.a,b,c}

do symbol{9.3.a,b,c}

8 Numer, Math., Bd. 14

representation

string

sema

file

priority

loc

heap

op

representation

(

)

begin

end

>

par

[

]

@ at

(if case

| then in

| else out

) fi esac

— of

representation
exit

goto goto

representation

~ skip

o nil

representation

for

from

by

to

while

do

112 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

symbol representation

then if symbol{9.4.b} | : thef

else if symbol{9.4.b,c} |: elsf

1) Special tokens

symbol representation

quote symbol{514a,c,53b} ’ quote
comment symbol{309b} ¢ # co comment

3.1.2. Remarks

a) Where more than one representation of a symbol is given, any one of them
may be chosen.

{However, discretion should be exercised, since the text

(a>0b then b | a esac,
though acceptable to an automaton, would be more intelligible to a human in
either of the two representations

(a>b [b] a)
or

if >0 then b else a fi .

Also, some representations may not be available in a given implementation.}

b) A representation which is a sequence of underlined or bold-faced marks or
a sequence of marks preceded by a '"bold-face shift" {, e.g., apostrophe,} and
ending on a ''light-face shift" {, e.g., any mark different from the representation
of a letter or digit,} or a sequence of marks between apostrophes is different
from the sequence of those marks when not underlined, bold-faced, preceded by
a bold-face shift and ending on a light-face shift or between apostrophes.

c¢) Representations of other terminal productions of 'letter token' {1.1.4.Step 2},
'indicant', 'dyadic indicant', 'monadic indicant' {1.1.5.b}, 'other comment item
and 'other string item' {1.1.5.c} may be added, provided that no sequence of
representations of symbols can be confused with any other such sequence.

{e.g., do if are representations of a do-symbol followed by an if-symbol, where-
as doif might be an ill-chosen representation of an indicant.}

d) The fact that representations of the terminal productions of 'letter token'
as given in 3.1.1.a are usually spoken of as small letters is not meant to imply
that the so-called corresponding capital letters could not serve equally well as
representations. On the other hand, if both a small letter and the corresponding
capital letter occur, then one of them is the representation of another terminal
production of 'letter token' {1.1.4.Step 2}.

{For certain different symbols, one same or nearly the same representation
is given; e.g., for the cast-of-symbol, up-to-symbol and label-symbol respectively,
the representations "':", '"':'" and ":", and, moreover, for all of them the re-
presentation ".."" is given. It follows uniquely from the syntax which of these
three symbols is represented by an occurrence of any mark similar to one of these
representations outside comments and row-of-character-denotations. Also, some
of the given representations appear to be ''composite'’; e.g., the representation

Report on the Algorithmic Language ALGOL 68 113
":=""of the becomes-symbol appears to consist of '":", the representation of
the cast-of-symbol, etc., and " ="', the representation of the equals-symbol, and
the representation ".." of the cast-of-symbol, etc., appears to consist of ''."
and ".", each of which might be the representation of a point-symbol or com-
pletion symbol. It follows from the syntax that "": ="' can occur outside comments
and row-of-character-denotations as representation of the becomes-symbol only
(since " ="' cannot occur as representation of a monadic-operator). Similarly,
the other given composite representations do not cause ambiguity.}

4. Identification and the Context Conditions

{A proper program is a program satisfying the context conditions, e.g., if
(real x; x :== 1) is contained in a proper program, then the second occurrence
of x is a reference-to-real-mode-identifier not solely because of some production
rule (though this might be possible with a more elaborate syntax) but also because
it identifies the first occurrence according to one of the context conditions. This
chapter describes the methods of identification and contains other context con-
ditions which prevent such undesirable constructions as mode a = a.}

4.1. Identifiers

{ldentifiers are sequences of letter-tokens and/or digit-tokens in which the
first is a letter-token, e.g., x1. Mode-identifiers are made to possess values by the
elaboration of identity-declarations (7.4.1.a). Some mode-identifiers possessing
values which are not names might, in other languages, be termed constants,
e.g., m in intm = 4096. Mode-identifiers possessing names which refer to such
values might be termed variables and those possessing names which refer to
names might be termed pointers. Such terminology is not used in this Report.
Here, all mode-identifiers possess values, which are, or are not, names. }

4.1.1. Syntax

a)* identifier : MABEL identifier{b}.

b) MABEL identifier{54e,61k,827¢,860a} : TAG{c,d,302b}.

¢) TAG LETTER{b,c,d,21e,71j} : TAG{c,d,302b}, LETTER{302b}.

d) TAG DIGIT{b,c,d,71j} : TAG{c,d,302b}, DIGIT{303d}.

e)x range: program{2a}; SORTETY serial CLAUSE{61a};
procedure with PARAMETERS MOID denotation{54b}.

{Examples:
b) x; xx; x1; amsterdam}

{Rule b together with 1.2.1.r and 1.2.2.y gives rise to an infinity of production
rules of the strict language, one for each pair of terminal productions of '"MABEL"
and 'TAG'. For example,

'real mode identifier : letter a letter b.'
is one such a production rule. From rules ¢ and 3.0.2.b, one obtains

‘lefter a letter b : letter q, letter b.",
"letter a: letter a symbol.’ and
"letter b : letter b symbol.',

8*

114 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

yielding

'letter a symbol, letter b symbol*
as a terminal production of 'real mode identifier'. For additional insight into
the function of rules ¢ and d, see 7.1.1.j and 8.5.2.1.a.

4.1.2. Identification of Identifiers

{The method of identification of identifiers is first to distinguish between
defining and applied occurrences and then to discover which defining occurrence
is identified by a given applied occurrence.}

a) A given occurrence of a terminal production of 'MABEL identifier' where

""MABEL" stands for any terminal production of the metanotion 'MABEL' is a

defining occurrence if it follows a formal-declarer {7.1.1.b}, or if it is contained

in a label {6.1.1.k}; otherwise, it is an "applied occurrence"'.

b) If a given occurrence of a terminal production of 'MABEL identifier' (see a)

is an applied occurrence, then it may identify a defining occurrence of the same

terminal production found by the following steps:

Step 1: The given occurrence is termed the ""home' and Step 2 is taken;

Step 2: If there exists a smallest range containing the home, then this range,
with the exclusion of all ranges contained within it, is termed the home and
Step 3 is taken {; otherwise, there is no defining occurrence which the given
occurrence identifies; see 4.4.1.b};

Step 3: If the home contains a defining occurrence of the same terminal pro-
duction of 'MABEL identifier', then the given occurrence identifies it; other-
wise, Step 2 is taken.

{In the closed-clause (strings:= "abc’'; s[3]="4d"), the first occurrence
of s is a defining occurrence of a terminal production of 'reference to row of
character mode identifier'. The second occurrence of s identifies the first and,
in order to satisfy the identification condition (4.4.1.a), is also a terminal pro-
duction of 'reference to row of character mode identifier'. Identifiers have no
inherent meaning.}

4.2. Indications

{Indications are used for modes, priorities and operators. Some representations
of indications chosen in this Report are sequences of bold-faced or underlined
letters, e.g., compl and plus, but no production rule determines this sequence.
The programmer may also create his own indications, provided that they cannot
be confused with an other symbol (1.1.5.b, 3.1.2.c).}

4.2.1. Syntax
a)* indication : MODE mode indication{b} ; ADIC indication{e,f}.
b) MODE mode indication{71b,ii,72a} : mode standard{c} ; indicant{1.1.5.b}.
¢) mode standard{b} :
string symbol{31d} ; sema symbol{31d} ; file symbol{31d} ;
long symbol{31d} sequence option, complex symboi{31d} ;
long symbol{31d} sequence option, bits symbol{31d} ;
long symbol{31d} sequence option, bytes symbol{31d}.

Report on the Algorithmic ILanguage ALGOL 68 115

d)* dyadic indication : PRIORITY indication{e}.

e) PRIORITY indication{43b,73a} : dyadic indicant{1.1.5.b} ;
long symbol{31d} sequence option, operator token{304b} ;
long symbol{31d} sequence option, equals symbol{31c} ;
long symbol{31d} sequence option, times symbol{31c}.

f) monadic indication{43c} : monadic indicant{1.1.5.b} ;
long symbol{31d} sequence option, operator token{304b}.

g)* adic indication : ADIC indication{e,f}.

{Examples:

b) compl; primitive;

c) string; sema; file; long compl ; bits; long bytes;

e) 25+ =;X;

f) /; 4 ;long btb}

4.2.2. 1dentification of Indications
{The identification of indications is similar to that of identifiers.}

a) A given occurrence of a terminal production of 'MODE mode indication'

('PRIORITY indication') where ""MODE" ("' PRIORITY") stands for any terminal

production of the metanotion 'MODE' ('PRIORITY") is an indication-defining

occurrence if it precedes the equals-symbol of a mode-declaration {7.2.1.a}

{(priority-declaration {7.3.1.a}); otherwise, it is an "indication-applied occur-

rence'’.

b) If a given occurrence of a terminal production of ""MODE mode indication'

{'PRIORITY indication') (see a) is an indication-applied occurrence, then it may

identify an indication-defining occurrence of the same terminal production found

by using the steps of 4.1.2.b with Step 3 replaced by:

"Step 3: If the home contains an indication-defining occurrence of the same
terminal production of ' MODE mode indication' (' PRIORITY indication'), then
the given occurrence identifies it; otherwise, Step 2 is taken."

{Indications have no inherent meaning. A terminal production of 'monadic
indication' has no indication-defining occurrence.}

4.3. Operators

{Operators are either monadic-operators, i.e., require a right operand only,
or are dyadic-operafors, i.e., require both a left and a right operand, e.g., abs
and /in abs x and x / y. Operators are made to possess routines by the elaboration
of operation-declarations (7.5.1.a). Operators are identified by observing the
modes of their operands, e.g., ¥+ v, x +14, ¢+ x, 47 each involves a different
operator, see 10.2.4.1, 10.2.5.a, 10.2.5.b and 10.2.3.i. Though the mode enveloped
by the original of an operator contains the mode of the value, if any, delivered
by its routine, this mode is not involved in the identification process.}

4.3.1. Syntax

a)x operator : PRAM ADIC operator{b,c}.

b) procedure with LMODE parameter and RMODE parameter MOID PRIORITY
operator{75b,84b} : PRIORITY indication{42e}.

116 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

c) procedure with RMODE parameter MOID monadic operator{75b,84g} :
monadic indication{42f}.

d)* dyadic operatfor : procedure with LMODE parameter and RMODE parameter
MOID PRIORITY operator{b}.

e)* monadic operator : procedure with RMODE parameter MOID monadic

operator{c}.
{Examples:
b) +;
c) abs}

4.3.2. Identifications of Operators

{The identification of operators is similar to that of identifiers and indications,
except that different occurrences of one same terminal production of 'ADIC
indication' may be occurrences of more than one terminal production of 'PRAM
ADIC operator' and, therefore, the modes of the operands must be considered.}

a) A given occurrence of a terminal production of 'PRAM ADIC operator’
where ""PRAM" ("ADIC") stands for any terminal production of the metanotion
"PRAM" ("'ADIC") is an operator-defining occurrence if it precedes the equals-
symbol of an operation-declaration {7.5.1.a}; otherwise, it is an ''operator-
applied occurrence''.

b} If a given {operator-applied} occurrence of a terminal production of 'PRAM
ADIC operator' (see a) is the operator of a formula F {8.4.1.a}, then it may
identify an operator-defining occurrence of the same terminal production found
by using the steps of 4.1.2.b, with Step 3 replaced by:

"Step 3: If the home contains an operator-defining occurrence O {, in an
operation-declaration (7.5.1.a,b),} of a terminal production T of 'PRAM ADIC
operator' which is the same terminal production of ' ADIC indication' as the
given occurrence, and which {, the identifications of all descendent identifiers,
indications and operators of the operand(s) of F having been made,} is such
that some formula exists which is the same sequence of symbols as F, whose
operator is an occurrence of T and which is such that the original of each
descendent identifier, indication and operator of its operand(s) is the same
notion as the original of the corresponding identifier, indication and operator
contained in F {, which, if the program is a proper program, is uniquely de-
termined by virtue of 4.4.1.a}, then the given occurrence identifies O; other-
wise, Step 2 is taken."

{Operators have no inherent meaning; an operator-defining occurrence is
made to possess a routine (2.2.3.4) by the elaboration of an operation-declaration
(7.5.1.a).

A given indication may be both a dyadic-indication and a dyadic-operator.
As a dyadic-indication, it identifies its indication-defining occurrence. As a dyadic-
operatfor, it may identify an operator-defining occurrence, which possesses a
routine. Since the indication preceding the equals-symbol of an operation-
declaration is an indication-application and an operator-definition (but not an
operator-application), it follows that the set of those occurrences which identify

Report on the Algorithmic Language ALGOL. 68 117

a given dyadic-operator is a subset of those occurrences which identify the same
dyadic-indication.

In the closed-clause

begin real x, y := 1.5, priority min = 6;

op min=(reala,b) real: (a>b|b|a); x:=y minpi/2 end,

the first occurrence of min is an indication-defining priority-SIX-indication. The
second occurrence of min is indication-applied and identifies the first occurrence
(4.2.2), whereas, at the same textual position, min is also operator-defined as
a [prrr]-priority-SIX-operator, where " [prrr]" stands for ‘' procedure-with-real-
parameter-and-real-parameter-real'’. The third occurrence of min is indication-
applied and, as such, identifies the first occurrence, whereas, at the same textual
position, min is also operator-applied, and, as such, identifies the second oc-
currence; this makes it, because of the identification condition (4.4.1.a), a [prrr]}-
priority-SIX-operator. This identification of the dyadic-operator is made because:

i) min occurs in an operation-declaration,

ii) the base y can be firmly coerced to the mode specified by real,

)
iii) the formula p¢ [2 is a priori of the mode specified by real,
iv) min is thus, because of the identification condition, a [prrri-priority-
StX-operator.
If the first three conditions were not satisfied, then the search for an other defining
occurrence would be continued in the same range, or failing that, in a surrounding
range.}

4.4, Context Conditions

A '"proper' program is a program satisfying the context conditions; a
""meaningful' program is a proper program whose elaboration is defined by
this Report. {Whether all programs, only proper programs, or only meaningful
programs are ""ALGOL 68'' programs is a matter for individual taste. If one
chooses only proper programs, then one may consider the context conditions as
syntax which is not written as production rules.}

4.4.1. The Identification Conditions

a) In a proper program, a defining (indication-defining, operator-defining) oc-
currence of a terminal production of a notion ending with 'identifier' ("indication”,
'operator') and each applied (indication-applied, operator-applied) occurrence
1dentifying it are occurrences of one same terminal production of a notion ending
with 'identifier’ ('indication’, 'operator’).

b) No proper program contains an applied (indication-applied, operator-applied-
occurrence of a terminal production of a notion ending with 'identifier’ (‘indica)
tion', 'operator') which does not identify a defining (indication-defining, operator-
defining) occurrence.

c) No proper program contains an indication which as an operator-applied
occurrence identifies an operator-defining occurrence which as an indication-
applied occurrence identifies an indication-defining occurrence different from the
one identified by the given indication as an indication-applied occurrence.

118 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

{Condition c makes a program under certain circumstances improper independ-
ent of its elaboration. Without condition ¢, a program containing

(priority 7 =2; op ?=(real a, d) : skip;

(random < 0.5 | priority ?=2;0.120.2))

would be improper if, during the elaboration of this clause, the value of random
< 0.5 turns out to be true. Then, the presence of an indication-defining occurrence
of 7 in the serial-clause priority ?7=2; 0.17 0.2 causes its protection (6.4.2.a,
6.1.2.a, 6.0.2.d) to replace both occurrences of ? by another indication and thereby
deprives the last occurrence of its operator-defining occurrence, which violates
condition b. However, condition ¢ makes the program improper immediately
since the fourth occurrence of 7 identifies the third as its indication-defining
occurrence and the second as its operator-defining occurrence which itself identifies
the first occurrence as its indication-defining occurrence.}

4.4.2. The Uniqueness Conditions
a) A ''reach'isa range {4.1.1.e} with the exclusion of all its constituent ranges.
b) No proper program contains a reach {a} containing two defining (indication-
defining) occurrences of a given terminal production of a notion ending with
'identifier' ("indication').

{e.g., none of the closed-clauses (6.4.1.a)

(real x; real x; sin (3.14}) ,

(real y; int y; sin (3.14)) ,

(real p; p: go to p, sin (3.14)) ,

(mode a =real; mode a =real; sin (3.14)), or

(priority b =5, priority b =6, sin (3.14))
is contained in a proper program.}

c) No proper program contains a reach containing two operation-declarations
the operators of whose captions are the same terminal productions of a notion
ending with 'indication' and all of whose correspondent constituent virtual-
parameters {7.5.1.b, 7.1.1.x, 5.4.1.c, 7.1.1.y} are virtual-declarers specifying
modes loosely related to one another {4.4.3.c}.

{e.g., neither the closed-clause
(op max = (inta, intd) int: (a>b|a|b);
op max = (inta, intb) real: (a>b|a|b); sin (3.14))
nor
(op max = (int a, refintd) int: (a>b|a|bd);
op max = (refinta, intd) int: (a>b|alb); sin (3.14))
is contained in any proper program, but
(op max = (int q, intd) real: (a>b|a|b);
op max = (real a, real b) real: (a>b|al|b); sin (3.14))
may be.}
{In the pragmatic remarks in the sequel, ""in the reach of (the declaration)"

stands for "in a context where all identifications are made as in a reach con-
taining (the declaration)''.}

Report on the Algorithmic Language ALGOL 68 119

4.4.3. The Mode Conditions

a) A mode M is "strongly coerced from" ("firmly coerced from') a mode N
if the notion 'N base' is a production of the notion 'strong M base' ('firm M base')
{see 8.2}; M is "united from" N if M is 'union of LMOODSETY N RMOODSETY
mode' where "LMOODSETY" ("RMOODSETY ") stands for any terminal pro-
duction of the metanotion 'LMOODSETY"' (*RMOODSETY").

{e.g., the mode specified by real is firmly coerced from the mode specified
by ref real because the notion 'reference to real base' is a production of
'firm real base' (8.2.0.1.e, 8.2.1.1.a); the mode specified by union (int, real)
is united from those specified by int and real.}

b) Two modes are "related" to one another if they are both firmly coerced {a}
from one same mode. {A mode is related to itself.}

¢) Two modes are "loosely related" if they either are related or are firmly
coerced from 'row of LMODE' and 'row of RMODE' where ""LMODE" and
"RMODE" stand for different loosely related modes.

{e.g., the modes specified by proc real and ref real are related and, hence,
loosely related and those specified by [] real and by [] ref real are loosely
related but not related.}

d) No proper program contains a declarer {7.1.1.a} specifying a mode united
from {a} two modes related {b} to one another, nor does it contain two declarers
specifying modes united from two modes P and Q in which P and Q are in a
different order.

{e.g., the declarer union (real, ref real) is not contained in any proper
program, and union (int, real) and union (real, int) may be, but then
specify the same mode; see the remarks at the end of 7.1.1.}

e) No proper program contains a declarer {7.1.1.a} the field-selectors {7.1.1.i}
of two of whose constituent field-declarators {7.1.1.g} are the same sequence of
symbols.

{e.g., the declarer struct (ints, bool:) is not contained in any proper
program, but struct (int 7, struct (int s, bool j) /) may be.}

4.4.4. The Declaration Condition

a) A mode-indication {4.2.1.b} contained in a declarer {7.1.1.a} is "shielded
by that declarer if

i) it is, or is contained in, a virtual-declarer {7.1.1.b} following a reference-
to-symbol {3.1.1.d} in a field-declarator {7.1.1.g}, or

ii) it is, or is contained in, a virtual-declarer contained in a field-declarator
contained in a virtual-declarer following a reference-to-symbol, or

iii) it is, or is contained in, a virtual-parameter {7.1.1.y}, or

iv) it is, or is contained in, a virtual-declarer following a virtual-parameters-
pack {5.4.1.f}, or

v) it is, or identifies, an indication-defining occurrence contained in that
declarer.

120 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

{e.g., person is shielded in struct (int age, ref person jather), but not in
struct (int age, person uncle) and a is shielded in proc (a) a, but not in
union (int, [] a).}

b) An actual-declarer D {7.1.1.b} may "show' a mode-indication M {4.2.1.b};

this is determined in the following steps:

Step 1: D is protected and a copy is made of it; each mode-indication is said
not to have been "encountered";

Step 2: If the copy is, or contains and does not shield {a}, a mode-indication
which is the same terminal production as M, then D shows M; otherwise,
Step 3 is taken;

Step 3: If the copy is, or contains and does not shield, a not yet encountered
mode-indication O, then O and all mode-indications consisting of the same
sequence of symbols are said to have been encountered, O is replaced by a
copy of the protected actual-declarer of that mode-declaration whose mode-
indication is the indication-defining occurrence identified by O, and Step 2 is
taken; otherwise, D does not show M.

{e.g., in the declaration

mode a=[1:2] b, b=union (refd, ref real), d =struct (refe¢),

e =proc (int) a,

the mode-indications shown by [1:2] b are b and d.}

¢) No proper program contains a mode-declaration {7.2.1.a} whose mode-

indication is shown by its actuai-declarer.

{e.g., none of the declarations

mode a=a,

mode b=e, e=[1:10]b,

mode d =[7: 2] ref union (proc (d) d, procd),

mode parson =struct (int age, parson uncie)
is contained in any proper program.}

5. Denotations

{Denotations, e.g., 3.14 or "abc”’, are terminal productions of notions whose
value is independent of the elaboration of the program. In other languages,
they are sometimes termed ''literals'' or 'constants'.}

5.0.1. Syntax

a)x denotation : PLAIN denotation{510b,511a,512a,513a,514a} ;
BITS denotation{52b} ; row of character denotation{53b} ;
procedure with PARAMETERS MOID denotation{54b} ;
format denotation{55a}.

{Examples:
a) 3.14;101; “algolreport” ; ((bool a) int: (a|1]0)); $548)}

5.0.2. Semantics

Each denotation possesses a new instance of one same value whose mode is
that enveloped {1.1.6.j} by its original {1.1.6.c}; its elaboration involves no action.

Report on the Algorithmic Language ALGOL 68 124

{e.g., the value of "algol.report’” which is a production of 'row of character
denotation’ is of the mode 'row of character'.}

5.1. Plain Denotations

{Plain-denotations are those of arithmetic values, truth values and characters,
eg., 1, 3.14, true and "a"".

5.1.0.1. Syntax

a)* plain denotation : PLAIN denotation{510b,511a,512a,513a,514a}.
b) long INTREAL denotation{860a} :
long symbol{31d}, INTREAL denotation{511a,512a}.

{Examples:
b) long 0; long long 3.1415926535 8979323846 2643383279 5028841971 69399}

5.1.0.2. Semantics

a) A piain-denotation possesses a plain value {2.2.3.1}, but plain values pos-
sessed by different plain-denotations are not necessarily different {e.g., 123.4
and 1.234e + 2}.

b) The value of a denotation consisting of a number {, possibly zero,} of long-
symbols followed by an integral-denotation (real-denotation) is the ''a priori"
value of that integral-denotation (real-denotation) provided that it does not
exceed the largest integer {10.1.b} (largest real number {10.1.d}) of length number
one more than that number of long-symbols {; otherwise, the value is undefined}.

5.1.1. Integral Denotations

5.1.1.1. Syntax
a) integral denotation{510b,512c,d,,i,55g,860a} : digit foken{303¢} sequence.

{Examples:
a) 0; 4096 ; 00123 (Note that —I is not an integral-denotation.)}

5.1.1.2. Semantics

The a priori value of an integral-denotation is the integer which in decimal
notation is that integral-denotation in the representation language {1.1.8}. {See
also 5.1.0.2.b.}

5.1.2. Real Denotations

5.1.2.1. Syntax

) real denotation{510b,860a} :
variable point numeral{b} ; floating point numeral{e}.

>3]

b) variable point numeral{a,f} : integral part{c} option, fractional part{d}.
c) integral part{b} : integral denotation{511a}.

d) fractional part{b} : point symbol{31b}, integral denotation{511a}.

e) floating point numeral{a} : stagnant part{f}, exponent part{g}.

f) stagnant part{e} : integral denotation{511a} ; variable point numeral{b}.

122 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

g) exponent part{e} : times ten to the power choice{h}, power of ten{i}.
h) times ten to the power choice{g}:

times fen to the power symbol{31b} ; letter e{302b}.
1) power of ten{g} : plusminus{304c} option, integral denotation{511a}.

{Examples:
a) 0.000123; 1.23¢ —4; b) .123;0.123;
c) 123; d) .123;
e) 1.23e—4; f) 1;1.23;
g) e—4; h) 445 e;
iy 3;445; —678}

5.1.2.2. Semantics

a) The a priori value of a fractional-part is the a priori value of its integral-
denotation divided by 10 as many times as there are digit-tokens in the fractional-
part.

b) The a priori value of a variable-point-numeral is the sum in the sense of
numerical analysis of 0, the a priori value of its integral-part, if any, and that
of its fractional-part {. See also 5.1.0.2.b}.

c) The a priori value of an exponent-part is 10 raised to the a priori value of
the integral-denotation of its power-of-ten if that power-of-ten does not begin
with a minus-symbol; otherwise, it is /10 raised to the a priori value of that
integral-denotation.

d) The a priori value of a floating-point-numeral is the product in the sense of
numerical analysis of the a priori values of its stagnant-part and exponent-part
{. See also 5.1.0.2.b}.

5.1.3. Boolean Denotations

5.1.3.1. Syntax
a) boolean denotation{860a} : true symbol{31b} ; false symbol{31b}.

{Examples:
a) true; false}

5.1.3.2. Semantics
The value of a true-symbol (false-symbol) is true (false).

5.1.4. Character Denotations

{Character-denotations consist of a string-item between two quote-symbols,
e.g., “a”. To indicate a quote, a double quote-symbol is used for the string-
item: ~7’”’”". Since the syntax nowhere allows character- or string-denotations
to follow one another, ambiguities do not arise.}

5.1.4.1. Syntax

a) character denotation{55j,k,860a} :
quote symbol{31i}, string item{b}, quote symbol{31i}.

Report on the Algorithmic Language ALGOL 68 123

b) string item{a,53b} :
character token{309d} ; quote image{c} ; other string item{1.1.5.c}.
¢) quote image{b} : quote symbol{31i}, quote symbol{31i}.

{Examples:
a) “a”;
b) a;””;?;
o "}

5.1.4.2. Semantics

a) Each string-item possesses a unique character. {The character possessed by
a quote-image {space-symbol, digit-zero, digit-token, point-symbol, times-ten-to-
the-power-choice, plus-i-times-symbol, plus-symbol) may be termed a quote
(space, zero, digit, point, times ten to the power, plus i times, plus).}

b) The value of a character-denotation is a new instance of the character
possessed by its string-item.

5.2. Bits Denotations

{There are two kinds of denotations of structured or multiple values, viz.,
bits-denotations, e.g., 1011, and string-denotations, e.g., “abc’’. These de-
notations differ in that a string-denotation contains zero or two or more string-
items but a bits-denotation may contain one or more flipflops. (See also character-
denotations 5.1.4.)}

5.2.1. Syntax

a)x bits denotation : BITS denotation{b,c}.

b) structured with row of boolean field LENGTH LENGTHETY letter aleph
denotation{b,860a} : long symbol{31d}, structured with row of boolean field
LENGTHETY letter aleph denotation{b,c}.

c) structured with row of boolean field letter aleph denotation{b,860a} :
flipflop{303e} sequence.

{Examples:
b) long1011;
c) 1011}

5.2.2. Semantics

Let m stand for the number of flipflops in the bits-denotation and n for the
value of L bits width {10.1.g}, L standing for as many times long as there are
long-symbols in the bits-denotation; if m<n, then the value of the bits-denotation
is a structured value with one field selected by a field-selector which is the same
sequence of symbols as L followed by letter-aleph, that field being a multiple
value {2.2.3.3} whose descriptor has an offset 1 and one quintuple (1,n,1,1,1)
and whose element with index j is a new instance of false for j=1,...,n—m,
and for j=n—m+-1, ..., nis a new instance of frue (false) if the i-th constituent
flipflop (i =j4-m —n) of the bits-denotation is a flip-symbol (flop-symbol).

124 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

5.3. String Denotations

5.3.1. Syntax
a)x string denotation : row of character denotation{b}.

b) row of character denotation{55j,k,860a} : quote symbol{31i},
string item{514b} sequence proper option, quote symbol{31i}.

{Examples:
b) 77 abe’ ;T au+Db T ds.adformula’’}

5.3.2. Semantics

The value of a string-denotation is a multiple value {2.2.3.3} whose descriptor
consists of an offset 1 and one quintuple (1, n, 1,1, 1), where n stands for the
number of string-items contained in the string-denotation; for i=1,..., n, the
element with index i of that multiple value is a new instance of the character
possessed by the i-th constituent string-item of the string-denotation.

{The construction &’ is a character-denotation, not a string-denotation.
However, in all strong positions, e.g., string s:= ""a”’, it can be rowed to a
multiple value (8.2.6). Elsewhere, where a multiple value is required, a cast
(8.3.4.1.a) may be used, e.g., union (int, string) is:=string : “a”’. The "'string "',
i.e., value of mode 'row of character’, possessed by " """"a.4.b"" "".is.a.formula’
may well be presented informally as follows: "a+b" is a formula.}

5.4. Routine Denotations

{A routine-denotation, e.g., ((reala,b) real: (a>b|b|a)), always has a
formal-parameters-pack, e.g., (real a, b). To the right of this formal-parameters-
pack stands a cast, e.g., real: (a>b|b|a), whose virtual-declarer specifies
the mode of the value, if any, delivered by the elaboration of the routine, e.g.,
real. The whole is enclosed between an open-symbol and a close-symbol, but
these may often be omitted, see the extension 9.2.d. It is essential that, in general,
a routine-denotation be closed, for, otherwise, denotations like (int sintzoff) :
(int branguart) : lewi (wodon) could also be calls, or formulas like (inta) int:
14243 would be ambiguous if - is also declared as an operator accepting
a routine as left operand.}

5.4.1. Syntax
a)x routine denotation : procedure with PARAMETERS MOID denotation{b}.
b) procedure with PARAMETERS MOID denotation{860a} : open symbol{31e},
formal PARAMETERS{c,e} pack, MOID cast{834a}, close symbol{31e}.
c) VICTAL PARAMETERS and PARAMETER{b,c,71x,862a} :
VICTAL PARAMETERS{c,e,71y,74b}, gomma{d}, VICTAL
PARAMETER{e,71y,74b}.
d) gomma{c}: go on symbol{31f} ; comma symbol{31e}.
e) formal MODE parameter{b,c,74a} :
formal MODE declarer{71b}, MODE mode identifier{41b}.
fyx VICTAL parameters pack : VICTAL PARAMETERS{c,e,71y,74b} pack.

Report on the Algorithmic Language ALGOL 68 125

{Examples:
b) ((boola,b) bool: (a|b|false));

c) [I:}reala;[1:7a]reald;
d) ;s
e) boola}

5.4.2. Semantics
A routine-denotation possesses that routine which can be obtained from it
in the following steps:

Step 1: A copy is made of the routine-denotation;

Step 2: An equals-symbol followed by a skip-symbol is inserted in the copy
following the last identifier in each copied constituent formal-parameter of
the formal-parameters-pack of the routine-denotation; the open-symbol of
that formal-parameters-pack is deleted and its close-symbol is replaced by
a go-on-symbol;

Step 3: If the cast of the routine-denotation is a void-cast, then an open-symbol
is inserted in the copy preceding, and a close-symbol following that cast; the
copy, thus modified, is the routine possessed by the routine-denotation.

{The routine possessed by p1 after the elaboration of the identity-declaration
(7.41.a) procpl=(inta,b) real: (a>b|xx|yy) is (inta=n, intb=n;
real: (a>b|xx|yy)) and that possessed by p2 after the elaboration of
proc p2=(real a; real b): (a>b|stop) is (real a=~; real b=n; (: (a>b |
stop))). A routine is the same sequence of symbols as some closed-clause (6.3.1.a).
For the use of routines, see 8.4 (formulas), 8.2.2 (deprocedured-coercends) and
8.6.2 {calls).}

5.5. Format Denotations

5.5.1. Syntax

a) format denotation{860a} :
formatter symbol{31b}, collection{b} list, formatter symbol{31b}.

b) collection{a,b} : picture{c}; insertion{d} option, replicator{f},
collection{b} list pack, insertion{d} option.

c) picture{b}: MODE pattern{552a,553a,554a,555a,556b,557b,—} option,
insertion{d} option.

d) insertion{b,c,m,552b,f,554a,557b} :
literal{j} option, insert{e} sequence ; literal{j}.

e) insert{d}: replicator{f}, alignment{i}, literal{j} option.

f) replicator{b,e,j,n} : replication{g} option,

g) replication{fk,557b} :
dynamic replication{h} ; integral denotation{511a}.

h) dynamic replication{g} :
letter n{302b}, strong CLOSED integral clause{63a,640a,—}.

i) alignmeni{e} : letter k{302b} ; letter x{302b} ; letter y{302b} ; letter 1{302b} ;
letter p{302b}.

126 A.van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

j) literal{d,e,552f,554b} : replicator{f}, STRING denotation{514a,53b},
replicated literal{k} sequence option.
k) replicated literal{j} : replication{g}, STRING denotation{514a,53b}.

{Examples:
a) $p”table.of'x10am(lim—1)(16x32d,3x3(2x-.12de+2d" +7 X 'st
+.10de-+-2d)1)$8 ;
b) ptable.of’x10a; 3x3(2x+.12de 23" 47X "'st+.10de++2d)1 ;
c) 120kc(“wmon’’, "tues’’, " wednes” " thurs’,” fri’’ " satur”’,’sun’’) 'day"’’ ; P ;
d) ptable.of’x; "day”
e) ptable.of”;
g) n(lkm—1); 10;
h) n(lim—1);
)X
k) 207}
) sign mould{552a,553a,d,e} :
loose replicatable zero frame{m}, sign frame{p} ; loose sign frame{mj}.
m) loose ANY frame{l,552d,553b,d,555a,556b,557b} :
insertion{d} option, ANY frame{n,p,q,557c}.
n) replicatable ANY frame{m} : replicator{f}, ANY frame{o,q}.
0) zero frame{n,552¢} : letter z{302b}.
p) sign frame{l,m} : plusminus{304c}.
q) suppressible ANY frame{m,n,557b} :
letter s{302b} option, ANY frame{552e,553¢,1,555b,556¢}.
r)x frame: ANY frame{n,0,p,q,552¢,553¢,1,555b,556¢,557c}.

{Examples:
1) "="122+; 2x+;
m) ="12z,
n) 12z;
q) si; 10a}

{aa) Three ways of "transput’ (i.e., "input' and "output") are provided by
the standard-prelude, viz., formatless transput (10.5.2), formatted transput
(10.5.3) and binary transput (10.5.4). Formats are used by the formatted-transput
routines to control input from and output to a "file" (10.5.1). No section on
semantics of format-denotations is given, since this is entirely dealt with by
the standard-prelude.

bb) A format may be associated with a file by a call of format (10.5.3.a), outf
(10.5.3.1.a) or 4nf (10.5.3.2.a), which causes a transformat to be elaborated
(5.5.8.1.a), the collection-list of the format-denotation considered in 5.5.8.2.b.Step2
to be unfolded (cc), the result to be the current picture-list of the file and its
first constituent picture to be the current picture of the file (; e.g., after the
call format ({1, $pt,3(34.4)i$), the current picture-list of the file {1 is p¢, 3d.d,
3d.d, 3d.dl and the current picture is pf).

cc) The result of unfolding a collection-list (10.5.3.b) is a picture-list obtained
as follows:

a) if the collection-list is a picture, then the result consists of that picture;

Report on the Algorithmic Language ALGOL 68 127

b) if the collection-list is a collection but not a picture, then the result consists
of the first insertion-option of the collection, followed by as many copies
of the result of unfolding the collection-list of its collection-list-pack as is
the value of its replicator, separated by comma-symbols, followed by its
last insertion-option (; e.g., the result of unfolding 3k ab’2(10a)lis 3k"'ab’’ 10a,
10ai);

¢) if the collection-list is a collection-list-proper, then the result consists of the
result of unfolding the collection of that collection-list-proper followed by
a comma-symbol, followed by the result of unfolding its collection-list (; eg.,
the result of unfolding 10a,pn(i)(d.2d)".”" is 10a, $”".”” when the value of ¢ is 0).

dd) When one of the formatted-transput routines ouf (10.5.3.1.a), out (10.5.3.1.b),

wnf (10.5.3.2.a) or #n (10.5.3.2.b) is called, then transput takes place in the follow-

ing steps:

Step 1: The values to be transput are elaborated collaterally and the result is
"'straightened" (10.5.0.2) into a series of values, the first of which, if any, is
made to be the current value:

Step 2: If the current picture of the file is an insertion-option, then its insertion,
if any, is performed (gg), the next picture, if any, is made to be the current
picture of the file and Step 2 is taken; otherwise, Step 3 is taken;

Step 3: If the series of values is empty or exhausted, then the transput is ac-
complished ; otherwise, if the picture-list is exhausted, then format end of the
file is called, a routine which may be provided by the programmer (10.5.1.kk);

Step 4: If the current value is '"compatible" with (nn) the current picture, then
that value is transput under control of that picture; otherwise, value ervor of
the file is called, a routine which may be provided by the programmer;

Step 5: The next value, if any, is made to be the current value, the next picture,
if any, is made to be the current picture and Step 2 is taken.

ee) The value of the empty replicator is 1; the value of a replication which is
an integral-denotation is the value of that denotation; the value of a dynamic-
replication is the value of its integral-clause if that value is positive, and 0
otherwise.

ff) Transput occurs at the current ' position" (i.e., page number, line number
and char number) of the file. At each position of the file within certain limits
(10.5.1.1.k,,m) some character is "present", depending on the contents of the
file and on its " conversion key " (10.5.1.11).

gg) An insertion is performed by performing its constituent alignments and, on
output (input), " writing "' ("'expecting ") its constituent literals one after the other.

hh) Performing an alignment affects the position of the file as follows, where n

stands for the value of the preceding replicator:

a) letter-k causes the current char number to be set to n:

b) lefter-x causes the char number to be incremented by n (10.5.1.2.0);

c) lefter-y causes the char number to be decremented by n (10.5.1.2.p);

d) letter-] causes the line number to be incremented by n and the char number
to be reset to 1 (10.5.1.2.q);

9 Numer. Math., Bd. 14

128 A.van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

e) letter-p causes the page number to be incremented by n and both the line
number and the char number to be reset to 1 (10.5.1.2.1).

ii) A literal is written by writing the characters (strings) possessed by its con-
stituent (row-of-Jcharacter-denotations each as many times as is the value of
the preceding replicator; a string is written by writing its elements one after
the other; a character is written by causing the character to be present at the
current position of the file, thereby obliterating the character that was present,
and then incrementing the char number by 1. A literal is expected by expecting
the characters (strings) possessed by its constituent (row-of-)character-denotations
each as many times as is the value of the preceding replicator; a string is expected
by expecting its elements one after the other; a character is expected by incre-
menting the char number by 1 if the character is present at the current position
of the file; otherwise, the further elaboration is undefined.

jj) When a string whose number of characters is given is ""read", then that
number of characters are read and the result is a string whose elements are
those characters; when a string is read under control of a given 'terminator-
string"', then as long as the line is not exhausted, characters are read up to but
not including the first character which is the same as some element of the
terminator-string, and the result is a string whose elements are those characters;
when a character is read, then the result is the character present at the current
position of the file, and the char number of the file is incremented by 1.

kk) The mode specified by a picfure is that enveloped by the original of its
pattern, if any. The number of characters specified by a picture is the sum of
the numbers specified by its constituent frames and the number specified by
a frame is equal to the value of its preceding replicafor, if any, and 1 otherwise.

1) On output, a picture may be used to ""edit" a value in the following steps:

Step 1: The value is converted by an appropriate output routine (10.5.2.1.c,d,e)
to a string of as many characters as specified by the picture (; if the paftern
of the picture is an integral-pattern, then this conversion takes place to a
base equal to the value of the integral-denotation which is the same sequence
of symbols as its constituent radix, if any, and base 10 otherwise); if this
number of characters is not sufficient, then value error of the file is called,
a routine which may be provided by the programmer (10.5.1.kk);

Step 2: In those parts, if any, of the string specified by a sig n-mould, a character
specified by the sign-frame will be used to indicate the sign, viz., if the sign-
frame is a minus-symbol and the value is nonnegative, then a space, and,
otherwise, the character specified by the sign-frame; this character is shifted
in that part of the string specified by the sign-mould as far to the right as
possible across all leading zeroes, and those zeroes are replaced by spaces (;
e.g., under the sign-mould 4z+-, the string possessed by 40003 becomes
that possessed by “...4-3"); if the picture does not contain a sign-mould and
the value is negative, then value error of the file is called;

Step 3: Leading zeroes in those parts of the string specified by any remaining
zero-frames are replaced by spaces (; e.g., under the picture zdzd2d, the integer
180168 becomes the string possessed by “18.168";

Report on the Algorithmic Language ALGOL 68 129

Step 4: For all frames occurring in the picture, first the preceding insertion,
if any, is performed, and next, if the frame is not "suppressed ' (, i.e., preceded
by letter-s), then that part of the string specified by the frame is written;
finally, the insertion, if any, following the last constituent frame is performed
(; e.g., editing under the picture 2d""—""zd"’ —19"'2d, the integer 180168 causes
the string possessed by "18—.1—1968" to be written).

mm) On input, a picture may be used to "indit'" a value of a given mode from
a file in the following steps:

Step 1: A string is obtained consisting of the characters obtained by performing
the following process for all frames occurring in the picture, viz., first, the
insertion, if any, preceding the frame is performed and next, as many characters
are obtained as are specified by the frame; each of those characters is ob-
tained,
if the frame is not suppressed, then by reading from the file a character, and,

if the frame is a digit- (point-, exponent-, complex-)frame and the character
is not a digit (point, times ten to the power, plus i times), then calling char
ervor of the file (10.5.1.kk) with as its parameter a zero (point, times ten to
the power, plus i times), and

if the frame is suppressed, then by taking, if the frame is a digit- (zero-, point-,
exponent-, complex-, character-)frame a zero (zero, point, times ten to the
power, plus i times, space);

Step 2: Those parts, if any, of the string specified by a sign-mould must contain
a character, specified by the sign-frame, to indicate the sign (; see 11.Step 2);
if those parts contain such a character, with only spaces appearing in front of
it and no leading zeroes appearing after it, then those leading spaces, if any,
are deleted; otherwise, char error is called with a plus; if this character is a
space, and the sign-frame is a minus-symbol, then it is replaced by a plus
(; e.g., if in Step1 under control of 3z—d, the string possessed by "...39”
Is obtained, then in Step 2 that possessed by 439" is obtained);

Step 3: Leading spaces in those parts of the string specified by any remaining
zero-frames are replaced by zeroes;

Step 4: The string is converted by an appropriate input routine (10.5.2.2.c,d,e)
into a value of the given mode, if possible, and, otherwise, value error of the
file is called (; e.g., if the value of maxint (10.1.b) is 10000, then under +5d
it is possible to input +10000, but not --10001).

nn) A value of a given mode is compatible with a given picture if

a) on output, there exists some mode which is the mode specified by the picture
preceded by zero or more times 'long’, such that that mode is strongly
coerced from the given mode;

b) on input, there exists some mode which is the mode specified by the picture
preceded by 'reference to' followed by zero or more times ‘long", such that
that mode is strongly coerced from the given mode. (A value of mode
'reference to long integral' is on output compatible with a picture that
specifies the mode 'real’, but not on input.)

9%

130 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

00) Formats have a complementary meaning on input and output, i.e., a given
value which is not a string with one or two flexible bounds, which has been
output successfully to the file, under control of a certain picture, starting from
a certain position, can be successfully input again from that file under control
of the same picture, starting at the same position, provided that the contents
of the file are not changed in between; if the picture does not contain a letter-k
or letter-y as alignment, and the picture does not contain any digit-frames or
character-frames preceded by letter-s, then the second value, obtained on input,
is equal (approximately equal) to the given value if this is a string, integer or
truth value (is a real number) ; output of this second value to the file has the same
effect on the contents of the file as output of the given value under control of
the same given picture and starting from one same position.

pp) If a value is transput under control of a picture whose constituent pattern
is not an integral-choice-pattern (5.5.2.f), boolean-pattern (5.5.4.a) or string-
pattern (5.5.7.b), then on output (input) it is edited (indited) under control of
the picture.}

5.5.2. Syntax of Integral Patterns
a) infegral pattern{55c} : radix mould{b} option, sign mould{551} option,
integral mould{d} ; integral choice pattern{f}.
b) radix mould{a} : insertion{55d} option, radix{c}, letter r{302b}.
¢) radix{b}: digit two{303d} ; digit four{303d} ; digit eight{303d} ;
digit one{303d}, digit zero{303d} ; digit one{303d}, digit six{303d}.
d) infegral mould{a,553b,d,e} :
loose replicatable suppressible digit frame{55m} sequence.
e) digit frame{55q} : zero frame{550} ; letter d{302b}.
f) integral choice pattern{a} :
insertion{55d} option, letter c{302b}, literal{55j} list pack.
{Examples:
a) 2v6d30sd ; 12z4-d; 2d" —""2d"” —19"2d
120kc(""mon”’, "tues”’," wednes” " thurs”,” fri”’ "' satur”’," sun”’)
b) 2r;
c) 2,4;8;10;16;
d) zd”—"2d"—19"24d;
f) 120kc(“wmon” ,tues’, wednes” " thurs”, "fri’’'satur’’,"sun’’) }

{If a given value is transput under control of a picture whose constituent
pattern is an infegral-choice-pattern, then the insertion, if any, preceding the
letter-c is performed, and,

a) on output, letting n stand for the integer to be output, if n>0 and the number
of literals in the constituent literal-list-pack is at least n, then the n-th literal
is written on the file: otherwise, the further elaboration is undefined;

b) on input, one of the constituent literals of the constituent literal-list-pack
is expected on the file; if the i-th constituent literal is the first one present,
then the value is i; if none of these literals is present, then the further
elaboration is undefined ;

c¢) finally, the insertion, if any, following the pattern is performed.}

Report on the Algorithmic Language ALGOL 68 131

5.5.3. Syntax of Real Patterns

a) real pattern{55c,556b} : sign mould{551} option, real mould{b} ;
floating point mould{d}.

b) real mould{a,e}: integral mould{552d},
loose suppressible point frame{55m}, infegral mould{552d} option ;
loose suppressible point frame{55m}, integral mould{552d}.

¢} point frame{55q} : point symbol{31b}.

d) floating point mould{a} : stagnant mould{e}, loose suppressible exponent
frame{55m}, sign mould{551} option, integral mould{552d}.

e) stagnant mould{d} : sign mould{551} option, INTREAL mould{b,552d,—}.

f) exponent frame{55q} : letter e{302b}.

{Examples:
a) +.12d; +d.11de+-24;
b) d.11d; .12d;
d) +d.1lde+2d;
e) +d.11d}

5.5.4. Syntax of Boolean Patterns

a) boolean pattern{55c} : insertion{55d} option, letter b{302b},
boolean choice mould{b} option.

b) boolean choice mould{a}: open symbol{31e}, literal{55j},
comma symbol{31e}, literal{55j}, close symbol{31e}.

{Examples:
a) U'vesult’’14dxb; b(" ", error’’) ;
b) (// ,/,”67’707”) }

{If the boolean-pattern does not contain a choice-mould, then the effect of
using the pattern is the same as if the lefter-b were followed by (17,70”). If
a given value is transput under control of a picture whose constituent pattern
is a boolean-pattern, then the insertion, if any, preceding the letter-b is per-
formed, and,

a) on output, if the truth value to be output is true, then the first constituent
literal of the constituent choice-mould is written, and, otherwise, the second;

b) on input, one of the constituent literals of the constituent choice-mould is
expected on the file; if the first literal is present, then the value true is found;
otherwise, if the second literal is present, then the value false is found; other-
wise, the further elaboration is undefined;

c) finally, the insertion, if any, following the pattern is performed.}

5.5.5. Syntax of Character Patterns
a) character pattern{55c} : loose suppressible character frame{55m}.
b) character frame{55q} : letter a{302b}.
{Example:
a) //'//a}

132 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

5.5.6. Syntax of Complex Patterns
a)x complex pattern : COMPLEX pattern{b}.
b) COMPLEX pattern{55c} : real pattern{553a},
loose suppressible complex frame{55m}, real pattern{s53a}.
c) complex frame{55q} : letter i{302b}.

{Example:
b) 2x-+4-.12de+2d" 45 X "'si+.10de+-2d }

5.5.7. Syntax of String Patterns

a)x string paftern : row of character pattern{b}.
b) row of character pattern{55c} : loose string frame{55m} ;
loose replicatable suppressible character frame{55m} sequence proper ;
insertion{55d} option, replication{55g}, suppressible character frame{55q}.
c¢) string frame{55m} : letter t{302b}.

{Examples:

b) It; ba3saba; p'table.of'x10a (Note that a is a character-pattern, whereas Ia
is a string-pattern for a string with one element.) }

{If a given value is transput under control of a picture whose constituent
pattern is a string-pattern, then, if the pattern is a oose-string-frame, then

a) the constituent insertion, if any, is performed;
b) on output, the given string is written on the file;

¢) on input, if the string has fixed bounds, then that number of characters are
read; otherwise, a string is read under control of the terminator-string of
the file (10.5.1.mm);

d) finally, the insertion, if any, following the pattern is performed; otherwise,
on output, the given string, which must have as many elements as the number
of characters specified by the picture, is edited;
on input, the string is indited.}

5.5.8. Transformats

{Transformats are exclusively used as actual-parameters of formatted-transput
routines; for reasons of efficiency, the programmer has deliberately been made
unable to use them elsewhere by the choice of the field-selector, which contains
letter-aleph for which no representation is provided. Although transformats are
not denotations at all, they are handled here because of their close connection
to formats.}

5.5.8.1. Syntax
a) structured with row of character field letter aleph digit one
transformat{74b} : firm format unit{61e}.
{Example:
a) (x>0]%54$|$54"—"$)}

Report on the Algorithmic Language ALGOL 68 133

5.5.8.2. Semantics

a) The format {2.2.3.4} possessed by a given format-denotation is the same
sequence of symbols as the given format-denotation.

b) A given transformat is elaborated in the following steps:

Step 1: It is preelaborated {1.1.6.i};

Step 2: A formai-denotation is considered which is the same sequence of symbols
as the format obtained in Step 1;

Step 3: Al constituent dynamic-replications {5.5.1.h} of the considered format-
denotation are elaborated collaterally {6.2.2.a}, where the elaboration of a
dynamic-replication is that of its integral-clause;

Step 4: Each of those dynamic-replications is replaced by an integral-denotation
{5.1.1.1.a} which possesses the same value as that dynamic-replication if that
value is positive, and, otherwise, by a digit-zero; furthermore, every replicator
which is empty is replaced by a digit-one;

Step 5: That string-denotation {5.3.1.a} (character-denotation {5.1.4.1.a}) is con-
sidered which is obtained by replacing in the considered format-denotation as
modified in Step 4 each constituent quote-symbol by a quote-image {5.1.4.1.c}
and the first and the last constituent formatter-symbol by a quote-symbol;

Step 6: A new instance of the value of the considered string-denotation (of a
multiple value composed of the value of the considered character-denotation
as its {only} element and of a descriptor consisting of an offset 1 and one
quintuple (1,1, 1,1, 1)) is made to be the {only} field of a new instance of a
structured value {2.2.3.2} whose mode is that enveloped {1.1.6.j} by the original
{1.1.6.c} of the transformat;

Step 7: The transformat is made to possess the structured value obtained in
Step 6.

6. Phrases

{A phrase is a declaration or a clause. Declarations may be unitary, e.g.,
real x, or collateral, e.g., real x, y. Clauses may be unitary, e.g., x:= 1, col-
lateral, e.g., (x:=1,y:=2), closed, e.g., (¥ +y), or conditional, e.g., if x>0
then x else 0 fi (which may be written (x>0|x|0)). Most clauses will be of a
certain "'sort", i.e., strong, weak, firm or soft, which determines how the coercions
should be effected. The sort is ""passed on'" in the production rules for clauses
and may be modified by "balancing'' in serial-, collateral- and conditional-
clauses.}

6.0.1. Syntax
a)x SOME phrase:

SORTETY SOME PHRASE{61a,62a,b,c,d,f,63a,64a,c,d,e,70a,81a, —}.
b)* SOME expression :

SORTETY SOME MODE clause{61a,62b,c,d,f,63a,64a,c,d,e,81a}.
c)* SOME statement : strong SOME void clause{61a,62b,63a,64a,c,e,81a}.

{The rules b and ¢ are not actually used in this Report but serve to help
the reader, who may know some such constructions in other languages under

134 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

those appellations. For an informal introduction into ALGOL 68 (0.1.1) also the
following rules may be helpful:

d)x MODE constant: MODE FORM({830a,84b,g,850a,860a}.
e)x MODE variable : reference to MODE FORM{830a,84b,g,850a,860a}.
f)x procedure: REFETY PROCEDURE FORM{830a,84b,g,850a,860a}.
g)* structure display :

strong collateral structured with FIELDS and FIELD clause{62f}.
h)x row display : SORTETY collateral row of MODE clause{62¢c,d,—}.}

*

6.0.2. Semantics

a) The elaboration of a phrase begins when it is initiated, it may be '"inter-
rupted ", "'halted" or "'resumed’, and it ends by being " terminated" or ''com-
pleted "', whereupon, if the phrase ""appoints'' a unitary-phrase as its "' successor ",
then the elaboration of that unitary-phrase is initiated.

b) The elaboration of a phrase may be interrupted by an action {e.g., "over-
flow'} not specified by the phrase but taken by the computer if its limitations
{2.3.b} do not permit satisfactory elaboration. {Whether, after an interruption,
the elaboration of the phrase is resumed, the elaboration of some unitary-phrase
is initiated or the elaboration of the program ends, is left undefined in this
Report.}

¢) The elaboration of a phrase may be halted {10.4.c}, i.e., no further actions

constituting the elaboration of that phrase take place until the elaboration of

the phrase is resumed {10.4.d}, if at all.

d) A given {serial-}clause is ''protected" in the following steps:

Step 1: If the given clause contains a defining occurrence {4.1.2.a} (an indication-
defining occurrence {4.2.2.a}) of a terminal production of a notion ending with
‘identifier' ('indication') which also occurs outside it, then that defining
(indication-defining) occurrence and all occurrences identifying it are replaced
by occurrences of one same terminal production of that notion which does not
occur in the program and Step 1 is taken; otherwise, Step 2 is taken;

Step 2: If the given clause as possibly modified in Step 1, 2 or 4 contains an
operator-defining occurrence {4.3.2.a} of a terminal production of a notion
ending with 'indication' which also occurs outside it, then that operator-
defining occurrence and all occurrences identifying it are replaced by occurrences
of one same new terminal production of that notion which does not occur in
the program and Step 3 is taken; otherwise, the protection of the given clause
is accomplished;

Step 3: If the indication is a dyadic-indication, then Step 4 is taken; otherwise,
Step 2 is taken;

Step4: A copy is made of the priority-declaration containing the indication
which, before the replacement in Step 2, was identified by that operator-
defining occurrence; that indication in the copy is replaced by an occurrence
of the new terminal production; the given clause is modified by inserting before
it the thus modified copy of the priority-declaration followed by a go-on-
symbol, and Step 2 is taken.

Report on the Algorithmic Language ALGOL 68 135

{Clauses are protected in order to allow unhampered definitions of identifiers,
indications and operators within ranges and to permit a meaningful call, within
a range, of a procedure declared outside it.}

{What's in a name ? that which we call a rose
By any other name would smell as sweet.
Romeo and Juliet, ~ William Shakespeare.}

6.1. Serial Clauses

{Serial-clauses are built from unitary-clauses and declarations with the help
of go-on-symbols (;), completion-symbols (. or exit) and labels, e.g., (x>0
x:=1 , l); y. I: y-+1, where the value of the clause is that of y, if x>0 and
that of y +1 otherwise. A serial-clause may begin with declaration-preludes,
eg, intn:=1; in intn:=1; x:= y-fnu Labels may occur in only three
syntactic positions within serial-clauses: after a completion-symbol (here a label
Is obligatory, e.g., .I:), in a sequencer (e.g., s4:), or at the beginning of a clause-
train (i.e., one or more unitary-clauses separated by sequencers, e.g., i x:= 1;
y:=1I). A declaration-prelude may begin with void-clauses (statements), e.g., in
order to supply a multiple value as in [I n] real x1; fori ton do x1I [4]:=
i x1; real y; ; however, these void-clauses may not be labelled. A declaration-
prelude always ends with a go-on-symbol. The modes of some serial-clauses
must be balanced (6.1.1.g). For remarks concerning the balancing of modes
see 0.4.1.}

6.1.1. Syntax

a) SORTETY serial CLAUSE{63a,64b,e} : declaration prelude{b} sequence
option, suite of SORTETY CLAUSE trains{f,g}.
b) declaration prelude{a,2b,c} :
statement prelude{c} option, single declaration{d}, go on symbol{311f}.
c) statement prelude{b} : chain of strong void units{e} separated by
go on symbols{31£}, go on symbol{31£}.
d) single declaration{b} :
unitary declaration{70a} ; collateral declaration{62a}.
e) SORTETY MOID unit{c,h,i,5 58a,62b,c,e,h,74b,831¢,834a} :
SORTETY unitary MOID clause{81a}.
f) suite of STRONGETY CLAUSE trains{a,g} :
chain of STRONGETY CLAUSE trains{h} separated by completers{l}.
g) suite of FEAT CLAUSE trains{a,g} : FEAT CLAUSE train{h};
FEAT CLAUSE train{h}, completer{1}, suite of strong CLAUSE trains{f} ;
strong CLAUSE train{h}, completer{l}, suite of FEAT CLAUSE trains{g}.
h) SORTETY MOID clause train{f,g,2g} : label{k} sequence option,
statement interlude{i} option, SORTETY MOID unit{e}.
i) statement interlude{h,2f} :
chain of strong void units{e} separated by sequencers{j}, sequencer{j}.
J) sequencer{i,30c} : go on symbol{31f}, label{k} sequence option.
k) label{hyj,1,2d} : label identifier{41b}, label symbol{31e}.
1) completer{f,g,30c} : completion symbol{31f}, label{k}.

136 A.van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

{Examples:
a) reala:=0;11:12: x:=a+1; (p|13); (x>0|13|x:=1—x);
false. 13: y:=y+41; true;

b) reala:=0; ;read (n); [1:n] real x1, y1; ;

c) read (n); ;

d) reala:=0;[1:n] real x1, yI;

e) false;

f) 11:12: x:=a-+1; (p|13); (x>0]13| x:=1—x); false.

13: y:=y+1; true;
h) I1:12: x:=a+1; (p|13); (x>0]13| x:=1—x); false;
i) xi=ma+l; (p|13); (x>0|18|x:=1—x);;

) s M5
k) i
) .13}

6.1.2. Semantics

a) The elaboration of a serial-clause is initiated by protecting {6.0.2.d} it and
then initiating the elaboration of its textually first constituent single-declaration
or unitary-clause.

b) The completion of the elaboration of a single-declaration or unitary-clause
preceding a go-on-symbol followed (not followed) by a label-sequence initiates
the elaboration of the unitary-clause following that label-sequence (the single-
declaration or unitary-clause following that go-on-symbol).

¢) The elaboration of a serial-clause is

interrupted (halted, resumed) upon the interruption (halting, resumption)
of the elaboration of a constituent single-declaration or unitary-clause;

terminated upon the termination of the elaboration of a constituent single-
declaration or unitary-clause appointing a successor outside the serial-clause,
and that successor {8.2.7.2.b.Step 1} is appointed the successor of the serial-
clause.

d) The elaboration of a serial-clause is completed upon the completion of the
elaboration of its textually last constituent unitary-clause or of that of a con-
stituent unitary-clause preceding a completer.

¢) The value of a serial-clause is the value of that constituent unitary-clause
the completion of whose elaboration completed the elaboration of the serial-
clause provided that the scope {2.2.4.2} of that value is larger than the serial-
clause {; otherwise, the value of the serial-clause is undefined}.

{In y:= (x:=1.2; 3.4) the value of the serial-clause x:=1.2; 3.4 is the
real number possessed by 3.4. In xx:= (real»:=0.1;7), the value of the
serial-clause real 7 := 0.1; 7 is undefined since the scope of the name possessed
by 7 is the serial-clause itself, whereas, in y:= (realr:=0.1;7), the serial-
clause real 7 := 0.1; r possesses a real number.}

Report on the Algorithmic Language ALGOL 68 137

6.2. Collateral Phrases

{Collateral-phrases contain two or more u nitary-phrases separated by comma-
symbols (,) and, in the case of collateral-clauses, are enclosed between an open-
symbol (() and a close-symbol ()) or between a begin-symbol (begin) and an
end-symbol (end), e.g., (x:=1,y:=2) or real x, real y (usually real x, y,
see 9.2.c). The values of collateral-clauses which are not statements (void-clauses)
are either multiple or structured values, e.g., (1.2,34)in [] real x1=(1.2,3.4)
and in compl z:= (1.2, 3.4). Here, the collateral-clause (1.2, 3.4) obtains the
mode 'row of real’ or the mode which is the terminal production of 'COMPLEX".
Collateral-clauses whose value is structured must contain at least two fields, for,
otherwise, in the reach of the declarations struct m=(refmm); m nobuo,
yoneda, the assignation nobuo := (yoneda) would be syntactically ambiguous.
In the reach of the declarations structr— (real a); rv, the construction
7:= (3.14) is not an assignation, but a of r : = 3.14 is. It is possible to present
a single value or no value at all as a multiple value, eg., [lreal x1=;[1:1]
real yI:= 3, but this involves a coercion known as rowing; see 8.2.6.}

6.2.1. Syntax

a) collateral declaration{61d} : unitary declaration{70a} list proper.
b) strong collateral void clause{2d,81d} :
parallel symbol{31e} option, strong void unit{61e} list proper PACK.
¢) STRONGETY collateral row of MODE clause{81d} :
STRONGETY MODE unit{61e} list proper PACK.
d) firm collateral row of MODE clause{81d} : firm MODE balance{e} PACK,
e) firm MODE balance{d,e} :
firm MODE unit{61e}, comma symbol{31e}, strong MODE unit{c1e} list;
strong MODE unit{61e}, comma symbol{31e}, firm MODE unit{61e} ;
strong MODE unit{61e}, comma symbol{31e}, firm MODE balance{e}.
f) strong collateral structured with FIELDS and FIELD clause{81d} :
strong structured with FIELDS and FIELD structure{g} PACK.
g) strong structured with FIELDS and FIELD structure{t,g} :
strong structured with FIELDS structure{g,h}, comma symbol{31e},
strong structured with FIELD structure{h}.
h) strong structured with MODE field TAG structure{g} :
strong MODE unit{61e}.

{Examples:

a) realx, real y; (and by 9.2.c) real x, y;

b) (x:=1,y:=22:=3);

) (% n);

d) (1.2,3,4) (in (1.2, 3, 4) + x1, supposing + has been declared also for ' row
of real');

e) 1.2,3,4(in (1.2,3,4)+x1); 1, 2.3 (in (1, 2.3) +x1);
1,23, 4 (in (1,23, 4) +x1);

f) (1,23) (inz:=(1,23));

g) 1,23;

h) 1}

138 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

6.2.2. Semantics
a) If constituents of an occurrence of a terminal production of a notion are
"elaborated collaterally ', then this elaboration is the collateral action {2.2.5}
consisting of the {merged} elaborations of these constituents, and is

initiated by initiating the elaboration of each of these constituents,

interrupted upon the interruption of the elaboration of any of these con-
stituents,

completed upon the completion of the elaboration of all of these constituents,
and

terminated upon the termination of the elaboration of any of these constituents,
and if that constituent appoints a successor, then this is the successor of the
occurrence.

b) A collateral-declaration is elaborated by elaborating its constituent unitary-
declarations collaterally {a}.

¢) A collateral-clause is elaborated in the following steps:
Step 1: Its constituent units are elaborated collaterally {a};

Step 2: If the terminal production of the metanotion 'MOID' enveloped {1.1.6.j}
by the original {1.1.6.c} of the collateral-clause is a mode, then this mode is
considered and Step 3 is taken; otherwise, {it is 'void' and} the elaboration
of the collateral-clause is complete;

Step 3: If one of the values of the units obtained in Step 1 is a name {2.2.3.5}
which refers to a component of a multiple value having one or more states
{2.2.3.3} equal to 0, then the further elaboration is undefined; otherwise, Step 4
is taken;

Step 4: If the considered mode begins with 'row of', then Step 5 is taken; other-
wise, new instances of the values obtained in Step 1 are made, in the given
order, to be the fields of a new instance of a structured value {2.2.3.2}; this
structured value is considered and Step 7 is taken;

Step 5: Let m stand for the number of constituent units in the collateral-clause;
if the considered mode begins with 'row of row of', then Step 6 is taken;
otherwise, a new instance of a multiple value is created whose element with
index i is a new instance of the value of the i-th constituent unit, and whose
descriptor consists of an offset 1 and one quintuple (1, m, 1, 1, 1); this multiple
value is considered and Step 7 is taken;

Step 6: If not all corresponding upper (lower) bounds of the multiple values
obtained in Step 1 are equal, then the further elaboration is undefined; other-
wise, the elements with indices (i—1) xr+j, j=1,...,r of the new value,
where r stands for the number of elements in one of those values, are new
instances of the elements, taken in the order of ascending indices, of the value
of the i-th constituent unit and the descriptor of the new value is a copy of
the descriptor of the value of one of the constituent units into which an ad-
ditional quintuple (1, m, 1, 1, 1) has been inserted before the old first quintuple,
the offset has been set to 1, d, has been set to 1, and for i=n, n— 1,...,2,
the stride d;_; has been set to (u; —I;4+1) xd;; this new multiple value is
considered and Step 7 is taken;

Report on the Algorithmic Language ALGOL 68 139

Step 7: The value of the collateral-clause is the considered value; its mode is
the considered mode.

6.3. Closed Clauses

{Closed-clauses are generally used to construct primaries (8.1.1.d) from serial-
clauses, e.g., (x+y) in (x+y) xXa. The question of identification (Chapter 4)
and protection (6.0.2.d) may arise in closed-clauses, because a serial-clause is
a range (4.1.1.e) and it may begin with a declaration-prelude (6.1.1.a).}

6.3.1. Syntax
a) SORTETY closed CLAUSE{2d,55h,81d} : SORTETY serial CLAUSE{61a} PACK.
{Examples:

a) begini:=i+1;j:=7j+Iend; (x+y)}

6.3.2. Semantics

The elaboration of a closed-clause is that of its constituent serial-clause,
and its value is that, if any, of that serial-clause.

6.4. Conditional Clauses

{Conditional-clauses allow the programmer to choose one out of a pair of
clauses, depending on the value (which is of mode 'boolean') of a condition,
eg., (x>0|x|0). Here, x>0 is the condition. If its value is true, then #, and,
otherwise, 0 is chosen. Conditional-clauses are generalized in the extensions 9.4,
e.g., if x>0 then x elsf x < —71 then —x — I else 0 fi, which has the same effect
as (x>0 | x| (x<—1| —x—1|0)). Unlike similar constructions in other lan-
guages, conditional-clauses are always enclosed between an if-symbol, represented
by (, by if or by case, and a fi-symbol, represented by), by fi or by esac. This
enclosure allows both parts of the choice-clause and the condition to contain
serial-clauses.}

6.4.1. Syntax

a) SORTETY conditional CLAUSE{2d,55h,81d} : if symbol{31e}, condition{b},
SORTETY choice CLAUSE{c,d}, fi symbol{31e}.
b) condition{a} : strong serial boolean clause{61a}.
c) STRONGETY choice CLAUSE{a}:
STRONGETY then CLAUSE{e}, STRONGETY else CLAUSE{e}.
d) FEAT choice CLAUSE{a}:
FEAT then CLAUSE{e}, strong eise CLAUSE{e} ;
strong then CLAUSE{e}, FEAT else CLAUSE{e}.
e) SORTETY THELSE CLAUSE{c,d}:
THELSE symbol{31e}, SORTETY serial CLAUSE{61a}.

{Examples:
a) (x>0|x|0); if overflow then exit fi (see 9.4.2);
b) x>0; overflow;
¢) |x]|0; then exit;

140 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

d) |%]|0(n (x>0]x]0)+y);
e) |x;|0; then exit}

{Rule d illustrates why modes should be balanced (see also 6.1.1.g and 6.2.1.e).
Thus, if a choice-clause is, say, firm, then at least one of its two constituent
clauses must be firm, while the other may be strong. For example, in (p [x |) A+
(¢ |~|y), the conditional-clause (p | x| ~) is balanced by making | » firm
and | ~ strong, whereas (p | ~ | y) is balanced by making | ~ strong and | v firm.
The example (p | ~ | ~) +y illustrates that not both may be strong, for other-
wise the operator + could not be identified.}

6.4.2. Semantics
a) A conditional-clause is elaborated in the following steps:
Step 1: Its condition is elaborated;

Step 2: If the value of that condition is true (false) then the serial-clause of
the then-clause (else-clause) of its choice-clause is considered;

Step 3: The considered clause is elaborated;

Step 4: The value, if any, of the conditional-clause, then is that of the clause
elaborated in Step 3.

b) The elaboration of a conditional-clause is

interrupted (halted, resumed) upon the interruption (halting, resumption)
of the elaboration of its condition or the considered clause;

completed upon the completion of the elaboration of the considered clause;

terminated upon the termination of the elaboration of its condition or
the considered clause, and if one of these appoints a successor, then this is the
successor of the conditional-clause.

7. Unitary Declarations

{Unitary-declarations provide the indication-defining occurrences of mode-
indications, e.g., string in mode string = [1: 0 flex] char, and of dyadic-
indications, e.g., v in priority v =2, the defining occurrences of mode-identifiers,
e.g., % in real x, and the operator-defining occurrences of operators, e.g., abs
in opabs=(inta) int: (a<0| —a|a). Declarations occur in declaration-
preludes (6.1.1.b).}

7.0.1. Syntax
a) unitary declaration{61d,62a} :
mode declaration{72a} ; priority declaration{73a} ;
identity declaration{74a} ; operation declaration{75a}.
{Examples:
a) mode string = [1: 0 flex] char; priority v =2;
int m =4096; op +-=(real a, b) int: round 2 = round b }

7.0.2. Semantics

A mode-identifier (operator) which was caused to possess a value by the
elaboration of a declaration containing the defining (operator-defining) occurrence

Report on the Algorithmic Language ALGOL 68 141

of that mode-identifier (operator) is caused to possess an undefined value upon
termination or completion of the elaboration of the smallest range {4.1.1.e}
containing that declaration.

7.1. Declarers

{Declarers are built from the symbols int, real, bool, char and format,
with the assistance of certain other symbols as, e.g., long, ref, [, |, struct,
union and proc. A declarer specifies a mode, e.g., real specifies the mode
'‘real'. A declarer is either a declarator or a mode-indication, e.g., compl is
a mode-indication and not a declarator, Declarers are classified as actual, formal
or virtual depending on the kind of lower- and upper-bounds which are permitted.
Formal-declarers have the greatest freedom in this respect; e.g., [1: %] real,
[1:n flex] real, [1:flex] real, [1:x either] real, [I: either] real and
[] real may all be formal, but only the first two may be actual and only the
last one may be virtual.}

7.1.1. Syntax

a)x declarer: VICTAL MODE declarer{b}.

b) VICTAL MODE declarer{h,k,l,m,n,o,p,x,y,aa,jj,54e,72a,834a,851b,c} :
VICTAL MODE declarator{c,d,e,],m,n,o0,p,w,cc} ;
MODE mode indication{42b}.

¢) VICTAL PRIMITIVE declarator{b,d} : PRIMITIVE symbol{31d}.

d) VICTAL long INTREAL declarator{b,d} :
long symbol{31d}, VICTAL INTREAL declarator{c,d}.

{Examples:
b) real; bits;
¢) int; real; bool; char: format;
d) long int; long long real }
e) VICTAL structured with FIELDS declarator{b} :

structure symbol{31d}, VICTAL FIELDS declarator{f,h,k} pack.
f) VICTAL FIELDS and FIELD declarator{e,f} :

VICTAL FIELDS declarator{f,h,k}, comma symbol{31e},

VICTAL FIELD declarator{h,k}.

g)* field declarator : VICTAL FIELD declarator{hk}.
h) VICTAL STOWED field TAG declarator{e,{} :

VICTAL STOWED declarer{b}, STOWED field TAG selector{j}.
i)x field selector : FIELD selector{j}.
j) MODE field TAG selector{hk,852a} : TAG{302b,41c,d}.
k) VICTAL NONSTOWED field TAG declarator{e,f} :

virtual NONSTOWED declarer{b}, NONSTOWED field TAG selector{j}.

{Examples:
e) struct (string title, [1: n] ref string pages, int price) ;
f) string title, [1: n] ref string pages, int price ;
h) [I:n] refstring pages;
j) e,
k) int price }

142 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

{Rules h and k, together with 1.2.1.r,s,t,u,v and 4.1.1.c,d lead to an infinity

of production rules of the strict language, thereby enabling the syntax to ''trans-

fer’

' the field-selectors (i) into the mode of structured values, and making it

ungrammatical to use an "unknown'' field-selector in a selection (8.5.2). Con-
cerning the occurrence of a given field-selector more than once in a declarer,
see 4.4.3, which implies that struct (real x, int x) is not a (correct) declarer,
whereas struct (real x, struct (int x, bool p) p) is. Notice, however, that the
use of a given field-selector in two different declarers within a given reach does
not cause ambiguity. Thus, mode cell = struct (string name, ref cell next)
and mode link = struct (ref link next, ref cell value) may both occur in
the same reach.}

)

VIRACT reference to MODE declarator{b} :

reference fo symbol{31d}, virtual MODE declarer{b}.
formal reference to STOWED declarator{b} :

reference fo symbol{31d}, formal STOWED declarer{b}.
formal reference to NONSTOWED declarator{b} :

reference to symbol{31d}, virtual NONSTOWED declarer{b}.

{Examples:

ref [] real;

ref (1 :] real; ref [1: either, 1 : flex] real;
ref ref [] real }

{Rules 1, m and n imply that, for instance, ref [1: either] real x may be

a formal-parameter (5.4.1.e), whereas ref ref [1: either] real x may not.}

0)

L2 L

-
~

VICTAL ROWS structured with FIELDS declarator{b} :
sub symbol{31e}, VICTAL ROWS rower{q,r}, bus symbol{31e},
VICTAL structured with FIELDS declarer{b}.
VICTAL ROWS NONSTOWED declarator{b} :
sub symbol{31e}, VICTAL ROWS rower{q,r}, bus symbol{31e},
virtual NONSTOWED declarer{b}.
VICTAL row of ROWS rower{o,p,q}:
VICTAL row of rower{r}, comma symbol{31e}, VICTAL ROWS rower{q,r}.
VICTAL row of rower{o,p,q} :
VICTAL lower bound{s,t,v}, up tosymbol{31e}, VICTAL upper bound{s,t,v}.
virtual LOWPER bound{r} : EMPTY.
actual LOWPER bound{r} :
strict LOWPER bound{u}, flexible symbol{31d} option.
strict LOWPER bound{t,v,861f} : strong integral tertiary{81b}.
formal LOWPER bound{r}:
strict LOWPER bound{u} option, flexible symbol{31d} option ;
strict LOWPER bound{u} option, either symbol{31d}.

{Examples:

[1:m] struct ([1:n] reala, intd);
[I:m,1:%n] ref[] real;
1:m,1:n;

1:m;

Report on the Algorithmic Language ALGOL 68 143

t) m; mflex;
u) m;
v) m; ; mflex;flex;m either; either}

{The flexible-symbol, either-symbol, strict-lower-bound and strict-upper-
bound contained in a formal-declarer serve to prescribe states and bounds of
the multiple value possessed by the corresponding actual-parameter. The flexible-
symbol in ref [1: flex] char s =¢ prescribes that a name referring to a multiple
value with upper state 0 (i.e., the upper bound may vary) will be possessed by s;
in ref[7:n either] char s=¢, the either-symbol allows that upper state to
be either 0 or 1 (i.e., the upper bound may be variable or fixed) and the absence
of both flexible-symbol and either-symbol in ref [1: %] char s = prescribes that
that upper state is 1 (i.e., the upper bound must be fixed). Independently, the
strict-upper-bound # in ref [1: n either] char s=¢{ or in ref [1:x] char s =¢
prescribes that a name referring to a multiple value whose upper bound equals
the value of » will be possessed by s; if, in the first example, the upper state is 0,
then that upper bound may well be changed later on by an assignment. The
absence of a strict-upper-bound in ref [1: flex] char s =¢ does not restrict the
upper bound in that way. Similar remarks apply to strict-lower-bounds. The
flexible-symbol, strict-lower-bound and strict-upper-bound serve a similar role
in generators (8.5).}

w) VICTAL PROCEDURE declarator{b} :
procedure symbol{31d}, virtual PROCEDURE plan{x,aa}.
X) virtual procedure with PARAMETERS MOID plan{w,75b} :
virtual PARAMETERS{y,54c} pack, virtual MOID declarer{b,z}.
y) virtual MODE parameter{x,54c} : virtual MODE declarer{b}.
z) virtual void declarer{x,aa,834a} : EMPTY.
aa) virtual procedure MOID plan{w} : virtual MOID declarer{b,z}.
bb)* parameters pack : VICTAL PARAMETERS{y,54c,e,74b} pack.

{Examples:
w) proc; proc (real, int); proc bool ; proc (real) bool;

x) (real,int); (real) bool;
y) real;
aa) bool }

cc) VICTAL union of LMOODS MOOD mode declarator{b} :
union of symbol{31d}, LMOODS MOOD and open box{dd} pack.

dd) LOSETY LMOOD open BOX{cc,ee} : LOSETY closed LMOOD end BOX{ee,ff}.

ee) LOSETY closed LMOODSETY LMOOD end BOX{dd,ee,if} :
LOSETY closed LMOODSETY LMOOD LMOOD end BOX{ee,ff} ;
LOSETY open LMOODSETY LMOOD BOX{dd,gg}.

ff) LOSETY closed LMOODSETY LMOOD end LMOOT BOX{dd,ee,ff} :
LOSETY closed LMOODSETY LMOOT LMOOD end BOX{ee,ff}.

gg) open LMOODS LMOOD BOX({ee,gg,ii} : LMOODS LMOOD BOX{ii} ;
open LMOODS box{gg,hh}, comma symbol{31e}, LMOOD BOX{ji,jj}.

hh) open LMOOD box{gg} : LMOOD box{jj}.

10 Numer. Math., Bd. 14

144 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

i) LMOODS MOOD and box{gg} : union of LMOODS MOODmode mode
indication{42b} ;
union of symbol{31d}, open LMOODS MOOD and box{gg} pack.

jj) MOOD and box{gg,hh} : virtual MOOD declarer{b}.

{Examples:
cc) union (real, union (int, bool), union (real, int)) ;
union (ri, union (bool, real)) (in the reach of union ri = (real, int))}

{Let "b" stand for 'boolean', "i' for 'integral', "'r" for 'real', "'+ for
'and ' and "'(bir}" for any of the six protonotions'b L i+4-r','b4r—i'," i 4+b +r',
"i+r+b', 'r+b+i" and 'r4+i+b'. Both examples are then examples of a
virtual-, actual- or formal-union-of-(bir}-mode-declarator. The choice for (bir) is
left undefined and is semantically irrelevant, but if one chooses some canonical
ordering of all modes involved in a program, then the rules cc up to jj and
8.2.4.1.a,b,c,d do not cause any ambiguity (see 1.1.6.i, 4.4.3.d). The production
mechanism of the rules cc up to jj is such that rule ee1 repeats, rule ff com-
mutes and rule gg associates modes, whereas rule dd closes and rule ee2 opens
the box. Let "#" stand for 'box', "(" for 'closed’, ")" for 'end’, ''()" for
‘open' and "," for ', comma symbol,', then the production of the first example
from 'actual union of integral and real and boolean mode declarator' is suggested

by:

cc i+r+b+ () eel i+ (r+r4+)b+#

dd i+r+(b+)# ftit-(r+b+r+)%

ee2 i4+r+()b+4g ee2 i+ ()r+b+r-t+t

dd i+(r+)b+% dd (i+)r+b+r+%

ff (r4+i+)b+4r+# ee2 ()r+i+b4r4i+%
eel (r+i+i+)b+r-+g g82 ()r+i-+b+#,r4i-+4
ff (r+it+b+it)r+4 882 ()r+#i+b+tr+its
ff (r+i+btrt+i+)s hh r+-4,i+b+# r+i+4}

7.1.2. Semantics

a) Agivendeclarer specifies the mode enveloped {1.1.6.j} by its original {1.1.6.c}.
b) A given declarer is protected by protecting all its constituent serial-clauses.
c) A given declarer is ""developed ' in the following steps:

Step 1: It is protected ;

Step 2: If it is, or contains and does not shield, a mode-indication which is an
actual-declarer or formal-declarer, then that indication is replaced by a copy
of the protected actual-declarer of that mode-declaration {7.2} whose mode-
indication is its indication-defining occurrence {4.2.2.a}, and Step 2 is taken;
otherwise, the development of the declarer has been accomplished.

{A declarer is developed during the elaboration of an actual-declarer (d) or
identity-declaration (7.4.2.Step 1).}

d) A {virtual- or actual-} declarer D specifying the mode M is elaborated in
the following steps:

Report on the Algorithmic Language ALGOL 68 145

Step 1: If D is a virtual-declarer, then a new instance V of some value of some
mode N {not beginning with 'union of' and} such that M is, or is united from,
N is chosen and Step 8 is taken; otherwise, D is developed and Step 2 is taken;

Step 2: If D now begins with a structure-symbol, then Step 4 is taken; other-
wise, if D now begins with a sub-symbol, then Step § is taken; otherwise, if D
now begins with a union-of-symbol, then Step 3 is taken; otherwise, a new in-
stance V of some value of the mode M is chosen and Step 8 is taken;

Step 3: Some mode N is chosen which does not begin with 'union of' and from
which M is united {4.4.3.a}; a new instance V of some value of the mode N is
chosen and Step 8 is taken;

Step 4: All constituent declarers of D are elaborated collaterally {6.2.2.a}; the
values referred to by the values {names} of these declarers are made, in the
given order, to be the fields of a new instance V of a structured value of the
mode M, and Step 8 is taken;

Step 5: All constituent boundscripts {8.6.1.1.1} of D are elaborated collaterally;

Step 6: A descriptor {2.2.3.3} Q is established consisting of an offset 1 and as
many quintuples, say n, as there are constituent actual-row-of-rowers in D
for i=1,...,n, I; (u;) is set equal to the value of the constituent strict-lower-
bound (strict-upper-bound) of the i-th of these actual-row-of-rowers; if the
flexible-symbol-option of the actual-lower-bound (actual-upper-bound) of the
i-th of these actual-row-of-rowers is a flexible-symbol, then s; (;) is set to 0;
otherwise, s; (1;) is set to 1; next, d, is set to 1, and for i=n,n—1, ..., 2, the
stride d;_¢ is set to (u; —I; +1) X d;;

Step 7: Q is made to be the descriptor of a new instance V of a multiple value
of the mode M, whose elements are obtained as follows: the last constituent
declarer of D is elaborated collaterally a number of times and the elements
are copies of values referred to by {some of the} resulting names;

Step 8: A name {2.2.3.5} different from all other names and whose mode is

'reference to' followed by M, is created and made to refer to V: this name
is the value of D.

7.2. Mode Declarations

{Mode-declarations provide the indication-defining occurrences of mode-
indications, which act as abbreviations for declarers built from some basic-
tokens, e.g., mode string = [1: 0 flex] char, or from other declarers or even
from themselves, e.g., mode book = struct (string title, ref book next). In
this last example, the mode-indication is not only a convenient abbreviation,
but it is essential to the declaration.}

7.2.1. Syntax
a) mode declaration{70a} : mode symbol{31d}, MODE mode indication{42b},
equals symbol{31c}, actual MODE declarer{71b}.

{Examples:
a) mode string = [1: 0 flex] char; struct compl = (real 7¢, im) ;
union primitive = (int, real, bool, char, format) (see 9.2.b,c)}

10*

146 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

7.2.2. Semantics
The elaboration of a mode-declaration involves no action.

{See 4.4.4.c concerning certain mode-declarations, e.g., mode a = a, which
are not contained in proper programs.}

7.3. Priority Declarations

{Priority declarations provide the indication-defining occurrences of dyadic-
indications, e.g., o in priority o =6, which may then be used in the declaration
of dyadic operations. Priorities from I to 9 are available. Since monadic-operators
have effectively only one priority level (8.4.1.g), which is higher than that of
all dyadic-operators, monadic-indications do not occur in priority-declarations.}

7.3.1. Syntax
a) priority declaration{70a} :
priority symbol{31d}, priority NUMBER indication{42¢},
equals symbol{31c}, NUMBER token{b,c,d,e,f,g,h,i,j}.
b) one token{a}: digit one symbol{31b}.
c) TWO token{a}: digit two symbol{31b}.
d) THREE token{a} : digit three symbol{31Db}.
e) FOUR token{a} : digit four symbol{31b}.
f) FIVE token{a} : digit five symbol{31b}.
g) SIX token{a} : digit six symbol{31b}.
h) SEVEN token{a} : digit seven symbol{31b}.
i) EIGHT token{a} : digit eight symbol{31b}.
) NINE token{a} : digit nine symbol{31Db}.
{Example:
a) priority +=26}

7.3.2. Semantics
The elaboration of a priority-declaration involves no action.
{For a summary of the standard priority-declarations, see the remarks in 8.4.2.}

7.4. Identity Declarations

{Identity-declarations provide the defining occurrences of mode-identifiers,
e.g., x in real x (which is an abbreviation of ref real x = loc real , see 9.2.a).
Their elaboration causes mode-identifiers to possess values; here, x is made to
possess a name which refers to some real number.}

7.4.1. Syntax
a) identity declaration{70a} : formal MODE parameter{54e},
equals symbol{31c}, actual MODE parameter{b}.

b) actual MODE parameter{a,54c,75a,862a}
strong MODE unit{61e} ; MODE transformat{558a,—}.

Report on the Algorithmic Language ALGOL 68 147

{Examples:
a) real e=2.718281828459045 ; int e =abs i; real 4= re (2 xconj z) ;
ref [,] real al=a [, : k] ; ref real x1k=x1 [k]; compl unit =1
proc int time = clock + cycles ;
(The following declarations are given first without, and then with, the ex-
tensions of 9.2)
ref real x = loc real ; real x;
ref int sum = loc int:=0; int sum:= 0 ;
ref [either: either, either: either] real a =loc[1:m, 1:] real:= x2;
[(I:m, 1:n] real a:= x2;
proc (real) real vers = ((real x) real: 1 —cos (x));
proc vers = (real x) real: 1 — cos (x);
ref proc (int) int 4= loc proc (int) int:= ((int:) int : abs 7) ;
procg:= (int¢) int: abs 7;
b) absi; locreal; locint:=0; $4-d.11de+2d$ }

7.4.2. Semantics
An identity-declaration is elaborated in the following steps:

Step 1: The formal-declarer D of its formal-parameter Fis developed {7.1.2.c};

Step 2: Its actual-parameter A and all boundscripts contained in D, as possibly
modified in Step 1, but not contained in any boundscript contained in D, are
elaborated collaterally {6.2.2.a};

Step 3: If the value V of A is a name which refers to a component {2.2.2.k} of
a multiple value having one or more states equal to 0, then the further elabora-
tion is undefined; otherwise, if V is a name other than nil, then the value to
which V refers, or otherwise V itself, is termed W;

Step 4: If W is not a structured value or multiple value, then Step 7 is taken;
otherwise, if V is not a name, then Step 6 is taken;

Step 5: For each flexible-symbol-option S contained in D, as possibly modified
in Step 1, but not contained in any boundscript contained in D, {the correspond-
ing state is checked, i.e.,} if S is a flexible-symbol (empty) and the corresponding
state in Wis 1 (0), then the further elaboration is undefined; otherwise, Step 6
is taken;

Step 6: For each boundscript contained in D, as possibly modified in Step 1,
but not contained in any boundscript contained in D and not followed by a
flexible-symbol, {the corresponding bound is checked, i.e.,} if its value is not
the same as the corresponding bound, if any, in W, then the further elaboration
is undefined; otherwise, Step 7 is taken;

Step 7: The identifier of F is made to possess V.

{According to Step 6, the elaboration of the declaration
(1:2] real x1=(12, 34, 5.6)
is undefined and according to Step 5 the elaboration of the declaration
ref [1:flex] real x1=[1:2] real:= (1.2, 3.4)
is undefined. The elaboration of the declaration
[1:flex] real x1=(1.2,34)

148 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

is well defined, but its effect is also obtained by the elaboration of the less con-
fusing declaration

[Jreal x1=(12, 34).}

7.5. Operation Declarations

{Operation-declarations provide the operator-defining occurrences of opera-
tors, e.g., opv =(reala,b) real: (random <.5|a|b), which contains an
operator-defining occurrence of v as a dyadic-operator. Unlike identity-declara-
tions of which no two for the same identifier may occur in a reach (4.4.2.b),
more than one operation-declaration involving the same adic-indication may
occur in the same reach, see 10.2.3.i, 10.2.4.i, etc.}

7.5.1. Syntax
a) operation declaration{70a} :
PRAM caption{b}, equals symbol{31c}, actual PRAM parameter{74b}.
b) PRAM caption{a} : operation symbol{31d},
virtual PRAM plan{71x}, PRAM ADIC operator{43b,c,—}.
{Examples:
a) op A =(boola,b) bool: (a|b|false);
op abs=(reala) real: (a<0| —a|a) (see 9.2.d,¢);
b) op (bool, bool) bool A ; op (real) real abs}

7.5.2. Semantics
An operation-declaration is elaborated in the following steps:
Step 1: Its actual-parameter is elaborated;
Step 2: The operator of its caption is made to possess the {routine which is the}
value obtained in Step 1.
{The formuia (8.4.1) p A¢, where A identifies the operator-defining occurrence
of A in the operation-declaration
op » = (bool join, proc bool mccarthy) bool : (jokn | mecarihy | false),

possesses the same value as it would if A identified the operator-defining occur-
rence of A in the operation-declaration

op A =(bool a,5) bool: (a| b | false),
except, possibly, when the elaboration of ¢ involves side effects on that of 4.}

8. Unitary Clauses

{Unitary-clauses may occur as actual-parameters, e.g., x in sin (%), as sources
in assignations, e.g., ¥ in x := ¥, in casts, especially in routine-denotations, e.g.,
i 4:=11in ((refint:)int:¢ 4:=1), or may be used to construct serial-
clauses or collateral-clauses, e.g., ¥ 1= 1in (x :=I;y :=2)orin (x := 1, y:=2).
Unitary-clauses either are closed, collateral or conditional, or are coercends. There
are four kinds of coercends: confrontations, e.g., x := 1, formulas, e.g., x +1,
cohesions, e.g., next of cell, and bases, e.g., x. These coercends and the closed-,

Report on the Algorithmic Language ALGOL 68 149

collateral- and conditional-clauses are grouped into the following four classes, each
class being a subclass of the next: primaries, which may be subscripted and
parametrized, e.g., xI and sin in x1 [¢] and sin(x); secondaries, from which
fields may be selected, e.g., z in 7e of z; tfertiaries, which may be operands,
or may be destinations in assignations, or may occur in identity- or conformity-
relations, e.g., xin x 47 orin x := I orin x :=: yy or in % ::= 77, or may be
boundscripts, e.g., m,0 and » in x2 [:m @ 0,], and, finally, unitary-clauses,
which is the largest class. Thus, » of s () means that s is first called or sub-
scripted, whereas (7 of s) () means that the field is selected first. Also, » of s ¢
means that the field is selected from s before elaborating the routine possessed
by -+, while to force the elaboration of 4 first, one must write 7 of (s -+¢).}

8.1.1. Syntax

a) SORTETY unitary MOID clause{61e} : SORTETY MOID tertiary{b} ;
SORTETY MOID confrontation{820d,e,1f,g,830a,—}.

b) SORTETY MOID tertiary{a,71u,831b,8322,8334a,861h,i} :
SORTETY MOID secondary{c} ;
SORTETY MOID ADIC formula{820d,e,f,g,84b,g}.

¢) SORTETY MOID secondary{b,84f,852a} : SORTETY MOID primary{d} ;
SORTETY MOID cohesion{820d,e,f,g,850a}.

d) SORTETY MOID primary{c,861a,862a} :
SORTETY MOID base{820d,¢,f,g,860a,b} ;
SORTETY CLOSED MOID clause{62b,c,d,f,63a,64a,—}.

{Examples:
a) x;x:=1;
b) x;x+1;
c) x;real;
d) x;(x+1)}

8.2. Coercends

{Coercends are of four kinds: bases, e.g., , cohesions, e.g., e of z, formulas,
e.g., »-+y and confrontations, e.g., x:= 1. These are collectively considered as
coercends because it is in their production rules that the basic coercions appear.

In current programming languages certain implicit changes of type are de-
scribed, usually in the semantics. Thus x := I may mean that the integral value
of 1 yields an equivalent real value which is then assigned to the name possessed
by %. In ALGOL 68, such implicit changes of mode are known as coercions, and
are reflected in the syntax. Certain coercions available in other languages, such
as that in ¢ := &, are not permitted. One must write 7 : = round x or ¢ := entier x,
for in this situation it is felt advisable for the programmer to state the coercion
explicitly. Apart from this, all the coercions which the programmer might reason-
ably expect are supplied.

There are eight basic coercions. They are: dereferencing, deproceduring, pro-
ceduring, uniting, widening, rowing, hipping and voiding. In x + 3.14, the base x,
whose a priori mode is 'reference to real', is dereferenced to 'real’; in x:==
random, the base random, whose a priori mode is 'procedure real’, is depro-

150 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

cedured to 'real’; in proc real p = x + 3.14, the formula x + 3.14, whose a priori
mode is 'real’, is procedured to 'procedure real’; in union (int, real) i := I,
the base I, whose a priori mode is 'integral’, is united to 'union of integral
and real mode'; in x:= I, the base I, whose a priori mode is "integral’, is
widened to 'real’; in strings:= ""a”’, the base "a’’, whose a priori mode is
"character’, is rowed to 'row of character'; in x := skip, the skip skip, which
has no a priori mode, is hipped to 'real' and in (x := 1; y : = 2), the confrontation
x:= 1, whose a priori mode is 'reference to real’, is voided (, i.e., its value is
ignored).

The kinds of coercion which are used depend upon three things: ''syntactic
position"', a priori mode and a posteriori mode (, i.e., the modes before and after
coercion). There are four sorts of syntactic position. They are: "'strong ' positions,
i.e., actual-parameters, e.g., x in sin (x), sources, e.g., ¥ in y:= x, conditions,
e.g., x>0 in (x>0 x|0), subscripts, e.g., ¢ in x1I [4], etc.; "firm" positions,
i.e., operands, e.g., x in x4y, transformats, e.g., $548, and certain primaries,
e.g., sin in sin (x); "'weak'" positions, i.e., certain primaries, e.g., xI in x1I [4],
and certain secondaries, e.g., z in 7e of z; and "'soft"" positions, i.e., destinations,
e.g., ¥ in x := y, and some other fertiaries, e.g., xx in xx :1=: «.

Strong positions are so termed because the a posteriori mode is dictated
entirely by the context. Such positions lead to the possibility of any of the eight
basic coercions. Fiirm positions are, e.g., operands, in which widening, rowing,
hipping and voiding must be excluded, since, otherwise, the identification of
the operations involved in i--7, x4 v (, supposing -+ to be declared also for
"row of real'), ¢+ skip and 7+ algol could not be properly made. In the weak
positions, only deproceduring and dereferencing are permitted, and special care
must be taken that dereferencing removes a 'reference to' only if followed by
‘reference to'. The I in xI [¢]:= 1 demonstrates the necessity for this look-
ahead. In the soft positions, the a posteriori mode is the a priori mode except
for the removal of zero or more times 'procedure’. Thus in soft positions only
deproceduring is performed.

In the productions of a notion, the sort (strong, firm, weak, soft) of position
is passed on, or modified during balancing (to strong), and leads to basic coercions
which appear in the production rules for coercends; moreover, the coercion must
be completely expended in these rules. For example, y in x:= y is a real-source
and, therefore, a strong-real-unit (8.3.1.1.c); the sort 'strong' is passed through
the productions of 'strong real unit' until a 'strong real base' is reached (8.1.1.d);
this is then produced to 'strongly dereferenced to real base' (8.2.0.1.d), next to
‘reference to real base' (8.2.1.1.a) and finally to 'reference fo real mode
identifier' (8.6.0.1.a).}

§.2.0.1. Syntax

a)x coercend : SORT COERCEND({d,e,f,g} ; SORTly ADAPTED to COERCEND
{821a,b,822a,b,¢,8232,8244a,825a,b,c,d,826a,827a,828a,b, —}.

b)*x SORT coercend : SORT COERCEND{d,e,f,g}.

c)x ADAPTED coercend : SORTly ADAPTED to COERCEND{821a,b,822a,b,c,
823a,824a,825a,b,c,d,826a,827a,828a,b,—}.

Report on the Algorithmic Language ALGOL 68 151

d) strong COERCEND{81a,b,c,d}: COERCEND{830a,84b,g,850a,860a,b,—} ;

strongly ADAPTED to COERCEND{821a,8222,823a,824a,825a,b,c,d,
826a,827a,828a,b,—}.

e) firm COERCEND{81a,b,c,d,84d,{} : COERCEND{830a,84b,g,850a,860a,b,—} ;
firmly ADJUSTED to COERCEND({821a,822a,823a,824a,—}.

f) weak COERCEND{81a,b,c,d} : COERCEN D{830a,84b,g,850a,860a,b,—} ;
weakly FITTED to COERCEND{821b,822b,—}.

g) soft COERCEND{81a,b,c,d} : COERCEN D{830a,84b,g,850a,860a,b,—} ;
softly deprocedured to COERCEND{822c}.

{Examples:

314 (in x:=3.14); v (in x:= v);

) 38.14; x (in 3.14 +x) ; sin (in sin (x));

) xI (in x1 [4]) ; 2z (in 7e of 2z in the reach of ref compl zz) ;
g x({mx:=1);xo0ory(inxory:=314)}

S

8.2.1. Dereferenced Coercends

{Coercends are dereferenced when it is required that an initial 'reference to"
should be removed from the a priori mode; e.g., in x:= v, the a priori mode
of yis 'reference fo real' but the a posteriori mode required in this strong position
is 'real’. Here, y possesses a name which refers to a real number and it is that
real number which is assigned to (the name possessed by) x, not that name
(possessed by).}

8.2.1.1. Syntax
a) STIRMIy dereferenced to MODE FORM({a,820d,e,822a,b,823a,824b,d,825a,b,c,
d,826a} : reference to MODE FORM{830a,84b,g,850a,860a} ;
STIRMIy FITTED to reference to MODE FORM{a,822a}.
b) weakly dereferenced to reference to MODE FORM({b,820f} :
reference to reference to MODE FORM{830a,84b,g,850a,860a} :
weakly FITTED to reference to reference to MODE FORM{b,822b}.

{Examples:

a) y(inx:=yorinx+y);yy (in x:=yyorin x +yy);
b) rxI (in rxI [¢] in the reach of ref [] real rx1) }

8.2.1.2. Semantics
A dereferenced-coercend is elaborated in the following steps:
Step 1: It is preelaborated {1.1.6.i};
Step 2: If the value obtained in Step 1 is not nil, then the value of the

dereferenced-coercend is a copy of the value referred to by the value {name}
obtained in Step 1; otherwise, the further elaboration is undefined.

{Weak dereferencing must look ahead so that it does not remove a ‘reference
to' which precedes a mode which does not begin with 'reference to'. For example,
in x1 [¢] := y, the primary x1I should not be dereferenced, for x1 [{] must possess
a name. In x7 [¢]+y, the x1 is not dereferenced but the base x1 [4] is.}

152 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

8.2.2. Deprocedured Coercends

{Coercends are deprocedured when it is required that an initial 'procedure’
should be removed from the a priori mode; e.g., in x:= random, the a priori
mode of random is 'procedure real' but the a posteriori mode required in this
strong position is 'real’. Here, the routine possessed by random is elaborated
and the real number yielded is assigned to (the name possessed by) x.}

8.2.2.1. Syntax

a) STIRMIly deprocedured to MOID FORM{a,b,820d,e,8212,824b,d,825a,b,c,d,
826a,828b} : procedure MOID FORM{830a,84b,g,8502,860a} ;
STIRMIy FITTED to procedure MOID FORM{a,821a}.
b) weakly deprocedured to MODE FORM({8201,821b} :
procedure MODE FORM{830a,84b,g,850a,860a} ;
firmly FITTED to procedure MODE FORM({a,821a}.
¢) softly deprocedured to MODE FORM{c,820g} :
procedure MODE FORM{830a,84b,g,850a,860a} ;
softly deprocedured to procedure MODE FORM{c}.

{Examples:
a) random (in x 1= random or in x +random) ;
b) 7z (in 7e of 7z in the reach of proc compl 2= compl : (random, random)) ;
c) xory(inxory:=1)}

8.2.2.2. Semantics
A deprocedured-coercend is elaborated in the following steps:
Step 1: It is preelaborated {1.1.6.i};

Step 2: The deprocedured-coercend is replaced by a closed-clause which is a
copy of {the routine which is} its prevalue obtained in Step 1, and the elaboration
of that closed-clause is initiated; the value yielded, if any, is that of the
deprocedured-coercend and if this elaboration is completed or terminated,
then the closed-clause is replaced by the deprocedured-coercend before the
elaboration of a successor is initiated.

{See also calls, 8.6.2.}

8.2.3. Procedured Coercends

{Coercends are procedured when it is required that an initial 'procedure’
should be placed before the a priori mode (i.e., they should be turned into pro-
cedures without parameters), e.g., x:= 1 in proc real .= x:= 1. Here, I is
not assigned to x, but that routine which assigns 1 to x is assigned to p. Notice,
that proc p .= x := 1 is syntactically incorrect, since x := 1 must first be voided
before it can be procedured to the mode 'procedure void'; the way to achieve
this is by using a void-cast-pack: procp:= (: x:=1). For the coercion in
proc stop = exit see 8.2.7.}

Report on the Algorithmic Language ALGOL 68 153

8.2.3.1. Syntax

a) STIRMly procedured to procedure MOID FORM{a,820d,€,824b,826a} :
MOID FORM{830a,84b,g,850a,860a,b,—} ;
STIRMIly dereferenced to MOID FORM{821a,—} ;
STIRMIy procedured to MOID FORM{a,—} ;
STIRMIy united to MOID FORM{824a,—} ;
STIRMIy widened to MOID FORM({825a,b,c,d,—} ;
STIRMIy rowed to MOID FORM{826a,—}.

{Examples:
a) 3.14 (in proc real p:=3.14) ; x (in proc real p =x);
3.14 (in proc proc real p:= 3.14) ;
1 (in proc union (int, real) p:==1);
1 (in procreal p:=1); 1 (in proc[]intp:=1)}

8.2.3.2. Semantics
A procedured-coercend is elaborated in the following steps:

Step 1: A copy is made of it {itself, not its value}; if the mode enveloped by
the original of the procedured-coercend is 'procedure’ followed by a second
mode {not by 'void'}, then the second mode is considered; otherwise, Step 3
is taken;

Step 2: A virtual-declarer, which, if it occurred in the smallest reach containing
the procedured-coercend, would specify the considered mode, followed by a
cast-of-symbol is placed before the copy;

Step3: An open-symbol is placed before and a close-symbol is placed after the
copy as possibly modified in Step 2; the thus modified copy is the {routine
which is the} value of the procedured-coercend.

{The elaboration of the strong-procedure-real-base (¢ |x1|y1) [i] yields
the routine (real: (p|x1|y1)[:]), whereas that of the strong-conditional-
procedure-real-clause (p | xI[%] | y1[i]) yields either the routine (real: x1[z])
or the routine (real : yI[4]) depending on the value of p; similarly, the elaboration
of the firm-procedure-real-confrontation x:= (a:=a +1; y) yields the routine
(real:x:= (a:=a+1;y)), whereas that of the firm-closed-procedure-real-
clause (a:=a+1; x:= y) yields, apart from a change in the value of 4, the
routine (real: x:= y); as last example, the elaboration of the strong-procedure-
void-base (:4:=14-+1) yields the routine ((:4:=4+1)).}

8.2.4. United Coercends

{Coercends are united when it is required that the a priori mode should be
changed to a mode united from (4.4.3.a) it, e.g., in union (int, real) i := 2,
the base 2 is of the a priori mode 'integral’, but the source of this assignation
requires the mode 'union of integral and real mode'.}

8.2.4.1. Syntax

a) STIRMIy united to union of LMOODS MOOD mode FORM{820d,€,8232,826a} :
one out of LMOODS MOOD mode FORM({b} ;
some of LMOODS MOOD and but not FORM{c}.

154 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

b)

one out of LMOODSETY MOOD RMOODSETY mode FORM{a} :
MOOD FORM{830a,84b,g,850a,860a} ;
firmly FITTED to MOOD FORM{821a,822a} ;
firmly procedured to MOOD FORM{823a,—}.
some of LMOODSETY MOOD and RMOODSETY but not LOSETY FORM{a,c} :
some of LMOODSETY and MOOD RMOODSETY but not LOSETY
FORM{c,d,—};
some of LMOODSETY RMOODSETY but not MOOD and LOSETY
FORM{c,d,—}.
some of and LMOOD MOOD RMOODSETY but not LMOOT LOSETY
FORM{c} :
union of LMOOD MOOD RMOODSETY mode FORM{830a,84b,g,850a,
860a} ;
firmly gﬂTED to union of LMOOD MOOD RMOODSETY mode FORM
{821a,822a}.

{Examples:

2w,

2;1; true;

ri; 47 (allin (union ir =(int, real); ir ir:= 2, irri=(p|i| x);
union (ir, proc bool) irb := 7i; irb:=ir; irb : = true))}

{In uniting, 'strong' leads to 'firm' in order that unions like that involved

in union (int, real) 77 := I should not cause ambiguities. In this example, if
the base 1 is widened, then it cannot be united, i.e., in the order or productions
in the syntax, uniting cannot be followed by widening.}

8.2.5. Widened Coercends

{Coercends are widened when it is required that the a priori mode should be

changed from 'integral' to 'real’ or from 'real’ to 'COMPLEX", e.g., Iin z:= I,
or from 'BITS" to 'row of boolean' or from 'BYTES' to 'row of character'.}

8.2.5.1. Syntax

a)

b)

strongly widened to LONGSETY real FORM{b,820d,8232,826a} :
LONGSETY integral FORM{830a,84b,g,850a,860a} ;
strongly FITTED to LONGSETY integral FORM{821a,822a}.

strongly widened to structured with REAL field letter r letter e
and REAL field letter i letter m FORM{820d,823a,826a)} :
REAL FORM{830a,84b,g,8502,860a} ;
strongly FITTED to REAL FORM{821a,822a} ;
strongly widened to REAL FORM{a}.

strongly widened to row of boolean FORM{820d,8232,826a} :
BITS FORM{830a,84b,g,8502,860a} ;
strongly FITTED to BITS FORM{821a,822a}.

strongly widened to row of character FORM{820d,8232,826a} :
BYTES FORM{830a,84b,g,850a,860a} ;
strongly FITTED to BYTES FORM{821a,822a}.

Report on the Algorithmic Language ALGOL 68 155

{Examples:
a) I(inx:=1);4%(in x:=1);
b) 314 (inz:=3814);x (inz:==x); I (inz:=1);
¢) 101;¢(in [1:3] bool b1:= (p|101]¢));
d) etb “abc” ;¥ (ins:= (p| ctb “abc” | 7))}

8.2.5.2. Semantics
A widened-coercend is elaborated in the following steps:

Step 1: It is preelaborated {1.1.6.i} and the value yielded is considered:

Step 2: If the considered value is an integer, then the real number equivalent
to it {2.2.3.1.d} is considered instead; otherwise, if the considered value is a
real number, then the structured {complex (10.2. 7)} value composed of two
fields, which are the considered value and the real number 0 of the same length
number as that of the considered value and which are selected by letter-r-
letter-e and letter-i-letter-m respectively is considered instead : otherwise, {the
considered value is a structured value with one field and} the field of the
considered value is considered instead:

Step 3: The value of the widened-coercend is a new instance of the considered
value; its mode is that enveloped by the original of the widened-coercend.

{Widening may not be done in firm positions, for, otherwise, % := 7 - 1 might
be ambiguous.}

8.2.6. Rowed Coercends

{Coercends are rowed when it is required that 'row of' should be placed
either before the a priori mode or after an initial 'reference to' of the a priori
mode; e.g., in [1: I] real al := 3.14, the a priori mode of the base 3.14 is 'real’
but the a posteriori mode required in this strong position is ' row of real’, whereas
in ref [:] real a2 =x, the a priori mode of the base x is 'reference to real
but the a posteriori mode required is 'reference to row of real'. Here, the value
to which x refers, is turned into a multiple value with a descriptor. Note that
the value of a2 [1]:=: x is true.}

8.2.6.1. Syntax

a) strongly rowed to REFETY row of MODE FORM({a,820d,823a} :
REFETY MODE FORM{830a,84b,g,850a,8602} ;
strongly ADJUSTED to REFETY MODE FORM{821 a,822a,823a,824a,—} ;
strongly widened to REFETY MODE FORM{825a,b,c,d,~} ;
strongly rowed to REFETY MODE FORM{a,—} ;
REFETY row of MODE FORM vacuum{b,—}.
b) row of NONROW base vacuum{a} : EMPTY.
{Examples:
a) 314 (in[1:1]real x1:=3.14); y (in ref[1: 1] real x1I =y);
3.14 (in [1: 1] proc real p:= 3.14) ;
3.14 (in [1:1] compl z1:=3.14);
314 (in [1:1,1:1] real x2:= 3.14) ;
y(nref{1:1,1:1]real x2=y);
(the EMPTY following :=in [1: 0] real:=)}

156 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

8.2.6.2. Semantics
A rowed-coercend is elaborated in the following steps:

Step 1: The mode enveloped by the original of the rowed-coercend is considered ;
if that mode begins with 'row of row of' or if the rowed-coercend is not
empty, then it is preelaborated {1.1.6.i}, the value obtained and its scope are
considered and Step 3 is taken;

Step 2: A new instance of a multiple value {2.2.3.3} composed of zero elements
and a descriptor consisting of an offset 1 and one quintuple (1,0,1,1, 1) is
considered and Step 7 is taken;

Step 3: If the considered mode does not begin with 'reference to', then Step 5
is taken; otherwise, if the considered value is not nil, then Step 4 is taken;
otherwise, the elaboration of the rowed-coercend is complete, its value is a
new instance of nil whose mode is the considered mode;

Step 4: That instance of the value to which the {name which is the} considered
value refers is considered instead; if the considered value is a multiple value
having one or more states equal to 0, or if it is a component {2.2.2.k} of such
a multiple value, then the further elaboration is undefined; otherwise, Step §
is taken:

Step 5: If the considered value is a multiple value, then Step 6 is taken; other-
wise, the instance of a multiple value composed of the considered value as
only element and of a descriptor consisting of an offset 1 and one quintuple
(1,1,1,1,1) is considered instead, and Step 7 is taken;

Step 6: Let d stand for (uy —I; +1) X dy; the instance of a new multiple value,
composed of the elements of the considered value and of a descriptor which is
a copy of the descriptor of the considered value into which the additional
quintuple (1, 1, d, 1, 1) is inserted before the first quintuple, and in which all
states have been set to 1, is considered instead ;

Step 7: If the considered mode does not begin with 'reference to', then the value
of the rowed-coercend is the considered value; otherwise, a name N is made
to refer to the considered value {whose scope is the prescope obtained in Step 1,
and} whose mode is the considered mode; this name N is the value of the
rowed-coercend.

8.2.7. Hipped Coercends

{Coercends are hipped when they are skips, jumps or nihils. Though there is
no a priori mode, whatever mode is required by the context, is adopted; e.g.,
in real x = skip, the base, skip, which has no a priori mode, is hipped to 'real".
Since hipped-coercends are so very accommodating, no other coercions may
follow them (in the elaboration order); otherwise, ambiguities might appear.
Consider, for example, the several meanings of the assignation union (int, real,
bool, char) » := skip, supposing uniting could follow hipping.}

8.2.7.1. Syntax

a) strongly hipped to MOID base{820d} :
MOID skip{b} ; MOID jump{c} ; MOID nihil{d,—}.

Report on the Algorithmic Language ALGOL 68 157

b) MOID skip{a} : skip symbol{31g}.
¢) MOID jump{a}: go to symboi{31f} option, label identifier{41b}.
d) reference to MODE nihil{a} : nil symbol{31g}.

{Examples:
a) skip; go to grenoble ; nil ;
b) skip;
c) go to grenoble; st pierre de chartreuse ;
d) nil}

8.2.7.2. Semantics
a) A skip is elaborated in the following steps:

Step 1: If the terminal production of the metanotion 'MOID' enveloped {1.1.6.j}
by the original {1.1.6.c} of the skip is a mode, then this mode is considered
and Step 2 is taken; otherwise, {it is 'void" and} the elaboration of the skip is
complete;

Step 2: If the considered mode begins with 'union of', then some mode from
which it is united {4.4.3.a} is considered instead;

Step 3: The value of the skip is a new instance of some value of the considered
mode and whose scope is the program.

b) A jump is elaborated in the following steps:

Step 1: If the original of the jump envelops a mode which is ' procedure MOID"
where ""MOID" stands for any terminal production of the metanotion 'MOID "
then this mode is considered and Step 2 is taken; otherwise, the elaboration
of the jump is terminated and it appoints as its successor the unitary-clause
following the label-sequence or the completer containing the defining occur-
rence {in a label (4.1.2)} identified by the label-identifier of the jump;

Step 2: A copy is made of the jump and an open-symbol followed by a cast-of-
symbol is placed before and a close-symbol is placed after the copy; if the
considered mode is not 'procedure void', then the initial ' procedure’ is deleted
from it and a virtual-declarer, which, if it occurred in the smallest reach con-
taining the jump, would specify the mode so obtained, is inserted between the
open-symbol and the cast-of-symbol in the copy; otherwise, an open-symbol is
placed before and a close-symbol is placed after the thus modified copy;

Step 3: The value of the jump is the routine consisting of the same sequence of
symbols as the copy as modified in Step 2 and whose mode is that enveloped
by the original of the jump.

¢) The elaboration of a nihil involves no action; its value is a new instance
of nil {2.2.3.5.a} whose mode is that enveloped by the original of the nihil.

{Skips play a role in the semantics of routine-denotations (5.4.2.Step 2) and
calls (8.6.2.2.Step 4). Moreover, they are useful in a number of programming
situations, like e.g.,

supplying an actual-parameter (7.4.1.b) whose value is irrelevant or is to be
calculated later; e.g., / (3, ~) where f does not use its second actual-para-
meter if the value of the first actual-parameter is positive; see also 11.11.ar;

158 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

supplying a constituent unit of a collateral-clause (6.2.1.b,c,d,{), e.g.,
[1:4] real x1:= (3.14, skip, 1.68, skip) ;

as a dummy statement (6.0.1.c) in those rare situations where the use of a
completer is inappropriate, e.g., I: skip) in 10.4.a. See also 9.4.a.

A jump is useful as a clause to terminate the elaboration of another clause
when certain requirements are not met, e.g., gotoexit in y:=if x>0 then
sqrt (x) else go to exit fi.

If e, €2 and e3 are label-identifiers, then the reader might recognize the effect
of the declaration [] proc switch=(el, e2,e3) and the statement switch [<];
however, the declaration [1: 3 flex] proc switch := (el, e2, e3) is perhaps more
powerful, since assignations like swifch [2] := el and switch:= (el, €2, 3, ed) are
possible.

A nihil 1s particularly useful where structured values are connected to one
another in that a field of each structured value refers to another one except for
one or more structured values where the field does not refer fo anything at all;
such a field must then be nil.}

8.2.8. Voided Coercends

{Coercends are voided when it is required that their values (and therefore
modes) should be ignored, e.g., in (x:=1; y:= 2}, the confrontation x:=1,
whose a priori mode is 'reference to real’, is voided (see 6.1.1.i). Confrontations
must be treated differently from the other coercends in order that, e.g., in
(proc p; p:= stop,; p), the confrontation p := stop does not involve the elabora-
tion of the routine possessed by stop, but in the last occurrence of p, that routine
is elaborated.}

8.2.8.1. Syntax
a) strongly voided to void confrontation{820d} : MODE confrontation{830a}.
b) strongly voided to void FORESE{820d} :

NONPROC FORESE{84b,g,850a,860a} ;

strongly deprocedured to NONPROC FORESE{822a}.

{Examples:
a) x:=1(n(x:=1;y:=2));
b) x; random (in (x; random; skip)) }

{The value obtained by elaborating (i.e., preelaborating 1.1.6.i) a voided-
coercend is discarded.}

{In the reach of the declaration [] proc switch = (el, ¢2, ¢3) and the clause-
train el: e2: e3: stop, the construction swiich; stop is not a serial-clause because
switch is not a strong-void-unit. In fact, swifch can not be deprocedured, because
its mode begins with 'row of' and no coercion will remove the 'row of' and it
cannot be voided because 'row of procedure void' is not a terminal production
of 'NONPROC'. However, the elaboration of switch [2]; skip will involve a
jump to the label e2:.}

Report on the Algorithmic Language ALGOL 68 159

8.3. Confrontations

8.3.0.1. Syntax
a) MODE confrontation{81a,820d,e,1,g,821a,b,822a,b,¢,823a,824b,d,825a,b,c,d,
826a,828a} : MODE assignation{831a,—} ; MODE conformity relation
{832a,—} ; MODE identity relation{833a,—} ; MODE cast{834a}.
{Examples:
a) x:=3I4;ec::=a (see 11.11.1); xx:=:x0r y; []real: 1}

8.3.1. Assignations

{In assignations, e.g., x:=3.14, (an instance of) a value is assigned to a
name. In x:= 3.14, the value possessed by the source 3.14 is assigned to the
(name which is the) value possessed by x.}

8.3.1.1. Syntax

a) reference to MODE assignation{830a} : reference to MODE destination{b},
becomes symbol{31c}, MODE source{c}.

b) reference to MODE destination{a} : soft reference to MODE tertiary{81b}.

c) MODE source{a} : strong MODE unit{61e}.

{Examples:
a) x:=1;locreal:=3.14;
b) x;locreal;
¢y 1;3.14}

8.3.1.2. Semantics

a) When a given instance of a value is "superseded" by another instance of
a value, then the name which refers to the given instance is caused to refer to
that other instance, and, moreover, each name which refers to an instance of a
structured or multiple value of which the given instance is a component {2.2.2.k}
is caused to refer to the instance of the structured or multiple value which is
established by replacing that component by that other instance.

b) When a field (an element) of a given structured (multiple) value is superseded
by another instance of a value, then the mode of the thereby established structured
(multiple) value is that of the given value.

c) An instance of a value is assigned to a name in the following steps:

Step 1: If the given value does not refer to a component of a multiple value
having one or more states equal to 0 {2.2.3.3.b}, if the scope of the given
name is not larger than the scope of the given value {2.2.4.2} and if the given
name is not nil, then Step 2 is taken; otherwise, the further elaboration is
undefined;

Step 2: The instance of the value referred to by the given name is considered;
if the mode of the given name begins with 'reference to structured with’
or with 'reference to row of', then Step 3 is taken; otherwise, the considered
instance is superseded {a} by a copy of the given instance and the assignment
has been accomplished;

41 Numer. Math., Bd. 14

160 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

Step 3: If the considered value is a structured value, then Step § is taken;
otherwise, applying the notation of 2.2.3.3.b to its descriptor, if for some
i,i=1,...,n s=1(=1) and I; (1) is not equal to the corresponding bound
in the descriptor of the given value, then the further elaboration is undefined;

Step 4: If some s; =0 or , =0, then, first, a new instance of a multiple value
M is created whose descriptor is a copy of the descriptor of the given value
modified by setting its states to the corresponding states in the descriptor of
the considered value, and whose elements are copies of elements, if any, of
the considered value, and, otherwise, are new instances of values whose mode
is, or is a mode from which is united, the mode obtained by deleting all initial
"row of's from the mode of the considered value; next, M is made to be referred
to by the given name and is considered instead;

Step 5: Each field (element, if any,) of the given value is assigned {in an order
which is left undefined} to the name referring to the corresponding field (ele-
ment, if any,) of the considered value and the assignment has been accom-
plished.

d) An assignatfion is elaborated in the following steps:
Step 1: Its destination and source are elaborated collaterally {6.2.2.a};
Step 2: The value of its source is assigned to the {name which is the} value of
its destination;
Step 3: The value of the assignation is the value of its destination.
{Observe that (x, y):= (1.2, 3.4) is not an assignation, since (x, y) is not

a destination; the mode of the value of a collateral-clause (6.2.1.c,d,f) does not
begin with 'reference to' but with 'row of' or 'structured with'.}

8.3.2. Conformity Relations

{The purpose of conformity-relations is to enable the programmer to find out
the current mode of an instance of a value if the context permits this mode to
be one of a number of given modes. See, for example, 11.11.i,q,y,ah. Conformity-
relations are thus used in conjunction with unions.}

{I would to God they would either conform,
or be more wise, and not be cafched!
Diary, 7 Aug. 1664, Samuel Pepys.}

8.3.2.1. Syntax

a) boolean conformity relation{830a} :
soft reference to LMODE tertiary{81b}, conformity relator{b},
RMODE fertiary{81b}.

b) conformity relator{a} :
conforms to symbol{31c} ; conforms to and becomes symbol{31c}.
{Examples:
a) int::idrd;ecii=a (see 11.11.);
b) i i=}

Report on the Algorithmic Language ALGOL 68 161

8.3.2.2. Semantics
A conformity-relation is elaborated in the following steps:
Step 1: Itstextually last tertiary is elaborated and the value yielded is considered;

Step 2: If the mode enveloped by the original of its textually first tertiary is
'reference to' followed by a mode which is, or is united from {4.4.3.a}, the
mode of the considered value, then the value of the conformity-relation is
true and Step 4 is taken; otherwise, Step 3 is taken;

Step 3: If the considered value refers to another value, then this other value is
considered instead and Step 2 is taken; otherwise, the elaboration is complete
and the value of the conformity-relation is false;

Step 4: If its conformity-relator is a conforms-to-and-becomes-symbol, then its
textually first tertiary is elaborated and the considered value is assigned
{8.3.1.2.c} to the value of that tertiary.

{Although not suggested by the wording of Step 2, the, possibly, most obvious
applications of conformity-relations are those in which 'RMODE' in 8.3.2.1.a
begins with 'union of' whereas 'LMODE' does not. Then, the mode of the con-
sidered value (Step 1) is not 'RMODE"' (which is united from it) and the con-
formity-relation serves to ask whether this mode is 'LMODE" and, if so and if
the conformity-relator is a conforms-to-and-becomes-symbol, to assign this value
to a name whose mode does not begin with 'reference to union of' and, thereby,
make this value easily available elsewhere. Several applications, partly disguised
by the application of the extensions 9.4 are given in 11.11.

Observe that if the considered value is an integer and the mode of its textually
first tertiary is 'reference to' followed by a mode which is, or is united from,
the mode 'real’ but not from 'integral’, then the value of the conformity-relation
is false. Thus, no automatic widening from 'integral' to 'real' takes place. For
example, in union (real, bool) 7b; 7b::= 1, no value is assigned to 75, but
in 7b::= 1.0, the assignment takes place. Rule 8.3.2.1.a is the only rule in the
syntax where a notion other than a coercend produces uncoerced clauses, i.e.,
those produced from 'RMODE tertiary'.}

8.3.3. Identity Relations

{Identity-relations may be used to ask whether two names of the same mode
are the same; e.g., in the reach of the declarations struct cons = (ref cong car,
cdr); union cong=(cons, string); cons cell:= (cong:= "abc”, nil), the
identity-relation cdr of cell :=: nil possesses the value false because the value
of cdr of cell is the name referring to the second field of the structured value
referred to by the value of cell and, hence, is not nil, but the value of (ref cong:
cdr of cell) :=: nil is frue.}

8.3.3.1. Syntax
a) boolean identity relation{830a} :
soft reference to MODE tertiary{81b}, identity relator{b},
strong reference to MODE tertiary{81b} ;
strong reference fo MODE tertiary{81b}, identity relator{b},
soft reference to MODE tertiary{81b}.

11*

162 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

o

b) identity relator{a} : is symbol{31c} ; is not symbol{31c}.

{Examples:
a) xoryl=:!X%;xX:=:%;
b) i=:; ==}

8.3.3.2. Semantics
An identity-relation is elaborated in the following Steps:
Step 1: Its tertiaries are elaborated collaterally {6.2.2.a};

Step 2: If its identity-relator is an is-symbol (is-not-symbol), then the value of
the identity-relation is true (false) if the {names which are the} values obtained
in Step 1 are the same and false (true) otherwise.

{Assuming the assignation xx := yy:= x to have been elaborated, the value
of the identity-relation xx :=: yy is false because xx and yy, though of the same
mode, do not possess the same name (7.1.2.Step 8), but the name which each
possesses refers to the same name and so (refreal:xx):=: (refreal: yy)
possesses the value true. The value of the identity-relation xx:=:x or y has a
probability 3 of being true because the value possessed by xx (effectively that of
ref real : xx here, because of coercion) is the name possessed by x, and the
routine possessed by x or y (see 1.3), when elaborated, yields either the name
possessed by x or, with equal probability, the name possessed by y.

In the identity-relation, the programmer is usually asking a specific question
concerning names and thus the level of reference is of crucial importance. Thus
at least one of the tertiaries of an identity-relation must be soft, i.e., must involve
only deproceduring and certainly no dereferencing. The construction case 7 in x,
%%, ¥ or y, nil esac:=: casej in y, skip, x o y, v¢ of z out yy esacis an example
of a delicately balanced identity-relation in which the mode is 'reference to real’.

Observe that the value of the formula I =2 is false, whereas 1:=:2 is not
an identity-relation, since the values of its tertiaries are not names. Also 2434 :=:
548 is not an identity-relation, whereas $243d$ = 54 is a formula, but involves
an operation which is not included in the standard-prelude.}

8.3.4. Casts

{Casts may be used to provide a strong position for a unitary-clause in a
position which is not strong, e.g., ref real: xx in (refreal: xx):= 1. They
play a role in routine-denotations (5.4.1.a), e.g., real:a+1 in ((int a) real:
a 1) and procedured-coercends (8.2.3.1.a), e.g., : (I: 1) in proc busy = (: (1: 1}).
A void-cast is not a clause but is a constituent of a void-cast-pack and of some
routine-denotations and thus of bases.}

8.3.4.1. Syntax

a) MOID cast{54b,830a,860b} : virtual MOID declarer{71b,z},
cast of symbol{31b}, strong MOID unit{61e}.

{Examples:
a) [Jreal:1; :x:=2314}

Report on the Algorithmic Langunage ALGOL 68 163

8.3.4.2. Semantics
The elaboration (value, if any,) of a cast is that of its unit.

8.4. Formulas

{Formulas are either dyadic-formulas, e.g., x-+1, or monadic-formulas, e.g.,
abs x. A formula contains at least one operand and at least one operator. The
order of elaboration of a formula is determined by the priority of its operators;
monadic-formulas are elaborated first and then the dyadic-formulas from the
highest to the lowest priority.}

8.4.1. Syntax

a)x SORTETY formula : SORTETY MOID ADIC formula{b,g,820d,¢,f,g}.
b) MOID PRIORITY formula{81b,820d,e,f,g,821a,b,822a,b,c,823a,824b,d,825a,b,
¢,d,826a,828b} : LMODE PRIORITY operand{d},
procedure with LMODE parameter and RMODE parameter MOID
PRIORITY operator{43b}, RMODE PRIORITY plus one operand{d,e}.
c)x operand : MODE ADIC operand{d,f}.
d) MODE PRIORITY operand{b,d} : firm MODE PRIORITY formula{820e} ;
MODE PRIORITY plus one operand{d,e}.
€) MODE priority NINE plus one operand{b,d} : MODE monadic operand{f}.
f) MODE monadic operand{e,g} : firm MODE monadic formula{820e} ;
firm MODE secondary{81c}.
g) MOID monadic formula{81b,820d,e,1,g,821 a,b,822a,b,c,8234a,824b,d,825a,b,
c,d,826a,828b} :
procedure with RMODE parameter MOID monadic operator{43c},
RMODE monadic operand{f}.
h)x dyadic formula : MOID PRIORITY formula{b}.

{Examples:
b) x+xxy;
d) xXy; «x;
e) x;

f) abs x; age of algol;
g) —absrez}

8.4.2. Semantics
A formula is elaborated in the following steps:

Step 1: The formula is replaced by a closed-clause which is a copy of the routine
possessed by the operator-defining occurrence identified by its operator {7.5.2,
4.3.2.b};

Step 2: The constituent serial-clause of the closed-clause is protected {6.0.2.d};

Step 3: The skip-symbol {5.4.2.Step 2} following the equals-symbol following its
textually first copied formal-parameter is replaced by a copy of the textually
first operand of the formula, and if the formula is a dyadic-formula, then the
skip-symbol following the equals-symbol following its textually second copied

formal-parameter is replaced by a copy of the textually second operand of
the formula;

164 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

Step 4: The closed-clause as modified in Steps 2 and 3 is replaced by a closed-
clause consisting of the same sequence of symbols; the elaboration of this
closed-clause is initiated; its value, if any, is then that of the formula and if
this elaboration is completed or terminated, then this closed-clause is replaced
by the formula before the elaboration of a successor is initiated.

{The following table summarises the priorities of the operators declared in
the standard priorities (10.2.0).

dyadic monadic

1 2 3 4 5 6 7 8 9 (10)

Y A = < -— X 1‘ L - — + / ‘l' T
4= = < -+ = L abs bin repr
X 1= = + I L [L (
1= > / L leng short
= 0 (odd sign round
e re im conj
= btb ctb

Observe that a1b is not precisely the same as & in usual notation; indeed,
the value of (—112+4=45) and that of (4 —142=3) both are true, since the
first minus-symbol is a monadic-operator, whereas the second is a dyadic-opera-
tor, Although the syntax determines the order in which formulas are elaborated,
parentheses may well be used to improve readability; e.g., (aand)v (—anr—b)
instead of anbv —ana —b.

In the formula x4y X2, both y and 2 are primaries, which allows y to be
a firm-priority-SEVEN-operand and 2 to be a firm-priority-EIGHT-operand. The
formula yx 2 is then of priority 7. Since x is also a primary, and therefore a
firm-priority-SIX-operand, x4y x2 is a priority-SIX-formula. The effect of
%+ X2 is thus the same as that of x4 (yx2).}

8.5. Cohesions

{Cohesions are of two kinds: generators, e.g., string, or selections, e.g.,
re of z. Cohesions are distinct from bases in order that constructions like & of b [7]
may be parsed without knowing the mode of 4 and 4. Cohesions may not be
subscripted or parametrized, but they may be selected from, e.g., father of algol
in father of father of algol.}

8.5.0.1. Syntax
a) MODE cohesion{81c,820d,e,f,g,821a,b,822a,b,c,823a,824b,d,82Sa,b,c,d,
8262,828b} : MODE generator{851a} ; MODE selection{852a}.
{Examples:
a) real (in xx:==real:= 3.14); re of 2}

Report on the Algorithmic Language ALGOL 68 165

8.5.1. Generators

{And as imagination bodies forth
The forms of things unknown, the poet's pen
Turns them to shapes, and gives to airy nothing
A local habitation and a name.
A Midsummer-night's Dream,

William Shakespeare.}

{The elaboration of a generator, e.g., real in xx := real := 3.14 or loc real
in ref real ¥ = loc real (usually written real x by extension 9.2.a), involves
the creation of a name, i.e.,, the reservation of storage. The use of a local-
generator implies (with most implementations) the reservation of storage in a
run-time stack, whereas global-generators imply the reservation of storage in
another region, termed the ""heap", in which garbage-collection techniques may
be used for storage retrieval. Since this is usually less efficient, global-generators
should be avoided where possible. The temptation to use global-generators un-
necessarily, is reduced by the extensions 9.2.a, which allow the greatestshortening
of the text when local-generators are used.}

8.5.1.1. Syntax
a) MODE generator{850a} :

MODE local generator{b,—} ; MODE global generator{c,—}.
b) reference to MODE local generator{a} :

local symbol{31d}, actual MODE declarer{71b}.

c) reference to MODE global generator{a} :
heap symbol{31d} option, actual MODE declarer{71b}.
{Examples:
a) locreal; heap real;
b) loc real;
¢) heap real; real}

8.5.1.2. Semantics

a) A generator is elaborated in the following steps:

Step 1: Its actual-declarer is elaborated {7.1.2.d};

Step 2: The value of the generator is the {name which is the} value obtained
in Step 1.

b) The scope {2.2.4.2} of the value of a local-generator is the smallest range
containing that generator; that of a global-generator is the program.

{The closed-clause

(ref real xx; xx:= (heap real x:= pi; x); xx = pi) (see also 9.2.a)
possesses the value frue, but the closed-clause

(ref real xx; xx:= (real x:= pi; x); xx= pi)
possesses an undefined value since the name to be assigned to the name possessed
by xx becomes undefined upon the completion of the elaboration of the inner

166 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

range, which is the scope of the name possessed by x (6.1.2.e, 7.0.2). The closed-
clause

((ref real xx; real x:= pi; xx:= x) = pi)
however, possesses the value true.}

8.5.2. Selections

{A selection selects a field from a structured value; e.g., e of z selects the
first real field (usually termed the real part) of the value possessed by z. If z
possesses a name, then 7¢ of z possesses also a name, but if w possesses a complex
value, then 7¢ of w possesses a real value, not the name referring to a real value.}

8.5.2.1. Syntax

a) REFETY MODE selection{850a} : MODE field TAG selector{71j},
of symbol{31e}, weak REFETY structured with LFIELDSETY MODE field TAG
RFIELDSETY secondary{81c}.

{Examples, assumed in the reach of the declarations:
struct language = (int age, ref language father);
language algol := (10, language : = (14, ~)), language p!1 = (4, algol); :
a) age of pl1; jather of algol }

{Rule a ensures that the value of the secondary has a field selected by the
field-selector in the selection (see 7.1.1.e,f,h,k and the remarks below 7.1.1 and
8.5.2.2). An identifier which is the same sequence of symbols as a field-selector
in one same reach creates no ambiguity. Thus, age of algol := age is a (possibly
confusing to the human) assignation if the second occurrence of age is an integral-
mode-identifier.}

8.5.2.2. Semantics
A selection is elaborated in the following steps:

Step 1: Its secondary is elaborated; if its value is nil, then the further elaboration
is undefined; otherwise, the structured value which is, or is referred to by,
that value is considered;

Step 2: If the value of the secondary is a name, then the value of the selection
is a new instance of the name which refers to that field of the considered struc-
tured value selected by its field-selector; otherwise, it is a new instance of
{the value which is} that field itself.

{In the examples of 8.5.2.1, age of algol is a reference-to-integral-selection,
and, by 8.5.0.1.a, a reference-fo-integral-cohesion, but age of pi1 is an integral-
selection and an integral-cohesion. It follows that age of algol may appear as
a destination (8.3.1.1.b) in an assignation, but age of pI1 may not. Similarly,
algol is a reference-fo-[language}-base, but i1 is a [language]-base and no
assignment may be made to pl1. (Here, [language] stands for structured-with-
integral-field-{age]-and-reference-to-[language]-field-[father] and [age] stands
for letter-a-letter-g-letter-e, etc.) The selection father of pl1, however, is a
reference-to-[language]-selection and thus a reference-to-[language]-cohesion
whose value is the name possessed by algol. It follows that the identity-relation

Report on the Algorithmic Language ALGOL 68 167

father of pil:=: algol possesses the value true. If father of Pl is used as a
destination in an assignation, then there is no change in the name which is a
field of the structured value possessed by plI, but there may well be a change
in the value of mode [language] referred to by that name. By similar reasoning
and because the operators re and im possess routines {(10.2.7.b,c) which deliver
values whose mode is 'real’ and not 'reference to real', 7e of z:=im w is an
assignation, but re z:= im w is not.}

8.6. Bases

{Bases are mode-identifiers, e.g., x, denotations, e.g., 3.14, slices, e.g., 1 [i]
and calls, e.g., sin (x). Bases are, generally, elaborated first. They may be sub-
scripted, parametrized and selected from and are often used as operands. More-
over, certain void-bases are void-cast-packs, e.g., (: x:= x+-1), which may be
used, e.g., as procedured-coercends; it is essential that they begin with an open-
symbol and end with a close-symbol for, otherwise, the parsing of, e.g., a:= :9,
which might, in practice, be indistinguishable from a:=: 5, would depend on
the modes of 4 and b.}

8.6.0.1. Syntax
a) MODE base{81d,820d,¢,1,g,821 a,b,822a,b,c,823a,824b,d,825a,b,¢,d,826a,
828b} : MODE mode identifier{41b} ; MODE denotation{510b,511a,512a,
513a,514a,52b,c,53b,54b,55a,—} ; MODE slice{861a} ; MODE call {862a}.

b) void base{81d,820d,¢,{,g,823a} : void call{862a} ; void cast{834a} pack.
{Examples:

a) x;3.14;x2[1,1]; sin(x);

b) lock (stand in); (: x:=3.14) }

8.6.0.2. Semantics

a) A mode-identifier is elaborated by making a copy of the instance of the value,
if any, possessed by the defining occurrence identified by it {4.1.2, 7.4.2.Step 7};
its value is the copy.

b) The elaboration of a void-cast-pack is that of its void-cast.

8.6.1. Slices

{Slices are obtained by subscripting, e.g., xI [7] or by trimming, e.g., ¥1 [2: n],
or by a mixture of both, e.g., 2 [j: #, 1] or x2 [,]. Subscripting and trimming
may be done only to primaries, e.g., xI and x2 or (p | x1|yI). The value of
a slice may be either one element of the value of its primary, e.g., x1[¢] is a
real number from the row of real numbers xI, or a subset of the elements, e.g.,
x2 [2] is the i-th row of the matrix x2 and x2 [,] is the k-th column.}

8.6.1.1. Syntax
a) REFETY ROWSETY ROWWSETY NONROW slice{860a} :
weak REFETY ROWS ROWWSETY NONROW primary{81d}, sub symbol
{31e}, ROWS leaving ROWSETY indexer{b,c,d,e,~}, bus symbol{31e}.

168 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

b) row of ROWS leaving row of ROWSETY indexer{a,b} :
trimmer{f}, comma symbol{31e},
ROWS leaving ROWSETY indexer{b,c,d,e,—}:
subscript{i}, comma symbol{31e},
ROWS leaving row of ROWSETY indexer{b,d,—}.
c) row of ROWS leaving EMPTY indexer{ab,c}:
subscript{i}, comma symbol{31e}, ROWS leaving EMPTY indexer{c,e}.
d) row of leaving row of indexer{a,b} : trimmer{f}.
e) row of leaving EMPTY indexer{a,b,c} : subscript{i}.
f) trimmer{b,d} : strict lower bound{71u} option, up to symbol{31e},
strict upper bound{71u} option, new lower bound part{g} option.
g) new lower bound part{f} : at symbol{31e}, new lower bound{h}.
h) new lower bound{g} : strong integral tertiary{81b}.
i) subscript{b,c,e} : strong integral tertiary{81b}.
j)* trimscript: trimmer{f} ; subscript{i}.
k)x indexer : ROWS leaving ROWSETY indexer{b,c,d,e}.
1)x boundscript : strict LOWPER bound{71u} ; new lower bound{h} ;

subscript{i}.

{Examples:
a) xl[d]; x2[i,7]; x2[¢]; x1[2:n];
by 2:m,45;1,2:n;
c) ,7;
d) 2:m;
e) 1,
)y 2:n;2:0n@0;
g8 @0;
h) 0;

i}

{Inrule a,' ROWS' reflects the number of trimscripts in the slice, ' ROWSETY"
the number of these which are trimmers and 'ROWWSETY"' the number of
'row of' not involved in the indexer. In the slices 2[4, j], x2 [, 2:n], %2 [7],
these numbers are (2,0, 0), (2,1,0) and (1, 0, 1} respectively. Because of rules f
and 7114, 2: 3 @0, 2:», 2:, : 5 and : @ 0 are trimmers.}

=
~

8.6.1.2. Semantics
A slice is elaborated in the following steps:

Step 1: Its primary, and all its constituent boundscripts not contained in its
primary, are elaborated collaterally {6.2.2.a}; if the value of the primary is nil,
then the further elaboration is undefined; otherwise, Step 2 is taken;

Step 2: The multiple value which is, or is referred to by, the value of the primary,
is considered, a copy is made of its descriptor, and all the states {2.2.3.3.b}
in the copy are set to 1;

Step 3: The trimscript following the sub-symbol is considered and a pointer,
i, is set to 1;

Report on the Algorithmic Language ALGOL 68 169

Step 4: 1f the considered trimscript is an up-to-symbol, then Step 6 is taken;
otherwise, if it is a trimmer, then Step 5 is taken; otherwise, letting k stand
for its value, if |; < k < u;, then the offset in the copy is increased by (k—1) xd;,
the i-th quintuple is '"marked", and Step 6 is taken; otherwise, the further
elaboration is undefined;

Step 5: The values I, u and /" are determined from the considered trimscript as
follows:

if the considered trimscript contains a strict-lower-bound (strict-upper-bound),
then [(u) is its value; otherwise, I (u) is J; (u;); if it contains a new-lower-
bound, then I is its value; otherwise, I’ is 1; if now I; < I and u < u;, then the
offset in the copy is increased by (I —1;) X d;, and then J; is replaced by I’ and
u; by (I’ —1) 4 u; otherwise, the further elaboration is undefined:

Step 6: If the considered trimscript is followed by a comma-symbol, then the
trimscript following that comma-symbol is considered instead, i is increased
by 1, and Step 4 is taken; otherwise, all quintuples in the copy which were
marked by Step 4 are removed, and Step 7 is taken;

Step 7: If the copy now contains at least one quintuple, then the multiple value
composed of the copy and those elements of the considered value which it
describes and whose mode is obtained by deleting the initial 'reference to',
if any, from the mode enveloped by the original of the slice, is considered
instead; otherwise, the element of the considered value selected by {the index
equal to} the offset in the copy is considered instead;

Step 8: If the value of the primary is a name, then the value of the slice is a new
instance of the name which refers to the considered value, and, otherwise, is
a new instance of the considered value itself.

{A trimmer restricts the possible values of a subscript and changes its notation:
first, the value of the subscript is restricted to run from the value of the strict-
lower-bound to the value of the strict-upper-bound, both given in the old notation:
next, all restricted values of that subscript are changed by adding the same
amount to each of them, such that the lowest value then equals the value of the
new-lower-bound. Thus, the assignations yI[I:n—1]:= x1[2:n); yl[n]:=
x1[1]; x1:= y1 effect a cyclic permutation of the elements of x1.}

8.6.2. Calls

{Calls are obtained by parametrizing, e.g., sin (x-+1). Parametrizing may
be done only to primaries, e.g., sin and cos or (p|sin|cos). The completed
elaboration of a call may or may not deliver a value.}

8.6.2.1. Syntax

a) MOID call{860a,b} : firm procedure with PARAMETERS MOID primary{81d},
actual PARAMETERS{54c,74b} pack.

{Example:
a) sin(x)}

170 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

8.6.2.2. Semantics
A call is elaborated in the following steps:
Step 1: Its primary is elaborated;

Step 2: The call is replaced by a closed-clause which is a copy of {the routine
which is} the value obtained in Step 1;

Step 3: The constituent serial-clause of the closed-clause is protected {6.0.2.d};

Step 4: The skip-symbols {5.4.2.Step 2} following the equals-symbols following
the copied formal-parameters are replaced in the textual order by copies of
the constituent actual-parameters of the call taken in the same order;

Step 5: The closed-clause as modified in Steps 3 and 4 is replaced by a closed-
clause consisting of the same sequence of symbols; the elaboration of this
closed-clause is initiated; its value, if any, is then that of the call and if this
elaboration is completed or terminated, then this closed-clause is replaced
by the call before the elaboration of a successor is initiated.

{The call samelson (m, (int j) real: xI [f]) in the reach of the declaration
proc samelson = (int un, proc (int) real {) real:
begin long real s:=long 0, for : to n do s{:=1leng f ()12,
short long sqrt (s)
end

is elaborated by replacing it (Step 2) by the closed-clause

(int n=n, proc (int) real {=~; real:
begin long real s:=long 0, for i to n do s {:=leng f ()} 2;
short long sqrt (s)
end).

Supposing that #, s, f and ¢ do not occur elsewhere in the program, this closed-
clause is protected (Step 3) without further alteration. The actual-parameters
are now inserted (Step 4), yielding the closed-clause

(int » =m, proc (int) real f=(int ;) real: x1[j]; real:
begin long real s:=long 0, for i to n do s {:=1leng f (¢) 1 2;
short long sqrt (s)
end),

and this closed-clause is elaborated (Step 5). Note that, for the duration of this
elaboration, # possesses the same integer as that referred to by the name possessed
by m, and f possesses the same routine as that possessed by the routine-denotation
((int j) real: xI [f]). During the elaboration of this and its inner nested closed-
clauses (9.3), the elaboration of f (7) itself involves the elaboration of the closed-
clause (int7=1; real: x1[f]), and, within this inner closed-clause, the first
occurrence of § possesses the same integer as that possessed by 4.}

9. Extensions

a) An extension is the insertion of a comment between two symbols or the
replacement of a certain sequence of symbols, possibly satisfying certain re-
strictions, by another sequence of symbols, as indicated in Sections 9.1 up to 9.4.

Report on the Algorithmic Language ALGOL 68 171

b) No extension may be performed within a comment {3.0.9.b}, character-

denotation {5.1.4.1.a}, or row-of-character-denotation {5.3.1.b}.

¢) Some extensions are given in the representation language, except that

4, B and C stand for strong-unitary-integral-clauses {8.1.1.a},

D for a strong-serial-boolean-clause {6.1.1.a},

E for a strong-unitary-void-clause {8.1.1.a},

F and G for unitary-clauses {8.1.1.a},

H for two or more unitary-clauses {8.1.1.a} separated by comma-symbols
{3.1.1.c},

I, J, K and L for mode-identifiers {4.1.1.b},

M for a label-identifier {4.1.1.b},

N for a local-symbol {3.1.1.d} or heap-symbol{3.1.1.d}-option,

O for a conformity-relator {8.3.2.1.b},

P for an indication {4.2.1.a},

Q for a virtual-plan {7.1.1.x,aa},

R for a routine-denotation {5.4.1.a},

S for the standard-prelude {2.1.b, 10} if the extension is performed outside
the standard-prelude and, otherwise, for the empty sequence of symbols,

T for a condition followed by a choice-clause {6.4.1.b,c,d},

U for a declarer {7.1.1.a},

V' {or a virtual-declarer {7.1.1.b} or for a formal-declarer {7.1.1.b} all of whose
constituent formal-lower-bounds and formal-upper-bounds are either-
symbols,

W, X and Y for tertiaries {8.1.1.b},

Z for two or more tertiaries {8.1.1.b} separated by comma-symbols {3.1.1.e},

I" for a comma-symbol {3.1.1.e}, go-on-symbol {3.1.1.f} or becomes-symbol
{3.4.1.¢},

2 for a serial-clause {6.1.1.a},

@ fora VICTAL-ROWS-rower {7.1.1.q,r} or indexer {8.6.1.1.k}, where " VICTAL"
(" ROWS") stands for any terminal production of the metanotion 'VICTAL'
(' ROWS?),

A4 for an open-symbol {3.1.1.e}, and

V' for a close-symbol {3.1.1.¢}.

d) Each representation of a symbol appearing in sections 9.1 up to 9.4 may be
replaced by any other representation, if any, of the same symbol.

9.1. Comments
{A source of innocent merriment.
Mikado, W.S. Gilbert.}
A comment {3.0.9.b} may be inserted between any two symbols {but see 9.b}.
{e.g., (m>n|m|n) may be replaced by
(m>mn|m¥ the larger of the two #|n).}

9.2. Contractions

a) refVI=locUI and ref V I= heap U I where ref V I is the formal-
parameter of an identity-declaration {7.4.1.a} which is not followed by a comma-

172 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

symbol {3.1.1.e} followed by a mode-identifier {4.1.1.b} and where U and V
specify the same mode {7.1.2.a} may be replaced by U II and heap U I
respectively.

{e.g., ref real x = loc real; may be replaced by real x;,
ref bool p = loc bool : = true may be replaced by bool p := true, and
ref real ¢ = heap real; may be replaced by heap real; .}

b) mode P == struct may be replaced by struct P = and mode P = union by
union P = .

{e.g., mode compl = struct (real ¢, im) (see also 9.2.c) may be replaced

by struct compl = (real re, im).}
c) If a given mode-declaration {7.2.1.a} (priority-declaration {7.3.1.a}, identity-
declaration {7.4.1.a}, operation-declaration {7.5.1.a}, formal-parameter {5.4.1.e},
field-declarator {7.1.1.g}) and another one following a comma-symbol {3.1.1.e}
following the given one both begin with a mode-symbol, structure-symbol, union-
of-symbol, priority-symbol, operation-symbol {all 3.1.1.d}, or one same terminal
production of 'VICTAL MODE declarer' {7.1.1.b} or of 'MODE global generator'
{8.5.1.1.c} where "MODE" {""VICTAL'") stands for any terminal production of
the metanotion 'MODE" (*VICTAL"), then the second of these occurrences may
be omitted.

{e.g., real x, real y := 1.2 may be replaced by real x, y := 1.2, but real x,
real y =1.2 may not be replaced by real x, y =1.2, since the first occurrence
of real is an actual-declarer whereas the second is a formal-declarer. Note also
that mode b =bool, mode r =real may be replaced by mode b =bool,
r =real, etc.}

d) If an actual-parameter {7.4.1.b} (source {8.3.1.1.c}) is a routine-denotation
{5.4.1.a} or a void-cast-pack {8.3.4.1.a} (is a routine-denotation), then its first
open-symbol and last close-symbol {both 3.1.1.e} may simultaneously be omitted.

{e.g., op+=/((int a) int: a) may be replaced by op +=(int a) int: a.}

e) If the original {1.1.6.c} of Q and the original of R envelop {1.1.6.j} the same
mode, then the unitary-phrase procQ I =R (opQ P=R, N proc Q:= R)
may be replaced by proc /=R (by op P=R, by N proc:= R).

{e.g., proc (ref int) incr=(ref inti):7+:=1 may be replaced by
proc incr =(ref ints):i+:=1, op (ref int) int decr_(ref intz) int:
1 —:= 1 may be replaced by op decr = (ref int:) int:7 —:= I, and the actual-
parameter of the identity-declaration ref proc (real) mt;b = loc proc (real)
int:= ((real x) int: round x) may be replaced by loc proc:= ((real x) int:
round x), whereupon application of 9.2.a,d may yield the identity-declaration
proc p:= (real x) int: round x.}

f) [:] may be replaced by [], [:, may be replaced by [, , ,:, may be replaced
by ,,, ,:] may be replaced by ,}, [: @ may be replaced by [@ , and ,: @ may be
replaced by ,@ .

{e.g., [:] real may be replaced by [] real.}

g) [@] may be replaced by A®V or by A/D|V.
{e.g., [{] may be replaced by (%) or by (/i/).}

Report on the Algorithmic Language ALGOL 68 173

9.3. Repetitive Statements
a) The strong-unitary-void-clause {8.1.1.a}
beginint J:= 4, intK=B, L =(;
M: fS(K>0]|J<L|:K<0|J>L|true)
then int I=J; (D|E; (S]+:=K); go to M)
fi
end,
where J, K, L and M do not occur in D, E or S, and where I differs from J
and K, may be replaced by
for I from 4 by B to C while D do E,
and if, moreover, I does not occur in D or E, then for I from may be replaced
by from.
b) The strong-unitary-void-clause {8.1.1.a}
begin int /:= 4, int K = B;
M: (intI=]; (D|E;(S]+:=K);gotoM))
end,
where J, K and M do not occur in D, E or S, and where I differs from Jand K,
may be replaced by
for 7 from 4 by B while D do E,
and if, moreover, I does not occur in D or E, then for I from may be replaced
by from.
¢) from I by may be replaced by by, by 1 to by to, by 7 while by while, and
while true do by do.
{e.g., for ¢ from 1 by 1 to n while true do x +:— x1[¢] may be replaced
by for i to # do x +:= xI[s]. Note that to 0 do E and while false do E do

not cause E to be elaborated at all, whereas do E causes F to be elaborated
repeatedly until the elaboration is terminated, interrupted or halted.}

9.4. Contracted Conditional Clauses
{The flowers that bloom in the spring,

Tra la,
Have nothing to do with the case.
Mikado, W.S. Gilbert.}

a) else skip fi may be replaced by fi.

{e.g., if ¥ <0 then x := 0 else skip fi may be replaced by if x<0 then x:=
0 fi.}
b) else if T fi fi may be replaced by elsf T fi and

then if T fi fi may be replaced by thef T fi.

{e.g., if p then princeton else if ¢ then grenoble else zandvoort fi fi may
be replaced by if p then princeton elsf ¢ then grenoble else zandvoort fi or by
(p| princeion |: g | grenoble | zandvoort). Many more examples are to be found
in 10.5.}

174 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

c) (intI=A;ifSI=1thenF elsf SI=2 then G else X fi), where I does
not occur in F, G, S or X, may be replaced by case 4 in F, G out X esac {or
by (A|F,G|Z)}.

d) (intI=A;if SI=1 then F else case (SI—1) in H out 3 esac fi),
where I does not occur in F, H, S or 2, may be replaced by case 4 in F, H out
Y esac{orby (A|F, H|Z)}.

{Examples of the use of such "' case clauses'' are given in 11.11.v,am and 11.12.}

e) (intl,semal=(S/1);VK=W;
par ((XOK|S|L; I:=1; M),
(YOK|S|L; I:=2;M));0.M:1),
where W is the same as some terminal production of 'MODE tertiary' in which
""MODE" stands for the mode specified by V, and where I, K, L and M do not
occur in W, X and Y, may be replaced by [*X, Y O Wx].

f) (intl,J;semal=(S/1); VK=W;
par ((XOK|S|L; I1:=1; M),

(S(]:=(*ZO0K*]+1))>1|S|L; I:=J; M)); 0. M:I),
where W is the same as some terminal production of 'MODE tertiary' in which
"MODE" stands for the mode specified by V, and where I, J, K, L and M do
not occur in S, W, X or Z, may be replaced by [*X, Z 0 Wx].

g) ([*Z0 Wx] | H|Z) may be replaced by case Z O W in H out X esac.
{Examples of the use of such "conformity case clauses" are given in
11.11.q,ah.}

10. Standard Prelude and Postlude

a) A "standard declaration' is one of the constituent declarations of the
standard-prelude {2.1.b} {; it is either an "environment enquiry' supplying
information concerning a specific property of the implementation (2.3.c), a
"standard priority' or "standard operation', a '"standard mathematical con-
stant or function", a "synchronization operation’' or a "'transput declaration''}.

b) A representation of the standard-prelude is obtained by altering each form
in 10.1, 10.2, 10.3, 10.4 and 10.5 in the following steps:

Step 1: Each sequence of symbols between { and > in a given form is altered
in the following steps:

Step 1.1: If D occurs in the given sequence of symbols, then the given sequence
is replaced by a chain of a sufficient number of sequences separated by
comma-symbols; the first new sequence is a copy of the given sequence in
which copy D is deleted; the n-th new sequence, n>1, is a copy of the given
sequence in which copy D is replaced by a sub-symbol followed by n—2
comma-symbols followed by a bus-symbol;

Step 1.2: If, in the given sequence of symbols, as possibly modified in Step 1.1,
L int, L real or L compl occurs, then that sequence is replaced by a chain
of a sufficient number of sequences separated by comma-symbols, the n-th
new sequence being a copy of the given sequence in which copy each occur-
rence of L (L) has been replaced by (n—1) times Jong (long);

Report on the Algorithmic Language ALGOL 68 175

Step 2: Each occurrence of { and) in a given form, as possibly modified in
Step 1, is deleted;

Step 3: If, in a given form, as possibly modified in Steps 1 and 2, L int (L real,
L compl, L bits, L bytes) occurs, then the form is replaced by a sequence
of a sufficient number of new forms; the n-th new form is a copy of the given
form in which copy each occurrence of L (L, K, S) is replaced by (n—1)
times Jong (long, leng, short);

Step 4: If P occurs in a given form, as possibly modified or made in the Steps
above, then the form is replaced by four new forms obtained by replacing P
consistently throughout the form by either — or + or X or /;

Step 5: If Q occurs in a given form, as possibly modified or made in the Steps
above, then the form is replaced by four new forms obtained by replacing Q
consistently throughout the form by either —:= or +:= or X:= or /:=;

Step 6: If R occurs in a given form, as possibly modified or made in the Steps
above, then the form is replaced by six new forms obtained by replacing R
consistently throughout the form by either < or < or = or = or > or >;

Step 7: If E occurs in a given form, as possibly modified or made in the Steps
above, then the form is replaced by two new forms obtained by replacing E
consistently throughout the form by either = or =;

Step 8: Each occurrence of F in any form, as possibly modified or made in the
Steps above, is replaced by a representation of 'letter aleph symbol' {5.5.8};

Step 9: If, in some form, as possibly modified or made in the Steps above,
% occurs followed by the representation of an identifier (field-selector, indica-
tion), then that occurrence of % is deleted and each occurrence of that re-
presentation in any form is replaced by one same representation of an identifier
(field-selector, indication) which does not occur elsewhere in the program and
Step 9 is taken;

Step 10: If a sequence of representations beginning with and ending with ¢
occurs in any form, as possibly modified or made in the Steps above, then this
sequence is replaced by a representation of an actual-declarer or closed-clause
suggested by the sequence;

Step 11: 1i, in any form, as possibly modified or made in the Steps above, a
representation of a routine-denotation occurs whose elaboration involves the
manipulation of real numbers, then this denotation may be replaced by any
other denotation whose elaboration has approximately the same effect {; the
degree of approximation is left undefined in this Report (see also 2.2.3.1.c)};

Step 12: The standard-prelude is that declaration-prelude-sequence whose re-
presentation is the same as the sequence of all the forms, as possibly modified
or made in the Steps above.

{The declarations in this Chapter are intended to describe their effect clearly.
The effect may very well be obtained by a more efficient method.}

¢} A representation of the standard-postlude is given in 10.6.

12 Numer. Math., Bd. 14

176 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

10.1. Environment Enquiries
a) int int lengths = c the number of different lengths of integers c;
b) L int L max int =c the largest L integral value c;
c) int veal lengths =
€ the number of different lengths of real numbers c;
d) L real L max real = c the largest L real value c;
e) L real L small real =c the smallest L real value such that both
L71+4+L smallveal>L 1and L1—L smallveal<L Ic;
f) int bits widths = c the number of different widths of bits c;
g) int L bits width =
¢ the number of elements in L bits; see L bits {10.2.8.a} ¢;
h) int bytes widths = c the number of different widths of bytes ¢;
1) int L bytes width =
c the number of elements in L bytes; see L bytes {10.2.9.a} c;
i) op abs = (char a) int: c the integral equivalent of the character 'a’ ¢;
k) op repr={(inta) char:
¢ that character 'x’, if it exists, for which abs x =a ¢ ;
1) char null character = c some character ¢;

10.2. Standard Priorities and Operations
10.2.0. Standard Priorities

a) priority —==1, +ti==L X:==1L[i==1 +1==1 +:1==1,
'1":::1;\/:2)/\:3)::4):%::41<:5)S:5;2:5,>:5,
— =6, + =6, x =7, +=7, +:=7,[=7,0=71=8§ L=3§

r=81=81=8 1=9;

10.2.1. Rows and Associated Operations

a) mode % rows=c an actual-declarer specifying a mode united from {4.4.3.a}
all modes beginwing with 'vow of’ c;

b) op L= (int n, rows a) int: c the lower bound in the n-th quintuple of the
descriptor of the value of 'a’, if that guintuple exists ¢

c) op = (int n, rows a) int: c the upper bound in the n-th quintuple of the
descriptor of the value of "a’, if that quintuple exists c;

d) op L= (int n, rows a) bool: c true (false) if the lower state in the n-th
quintuple of the descriptor of the value of 'a’ equals 1 (0), if that quintuple
exists €;

e) op (= (int n, rows a) bool: ¢ truc (false) if the upper state in the n-th
quintuple of the descriptor of the value of ‘a’ equals 1 (0), if that quintuple

exists €;
f) opl=(rowsa)int:1la;
g) opl = (rowsajint:17a;
h) op L = (rowsa) bool:1la;

op(= (rowsa)bool:1ra;

—
~——

Report on the Algorithmic Language ALGOL 68 177

10.2.2. Operations on Boolean Operands

Teacoe

op v = (bool a,5) bool: (a|true|d);

op A = (boola, b) bool: (a|b]false);

op — = (bool a) bool: (z | false | true) ;

op = = (boola,b) bool: (anb)v(—anr—b);
op = = (bool a4,b) bool: — (a=5);

op abs = (bool a) int: (a|1]|0);

10.2.3. Operations on Integral Operands

a)

o e
AL CR I

—
~
N

& n
~— N

[=

)

op < = (L inta, b) bool: c true if the value of ‘a’ is smaller than {2.23.1.¢}
that of 'b’ and false otherwise ¢;

op< =(Linta,b) bool: —~ (b<a);

op==(Linta,b) bool:a<bab<a;

op# = (Linta,b) bool: —(a=b),

op> = (Linta,b) bool:b<a;

op> = (Linta,5) bool:b<a;

op — =(Linta,b) L int:cthe value of 'a’ minus {2.2.3.1.c} that of ‘b’ c;

op— =(Linta)Lint:L0—a;

op+ =(Linta,b)Lint:a— —5;

op+ =(Linta)Lint:a;

opabs=(Linta) Lint: (a<L 0| —ala);

op X =(Linta,b)Lint:(Lints:=0L0,i:=absb;
whilei>L I do (s:=s+4a;i:=7¢—L1); (b<L0|—s|s));

op -+ = (Linta,b)Lint: (b=LO|Lintg:=L0,7:=absa,
while (y:=7 —absb)>L0dog:=¢+L I;
(a<LOAbz=LOvaz=L0Ab<L 0| —q|q));

op+:=(Linta,b)Lint: (intr=a—a+bxb; (r<0|r+absb|r));

op/ = (Linta,b) Lreal:(Lreal:a)/(Lreal:d);

opt =(Linta, intd) L int:
(b20|Lintp:=LI;tobdop:=pxa; p);

op leng=(L int a) long L int: c the long L iniegral value equivalent to
{2.2.3.1.d} the value of 'a’ ¢;

op short=(long L int a) L int: c the L integral value, if it exists, equivalent
to {2.2.3.1.d} the value of ‘a’ ¢;

opodd=(Linta) bool:absa +:L2=L1;,

opsign=(Linta)int: (a>L0|I|:a<L0|—1|0);

op | =(Linta,b) L compl:(a,b);

10.2.4. Operations on Real Operands

a)

=

el

by
~

op < = (L real a,b) bool : ¢ trueif the value of 'a’ is smailer than {2.2.3.1.c}
that of ‘b’ and false otherwise ¢;

op < =(Lrealab)bool: — (b<a);

op == (Lreala,b)bool:a<bab<a;

op 4+ = (L reala,b)bool: — (a=b);

op > = (Lrealqg b} bool:b<a;

op > = (L reals,b)bool:b<a;

178 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

op — = (L real a,b) L real: cthe value of 'a’ minus {2.2.3.1.c} that of ‘b’ ¢;

op— = (Lreala)Lreal:L0—a;

op+ =(Lreala,b) Lreal:a— —b;

op+ =(Lreala)Lreal:a;

opabs=(Lreala)Lreal: (a<L 0| —a|a);

op X = (L reala,b) L real: cthe value of 'a’ times {2.2.3.1.c} that of ‘b’ c;

op /| = (Lreala,b)L real: cthe value of 'a’ divided by {2.2.3.1.c} that of
' c;

op leng=(L real a) long L real: c the long L real value equivalent to
{2.2.3.1.d} the value of 'a’ c;

op short=(long L real a) L real: c if abs a<leng L max real, then a
L real value 'v’ such that, for any L real value 'w’,
abs (leng v —a)<abs (leng w —a) c;

op round == (L real 2} L int: ¢ a L integral value, if one exists, equivalent
to {2.2.3.1.d} a L real value differing by not move than one-half from the value
of ‘'a’ ¢;

opsign=(Lreala)int: (a>L0|1|:a<L0|—1[0);

op entier =(L real a¢) L int: (Lintj:=L0;
while j<adoj:=j+L 1, whilej>adoj:=7—L1;j);

op] =(Lreala,b) L compl:(a,b);

10.2.5. Operations on Arithmetic Operands

a)
b

o0

)
)
)
)
)
)

= O

aQ

opP = (Lrealag, Lintd)Lreal:aP (Lreal:d);
opP = (Lintg, Lreald)Lreal:(Lreat:a)Pb;
opR = (Lreala, Lintd) bool:aR (Lreal:0d);
op R (Linta, L real) bool: (L real:2) Rb;
op | = (Lreala, Lintd) L compl:(a,b);
op i = (Linta, Lreald) L compl:(a,b);
opt = (Lrealg, intb) Lreal:(Lrealp:=L1I;
toabs b do p:=pxa; (b=0|p|L1]/p));

I

i

10.2.6. Operations on Character Operands

a)
b)

op R = (char 4,5) bool: abs a R abs 5; {10.1.j}
op + = (char a,b) string: (a,%);

10.2.7. Complex Structures and Associated Operations

a)
b

ceog

— oy
=2 5o

struct L compl = (L real r¢, im) ;

opre=(L compla)Lreal:7cofa;

op im=(L compl a) L real:im of a;

op abs = (L compl a) L real: L sgrt (re at2+im at2);
op conj=(L compl 2) L compl:rea | —ima;

op = = (L compla,b) bool:rea=rebrima=imb;

op #= = (L compl 4,5) bool: — (a=b);

op — =(Lcompla,b)Lcompl:(rea—rebd) | (ima—imb};
op — = (L compla) Lcompl: —rea | —ima;

op + = (L compl a,b) L compl: (rea+trebd) | (ima+t+imbd);

Report on the Algorithmic Language ALGOL 68 179

k) op + = (L compla) L compl:a;

I) op X =(Lcompla,b)L compl:
(reaxreb—imaximb) | (reaximbtimaxrebd);

m) op /| = (L compla,b) L compl: (L real d=re (bxconjb);,
L compl n=aXxconjb; (ren[d) | (imn/d));

n) opleng=(L compla)long L compl:lengrea | lengima;

o) op short=(long L compl 2) L compl : short re a | shortim a;

p) opP = (Lcomplag, Lintd)L compl:aP (L compl:b);

q) opP = (Lcompla Lreald)L compl:aP (L compl:d);

r) opP = (Lintga, L compld)L compl: (L compl:a)Pb;

s) opP =(Lreala Lcomplb)L compl: (L compl:a)P5b;

t) op?t = (L complg,intd) L compl: (L complp:=L I,
toabsbdo p:=pxa; (b20|p|L1]p));

u) opE = (L compla, Lintb) bool:aE (L compl:bd);

v) opE = (L compla, L real b) bool: 2 E (L compl:b);

w) opE = (Linta, L complb) bool:bE a;

x) opE = (L reala, L complb)bool:bEa;,

10.2.8. Bits Structures and Associated Operations

a) struct L bits = ([1: L bits width] bool L F); {See 10.1.g}
{The field-selector is hidden from the user in order that he may not break
open the structure; in particular, he may not subscript the field.}
b) op = = (L bits 4, b) bool: (for i to L bits width do
((LF ofa) [i]==(LF ofb) [i]|1); true. I: false) ,
c) op === (L bitsa,b) bool: — (a=b);
d) op v = (L bitsa,b) L bits: (L bits ¢, for ¢ to L bits width do
(LFofc)[i]:=(LFofa)[i]v(LFofb)[i];c)s
op A = (L bits a, 5) L bits: (L bits ¢; for { to L bits width do
(LFofc)[i]:=(LFofa)[i]A(LFofb)[s];¢c);

]
~

f) op < = (L bitsa,b) bool: (avd)=b;
g) op = = (L bits a,5) bool: b<a;
h) op 1 = (L bits 4, int) L bits: if abs b <L bits width then L bits c:= a;

to abs b do (6> 0| for i from 2 to L bits width do (LF of ¢) [{ —1] :=
(LF ofc) [¢]; (LF of c) [L bits width) := false | for ; from L bits width
by —1to2do (LF ofc)[i]:=(LFofc)[i—1]; (LFofc)[l]:=
false); c fi

i) opabs=(L bitsa) L int: (L int c:= L 0; for i to L bits width do
c:=L2xc+Kabs (LFofa)[i];c);

j) opbin=(Linta) L bits:ifa>L 0 then L int b:= g; L bits ¢;
for ¢ from L bits width by — 1 to 1 do
((LFofc)[¢]:=o0dd d; b:=0b+L2);cfi

k) op[= (intga, L bits 3) bool: (L F of b) [a];

) op L btb=([I:]bool a) L bits: (int n= 1a; (n<L bits width|
L bits ¢; for ¢ to L bits width do (L F of ¢) []:=
(i <L bits width —n | false | a [1 — L bits width +n]); c)) ;

m) op — = (L bits a) L bits: (L bits ¢; for to L bits width do
(LFofc)[i]:=—(LFofa)[i];c),

180 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

10.2.9. Bytes and Associated Operations

a) struct L bytes=([1: L bytes width] char L F); {See 10.2.8.a and 10.1.i}
b) op R = (L bytes a,b) bool: (string:a) R (string:5);
c) op[= (inta, L bytesb) char: (L F ofb) [a];
d) op L ctb=(string a) L bytes: (int un—= ra; (n<L bytes width |
L bytes ¢, for ¢ to L bytes width do
(LF ofc)[i]:= (i<n| a[i]| null character); c)) ;

10.2.10. Strings and Associated Operations

a) mode string =[1: 0 flex] char;

b) op < = (string 4,b) bool: (intm=ra,n=rb;
int p=(m<n|m|n),inti:=1; bool ¢;
(p<I|mnzl|e (c:=ali]=b[]|: (i:=i+1)<p|e);
(clm<n|alil<b[i])));

c) op < = (stringa,b) bool: — (b<a);

d) op = = (string 4,b) bool:a<bab<a;

e) op == = (string a,5) bool: — (a=b);

f) op = = (string a,b) bool: b<a;

g) op > = (string a,b) bool:b<a;

h) op R = (string 4, char b) bool: a R (string: b);

i) op R = (char g4, string b) bool : (string: a) R b;

j) op + = (string a,b) string: (int m= la, n=1b; [1:m+n] char ¢;
c[l:m]:=a;c{m+1:m—+n]:=b;c),

k) op + = (string a, char b) string: a-(string:b);

1} op 4+ = (char g, string b) string: (string:a) +b;

{The operations defined in b, h and i imply that if abs “a” <abs "§",
then /III<//a/I; Ilal/<//bll; Ilaall<’/abll; /Iaa//<//ba//; //ab1/<llbll‘}

10.2.11. Operations Combined with Assignations

a) op—:==(refLintg,Lintd)refLint:a:=a—5b;

b) op —:= = (refL reala, Lreald)refLreal:a:=a—b;

c) op —:= = (refL compla, L compl) ref L compl:a:=a—5;
d) op+4:==(reflinta,Lintd) refLint:a:=a-+5b;

e} op+:==(refLreala,Lreald)refLreal:a:=a-+b;

fy op+:==(ref Lcompl a, L compld) ref L compl:a:=a-+b;
g) op X:==(refLinta, Lintd)refLint:a:=axb;

h) op X:= = (refLreala, Lreald) refLreal:a:=axb;

1) op X:= = (ref L compl 4, L compl b) ref L compl:a:=axb;
j) op+:==(refLinta, Lintd)refLint:a:=a<b;

k) op+:ii==(refLinta,Lintd)refLint:a:=a=:5;

l) op/:= =(refLreala, Lreald)refLreal:a:=ab;

m) op /:= = (refL compla, L compld) refL compl:a:=a/b;

opQ = (refLreala, Lintd) refLreal:a Q(Lreal:b);

22

0) op Q = (refL compla, Lintd) ref L compl:a Q (L compl:5);
p) op Q = (ref L compl g, L real) ref L. compl: a2 Q (L compl:b);
q) op +:= = (ref string a, string 6) ref string: a:=a+5;

Report on the Algorithmic Language ALGOL 68 181

op +=: = (string a, ref string b) ref string: b:=a +b;
op +:= = (ref string a, char b) ref string:a:=a 1 b;
op +=: = (char a, ref string b) ref string: b:=a+b;

10.3. Standard Mathematical Constants and Functions

L real L pi=c a L real value close to w; see Math. of Comp. v. 16, 1962,
pp. 80—99 c;

proc L sgrt==(L real x} L real: cif x>L 0, a L real value close to the square
root of ‘x’ ¢y

proc L exp=(L real x) L real: c a L real value, if one exists, close to the
exponential function of 'x’ ¢;

proc L In=(L real x) L real: c a L real value, if one exists, close to the
natural logarithm of 'x’ ¢;

proc L cos = (L real x) L real: ¢ a L real value close to the cosine of "x’ ¢;

proc L arccos = (L real x) L real: cif abs x<L 1, a L real value close to
the inverse cosime of 'x’, LO<ZL arccos (x) <L pi c;

proc L sin=(L real x) L real: c a L real value close to the sine of "x" ¢;

proc L arcsin—={(L real x) L real:cif abs x<L 1, a L real value close to
the inverse sine of 'x’, abs L arcsin (x)<L p1r [L2 ¢,

proc L tan={(L real x) L real: ¢ a L real value, if one exists, close to the
tangent of 'x’ ¢;

proc L arctan == (L real x} L real : c a L real value close to the inverse tangent
of 'x’, abs L arctan (x)<L pi | L 2c;

proc L real L random =L last random : = c the next pseudo-random L veal
value after L last vandom from a uniformly distributed sequence on the interval
Lo, L1)c;

L real L last random := L .5

10.4. Synchronization Operations

struct sema=(ref int F);

op /| =(inta) sema: (semas; Fofs:=int:=a;s);

op | = (sema edsger) : (ref int dijkstra =F of edsger;
do (if dijkstra>1 then dijkstra —:= 1, | else c if the closed-statement re-
placing this comment is contained in a unitary-phrase which is a constituent
unitary-phrase of the smallest collateral-phrase, if any, beginming with a
parallel-symbol and containing this closed-statement, then the elaboration of
that wnitary-phrase is halted {6.0.2.c}; otherwise, the further elaboration is
undefined c fi); I: skip);

op | = (sema edsger) : (ref int dijkstra =F of edsger;
dijkstra -+:= 1; c the elaboration is resumed of all phrases whose elaboration
1S halted because the name possessed by dijkstra referred to a value smaller
than one c);

{See 2.2.5; for the use of | and 4, see E. W. Dijkstra, Cooperating Sequential

Processes, contained in Programming Languages, Genuys, F. (ed.), London, etc.,
Academic Press, 1968; see also 11.13.}

182 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

10.5. Transput Declarations
{**So it does!” said Pooh. ‘‘It goes in!”’
““Soit does!"’ said Piglet. ‘*‘And it comes out!”’
“Doesn’t it?*‘ said Eeyore. ‘It goes in and
out like anything.”
Winnie-the-Pooh, A. A. Milne.}

10.5.0. Transput Modes and Straightening

10.5.0.1. Transput Modes

a) union % simplout = (<L int), (L real), (L compl), bool, char,
string) ;

b) union % outtype = ((D L int), (D L real), (D bool), (D char>,

{D outstruct)) ;

c) mode % outstruct = c an actual-declarer specifying a mode united from
{4.4.3.a} all modes, except those specified by tamrof and by sema, which
are structured from {2.2.4.1.d} only modes from which the mode specified by
outtype is united c ;

d) struct % tamrof = (string F1) ; {See the remarks under 5.5.8.}

e) union % intype = ({ref D L int), (ref D L real), {ref D bool},

(ref D char), {(ref D outstruct)) :

10.5.0.2. Straightening

a) op % straightout = (outtype x) [] simpliout:
C the vesult of *’ straightening” "x’ ¢

b) op % straightin = (intype x) [] intype:
C the vesult of straightening “x’ ¢;

c) The result of straightening a given value V is a multiple value obtained in
the following steps:

Step 1: If Vis (refers to) a value from whose mode that specified by simplout
is united, then the result is a new instance of a multiple value composed of
a descriptor consisting of an offset 1 and one quintuple (1,1, 1,1, 1) and V as
its only element, and Step 4 is taken;

Step 2: If Vis (refers to) a multiple value, then letting n stand for the number
of elements of that value, and y; for the result of straightening its i-th element,
Step 3 is taken; otherwise, letting n stand for the number of fields of (of the
value referred to by) V, and y; for the result of straightening its i-th field,
Step 3 is taken;

Step 3: If Vis not (is) a name, then, letting m; stand for the number of elements
of y;, the result is a new instance of a multiple value composed of a descriptor
consisting of an offset 1 and one quintuple (1, m;+ ... 4~m,, 1,1, 1) and ele-
ments, the I-th of which, where I=m;+ ... 4+ m —1+ j, is the (is the name
referring to the) j-the element of y, for k=1, ..., n and j=1, ..., m

Step4: If V is not (is) a name, then the mode of the result is 'row of’ fol-
lowed by the mode specified by simplout (intype).

Report on the Algorithmic Language ALGOL 68 183

10.5.1. Channels and Files

{aa) "Channels", "backfiles' and files model the transput devices of the physi-
cal machine used in the implementation.

bb) A channel corresponds to a device, e.g., a card reader or punch, a magnetic
drum or disc, to part of a device, e.g., a piece of core store, the keyboard of a
teleprinter, or to a number of devices, e.g., a bank of tape units or even a set-up
in nuclear physics the results of which are collected by the computer. A channel
has certain properties (10.5.1.1.d to 10.5.1.1.0, table 1). A 'random access"
("'sequential access'') channel is one for which the value of set possible (10.5.1.1.€)
is frue (false). The transput devices of some physical machine may be seen in
more than one way as channels with properties. The choice made in an imple-
mentation is a matter for individual taste. Some possible choices are given in
table 1.

cc) All information on a given channel is to be found in a number of backfiles.
A backfile (10.5.1.1.b) comprises a three-dimensional array of integers (bytes of
information), the book of the backfile; the lower bounds of the book are all 1,
the upper bounds are nonnegative integers, maxpage, maxline and maxchar of
the backfile; furthermore, the backfile comprises the position of the "end of file ",
ie., the page number, line number and char number up to which the backfile is
filled with information, the current position and the 'identification string'' of
the backfile.

dd) After the elaboration of the declaration of chainbfile (10.5.1.1.c), all back-
files form the chains of backfiles referenced by chainbfile, each backfile chained
to the next one by its field nex:.

Examples:

a) In a certain implementation, channel 6 is a line printer. It has no input
information, chainbfile [6] is initialized to refer to a backfile the book of
which is an integer array with upper bounds 2000, 60 and 144 (2000 pages
of continuous stationery), with both the current position and the end of
file at (1,1, 1) and next equal to nil. All elements of the book are left un-
defined.

b) Channel 4 is a drum, divided into 32 segments each being one page of
256 lines of 256 bytes. It has 32 backfiles of input information (the previous
contents of the drum), so chainbfile [4] is initialized to refer to the first
backfile of a chain of 32 backfiles, the last one having next equal to nil.
Each of those backfiles has an end of file at position (2, 1, 1).

c) Channel 20 is a tape unit. It can accommodate one tape at a time; one
input tape is mounted and another tape laid in readiness. Here, chainbfile
[20] is initialized to refer to a chain of two backfiles.

Since it is part of the standard declarations, all input is part of the program,
though not of the particular-program.

ee) A file (10.5.1.2.a) is a structured value which comprises a reference to a
backfile, and the information necessary for the transput routines to work with
that backfile. A backfile is associated with a file by means of open (10.5.1.2.b),
create (10.5.1.2.c) or establish (10.5.1.2.d). A given channel can accommodate a

184 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

| | l z¢ Vi 0! sapyf quan xvu

9pod Ay 9poo 3[0Y-/ 9poo 9[0Y-¢ 9p0o2 JUIOS 9pO2 JUIO0S 9p0od SwWios QU0 PUD)S
4 054 08 95¢ 88zyes 8cl AVYI XOUL

o8re £10a a31e A10n a81ey L1094 96z } 9 Uy XVUL
} l J } I 00z 28vd xvu

35|04 35/} s/} anJy anJy an4y 2191550¢ [pras

as{D} s/} as|pj anJy anij anJy 21915504 {p1

a5/D4 anJy as|pj an.j anJj anJj 21915504 119

anJj ENT! NI an.y anJy anJj 21915504 Mg

as{D} aniy anJy anJj anJy anJj a1q1ssoq 123

as/pj as{Dj s/} an.y as{p} an4y 2]q1550¢ 155

as|p4 as[p4 as|pj anJy an4y anyy 21918504 19594
yound ade; 1apeax adey soded wnip oneudew 28Tp onjeudewr sorpradoad
l l l ! l l sapyf quin xvus

apoo 1d-oury apoo 1d-aurg 9pOd JUIOS 9po2 IBYO-$9 9pOd 1910eIeYO-H9 10 -gf © aU02 PUDIS
L4 vl o3re| 78 08 4 AVYI XVUL

09 09 931e] 9l o3rer 100 93re] UL XDUL

981ey A10A a8re[A10A a8re[A104 a8rer A10A I I 23vd xvw
ENDY as/p4 anyy ENIY NLY as[p 2791550¢ [p1a4

as|pj anJy anuy anJy as|p} as/D} 2)q1850¢ [p1

as|pJ as|py anuy as|p} anJj Ny 21q1550¢ 119

anJj anuyy anuy as|py anJj asjpy 21915504 g

as|py 3s]D4 anuy an.y as|py anuyy 21q1550¢ 123

as|p} s[4 3s]DJ 9s[D4 a5/} as|py 2]q1550¢ 135

as|pj anJj anJy anJy as/py as|pj 2791580¢ 19594
xoyund suy jrun ade} sneudewt yound pied I9peal pIed saraadoid

SppuupY? 91915504 2u0S [0 $o149G04T | B[qER]

Report on the Algorithmic Language ALGOL 68 185

certain number (10.5.1.1.0) of backfiles at any stage of the elaboration. The
association is ended by means of close (10.5.1.2.s), lock (10.5.1.2.t) or scraich
(10.5.1.2.u).

ff) When a file is "opened" on a channel for which the value of 7df possible
is false, then the first backfile is taken from the chain of backfiles for that channel,
and is made the bfile of the file, obliterating the previous backfile, if any, of the
file. When a file is opened on a channel for which the value of idf possible is true,
then, if the given identification string is empty, then the first backfile, and,
otherwise, the first backfile which has that identification string, is taken from
the chain of backfiles for that channel; this backfile is made the bfile of the file.

g8) When a file is "established " on a channel, then a backfile is generated (8.5)
with a book of the given size, the given identification string and both the current
position and the end of file at (1, 1, 1); when a file is "created"" on a channel,
then a file is established with a backfile the book of which has the maximum size
for the channel and the 4df of which is an empty string.

hh) When a file is "'scratched", then its associated backfile is obliterated.

ii) When afile is ""closed' ("'locked"), then its associated backfile is attached to
the chain referenced by chainbfile (lockedbfile) of the channel. Another file may
(No file can) now be opened with this backfile by a call of open.

ji) The identification string of the backfile of a file opened on a channel for
which the value of reidf possible is true may be changed by a call of resdf.

kk) A file comprises some fields of the mode 'procedure boolean', 'procedure
with reference to character parameter boolean' or 'procedure with integral
parameter boolean’, routines which are called when in transput certain error
situations arise. After opening or creating a file, the routines provided yield the
value false when called, but the programmer may assign other routines to those
fields. If the elaboration of such a routine is terminated, then the transput routine
which called it can take no further action; otherwise, if it yields the value frue,
then it is assumed that the error situation has been remedied in some way, and,
if possible, transput goes on, but if it yields the value false, then undefined is
called, i.e., some sensible system action is taken (rr). These routines are:

a) logical file end, which is called when during input from a file on a sequential
channel the end of file of its backfile is passed. If the routine yields the
value true, then transput goes on, and if it yields false, then some sensible
action is taken.

Example:
The programmer wishes to count the number of integers on his input tape.
The file sntape was opened in a surrounding range. If he writes

begin int »:= 0; logical file end of intape .= go to j;

do (get (intape, loc int); n +:=1); f: print (n)

end,
then the assignment to the field of infape violates the scope restrictions
(; the scope of the routine ((: go to f)) is smaller than the scope of intape),
so he has to write

186 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

begin int » : = 0; file auxin := intape;

logical file end of auxin := go to f;

do (get (auxin, Yoc int); n +:=1); f: print (n)
end .

b) physical file end, which is called when the max page, the max line or the

e)

max char of the backfile of a file is exceeded. If the routine yields the
value frue, then transput goes on, and if it yields false, then some sensible
action is taken.

Example:

The programmer wishes automatically to give a new line at the end of a
line and a new page at the end of a page on his file f:

proc bool new line page =bool : ((line ended (f) | new line (f));
(page ended (f) | new page (f)); true);

char error, which is called when, during formatted input, a character is
read which does not agree with the frame specifying it (5.5.1.m) or when,
during input, at the current position an uninterpretable character is present
(10.5.1.11), with a reference to a character, suggested as a replacement. The
routine provided by the programmer may give some other character than
the suggested one. If the routine yields frue, then that suggested character
as possibly modified by the routine is used, and, if it yields false, then
some sensible action is taken.

Example:

The programmer wishes to print a list of all such disagreements. He assigns
to the field char ervor of his file f

((ref char sugg) bool : (char %; backspace (f);
int p =page number (), | =line number (f), c =char number (f);
get (1, k); print ((new line, "at”, p, 1, c, " present.”” """, k, """,
suggested.” """, sugg, "’”’"".”’)); true)) ;

value error, which is called when, during formatted transput, an attempt
is made to transput a value under control of a picture with which it is not
compatible, or when the number of frames is not sufficient. If the routine
yields irue, then the current value and picture are skipped, i.e., transput
goes on at 5.5.1.dd.Step 5; if the routine yields false, then first, on output,
the value is output by pus, and next some sensible action is taken.

format end, which is called when, during formatted transput, the format is
exhausted while still some value remains to be transput. If the routine
yields frue, then transput goes on (so the routine must have provided a
new format for the file), and, if the routine yields false, then the current
format is repeated, i.e., the first picture again is made to be the current
picture of the file.

other error, which is called with some actual-integral-parameter, when
during transput some other error situation arises. No call of this routine
occurs explicitly in the standard-prelude, and neither the meaning of its
actual-parameter nor that of the value yielded, is defined in this Report.

Report on the Algorithmic Language ALGOL 68 187

This routine may, in some implementation, be called when an incorrigible
hardware error occurs which makes transput involving this file impossible.
{The programmer may provide a routine which then closes the file and
opens it on some other channel.)

1) The conv of a file is used by the transput routines in the conversion of char-
acters to and from integers in the book of the bfile of the file. After opening,
creating or establishing a file, stand conv of the channel is used, but some other
""conversion key' may be provided by the programmer by a call of make conv
(10.5.1.2.z).

On output, the given character is converted to that integer, if any, in the
conversion key, whose ordinal number is the integral equivalent of that character;
what action is taken when an attempt is made to convert a character with an
integral equivalent exceeding the upper bound of the conversion key, is left
undefined; on input, the given integer is converted to that character, if any,
whose integral equivalent is the lowest ordinal number for which the element of
the conversion key is equal to that given integer; if no such character exists,
then char error is called with a space (parity error, nonexistent code).

mm) The term of a file is used in reading strings of a variable number of char-
acters, where any of the characters of ferm serves as a terminator (see 5.5.1.jj
and 10.5.2.2.dd). This terminator string may be provided by the programmer.
Furthermore, when reading outside the file, paysical file end of the file is called,
and if that does not cause the position to be within the file, that also serves as a
terminator.

nn) On a channel for which the value of reset possible is true, a file may be
"reset", causing its position to be (1, 1, 7). On a sequential access file, the end
of file remains at the position up to which the backfile contains information,
but when after resetting any output is done, then the end of file is first set at
the current position.

00) On a random access channel, a file may be "set', causing its position to
be the given position.

pp) On files opened on a sequential access channel, binary and nonbinary trans-
put may not be alternated, i.e., after opening, creating or resetting such a file,
either is possible, but, once one has taken place on the file, the other may not
until the file has been reset again.

qq) On files opened on a sequential access channel for which put possible and
get possible both possess the value true, nonbinary input and output may be
alternated, but it is not allowed to read past the end of file.

rr) When in transput something happens which is left undefined, for instance
by an explicit call of undefined (10.5.1.2.y), this does not imply that the elaboration
is catastrophically and immediately terminated, but only that some sensible
action is taken which is not or cannot be described by this Report alone, and is
generally implementation dependent. For instance, in some implementation it
may be possible to set a tape unit to any position within the logical file, even if
the value of set possible is false (00).

188 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

Example:

begin file /1, /2; [1: 10000] int x; int n; open ({1, , channel 2);

f2:=11; ¥ now f1 and {2 can be used interchangeably %

make conv (1, flexocode); make conv (2, telexcode);

% now f1 and f2 use different codes; flexocode and telexcode are defined

in the libvary-declaration for this implementation ¥ veset (f1);

¥ consequently, {2 is rveset too §

for i while — logical file ended (1) do (n:=1; get ({1, x [1]));

4 too bad if there ave more than 10000 integers in the input & reset (f1);

for i to n do put (2, x [i]); reset (f2); close (f2) # f1 is now closed too §
end }

10.5.1.1. Channels

a)

b)

int nmb channels = c an integral-clause indicating the number of transput chan-
nels tn the implementation ¢

struct % bfile=([1: 0 flex, 1: 0 flex, I: 0 flex] int book,
int lpage, lline, Ilchar, page, line, char, max page, max line, max char,
string idj, ref bfile next) ;

[1: nmb channels] ref bfile % chainbfile := ¢ some appropriate initialization
{see 10.5.1.dd} c;

[1:nmb channels] bool reset possible =c a row-of-boolean-clause, indicating
which of the physical devices corresponding to the chanmels allow resetting
{e.g., rewinding of a magnetic tape} c;

[1 : nmb channels] bool set possible = ¢ a row-of-boolean-clause, indicating which
devices can be accessed at random € ;

[1:nmb channels] bool get possible=c a row-of-boolean-clause, indicating
which devices can be used for input €;

[1:nmb channels] bool put possible =c a row-of-boolean-clause, indicating
which devices can be used for output c;

[1:nmb channels] bool bin possible =c a row-of-boolean-clause, indicating
which devices can be used for binary transput c;

[1:nmb channels] bool idf possible = ¢ a row-of-boolean-clause, indicating on
which devices backfiles have an identification c;

[1: nmb channels] bool reidf possible = c a row-of-boolean-clause, indicating on
which devices backfiles allow rveidentification c;

[1: nmb channels| int max page =c a row-of-integral-clause, giving the maxi-
mum number of pages per file for the channel c;

[1: nmb channels] int max line = ¢ a row-of-integral-clause, giving the maximum
number of lines per page c;

[1:nmb channels] int max char = ¢ a row-of-integral-clause, giving the maxi-
mum number of characters per line c;

[1: nmb channels] struct (proc [] int F) stand conv =c a clause giving the
standard cowversion keys for the chanwels {; other conversion keys may be
provided by the library-prelude} c;

[1:nmb channels| int max nmb files=c a row-of-integral-clause, giving the
maximum number of files the channels can accommodale c;

Report on the Algorithmic Language ALGOL 68 189

p) [1:wnmb channels] int % nmb opened files;

for i to nwmb channels do nmb opened files [i] := 0,
q) [1:nmb channels] ref bfile % lockedbfile;

for i to nmb channels do lockedbfile [i] := nil ;
r) proc file available = (int channel) bool :

nmb opened files [channel] <max nmb files [channel) ;

10.5.1.2. Files
a) struct file = (ref bfile % bfile, int % chan, ref int % forp,
ref bool % state def, % state get, % state bin, % opened,
ref string % format, string term, [0: 0 flex] int % conv,
proc bool logical file end, physical file end, format end, value error,
proc (ref char) bool char error, proc (int) bool other error) ;
b) proc open = (ref file file, string idf, int ¢k) :
if file available (ch)
then ref ref bfile bf : = chainbfile [ch];
while (ref bfile: bf) :4-: nil do
(idf of bf =1df vidf=""""v —idf possible [ch] |
1| bf :== next of bf); undefined.
l: file .= (bf, ch, int := 0, bool : = false, bool, bool, bool : = true,
nil, ””, F of standconv [ch), false, false, false, false,
((ref char 2} bool : false), skip);
(ref ref bfile: bf) := next of bf; wmb opened files [ch] +:= 1
else undefined fi;
c) proc create=(ref file file, int ck) :
establish (file,, max page [ch), max line [ch), max char [ch), ch);
d) proc establish = (ref file file, string idf, int mp, mi, mc, ch) :
if file available (ch) A mp <max page [ch] A ml<max line [ch] A
me<max char [ch]
then bfile bf = ([1:mp, 1:ml, 1:mc)int, 1,1,1,1, 1, 1, wmp, mi, me,
idf, nil) ;
file := (bfile := bf, ch, int:= 0, bool : = false, bool,
bool, bool : = true, nil, ", F of standcony [ch], false,
false, false, false, ((ref char a) bool : false), skip);
nmb opened files [ch] +:= 1
else undefined fi;
e) proc set=(file file, int p, 1, ¢c):
if set possible [chan of file] A opened of file
then page of bfile of file .= p; line of bfile of file: = I;
char of bfile of file:= c; check plc (file)
else undefined fi,
f) proc reset = (file file)
if veset possible [chan of file] n opened of file
then page of bfile of file == 1; line of bfile of file:= 1,
char of bfile of file := 1; state def of file := false
else undefined fi;

190 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

g) proc % check pic = (file file) : if opened of file
then (— (logical file ended (file) | logical file end of file |:
line ended (file) v page ended (file) v file ended (file) |
physical file end of file | true) | undefined)
else undefined fi;
h) proc line ended = (file file) bool : (opened of file |
int ¢ =char of bfile of file; c<O0v c>max char of bfile of file);
i) proc page ended = (file file) bool : (opened of file |
int [=line of bfile of file; I<O0vI>max line of bfile of file);
i) proc file ended = (file file) bool : (opened of file |
int p = page of bfile of file; p<O0v p>max page of bfile of file) ;
k) proc logical file ended = (file file) bool : (opened of file |:
— set possible [chan of file] a state def of file n state get of file |
bfile & =bfile of file; int p =page of b, Ip =Ipage of b,
I =1Iline of b, Il =[lline of b, c =char of b, lc =Ichar of b;
(p<ip|false|: p>ip|true|:i<ll|false|:I>1l]| true]|c>ic) | false) ;
Iy proc % get string = (file file, ref [1: either] chars):
if get possible [chan of file] A opened of file
then ref int p = page of bfile of file, | = line of bfile of file,
¢ =char of bfile of file;
if — set possible [chan of file] thef state def of file
then (state bin of file | undefined) fi;
state def of file .= state get of file : = true;
state bin of file := false;
for i Yo I s do (check pic (file);
for j from 0 to 1 conv of file do
((conv of file) [§] = (book of bfile of file) [p, 1, c] |
s[i]:=repri;e);
char k= "".""; s [i] 1= ((char ervor of file) (k)| k| undefined; "'.”");
ec+:=1)
else undefined fi;
m) proc % put string = (file file, string s) :
if put possible [chan of file] n opened of file
then ref int » =page of bfile of file, I =line of bfile of file,
¢ =char of bfile of file;
if — set possible [chan of file] thef state def of file
then (state bin of file | undefined) fi;
state get of file := state bin of file .= false;
state def of file := true;
for ¢ to I's do (check pic (file);
(book of bfile of file [p, I, c] := (conv of file) [abs s []]; ¢ +:=I;
(P =1lpage of bfile of file Al =lline of bfile of file|
(c>Ichar of bfile of file | Ichar of bfile of file:= c) |
lpage of bfile of file:= p; lline of bfile of file:=1;
Ichar of bfile of file:=1¢))
else undefined fi;

Report on the Algorithmic Language ALGOL 68 191

n) proc char in string = (char ¢, ref inf 4, string s) bool :
(for kto [sdo (c=s[k]|i:=F; 1), false. I: true);
0) proc space = (file filc) : (char of bfile of file +:= 1; check plc (file));
p) Pproc backspace = (file file) : (char of bfile of file —:= 1; check plc (file));
q) proc new line = (file file) : (line of bfile of file +:= 1;
char of bfile of file := 1; check plc (file)) ;
r) proc new page = (file file) : (page of bfile of file +:= 1;
line of bfile of file := char of bfile of file := 1; check plc (file)) ;
s) proc close = (file file) : (opened of file | int ch=chan of file;
next of bfile of file := chainbfile [ch]; chainbfile [ch] := bfile of file;
opened of file := false; nmb opened files [ch] —:=1);
t) proclock = (file file) : (opened of file | int ch =chan of file;
ref bfile bf =bfile of file; page of bf := line of bf := char of bf := 1;
next of bf :== lockedbfile [ch]; lockedbfile [ch] :== bf;

opened of file := false; nmb opened files [ch] —:=1);
u) proc scraich = (file file) : (opened of file |
opened of file : = false; nmb opened files [chan of file] —:=1);

v) proc char number = (file f) int: (opened of f| char of bfile of f);
w) proc line number = (file f) int: (opened of f| line of bfile of f);
X) proc page number = (file f) int: (opened of | page of bfile of f) ;
y) Pproc % undefined = c some sensible system action {10.5.1.1t} c;
z) proc make conv = (ref file f, struct (proc [] intF) ¢):

conv of f:=F of ¢,
aa) proc reidf = (file f, string 7df) :

(veidf possible [chan of f] | idf of bfile of {:= idf);

10.5.1.3. Standard Channels and Files

a) int stand in channel = ¢ an integral-clause such that the value of get possible
[stand in channel] is true ¢;

b) int stand out channel = ¢ an integral-clause such that the value of put possible
[stand out channel] is true c;

c) int stand back channel = ¢ an integral-clause such that the values of reset possible
[stand back channel], set possible [stand back channel), get possible [stand back
channel], put possible [stand back channel)], and bin possible [stand back
channel] ave true ¢ ;

d) file % f; open (f,, stand in channel) ; file stand in = f;

e) open (f,, stand out channel) ; file stand out = fs

f) open (f,, stand back channel) ; file stand back = f;

{Certain "standard files'" (d, e, f) need not (and cannot) be opened by the
programmer, but are opened for him in the standard-prelude; print (10.5.2.1.a)
can be used for output on stand out, read (10.5.2.2.a) for input from stand in,
and write bin (10.5.4.1.a) and read bin (10.5.4.2.a) for transput involving stand back.
The programmer need not close these standard files, since they are locked in the
standard-postiude.}

13 Numer. Math., Bd. 14

192 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

10.5.2. Formatless Transput

10.5.2.1. Formatless Output

{For formatless output, print and put can be used. The elements of the given
value of the mode specified by [] union (outtype, proc (file)) are treated
one after the other; if an element is of the mode specified by proc (file) (i.c.,
a "layout procedure'), then it is called with the file as its parameter; otherwise,
it is straightened (10.5.0.2), and the resulting values are output on the given file
one after the other, as follows:

aa) If the mode of the value is specified by L int, then first, if there is not
enough room on the line for L inf width 2 characters, then this room is made
by giving a new line and, if the page is full, giving a new page; next, when
not at the beginning of a line, a space is given and the value is edited as if
under control of the picture n(L iné width—1)z4d.

bb) If the mode of the value is specified by L real, then first, if there is not
enough room on the line for L real width + L expwidth + 5 characters, then this
room is made; next, when not at the beginning of a line, a space is given, and
the value is edited as if under control of the picture -+d.n(L real width—1)
den(L expwidth —1)z-+d.

cc) 1f the mode of the value is specified by L compl, then first, if there is not
enough room on the line for 2 X (L real width + L exp width) - 11 characters,
then this room is made; next, when not at the beginning of a line, a space is
given, and the value is edited as if under control of the picture -+d.n(L real
width — 1)den(L expwidth — 1)2+d".""i+d.n(L real width —1)den(L expwidth
—1)z+4.

Table 2. Display of the values of L int string, L dec string and L real string
(10.5.2.1.c,e,d)

w—1
c———— -
L int string : -+-DDDDDDDDDDD
< ———— ->
w
w—d—2 d
‘e e —
L dec string : +DDDDDDD.DDDDD
< e -
w
w-d-e-4 d e
e > <>
L real string : -+DDDDDDD.DDDDD,,+DDD
e —

Report on the Algorithmic Language ALGOL 68 193

Table 3. Significance of the elements of frame (10.5.3.1)

frame

[1] type (1 = integer, 2 = real fixed, 3 = real floating,

4 = complex fixed, 5 = complex floating, é = string,
7 = integer choice, 8 = boolean, 9 = character);

(2] radix (2, 4, 8, 10 or 16);

(3] sign (0 = no sign frame, 1 = sign frame +, 2 = sign frame —);

(4] number of digits before point; if type=1, then w—1, else if type=2
or 4, then w—d—2, else if type=3 or 5, then w —d —e —4, or, if
type =6, then the number of characters in the string if this is constant,
or 0, if this number is variable;

(5] number of digits after point; if type=2, 3, 4 or 5 then d;
(6] sign of exponent; if type =3 or 5, then as [3];
[77 number of digits in exponents; if type=3 or 5, then e;

(8], ..., [14] as [1], ..., [7] when frame [1] =4 or 5.

dd) If the mode of the value is specified by [] char, then its elements are
written one after the other.

ee) If the mode of the value is specified by char, then first, if the line is full,
then room is made, and next the character is written.

ff) If the mode of the value is specified by bool, then, if the value is frue (false),
then the character possessed by the flip- (flop-)symbol is output as ee.}
a) proc print—({] union (outtype, proc (file}) x) : put (stand out, x) ;
b) proc put =(file file, [1:] union (outtype, proc (file}) x):
begin outtype ot,; proc (file) pf;
forito I x do (ot ::= x [4]; pf ::=x [4] | pf (File) |
[1:] simplout y =straightout of;
for j to [y do (string s, bool b, char &;
((Linti; (i =y 1]
s:= L int string (i, L int width+1, 10);
sign supp zero (s, 1, L int width)))>);
({(Lreal x; (x ::=y[f]| s:= L real conv (%)))>);
({(L compl z; (z 1=y [{]|
s:= L real conv (re z)+"". 1" + L real conv (im z)))>);
(b::=y[7]| put (file, (b| 1" | 70”)); end);
(k :i=y [f] | nextplc (file); put string (file, k); end);
(s ::=y [f]| put string (file, s); end);
ref int c =char of bfile of file; int c1 =c, n=Ts;
¢c+:i=(cl=1|n|n+1);
(line ended (file) | nextplc (file) | ¢ := c1);
put string (file, (c=1|s|"." +s));
end: skip))
end ;

194 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

c) proc Lintstring=(L int x, int w, 7) string: (»>1Ar>17|
stringc:=;Lintn:=abs x; Lintly =X,
for i to w—1 do (dig char (S (n +:lr)) +=:¢;n +:=1lr);
(n=LO| (x2L0| "+ | "—")c| ") | ")
d) proc L real string = (L real %, int w, d, ¢) string :
(A=0ne>0nd+e+4<w|
Lrealg=L 10} (w—d—e—4); Lreal h=gxL.I;
L real y:=abs x; int p:= 0; while y>gdo (y X =L .1; p +:=1);
(y>L 0| while y<hnp—1>—(10%¢) do (yx:=L10; p —:=1));
(y+L.oxbLItdzg|ly:=hp+:=1);
L dec string ((x=0|y| —v), w—e—2,d)+"1," +
int string (p, e+ 1, 10));
€) proc L dec string = (L real x, int w, d) string:
(abs x<L 10} (w—d —2)Ad>0rd+2<w]| string s:= ;
Lreal y:=(absx+L.5xL.11d)xk .1} (w—d—2);
tow—2dos +-:=digchar ((intc=S L(yx:=L10);y —:=Kc;c));
(x=0|"4+"|"=")+s[l:w—d-—-2]+""+s[w—d—1:7);
f) proc % dig char = (int x) char: (""0123456789abcdef’ [x +1]) 5

{In connection with 10.5.2.1.c,d,e, see Table 2.}

g) Proc % sign supp zero = (ref string ¢, int [, u) :
for from [+ 1 to » while ¢ [s] = 0" do
(cltli=cli—1];c[s—1]:=""");
h) int L int width=(int c:= 1;
while L 104 (¢ —1) <L .I1xXL max int do ¢ +:=1;¢c);
i) int L real width=1—S | (L in (L small veal) | L In (L 10));
j} int L exp width =
I1+SU(Lin(Lin(Lmaxveal)|Lin(L10))[Lin (L10));
k) proc % L real conv = (L real x} string:
(string s:== L real string (x, L veal width + L exp width + 4,
L veal width — 1, L exp width); sign supp zero (s, L rveal width 44,
L veal width + L exp width+3);s);
1) proc % next plc = (file file) : (opened of file |
(line ended (file) | new bine (file)); (page ended (file) | new page (file))) ;

10.5.2.2. Formatless Input

{For formatless input, 7ead and get can be used. The elements of the given
value of the mode specified by [] union (intype, proc (file)) are treated one
after the other; if an element is a layout procedure, then it is called with the file
as its parameter; otherwise, it is straightened (10.5.0.2), and to the resulting
names values are assigned, input from the given file as follows:

aa) If the name refers to a value whose mode is specified by L int, then first,
the file is searched for the first character that is not a space (giving new lines
and pages as necessary); next, the largest string is read from the file that could
be indited under control of some picture of the form #(%2)dd or +n(kl)”.”
n(k2)dd; this string is converted to an integer by L string int.

Report on the Algorithmic Language ALGOL 68 195

bb) If the name refers to a value whose mode is specified by L real, then first,
the file is searched for the first character that is not a space; next, the largest
string is read from the file that could be indited under control of a picture
of the form —+n(k1)”.”n(k2)d or n(k2)d followed by .n(k3)dd or ds. possibly
followed by en(k4)”.””+n(k5)".""n(k6)dd or en(k5)"."n(k6)dd; this string is
converted to a real number by L string real.

cc) If the name refers to a value whose mode is specified by L compl, then
first, a real number is input as in bb, and assigned to the real part; next, the
file is searched for the first character that is not a space; next, a plus i times is
expected; finally, a real number is input and assigned to the imaginary part.

dd) If the name refers to a value whose mode is specified by [] char, then,
if both upper and lower state of the value are 1, then as many characters are
read as the value has elements; if not both states are 1, then characters are
read from the line under control of the terminator string referenced by the
file (5.5.1.jj, 10.5.1.mm); the string with those characters as its elements is
then the resulting value.

ee) If the name refers to a value whose mode is specified by char, then first,
if the line is full, a new line is given, and, if the page is full, a new page is given;
next, the character is read from the file.

ff) If the name refers to a value whose mode is specified by bool, then first,
the file is searched for the first character that is not a space; then a character
is read; if this character is that possessed by the flip-(flop-)symbol, then the
resulting value is frue (false); if the character is neither of those, then char error
of the file is called with false.}

a) procread=([] union (intype, proc (file)) x) : get (stand in, x);

b) proc get = (file file, [1:] union (intype, proc (file)) x) :

begin intype it; proc (file) pf; char &, priority / = §;
for i to 1 x do (it ::= x [4); pf 1= x [4] | pf (file) |
[1:] intype y =straightin i,
op 2 = (string s) bool : (outside (file) | false |:
get string (file, k); char in string (k, loc int, s) |
true | backspace (file); false),
op 7 = (char ¢) bool: ? (string: c);,
op / = (string s, char c) char: (get string (file, k);
char in string (k, loc int, s) | k| char sugg:= ¢;
((char error of file) (sugg) | sugg | undefined; c));
op/ = (chars, c) char: (string:s) / ¢,
proc skip spaces = : while (next plc (file); ? '.”’) do skip;
proc string read dig =string : (string ¢ := 0123456789 1 "0";
while ? 70123456789 do ¢ +:= k; t);
proc string read num = string :
(char = (skip spaces; ? "4+ —""| k
while ? """ do skip; ¢ +read dig);
proc string read real =string : (string ¢ : = read num;
(27|t =" - read dig);
(? ey | 8 +:= """ + read num); t);

rr _|__//) R

196 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

for j to I v do (ref bool bb; ref char cc; ref string ss;
({(ref L int ii; (i ::=y [{]]

(ref L int:) = L string int (vead num, 10)))>);
({(ref L real xx; (xx ::=y [1]|

(ref L real : xx) := L string veal (read real)))>);
({(ref L compl zz; (zz ::= y [1]]| get (file, re of 2z);

skip spaces; 1717 17y get (file, im of 22)))>);
(bb 1=y [1]| skip spaces;

(ref bool : bb) := (2 1" | true | 0"/ 0" ="1"));
(cc ::=y [1]| next plc (file); get string (file, cc));
(ssi:i=y]| Ussarss| get string (file, ss (@ 1]) |

string ¢; while ((outside (file) |

physical file end of file); outside (file) | false |:
2 term of file | backspace (file); false | true) do ¢ 4-:=k;
(ref string : ss) :=

t{@(Uss| Llss|:rss|I— ¢+ Iss|1)])))

end ;

c) proc L string int=(string «, int7) L int:
(r>Iar<17|Lintn:=L0; Lintlr=Kv;intw=Tx;
for : from 2 to w do n:= nxlr + K (int d =char dig (x [i]);
(d<r|d)); (x[I]="+"|n|:x[1]="="| —n));
d) proc L string real = (string x) L real :
(int ¢; ((char in string (1", ¢, x) | true| char in string ("e”, ¢, x)) |
L string dec (x[1:e—1]) x L 10.0 1 string int (x [e+1:7],10) |
L string dec (x))) s

e) proc L string dec =(string x) L real: (intw= 1 x; L realv:=L0;
int p; (char in string (., p, x) |
[1:w—2]chars=x[2:p—1]|4x[p+1:];
foritow—2dor:=L 10xy+ K (int d =char dig (s [1]);
(d<10]d)); (x[I]="~+"|r|:x[1]="—"] —r) X
L.I4 (w—p)|Lstringdec (x+".7)));
f) proc % char dig=(char x) int: (int ;
(char in string (x, i, "0123456789abcdef’) | ¢ — 1| undefined; 0)) ;

g) proc % outside = (file file) bool:
line ended (file) v page ended (file) v file ended (file) ;

10.5.3. Formatted Transput
{For the significance of formats see format-denotations (5.5).}

a) proc format = (file file, tamrof tamrof)
(forp of file := 1; format of file .=
collection list pack (7(" +F1 of tamrof +)", locint:=1));
b) proc % collection list pack = (string s, ref int p) string:

(string ¢ := collection (s, p);
while s [p] =", do ¢t 4+:="," +-collection (s, p); p +:=1;1);

Report on the Algorithmic Langnage ALGOL 63 197

proc % collection = (string s, ref int p) string:
(int n, g; string f:= (p +:= 1; insertion (s, p));
q:= p; replicator (s, p, n);
(s [p]=""("| string t =collection list pack (s, p);
tondoft:=t|p:=gq;f-+:= picture (s, p, loc[1: 14] int));
{4 insertion (s, p)) s
proc % insertion = (string s, ref int p) string:
(int g =p; skip insertion (s, p); s[q: p—1]);
proc % skip insertion = (string s, ref int p) :
while (p> 15| false|: skip align (s, p) | true | skip lit (s, p)) do skip;
proc % skip align = (string s, ref int p) bool :
(int g =p; replicator (s, p, loc int);
(char in string (s [p], loc int, “xyplk”) |
P +:=1;true| p:=gq; false))
proc % replicator = (string s, ref int p, n) :
(string ¢; while char in string (s [p], loc int, 70123456789) do
(t+:i=s{plsp +i=1);n:i=(t="""|1]stringint(""+" +¢,10)));
proc % skip lit=(string s, ref int $) bool:
(int g =p; veplicator (s, p, loc int);
(s[p]l=""""| while (s[p +:=1]="""""
true) do skip; true | p:= g, false)) ;
Proc % picture = (string format, ref int p, ref [] int frame) string:
begin int #; int po =9, bool a;
op ?=(string s) bool:
(skip insertion (format, p); p>1 format| false |
int g =, replicator (format, p, n); a:= qg=2s
(format [p]="'s"|p +:=1);
(char in string (format [p], loc int, s) |
p +:=1;true|p:=g, false));
op ?=(charc) bool: ? (string:¢);
proc intreal pattern = (ref [1: 7] int frame) bool :
((num mould (frame [2:4]) | frame [1]:=1;1);
(27| num mould (frame [3:5]) | frame [1]:= 2;1);
(2 7€ |2 num mould (frame [5:7]) | frame [1]:= 3; 1);
false. /: true);
proc num mould = (ref [1: 3] int frame) bool :
((? 7" | frame [1]:=mn); (? 2" | frame [3] +:=n);
(274" | frame [2]:=1): 2" —"] frame [2] := 2);
while ? “dz” do frame [3] +:= un;
format [p]=","v format [p] =""1""v format [p] =")");
proc string mould = (ref [] int frame) bool : (? "'t”’ | true |
while ? “a” do frame [4] +:= n; format [p] ="","v
format [p] =")");
for i to 14 do frame [i] :== 0, frame [2] : = 10;
(intreal pattern (frame [1:7])] (2 5" |
frame [1] +:= 2; intreal pattern (frame [8:14])); end);

s[p+i=1]=""""]

198 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

(string mould (frame) | frame [1):= (frame [4]=1nra| 9| 6);
end); (270" | frame [1]:=8|: ? "¢ | frame [I] :=7 |
frame [I]:=0; end);
(format [p}==""(""| while ? ’(,” do skip lit (format, p); p +:=1);
end: skip insertion (format, p); format [po:p —1]
end,

{In connection with 10.5.3.i see Table 3.}

10.5.3.1. Formatted Output

a) proc outf = (file file, tamrof tamrof, [] outtype x):
(format (file, tamrof); out (file, x));
b) proc out = (file file, [1:] outtype x):
begin string format = format of file; ref int p = forp of file;
for 2 to 1 x do
([1:] simplout y =straightout x [%]; int ¢, 7:= 0,
[1:14] int frame;
rep: | +1=1;
step: while (do insertion (file, format, p); p> 1 format | false |
format [p]=",") do p +:=1; (1>1y]|end);
(p>T1 format | (— format end of file| p:=1); step);
q = p, picture (format, q, frame);
(frame [1] | int, veal, veal, compl, compl, string, intch, bool, char);
wnt: ({(Lint; (4 =y [f]]
edit L int (file, i, format, p, frame); vep))>); incomp;
real: ({(L real x; (x ::=y [f] |
edit L veal (file, x, format, p, frame); vep))>);
({(Linti; (i =y [f]|
edit L rveal (file, i, format, p, frame); vep))>),; incomp;
compl: ({(L compl z; (z ::=y [1]|
edit L compl (file, z, format, p, frame); rep))>);
({(L real x; (x ::= y [{]]
edit L compl (file, x, format, p, frame); vep})>);
({(Linti; (i::=y[]]]
edit L compl (file, i, format, p, frame); vep))>); incomp;
string: ([1 flex : 0 flex] char s; (s ::=y [§]|: frame [4] =0
put (file, s) | edit string (file, s (@ 1, format, p, frame); rep));
char: (charc; (¢ 1=y [j]]
edit string (file, c, format, p, frame); rep)); incomp;
intch: (inti; (1 1=y [f]| edit choice (file, i, format, p); rep)); incomp;
bool: (bool b; (b ::= y [{]| edit bool (file, b, format, p); vep));
incomp: (value error of file | vep | put (file, v [j]); undefined);
end. skip)
end ;
c) proc % edit L int=(file f, L int ¢, string format, ref int p, [] int fr):
(string s =L int string (1, fr (4] 4+ 1, fr [2]);
(s=="""| (— value error of {| put (f, i); undefined) |
edit string (f, s, format, p, fr)));

Report on the Algorithmic Language ALGOL 68 199

d) proc % edit L real = (file f, L real x, string format, ref int P, []intfr):
(string s =stringed L veal (x, fr); int t:= —1;
(— char in string ("', t, s) | char in string ("e”, t,s));
(t="1s| (— value ervor of f| put (},i); undefined) !
edit string (f, s, format, p, fr)))
e) proc % stringed L real = (L real x, [] int) string:
(fr [1]=2| L dec string (x, fr [4] +fr [5] +2, fr [5]) |
L real string (x, fr [4] +fr [8) +fr [7]+4, fr [5), fr[7])) ;s
f) proc % edit L compl = (file f, L compl z, string format, ref intp,[Jintfr):

edit string (f, ([1:14] int g:= fr; g [1] —:= 2; stringed L real
(vrez,g[1:7])+" 1" +stringed L real (im z, ¢ [8:14])),
format, p, fr);

g) proc % edit string = (file , string x, format, ref int p, [] int r):
begin int p1:= 1, n; bool supp, string s:= x;
op 2=(char s) bool : (do insertion (f, format, p); p > [format |
false | int g = p, replicator (format, p, n);
(supp := format [p]="s"|p +:=1);
(char in string (format [p], locint, s) | p 4= 1; true |
1= g, false));
proc copy = : ((— supp | put string (f, s [p11)); p1 +:=1);
proc inireal mould = . (2 "'r"’; sign mould (fr [3]); int mould;
(277 copyy int mould |: s [pI1]=".""| p1 +:=1);
(? 7€ | copy; sign mould (fr [6]); int mould));
proc sign mould = (int sign) : (sign=0|
(s [pI1="—""|: — value error of file | undefined)
s[p1] = (s [pI] ="'+ | (sign| "7, ") | " —);
(272" | sign supp zero (s, p1, pl1+n)|n:=0);
ton+4-1docopy; p +:=1);
proc int mould = : (I: (? ’z” | bool zs : = true; to # do
(s [pI]="0"nzs | put string (file, "); pI +:=1 |
zs = false; copy); 1); (7 7d” | to n do copy; 1));
Proc siring mould = : while ? “a” do to » do copy;
(Jr (1] =6 fr [1]) =9 string mould | : intreal mould;
fri1>3| p +:=1; copy; intreal mould)
end;
h) proc % edit choice = (file f, int ¢, string format, ref int p) :
(¢>0| do insertion (f, format, p); p +:=2; to c — I do
(skip it (format, p); format [p]=","|p +:= 1| undefined);
do lit (f, format, p);
while jormat [p] &)" do (p +:= I; skip lit (format, p)); p +:=1 |
undefined) ;
1) proc % edit bool = (file /, bool b, string format, ref int p)
(do insertion (f, format, p); (format [p+1]="("]|p +:=2;
(b do lit (f, format, p); p +:= 1; skip lit (format, p) |
skip it (format, p); p +:== 1; do Lit (], format, p)) |
put string (f, (6| 17| 707)}); p +:=1);

200 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

j} proc % do insertion = (file f, string s, refint p) :
while (p> 1| false|: do align (f, s, p) | true| do lit ({, s, p)) do skip;
k) proc % do align = (file f, string s, ref int p) bool:
(int g =2p; int n; replicator (s, p, n);
(s[p]="x"|to n do space (f); I|:
s[p]="y"|to n do backspace (f); I|:
s[pl="p"|to n do new page (f); 1 |:
s[p]="1" | to n do new line (f); I |:
s[pl="k"| char of bfile of f:=n; 1); p := q; false.
I: p+:=1; true);
Iy proc % do lit=(file f, string s, ref int) bool:
(int g =2; int u; replicator (s, p, n); (s[p]=""""
while (s[p +:=1]=""""|s[p +:=1]=""""
put string (f, s [p]); true| p:= g, false));

true) do

10.5.3.2. Formatted Input

a) proc inf=(file file, tamrof tamrof, [] intype x) :
(format (file, tamrof); in (file, x)) ;
b) procin=(file file, [1:] intype x):
begin string format = format of file; ref int p =forp of file;
for 2 to 1 x do
([1:] intype y =straightin x [£]; int ¢, j := 0;
[1:14] int frame;
vep: § +:=1;
step: while (exp insertion (file, format, p); p> T format | false |
format [p]=",")do p +:=1; (j>Ty]|end);
(p>T format | (— format end of file| p:= 1); step);
g 1= p; picture (format, q, frame);
(frame [1] | int, veal, veal, compl, compl, string, inich, bool, char),
it ({(ref Lint i, (40 1=y [7]|
indit L int (file, i1, format, p, frame); vep))>); incomp;
real: ({(rvef L real xx; (xx ::=y [1]]
wndit L veal (file, xx, format, p, frame); vep))>); incomp;
compl: ({(ref L compl zz; (2z 1=y [f] |
wndit L compl (file, 2z, format, p, frame); rep))>); incomp;
string: (ref string ss; string ¢; (ss 1=y [f] |
(frame [4] = 0| get (file, ss) |
indit string (file, t, format, p, frame); ss[@ 1]:=1¢); rep));
char: (ref char cc; string ¢, (cc ::=y [f] |
wndit string (file, ¢, format, p, frame);
(ref char:cc):=1¢ (1], rep) | incomp);
wntch: (ref int 40, (41 1=y [f]]
indit choice (file, i1, format, p); vep)); incomp;
bool: (ref bool bb; (bb ::=y [{] |
indit bool (file, bb, format, p); rep});

Report on the Algorithmic Language ALGOL 68 201

incomp: (value error of file | rep | undefined),
end: skip)
end;

Proc % indit L int = (file {, ref L int i, string format, ref int p,
[]int fr): (string t; indit string (}, ¢, format, p, fr);
1:= L string int (¢, fr [2]))
Proc % wndit L real = (file f, ref L real x, string format, ref int p,
[]int fr): (string t; indit string (f, t, format, p, fr);
x:= L string veal (1))
Proc % indit L compl = (file f, ref L compl z, string format, ref int p,
[1int fr): (string ¢; int i; indit string (f, ¢, format, p, fr);
zi= (char in string (” 1", i, 1) |
(L string veal (¢ [1:1—1]) | L string real (t[i+1: 1))
Proc % indit string = (file [, ref string ¢, string format, refint p,[Jint fr) :
begin int #; bool supp; char k; string x; priority / = §;
op ’=(char s) bool:
(exp insertion (f, format, p); p> 1 format | false |
int g =p; veplicator (format, p, n);
(supp .= format [p]="s"|p +:=1);
(char in string (format [p], loc int, s) | p +:= 1, true|
pi=ygq; false));
op / = (string s, char ¢) char:
(char in string (next, loc int, s) | (supp | 7" | k) |
char sugg 1= c; ((char ervor of f) (sugg) | sugg | undefined; c));
op/ = (chars, ¢) char: (string:s) / ¢;
proc char next =char: (get string (f, k), k),
proc intreal mould = : (2 "'v"'; sign mould (fr [3]); int mould;
(27 o= 175 int mould) ;
(27" | % 1= ey | "yo"'s sign mould (fr [6]); intmould));
proc sign mould = (int sign) : (sign=0| x +:="+"|
intj:=0;,(—?"2"|n:=0);
for i to n 41 while next="."" do j: =i,
xdi=(k="~"vh="+"rsign=1| k]|

(k#://_!_// 7~ — e 1; backspace (]()); 1717 ', //+/l),.
forifromj+1ton-+1dox +:="0123456789" / "0);
proc int mould = : (i: (? "z | int §;

for i to # while next ="."" do 7 := i; backspace (f);
from j to n do x +:= 0123456789 1 "¢, l);
(774" | ton do x 1= 0123456789 1 "0"'; 1));
proc string mould = :
while ? “a”" do to n do x +:= (supp next);
(fr (1] =6vfr [1] =9 | string mould | : intreal mould;
frI)>8| 7L 17 1" intreal mould); t:= x
end ;

1y sy
.

202 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

g) proc % indit choice = (file f, ref int ¢, string format, ref int p) :
(exp insertion (f, format, p); p +:1=2;,c:=1;
while ask lit (f, format, p) do
(¢ +:=1; format [p] =","| p +:== 1| undefined);
while format [p]=£"")" do (p +:=1; skip lit (format, p));
P 4= 1; exp insertion (f, format, p));
h) proc % indit bool = (file {, ref bool b, string format, ref int p) :
(exp insertion (f, format, p); (format (p+1]="("|p +:=2;
(b:= ask Lit (f, Jormat, p) | p +:= 1; skip lit (format, p) |:
P +1=1; ask Lt ({, format, p) | undefined) | char k;

get string (f, k); b:= (k="1"]| true|: k="0"] false));
P = 1; exp nsertion (f, format, p));
i) proc % exp insertion = (file f, string s, ref int p) :
while (p> T s| false |: do align (], s, p) | true|
exp lit (1, s, p)) do skip;
j) proc % exp lit=(file /, string s, ref int ») bool :
(int g=2p; int u; replicator (s, p, n); (s[p]=""""]int r =p;

ton do (p:=r; while (s[p +-:=1]=""""
true) do (char &; get string (f, k); k==s [p]
p:=gq; false)) ;
k) proc % ask lit = (file f, string s, ref int ») bool :
(int c =char of bfile of f; int n; replicator (s, p, n);
(s{p]=""""]intr=p;tondo (p:=v;
while (s[p +:=11=""""|s[p +:=11=""""
(char k; get string (f, k); k=4=s[p]|1)); true.
L: while (s{p +:=1]=""""|s[p +:=1]=""""
char of bfile of f:==c; false));

s [p +:: 1] ://IIII/II
undefined)), true |

true) do

true) do skip;

10.5.4. Binary Transput

a) proc % to bin = (file f, simplout x) [] int:
€ a value of mode 'row of integral’ whose lower bound is one, and whose upper
bound depends on the value of 't and on the mode of the value of "x’;
furthermore, x = from bin (f, x, to bin (f, x)) c;
b) proc % from bin = (file f, simplout v, [] int y) simplout:
c a value, if one exists, of the mode of the actual-parameter corresponding
to v, such that y=to bin (f, from bin (f, v, v))c,

{On some channels a more straightforward way of transput is available. Some
properties of this binary transput depend on the particular implementation, others
can be deduced from 10.5.4.}

10.5.4.1. Binary Output
a) proc write bin = ([] outtype x) : put bin (stand back, x) ;
b) proc put bin = (file file, [1:] outtype x):
if bin possible [chan of file] A opened of file A put possible [chan of file]
then if — set possible [chan of file] thef state def of file

Report on the Algorithmic Language ALGOL 68 203

then (state get of filev— state bin of file | undefined)
else state def of file : = state bin of file : = true;
state get of file:= false
fi,
for £ to I x do ([1:] simplout y =straightout x [£];
forjto 1y do ([1:] int bin=to bin (file, y [j]);
ref bfile b =bfile of file;
ref int p = page of b, [=1line of b, c = char of b;
for i to I bin do (mext plc (file); check plc (file);
(book of b)[p, 1, c]:=bin[¢]; ¢ +:=1;
(P =lpage of bal=lline of b| (c>ichar of b| ichar of b:=c) |
lpage of b:= p; lline of b:=1; lchar of b:=¢))))
else undefined
fi;

10.5.4.2. Binary Input
a) procread bin= ([] intype x) : get bin (stand back, x);
b) proc get bin = (file file, [1:] intype x):
if bin possible [chan of file] n opened of filea get possible [chan of fiie]
then if — set possible [chan of file] thef state def of file
then (— state get of filev — state bin of file | undefined)
else state def of file:= state bin of file: = state get of file := true
fi ; simplout yi;
for £ to I x do ([1:] intype y =straightin x [%];
forjto rydo (y1 ::= y [7];
[1: 0 flex] int bin = to bin (file, y1); ref bfile b =bfile of file;
for i to [bun do (next plc (file); check plc (file);
bin [i] := (book of b) [page of b, line of b, char of b];
char of b +:=1);
({(ref L int di; (i ::= y [1] |
(ref L int:di) ::= from bin (file, ii, bin)))>);
({(ref L real xx; (xx ::=y [f] |
(ref L real: xx) ::= from bin (file, xx, bin)))>);
({(ref L compl zz; (2z ::=y [7]]
(ref L compl: zz) ::= from bin (file, 2z, bin)))>);
(ref string ss; (ss 1=y [f]|
(ref string : ss) ::= from bin (file, ss, bin)));
(ref char cc; (cc ::=y 7] |
(ref char:cc) ::= from bin (file, cc, bin)));
(ref bool bb; (bb ::= y [1]]
(ref bool : bb) ::= from bin (file, bb, bin)))))
else undefined
fi,

204 A.van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

{But Eeyore wasn’t listening. He was taking

the balloon out, and putting it back again,

as happy as could be. ...

Winnie-the-Pooh, A. A. Milne.}
10.6. Standard Postlude

a) lock (stand in); lock (stand out); lock (stand back)

K

11. Examples
11.1. Complex Square Root
A declaration in which compsqrt is a procedure-with-[complex]-parameter-
[complex]-mode-identifier (here [complex] stands for structured-with-real-field-
letter-r-letter-e-and-real-field-letter-i-letter-m.) :

a) proc compsgri=(compl z) & the square root whose real part is nonnegative
of the complex number z § compl :

b) beginreal x=rez y=imz

c) real rp=sqgrt((abs x+sqrt (x 1 24+y12))[2);

d) realip=(rp=0|0]y[(2x7p));

e) (x=0|rp Lip|absip | (y=0|rp| —rp))

f) end

[complex]-calls {8.6.2} using compsgrt:
g) compsgrt (w)
h) compsqrt (—3.14)
1) compsqrt (—1)

11.2. Innerproduct 1

A declaration in which innerproduct 1 is a procedure-with-integral-parameter-
and-procedure-with-integral-parameter-real-parameter-and-procedure-with-
integral-parameter-real-parameter-real-mode-identifier:

a) proc innerproduct 1= (int n, proc (int) real %, y) real :
comment the innerproduct of two vectors, each with n components, x (i},
y (i), i=1,...,n, where x and y are arbitrary mappings from integer to
real number comment

b) begin long real s:=long 0;

c) foriton dosplusleng x (7)xleng vy (7);
d) shorts

e) end

Report on the Algorithmic Language ALGOL 68 205

Real-calls {8.6.2} using innerproduct 1:

f) innerproduct 1 (m, (int) real: xI[f], (int 7) real: yI[7])
g) immerproduct 1 (n, nsin, ncos)

11.3. Innerproduct 2
A declaration in which nnerproduct 2 is a procedure-with-reference-to-row-
of-real-parameter-and-reference-to-row-of-real-parameter-real-mode-identifier:

a) proc innerproduct 2—=(ref [(1:] real a; ref [1: I a] real b) real:
t the innerproduct of two vectors a and b with equal number of elements 4

b) begin long real s:= long 0;

¢) forito fados+:=lenga[i]xlengb[i];
d) shorts

e) end

Real-calls using innerproduct 2:

f) innerproduct 2 (x1, y1)
g8) immerproduct 2 (y2 (2], y2 [, 31)

11.4. Innerproduct 3

A declaration in which ¢nnerproduct 3 is a procedure-with-reference-to-
integral-paramerer—and-im‘egral-parame’rer—and—procedure-real-parqme’rer-
and-procedure-real-parameter-real-mode-identifier:

a) procinnerproduct 3 = (ref int 4, int , proc real xi, yi) real :
¥ the innerproduct of two vectors whose n elements are the values of the ex-
pressions xi and yi and which depend, in general, on the value of 1 &

b) begin long real s := long 0;

¢) forktondo (i:=k s'+:= leng xixleng yi);
d) shorts

e) end

A real-call using snnerproduct 3:
f) inmerproduct 3 (7, 8, x1 5], y1 [j +1])

11.5. Largest Element

A declaration in which absmax is a procedure-with-reference-to-row-of-row-
of—reol-parqmefer-and-reference-To—rea{—parqmeTer—and-reference-To-integral-
parameter-and-reference-to-integral-parameter-void-mode-identifier:

a) proc absmax = (ref [I:, 1:] real a, % result # ref real Y,
% subscripts ¢ ref int 4, k) :
¥ the absolute value of the element of greatest absolute value of the matrix a
1s assigned to v, and the subscripts of this element to i and k s
c) beginy .= —1;
d) for pto 1 upb a do for g to 2 upb 4 do
e) ifabsa[p,g]>ytheny:=absa[(i:= P)s (k= q)] fi
f) end

206 A. van Wijngaarden (Editor), B.] Mailloux, J. E. L. Peck and C. H. A, Koster:

Void-calls using absmax:
g) absmax (x2, x,1,7)
h) absmax (x2, x, loc int, loc int)

11.6. Euler Summation
a) proc culer = (proc (int) real f, real eps, int tim) real:
£ the sum for 1 from 1 to infinity of f(i), computed by means of a suitably
vefined Euler transformation. The summation is terminated when the absolute
values of the terms of the transformed servies are found to be less than eps tim
times tn successton. This transformation is particularly efficient in the case
of a slowly convergent ov divergent alternating sevies §

b) begin int »:= 1, ¢; real mn, ds:= eps; [1: 16] real m;

c) real sum:= (m[1]:=f(1))]2;

d) for i from 2 while (¢:= (abs ds<eps|t+1]1))<tim do
e) begin mn:=f (i);

f) for & to n do begin mn := ((ds:=mn) +m [k]) | 2;
g) m {k] :=ds end;

h) sum plus (ds:= (abs mn<abs m [n] An<16|

1) nplus 1; m (0] = mn; mn | 2| mn))
j) end;

k) sum

I) end

A call using euler:
m) euler ((inti) real: (oddi| —1/d|1/3), 1,,—3,2)

14.7. The Norm of a Vector
a) procunorm=(ref{1:] real a) real:
£ the euclidean norm of the vector a &
b) (long real s:= long 0;
c) for % to upb ado s pluslenga (k] 12,
d) short long sqrt (s))

For a use of norm as a call, see 11.8.e.

11.8. Determinant of a Matrix

a) procdet=(ref[1:,1:] real a; ref{l:upba]intp) real:

b) if upba=2 upb a

c) then int # =upb a;
the determinant of the square matrix of a ovder n by the method of Crout
with vow interchanges: a s veplaced by its triangular decomposition I Xu
with all w [k, k] =1. The vector p gives as output the prvotal row indices;
the k-th pivot is chosen in the k-th column of I such that abs [[i, k] | row
norm is maximal.

Report on the Algorithmic Language ALGOL 68 207

d) [1:n] real v; real d:= 1, s, pivot;

e) for i to n do v [4] := norm (a [4]);

1) for % to » do

g) begin int 21 =% —1; ref int pk=p [k],; real : = — I;
h) ref[,|real al=a[, 1: k1], au=a [1: k1];

i) ref[Jreal ak=a [k], ka=al, k],

j) alk =al [k], kauv=au [, k],

k) for i from % to #» do

1) begin ref real aik =%a [7];

m) if (s:= abs (atk —:= innerproduct 2 (al (i), kau)) | v [{]) >r
n) thenr:=s; pk:=ifi

o) end;

p) v [pR] = v [k]; pivot := ka [pk]; ref [] real apk =a [pk];
q) for j to » do

1) begin ref real akj =ak [j], apkj = apk [f];

s) 7:=akj; akj:= if { <k then aplj

t) else (apkj —innerproduct 2 (alk, au [, 1)) | pivot fi;
u) if pk ==k then apkj:= —7 fi

v) end;

w) d X 1= prvot

X) end;

¥) d

z) fi

A call using det:
aa) det (y2,11)

11.9. Greatest Common Divisor
a) procged=(int a, b) int:
the greatest common divisor of two integers £
b) (b=0|absa|ged (b,a +:b))
A call using ged:
c) ged (n, 124)

11.10. Continued Fraction
a) op/=([1:]reala; [1:upba]real’)real:
comment the value of a | b is that of the continued fraction
ay| (by+as| (bg+...a,[0,) ...) comment
b) (upba=0[0|a[1}/(b[I]+al2:]]0[2:]))
A formula using /:
c) «x1]yl

14a Numer. Math., Bd. 14

208 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:
{The use of recursion may often be elegant rather than efficient as in the
recursive procedure 11.9 and the recursive operation 11.10. See, however, 11.11

and 11.14 for examples in which recursion is of the essence.}

11.141. Formula Manipulation

a) begin union form = (ref const, ref var, ref triple, ref call);
b) struct const = (real value);
c) struct var = (string name, real value);
d) struct triple = (form left operand, int operator, form right operand);
e) struct function = (ref var bound var, form body);
f) struct call =(ref function function name, form parameter);
g) int plus =1, minus =2, times =3, by =4, to =5;
h) heap const zero, one, value of zero := 0; value of one:= 1;
i) op = = (form a, ref const b)
bool : (ref const ec; (ec ::=a|ec :=: 0| false));

j} op+ = (forma,bd)
form: (a=zero | b|:b=zero| a| triple:= (a, plus, b));

k) op — = (form a, b) form: (b=zero| a| triple:= (a, minus, b));
) op x =(forma,b) form: (a=zerovb=zero| zero|: a=one| b
|:b=one| a| triple:= (a, times, b));

m) op/ = (forma,b)form: (a=zeron — (b=zero) | zero
|: b=one| a|triple:= (a, by, b));
n) op } = (form a, ref const b) form: (a=onev (b :=: zero) | one

|10 :=:0me|a|triple:= (a, to, b));

0) proc derivative of = (form e, § with respect to § ref var x) form:
p) begin ref const ec; ref var ev; ref triple ¢i; ref call ¢f;
q) case ev, ¢, ¢f ;1= e in
T) tevd (ev:=:x]|one|zero),
s) % et 4 begin form u =left operand of et, v =right operand of et;
t) form udash =derivative of (u, § with respect to § x),
u) vdash = devivative of (v, § with respect to % x);
V) case operator of e in
w) udash -+ vdash, udash — vdash,
X) u X vdash + udash X v, (udash — et X vdash) [v,
y) (ec :i=v|vxut
(heap const ¢; value of ¢ := value of ec —1; c) X udash)
esac
end,
z) % ¢f # begin ref function f = function name of ef;
aa) form g =parameter of ef;
ab) ref var y =bound var of f;

ac) heap function fdash := (y, derivative of (body of f, v));

ad)

ae)

af)
ag)
ah)
ai)
aj)
ak)
al)
am)
an)

ao)
ap)
aq)

ar)
as)

)
au)

©

Teeog

14b

Report on the Algorithmic Language ALGOL 68

(call := (fdash, g)) Xderivative of (g, x)
end

out % ec £ zero
esac f ev, et, ef, ec &
end % derivative 3 ;
proc value of = (form ¢) real :
begin ref const e, ref var cu; ref triple e, ref call ¢f;
caseec, ev, el, ef ::= e in
£ ec & value of ec,
£ ev ¥ value of ev,
t et # begin real u =wvalue of (left operand of et),
v =value of (vight operand of et);
case operator of ¢ in
u+v, u—uv, uXv, u|v, exp (vXiln (u)) esac
end,
t ¢f 4 begin ref function f = function name of ef;
value of bound var of f:= value of (parameter of ef);

value of (body of f)
end
esac i ec, ev, ¢t, ef £
end # value of %;

209

heap form f, g; heap var a:= ("a”, ~), b= ("b", ~), x:= ("2, N);

start here: read ((value of a, value of b, value of x));

fr=a+x][(b+2); g:= (f+one) [(f—one);
print ((value of a, value of b, value of x,

value of (derivative of (g, # with vespect to § x))))
end § example of formula manipulation %

11.12. Information Retrieval

begin mode ra =ref auth, rb =ref book,
struct auth = (string name, ra next, rb book),
book = (string title, rb next);
ra auth, first auth := nil, last auth; rb book;
string name, title; int i; file input, output,
open (input,, remote in); open (output,, remote out);
outf (output, $p
"to.enter.a.new.auther, type.
name.”’l

rrrs rres

author” " ,.a.space,.and.his,

“to.enter.a.mew.book, type.” "book” "’ .a.space, the.name.of the.
author a.newdineand.thetitle.”’ |

“for.a.disting.of the.books.by.an.author,tvpe.” "list” " ,.a.space,.

and.Jis.name.”’l

Numer. Math., Bd. 14

210 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

)

DJFDQJQW?JNFD\N_,%N
Eregoghb T2

client:

author:
publ:

list:

find:

"“to.find.the.author.of.a.book,type.”” "find” "’ .a.mew.line,.and.the.
title.”’l

“bo.end, type. end” " alS, .)y
proc update =
Lif (ra: first auth) = nil
then auth : = first auth := last auth:= auth := (name, o, o)
else auth:= first auth; while (ra: auth) :+: nil do
(name = name of auth | known | auth := next of auth);
last auth : = next of last auth : = auth : = auth : =
(nasme, o, o); known: skip
fi 4§ end declaration prelude sequence § ;
wnf (input, Sc(”author”, "book”, "list”,” find"’," end”’,” "’), x30al,
80al$, i)
case ¢ in author, publ, list, find, end, error esac;
i (input, name); update; client;
wn (input, (name, title)) ; update;
if (rb: book of auth) :=: nil
then book of auth:= book := (title, o)
else book := book of auth; while (rb: next of book) :==: nil do
(title = title of book | client | book := next of book);
(title = title of book | next of book := book := (title, o))
fi, client;
n (input, name); update;
outf (output, $p" author:."30all§, name);
if (rb: book of auth) :=: nil
then put (output, no.publications’)
else while (rb: book) :34=: nil do
begin if line number (output) =max line [remote out]
then outf (output, $41k" continued.on.next.page’’p
“author:.” 30ad1k" continued I, name)
fi, outf (output, $80al$, title of book s
book : = next of book
end

fi; clieni,
i (input, (loc string, iitle)); auth := first auth;
while (ra: auth) :3=: nil do
begin book := book of auth;
while (rb: book) :4-: nil do
if title = title of book
then outf (output, $1”author:.” 30a$, name of auth) client
else book : = next of book
fi; auth = next of auth
end;

Report on the Algorithmic Language ALGOL 68

au) outf (output, SI"”unknown’1S,), client;
av) end: put (output, (new page, "'signed.off”, close));
aw) close (input).
ax) ervor: put (output, (new line, 'mistake,try.again.’’));
ay) new line (input); client

end

11.13. Cooperating Sequential Processes
a) begin int nmb magazine slois, nmb producers, nmb consumers;

b) read ((wmb magazine slots, nmb producers, nmb consumers));
c) [1:nmb producers) file infile, [1: nmb consumers) file outfile;
d) for i to nmb producers do open (infile [1],, inchannel [1]);
¥ inchannel and ouichannel ave defined in a surrounding range %
e) for i to nmb consumers do open (outfile [i],, outchannel [1]);
1) mode page =[1:60, 1: 132] char;
g) [1: nmb magazine slots) ref page magazine;
h) int § pointers of a cyclic magazine ¥ index = 1, exdex 1= 1;
1) sema full slots = [0, free slots = | wimb magazine slots,
j) i buffer busy = | 1, out buffer busy = | 1;
k) proc par call = (proc (int) p, int n) & calls n incarnations of p in
1) parallel §: (n>0| par (p (n), par call (p,n—1)));
m proc producer = (int i) : do (heap page page; get (infile[i), page);
n) } free slots; | in buffer busy;
o) magazine [index] .= page; index — .= nmb magazine slots +:= 1;
D) t full slots; 1 in buffer busy);
q) proc consumer = (int) : do (page page;
1) } full slots; | out buffer busy;
s) page .= magazine [exdex]; exdex = ::= nmb magazine slots +:= 1;
t) 1 free slots; | out buffer busy; put (outfile [i], page));
u) par (par call (producer, nmb producers),

par call (consumer, nmb consumers))

end

11.14. Towers of Hanoi
a) begin proc p ={(int me, de, ma) :

b) (ma>0|p (me, 6 —me—de, ma—1);
c) out (stand out, (me, de, ma));
% move from peg ‘me’ to peg ‘de’ piece ‘'ma’ %
d) P (6 —me—de, de, ma—1));
e) for % to 8 do (outf (stand out, $I"’k.=.""dl,

n((2Vk+15) +16)(2(2(4(3(d)%)%)x)L)$, k),

f) P(L, 2, k))

end

211

212 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

12.1. Technical Terms

12. Glossary

Given below are the locations of the first, and sometimes other, instructive
appearances of a number of words which, in Chapters 1 up to 10 of this Report,
have a specific technical meaning. A word appearing in different grammatical
forms (e.g., ''assign'’, "assigned', '"assignment') is given once, usually as in-

finitive (e.g., ""assign'’).

action 2.2, 2.2.5
ALGOL 68 program 4.4
apostrophe 1.1.6.c
applied occurrence 4.1.2.a
appoint 6.0.2.a

a priori value 5.1.0.2.b
arithmetic value 2.2.3.1.a
assign 2.2.2.e, 8.3.1.2.c
asterisk 1.1.2.a
automaton 1.1.1.a
backfile 10.5.1.aa,cc
balance 6, 6.4.1

blind alley 1.1.2.d
bold-face shift 3.1.2.b
case clause 9.4.c,d
channel 10.5.1.aa,bb
character 2.2.3.1.a,f
close a file 10.5.1.ii
collateral 2.2.5.a, 6.2.2.a
colon 1.1.2.a

comma, 1.1.2.a
compatible 5.5.1.dd,nn
compile 2.3.c
component of 2.2.2.h
composite 3.1.2.d
complete 6.0.2.a
computer 1.1.1.a
conformity case clause 9.4.g
constant 5

constituent 1.1.6.f
contain 1.1.6.b
conversion key 5.5.1.ff
copy 2.2.4.1.a

create a file 10.5.1.g¢g

defining occurrence 2.2.2.c, 4.1.2.a

denote 1.1.6.c
deproceduring 8.2, §.2.2
dereferencing 8.2, 8.2.1
descendent 1.1.6.e,f
describe 2.2.3.3.b
descriptor 2.2.3.3.a
develop 7.1.2.c

direct constituent 1.1.6.e,f
direct descendent 1.1.6.e
direct production 1.1.2.c
divided by 2.2.3.1.c

edit 5.5.1.11

elaborate collaterally 6.2.2.a
elaboration 1.1.6.h, 6.0.2.a
element 2.2.2.k

end of file 10.5.1.cc

English language 1.1.1.b
envelop 1.1.6.j

environment enquiry 10.1
equivalent to 2.2.2.h
establish a file 10.5.1.gg
expect 5.5.1.gg

extended language 1.1.1.a
extension 1.1.7

external object 2.2.1

false 2.2.3.1.¢

field 2.2.2.k

file 5.5.1.aa, 10.5.1, 10.5.1.ee
firmly coerced from 4.4.3.a
firm position 8.2

follow 1.1.6.a

formal language 1.1.1.b
format 2.2.3, 2.2.3.4, 5.5
halt 6.0.2.a

hardware language 1.1.8.b
heap 8.5.1

hipping 8.2, 8.2.7

hold 2.2

home 4.1.2.b

human being 1.1.1.a
hypernotion 1.3

hyphen 1.1.6.c.iv
identification string 10.5.1.cc
identify 2.2.2.b,c
implementation 2.3.c

index 2.2.3.3.a
indication-applied occurrence 4.2.2.a
indication-defining occurrence 2.2.2.c,
indit 5.5.1.mm 4.2.2.a
initiate 2.2.2.g, 6.0.2.a

input 5.5.1.aa, 10.5
inseparable 2.2.5.a

instance 2.2.1

integer 2.2.3.1.a,b,c,d
integral equivalent 2.2.3.1.f
internal object 2.2.1
interrupt 6.0.2.a

in the reach of 4.4.2.c

in the sense of numerical analysis 2.2.3.1.c

Report on the Algorithmic Language ALGOL 68

large syntactic marks 1.1.2.a
layout procedure 10.5.2.1
length number 2.2.3.1.b
light-face shift 3.1.2.b

list of metanotions 1.1.3.c
list of notions 1.1.2.c

literal 5

lock a file 10.5.1.ii

loosely related 4.4.3.c

lower bound 2.2.3.3.b

lower state 2.2.3.3.b
meaningful (program) 4.4
member 1.1.2.d
metalanguage 1.1.3.a
metamember 1.1.3.d
metanotion 1.1.3.a

minus 2.2.3.1.c

mode 1.1.6.1, 2.2.4.1.a
multiple value 2.2.3, 2.2.3.3
name 2.2.2.1, 2.2.3.5

nil 2.2.2.1, 2.2.3.5.a

notion 1.1.2.a

object 2.2, 2.2.1

object program 2.3.c
occurrence 1.1.6.d, 2.2.1
offset 2.2.3.3.b

offspring 1.1.6.e

of the same mode as 2.2.2.h
open a file 10.5.1.1f
operator-applied occurrence 4.3.2.a
operator-defining occurrence 2.2.2.c,
original 1.1.6.c 4.3.2.a
other syntactic marks 1.1.2.a
output 5.5.1.aa, 10.5
overflow 6.0.2.b

paranotion 1.1.6.c

passon 6

permanent 2.2.2.a

plain value 2.2.3, 2.2.3.1
point 1.1.2.a

portrayal 2.2.4.1.d

position of the file 5.5.1.ff
possess 2.2.2.d

possibly intended (program) 2.3.c
pragmatic remark 1.3
precede 1.1.6.a
preelaboration 1.1.6.1
premode 1.1.6.1

prescope 1.1.6.1

present 5.5.1.ff

prevalue 1.1.6.i

proceduring 8.2, 8.2.3
production 1.1.2.e
production rule 1.1.2.a
production tree 1.1.6.e
productive 1.1.2.d

proper {program) 4.4

213

protect 6.0.2.d, 7.1.2.b
protonotion 1.1.2.b
publication language 1.1.8.b
quintuple 2.2.3.3.b

random access 10.5.1.bb
reach 4.4.2.a, 4.4.2.c

read 5.5.1.j]

real number 2.2.3.1.a,b,c,d
refer to 2.2.2.h

related 4.4.3.b

relationship 2.2, 2.2.2
repetitive statement 9.3
representation 1.1.8.a
representation language 1.1.1.a
reset a file 10.5.1.nn

resume 6.0.2.a

routine 2.2.2.f, 2.2.3.4

rowing 8.2, 8.2.6

scope 1.1.6.i, 2.2.3.5.a, 2.2.4.2
scratch a file 10.5.1.hh

select 2.2.3.2, 2.2.3.3.a
semantics 1.1.2.a, 2.3
semicolon 1.1.2.a

sequential access 10.5.1.bb
serial 2.2.5.a

set a file 10.5.1.00

shield 4.4.4.a

show 4.4.4.b

smaller than 2.2.2.h

small syntactic marks 1.1.2.a
soft position 8.2

sort 6

standard declaration 10.a
standard file 10.5.1.3
standard mathematical constant 10.3
standard mathematical function 10.3
standard operation 10.2
standard priority 10.2.0
straightening 5.5.1.dd, 10.5.0.2
strict language 1.1.1.a

stride 2.2.3.3.b

string 5.3.2

strongly coerced from 4.4.3.a
strong position 8.2
structured value 2.2.3, 2.2.3.2
structured from 2.2.4.1.d
subvalue 2.2.2.k

successor 6.0.2.a

supersede 8.3.1.2.a

suppress 5.5.1.11

symbol 1.1.2.b
synchronization operation 10.4
syntactic position 8.2

syntax 1.1.2.a

terminal production 1.1.2.f
terminate 6.0.2.a
terminator-string 5.5.1.jj

214 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

textual order 1.1.6.a
times 2.2.3.1.c

transput 5.5.1.aa, 10.5
transput declaration 10.5
frue 2.2.3.1.e

truth value 2.2.3.1.a,e
undefined 1.1.6.k
united from 4.4.3.a

12.2. Paranotions

uniting 8.2, 8.2.4
upper bound 2.2.3.3.b
upper state 2.2.3.3.b
value 1.1.6., 2.2.3
voiding 8.2, 8.2.8
weak position 8.2

widening 2.2.3.1.d, 8.2, 8.2.5

write 5.5.1.g8

{Denn eben, wo Begriffe fehlen,
Da stellt ein Wort zur rechten Zeit sich ein.

Faust,

J. W. von Goethe.}

Given below are the indicators of the rules yielding production rules for the
originals of the given paranotions and other protonotions or giving instructive
appearances of, or representations for, the given symbols. Ordinary type font
without hyphens is used in order to shorten the text by using hyphens in a

conventional way.

absolute value of symbol 3.1.1.c

action token 3.0.4.a

actual declarator 7.1.1.c,d,elo,p,w,cc

— declarer 7.1.1.b

— lower bound 7.1.1.t

~ parameter 7.4.1.b

— row of rower 7.1.1.r
— upper bound 7.1.1.t
adic indication 4.2.1.g
alignment 5.5.1.1

and symbol 3.1.1.c
assignation 8.3.1.1.a

at symbol 3.1.1.e
balance 6.2.1.e

base 8.6.0.1.a,b

basic token 3.0.1.a
begin symbol 3.1.1.e
binal — 3.1.1.¢c

bits denotation 5.2.1.a
— symbol 3.1.1.d, 10.2.8.a
boolean choice mould 5.5.4.b
— denotation 5.1.3.1.a
— pattern 5.5.4.a
booleans to bits symbol 3.1.1.c
boolean — 3.1.1.d
boundscript 8.6.1.1.1
bus symbol 3.1.1.e

by — 3.4.1.h

bytes — 3.1.1.d, 10.2.9.a
call 8.6.2.1.a

caption 7.5.1.b

cast 8.3.4.1.a

— of symbol 3.1.1.c
chain 3.0.1.c

character denotation §
— frame 5.5.5.b
— pattern 5.5.5.a

1.4.1.a

characters to bytes symbol 3.1.1.c

character - 3.1.1.d
~token 3.0.9.d
choise clause 6.4.1.c,d

clause 6.1.1.a, 6.2.1.b,c,d,f, 6.3.1.a,

—train 6.1.1.h
closed clause 6.3.1.a
close symbol 3.1.1.e
coercend 8.2.0.1.a
cohesion 8.5.0.1.a

6.4.1.a, 8.1.1.a

collateral clause 6.2.1.b,c,d,f

— declaration 6.2.1.a
collection 5.5.1.b
comma symbol 3.1.1.b
comment 3.0.9.b

— item 3.0.9.c

— symbol 3.1.1.1
completer 6.1.1.1
completion symbol 3.1
complex frame 5.5.6.c
— pattern 5.5.6.a

— symbol 3.1.1.d, 10.2.

condition 6.4.1.b

A1

7.2

conditional clause 6.4.1.a
conformity relation 8.3.2.1.a

— relator 8.3.2.1.b

conforms to and becomes symbol 3.1.1.c

— — symbol 3.1.1.c
confrontation 8.3.0.1.a
— token 3.0.4.d
conjugate of symbol 3.

1.1.c

Report on the Algorithmic Language ALGOL 68 215

constant 6.0.1.d
declaration 6.2.1.a, 7.0.1.a
— prelude 6.1.1.b

— token 3.0.5.a
declarer 7.1.1.a
denotation 5.0.1.a

— token 3.0.3.a
destination 8.3.1.1.b
differs from symbol 3.1.1.c
digit eight 3.0.3.d

— — symbol 3.1.1.b

-~ five 3.0.3.d

— — symbol 3.1.1.b

— four 3.0.3.d

— — symbol 3.1.1.b

— frame 5.5.2.e

— nine 3.0.3.d

— -- symbol 3.1.1.b

- one 3.0.3.d

- — symbol 3.1.1.b

— seven 3.0.3.d

— — symbol 3.1.1.b

- six 3.0.3.d

— — symbol 3.1.1.b

— three 3.0.3.d

— — symbol 3.1.1.b

— token 3.0.3.c

— two 3.0.3.d

— — symbol 3.1.1.b

— zero 3.0.3.d

— — symbol 3.1.1.b
divided by and becomes symbol 3.1.1.c
— — symbol 3.1.1.¢c

do symbol 3.1.1.h
down - 3.1.1.c

dyadic formula 8.4.1.h
— indicant 1.1.5.b

— indication 4.2.1.d

~ operator 4.3.1.d
dynamic replication 5.5.1.h
either symbol 3.1.1.d
else clause 6.4.1.e

— if symbol 3.1.1.h

— symbol 3.1.1.e, 9.4
cnd symbol 3.1.1.e
equals — 3.1.1.c

exit 2.1.¢

exponent frame §.5.3.f
— part 5.1.2.1.g
expression 6.0.1.b
extra token 3.0.9.a
false symbol 3.1.1.b
field declarator 7.1.1.g
— selector 7.1.1.1

file symbol 3.1.1.d, 10.5.1.2
{i symbol 3.1.1.e, 9.4
flexible - 3.1.1.d

flipflop 3.0.3.e

flip symbol 3.1.1.b
floating point mould 5.5.3.d
— - numeral 5.1.2.1.e
flop symbol 3.1.1.b
formal decrarator 7.1.1.c,d,e,m,n,0,p,w,cc
— declarer 7.1.1.b

— lower bound 7.1.1.v

— parameter 5.4.t1.e

— row of rower 7.1.1.r

— upper bound 7.1.1.v
format denotation 5.5.1.a
— symbol 3.1.1.d
formatter — 3.1.1.b
formula 8.4.1.a

for symbol 3.1.1.h
fractional part 5.1.2.1.d
frame 5.5.1.r

from symbol 3.1.1.h
generator 8.5.1.1.a
global —~ 8.5.1.1.c
gomma 5.4.1.d

go on symbol 3.1.1.f

— to - 3.1.1.1

heap — 3.1.1.d

hip token 3.0.8.a
identifier 4.1.1.a

identity declaration 7.4.1.a
— relation 8.3.3.1.a

— relator 8.3.3.1.b

if symbol 3.1.1.e, 9.4
imaginary part of — 3.1.1.c
indexer 8.6.1.1.k
indicant 1.1.5.b
indication 4.2.1.a

insert 5.5.1.e

insertion 5.5.1.d

integral choice pattern 5.5.2.f
— denotation 5.1.1.1.a

— mould 5.5.2.d

— part 5.1.2.1.¢c

— pattern 5.5.2.a

~ symbol 3.1.1.d

is at least — 3.1.1.c

— — most — 3.1.1.c

— greater than — 3.1.1.c
— less - — 3.1.1.c

— not - 3.1.1.c

— symbol 3.1.1.c

label 6.1.1.k

- identifier 4.1.1.b

— symbol 3.1.1.e
lengthen — 3.1.1.c

letter a 3.0.2.b

— — symbol 3.1.1.a

— aleph 3.0.2.b

- b 3.0.2.b

216 A. van Wijngaarden (Editor), B. J. Mailloux, J. E. L. Peck and C. H. A. Koster:

letter b symbol
- ¢ 3.0.2b

|
}

3.0.2.b
symbol 3.1.
3.0.2.b
symbol 3.1.
3.0.2.b

3.0.2.b
3.0.2.b

3.0.2.b

l
=4 =1 5 lom ! =] | q

3.0.2.b
symbol 3.1.
3.0.2.b
symbol 3.1.
3.0.2.b

]
=

|
—

- m3.0.2.b

3.0.2.b
3.0.2.b

3.0.2.b
symbol 3.1.
3.0.2.b
symbol 3.1.
3.0.2.b

3.0.2.b

!
[e B B Y= T B B B oA =

3.0.2.b
oken 3.0.2.a

|
o+

3.0.2.b

3.0.2.b

I
| < | g e

- w 3.0.2.b

— — symbol 3.1.1.

- X 3.0.2b
— — symbol 3.1.
-y 3.0.2b
— — symbol 3.1
—z 3.02.b

— symbol 3.1

— prelude 2.1.c
list 3.0.1.d
~ proper 3.0.1.g8

3.1.1.a

symbol 3.1.1.

symbol 3.1.1.
symbol 3.1.1.
symbol 3.1.1.

symbol 3.1.1.

symbol 3.1.1.
symbol 3.1.1.
symbol 3.1.1.

symbol 3.1.1.

symbol 3.1.1.

symbol 3.1.1.

symbol 3.1.1.
symbol 3.1.1.

symbol 3.1.1.

A1

- 1.
library postlude 2.1.f

.a

a

—~ separator 3.0.1.e

literal 5.5.1.j

local generator 8.5.1.1.b

local symbol 3.1.1.d

long denotation 5.1.0.1.b

— symbol 3.1.1.d

loose replicatable suppressible character

- — — digit — 5.5.1.m frame 5.5.1.m

— — zero — 5.5.1.m

— suppressible character — 5.5.1.m

— — complex — 5.5.1.m

— — exponent — 5.5.1.m

— — point — 5.5.1.m

lower bound of symbol 3.1.1.c

— state — — 3.1.1.c

minus and becomes ~ 3.1.1.c

— symbol 3.1.1.c

mode declaration 7.2.1.a

— identifier 4.1.1.b

— indication 4.2.1.b

~ standard 4.2.1.c

— symbol 3.1.1.d

modulo and becomes symbol 3.1.1.c

— symbol 3.1.1.c

monadic formula 8.4.1.g

— indicant 1.1.5.b

— indication 4.2.1.f

— operand 8.4.1.f

— operator 4.3.1.e

new lower bound 8.6.1.1.h

- — — part 8.6.1.1.¢

nil symbol 3.1.1.g

not — 3.1.1.c

number token 3.0.3.b

odd symbol 3.1.1.c

of — 3.1.1.e

one token 7.3.1.b

— plus one — 7.3.1.c

— — — plus one - 7.3.1.d

————— plus one — 7.3.1.e

——————— plus one — 7.3.1.f

————————— plus one — 7.3.1.g

———————————— plus one —
7.3.1.h

————————————— plus one —
7.3.1.1

——————————————— plus

open symbol 3.1.1.e one —~ 7.3.1.

operand 8.4.1.c

operation declaration 7.5.1.a

— symbol 3.1.1.d

operator 4.3.1.a,b,c

— token 3.0.4.b

option 3.0.1.b

or symbol 3.1.1.c

over and becomes — 3.1.1.c

— symbol 3.1.1.c

pack 3.0.1.h

package 3.0.1.1

parallel symbol 3.1.1.e

Report on the Algorithmic Language ALGOL 68

parameters pack 7.1.1.bb
particular program 2.1.d
phrase 6.0.1.a
picture 5.5.1.c
plain denotation 5.1.0.1.a
plus and becomes symbol 3.1.1.c
— 1itimes — 3.1.1.c
plusminus 3.0.4.c
plus symbol 3.1.1.c
point frame 5.5.3.c
— symbol 3.1.1.b
power of ten 5.1.2.1.i
primary 8.1.1.d
priority declaration 7.3.1.a
— one indication 4.2.1.e
— — plus one — 4.2.1.e
— — — — plus one — 4.2.1.¢
—————— plus one - 4.2.1.e
———————— plus one — 4.2.1.¢
—————————— plus one — 4.2.1.e
———————————— plus one —
4.2.1.e
—————————————— plus one
- 4.2.1.¢
———————————————— plus
one — 4.2.1.e
priority one operator 4.3.1.b
— — plus one — 4.3.1.b
— — — — plusone — 4.3.1.b
—————— plus one —- 4.3.1.b
———————— plus one — 4.3.1.b
—————————— plus one — 4.3.1.b
———————————— plus one —
4.3.1.b
—————————————— plus one
- 4.3.1.b
———————————————— plus
— symbol 3.1.1.d one — 4.3.1.b
procedure 6.0.1.f
— symbol 3.1.1.d
program 2.1.a
prus and becomes symbol 3.1.1.c
quote image 5.1.4.1.c
— symbol 3.1.1.1
radix 5.5.2.c
— mould 5.5.2.b
range 4.1.1.e
real denotation 5.1.2.1.a
— mould 5.5.3.b
— part of symbol 3.1.1.c
— pattern 5.5.3.a
— symbol 3.1.1.d
reference to — 3.1.1.d
replicatable suppressible character frame
- — digit — 5.5.1.n 5.5.1.n
- zero — 5.5.1.n
replicated literal 5.5.1.k

217

replication 5.5.1.g
replicator 5.5.1.f
representation of symbol 3.1.1.c
round ~ 3.1.1.c

routine denotation 5.4.1.a
row of character — 5.3.1.b
— — — pattern 5.5.7.b

— display 6.0.1.h
secondary 8.1.1.c

selection 8.5.2.1.a

sema symbol 3.1.1.d, 10.4.a,b,c,d
sequence 3.0.1.d

— proper 3.0.1.g

sequencer 6.1.1.j

sequence separator 3.0.1.f
sequencing token 3.0.7.a
serial clause 6.1.1.a
shorten symbol 3.1.1.c
sign frame 5.5.1.p

— mould 5.5.1.1

— symbol 3.1.1.c

single declaration 6.1.1.d
skip symbol 3.1.1.g

slice 8.6.1.1.a

source 8.3.1.1.c

space symbol 3.1.1.b
special token 3.0.10.a
stagnant mould 5.5.3.e

— part 5.1.2.1.1

standard postlude 2.1.g

— prelude 2.1.b

statement 6.0.1.c

— interlude 6.1.1.1

— prelude 6.1.1.c

strict lower bound 7.1.1.u
— upper — 7.1.1.u

string denotation 5.3.1.a

— frame 5.5.7.c

— item 5.1.4.1.b

— pattern 5.5.7.a

— symbol 3.1.1.d, 10.2.10.a
structure 6.2.1.g,h

— display 6.0.1.g

— symbol 3.1.1.d

subscript 8.6.1.1.1

sub symbol 3.1.1.e

suite of clause trains 6.1.1.f,g
suppressible character frame 5.5.1.q
— complex — 5.5.1.q

— digit — 5.5.1.q
— exponent — 5.5.1.q
— point - 5.5.1.q

syntactic token 3.0.6.a
tertiary 8.1.1.b

th element of symbol 3.1.1.c
then clause 6.4.1.e

— if symbol 3.1.1.h

218 A. van Wijngaarden et al.: Report on the Algorithmic Language ALGOL 68

then symbol 3.1.1.e, 9.4

times and becomes symbol 3.1.1.c
— ten to the power choice 5.1.2.1.h
————— symbol 3.1.1.b

— symbol 3.1.1.c
to — 31.1.h

transformat 5.5
trimmer 8.6.1.1.
trimscript 8.6.1.
true symbol 3.1
union of — 3.1.1
unit 6.1.1.e

unitary clause 8.1.1.a
— declaration 7.0.1.a

.1.a
5|
.b

8
1.1
1.1
A1

d

upper bound of symbol 3.1.1.c

upper state of symbol 3.1.1.c
up — 3.1.1.c

- to — 3.1.1.¢e

variable 6.0.1.e

— point numeral 5.1.2.1.b
virtual declarator 7.1.1.c,d,e,l,0,p,w,cc
— declarer 7.1.1.b

~ lower bound 7.1.1.s

— parameter 7.1.1.y

— row of rower 7.1.1.r

upper bound 7.1.1.s

— void declarer 7.1.1.z

while symbol 3.1.1.h

zero frame 5.5.1.0

ADAPTED : ADJUSTED ; widened ;
rowed ; hipped ; voided.

ADIC : PRIORITY ; monadic.

ADJUSTED : FITTED ; procedured ;
unifed.

ALPHA:a;b;c;d; e
k;l;m;n;o:p:q;
Wi XYz

ANY : KIND ; suppressible KIND ;
replicatable KIND ;
replicatable suppressible KIND.

BITS : structured with row of boolean
field LENGTHETY letter aleph.

BOX : LMOODSETY box.

BYTES : structured with row of character
fleld LENGTHETY letter aleph.

CLAUSE : MOID clause.

CLOSED : closed ; collateral :
conditional.

COERCEND : MOID FORM.

COMPLEX : structured with real field
letter r letter e and real field letter i
letter m,

DIGIT : digit FIGURE.

EIGHT : SEVEN plus one.

EMPTY :.

FEAT : firm ; weak ; soft.

FIELD : MODE field TAG.

FIELDS : FIELD ; FIELDS and FIELD.

FIGURE : zero ; one ; two ; three ; four ;
five ; six ; seven ; eight; nine.

FITTED : dereferenced ; deprocedured.

FIVE : FOUR plus one.

FORESE : ADIC formula ; cohesion ;
base.

FORM : confrontation ; FORESE.

FOUR : THREE plus one.

INTEGRAL : LONGSETY integral.

INTREAL : INTEGRAL ; REAL.

KIND :sign; zero; digit; point;
exponent ; complex ; string ;
character.,

LENGTH : letter | lefter o letter n
letter g.

LENGTHETY : LENGTH LENGTHETY ;
EMPTY,

LETTER : letter ALPHA ; letter aleph.

,f h;i;j;
" i

LFIELDSETY : FIELDS and ; EMPTY.,

LIST : tist ; sequence.

LMODE : MODE.

LMOOCD : MOOD and.

LMOODS : LMOOD ; LMOODS
LMOOD.

LMOODSETY : MOOD and
LMOODSETY ; EMPTY.

LMOOT : MOOD and.

LONGSETY : long LONGSETY ;
EMPTY.

LOSETY : LMOODSETY.

LOWPER : lower ; upper.

MABEL : MODE mode ; label.

MODE : MOOD ; UNITED.

MOID : MODE ; void.

MOOD : TYPE ; STOWED.

NINE : EIGHT plus one.

NONPROC : PLAIN ; format ; proce-
dure with PARAMETERS MOID ;
reference to NONPROC ; structured
with FIELDS ; row of NONPROC ;
UNITED.

NONROW : NONSTOWED ; struc-
tured with FIELDS.

NONSTOWED : TYPE ; UNITED.

NOTION : ALPHA ; NOTION ALPHA.

NUMBER :one; TWO; THREE; FOUR;
FIVE; SIX; SEVEN; EIGHT; NINE.

PACK : pack ; package.

PARAMETER : MODE parameter.

PARAMETERS : PARAMETER ;
PARAMETERS and PARAMETER.

PARAMETY : with PARAMETERS ;
EMPTY.

PHRASE : declaration ; CLAUSE.

PLAIN : INTREAL ; boolean ;
character.

PRAM : procedure with LMODE para-
meter and RMODE parameter MOID ;
procedure with RMODE parameter
MOID.

PRIMITIVE : integral ;
character ; format.

PRIORITY : priority NUMBER.

PROCEDURE : procedure PARA-
METY MOID.

real ; boolean :

REAL : LONGSETY real.

REFETY : reference to; EMPTY.

RFIELDSETY : and FIELDS ; EMPTY.

RMODE : MODE.

RMOODSETY : RMOODSETY and
MOOD ; EMPTY.

ROWS : row of ; ROWS row of.

ROWSETY : ROWS ; EMPTY.

ROWWSETY : ROWSETY.

SEPARATOR : LIST separator ; go on
symbol ; completer ; sequencer.

SEVEN : SIX plus one.

SIX: FIVE plus one.

SOME : serial ; unitary ; CLOSED ;
choice ; THELSE.

SORT : strong ; FEAT.

SORTETY: SORT ; EMPTY.

STIRM : strong ; firm.

STOWED : structured with FIELDS ;
row of MODE.

STRING : row of character ; character.

STRONGETY : strong ; EMPTY.

TAG : LETTER ; TAG LETTER;
TAG DIGIT.

THELSE : then ; else.

THREE : TWO plus one.

TWO : one plus one.

TYPE : PLAIN ; format ; PROCEDURE ;
reference to MODE,

UNITED : union of LMOODS MOOD
mode.

VICTAL : VIRACT ; formal,

VIRACT : virtual ; actual.

