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Abstract

Contrary to common belief, both the Earth’s human population and its economic output have

grown faster than exponential, i.e., in a super-Malthusian mode, for most of the known history.

These growth rates are compatible with a spontaneous singularity occurring at the same critical

time 2052± 10 signaling an abrupt transition to a new regime. The degree of abruptness can

be infered from the fact that the maximum of the world population growth rate was reached

in 1970, i.e., about 80 years before the predicted singular time, corresponding to approximately

4% of the studied time interval over which the acceleration is documented. This rounding-o6

of the &nite-time singularity is probably due to a combination of well-known &nite-size e6ects

and friction and suggests that we have already entered the transition region to a new regime.

As theoretical support, a multivariate analysis coupling population, capital, R&D and technology

shows that a dramatic acceleration in the population growth during most of the timespan can

occur even though the isolated dynamics do not exhibit it. Possible scenarios for the cross-over

and the new regime are discussed. c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Both the world economy as well as the human population have grown at a tremen-

dous pace especially during the last two centuries. It is estimated that 2000 years ago

the population of the world was approximately 300 million and for a long time the

world population did not grow signi&cantly, since periods of growth were followed
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by periods of decline. It took more than 1600 years for the world population to dou-

ble to 600 million and since then the growth has accelerated. It reached 1 billion

in 1804 (204 years later), 2 billion in 1927 (123 years later), 3 billion in 1960 (33

years later), 4 billion in 1974 (14 years later), 5 billion in 1987 (13 years later) and

6 billion in 1999 (12 years later). This rapidly accelerating growth has raised sin-

cere worries about its sustainability as well as concerns that we humans as a result

might cause severe and irreversible damage to eco-systems, global weather systems,

etc. [1,2]. 1 At, what one may say the other extreme, the optimists expect that the inno-

vative spirit of mankind will be able to solve the problems associated with a continuing

increase in the growth rate [3,4]. Speci&cally, they believe that the world economic

development will continue as a successive unfolding of revolutions, e.g., the Internet,

bio-technological and other yet unknown innovations, replacing the prior agricultural,

industrial, medical and information revolutions of the past. Irrespective of the inter-

pretation, the important point is the presence of an acceleration in the growth rate.

Here, it is &rst shown that, contrary to common belief, both the Earth human popu-

lation as well as its economic output have grown faster that exponential for most of

the known history and most strikingly so in the last centuries. Furthermore, we will

show that both the population growth rate and the economic growth rate are consis-

tent with a spontaneous singularity at the same critical time 2052± 10 and with the

same characteristic self-similar geometric patterns (de&ned below as log-periodic oscil-

lations). Multivariate dynamical equations coupling population, capital and R&D and

technology can indeed produce such an “explosion” in the population even though the

isolated dynamics do not. In particular, this interplay provides an explanation of our

&nding of the same value of the critical time tc(≈ 2052± 10) both for the population

and the economic indices. As a consequence, even the optimistic view has to be re-

vised, since the acceleration of the growth rate contains endogenously its own limit

in the shape of a &nite-time singularity to be interpreted as a transition to a quali-

tatively new behaviour. Close to the mathematical singularity, &nite-size e6ects will

smoothen the transition and it is quite possible that Mankind may already have entered

this transition phase. Possible scenarios for the cross-over and the new regime are

discussed.

1.1. The logistic equation and =nite-time singularities

As a standard model of population growth, Malthus’ model assumes that the size of a

population increases by a &xed proportion � over a given period of time independently

of the size of the population and thus gives an exponential growth. The logistic equation

1 Hern concludes that the sum of human activities, viewed over the past tens of thousand of years, exhibits

all four major characteristics of a malignant process: rapid uncontrolled growth; invasion and destruction

of adjacent tissues (ecosystems, in this case); metastasis (colonization and urbanization, in this case); and

dedi6erentiation (loss of distinctiveness in individual components as well as communities throughout the

planet).
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attempts to correct for the resulting unbounded exponential growth by assuming a &nite

carrying capacity K such that the population instead evolves according to

dp

dt
= rp(t)[K − p(t)] : (1)

Cohen and others (see Ref. [1] and references therein) have put forward idealised

models taking into account interaction between the human population p(t) and the

corresponding carrying capacity K(t) by assuming that K(t) increases with p(t) due to

technological progress such as the use of tools and &re, the development of agriculture,

the use of fossil fuels, fertilisers, etc., as well an expansion into new habitats and the

removal of limiting factors by the development of vaccines, pesticides, antibiotics, etc.

If K(t)¿p(t), then p(t) explodes to in&nity after a &nite time creating a singularity.

In this case, the limiting factor −p(t) can be dropped out and, assuming a simple

power-law relationship K ˙ p
 with 
¿1, (1) becomes

dp

dt
= r[p(t)]1+
 ; (2)

where the growth rate accelerates with time according to r[p(t)]
. The generic conse-

quence of a power law acceleration in the growth rate is the appearance of singularities

in &nite time:

p(t) ˙ (tc − t)z with z= − 1



and t close to tc : (3)

Eq. (2) is said to have a “spontaneous” or “movable” singularity at the critical time

tc [5], the critical time tc being determined by the constant of integration, i.e., the

initial condition p(t= 0). One can get an intuitive understanding of such singularities

by looking at the function p(t) = exp(tp(t)) which corresponds to replacing �K by

p in Malthus’ exponential solution p(t) =p(0)exp[�Kt]. p is then the solution of

dp=dt=p2=(1− tp) [5] leading to an ever increasing growth with the explicit solution

p(t) = e(1 − C
√
tc − t) ; (4)

where tc = 1=e= 0:368, C is a numerical factor and the exponent z= 1
2
. In this case, the

&nite time spontaneous singularity does not lead to a divergence of the population at the

critical time tc; only the growth rate diverges at (tc − t)−1=2. Spontaneous singularities

in ODE’s and PDE’s are quite common and have been found in many well-established

models of natural systems either at special points in space such as in the Euler equations

of inviscid Nuids [6] or in the equations of General Relativity coupled to a mass &eld

leading to the formation of black holes [7,8], in models of micro-organisms aggregating

to form fruiting bodies [9], or to the more prosaic rotating coin (Euler’s disk) [10],

see Ref. [11] for a review. Some of the most prominent, as well as more controversial,

examples due to their impact on human society are models of rupture and material

failure [12,13], earthquakes [14] and stock market crashes [15,16].
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1.2. Data sets and methodology

Here, we examine several data sets expressing the development of mankind on Earth

in term of size and economic impact, to test the hypothesis that our history might be

compatible with a future &nite-time singularity. These data sets are as follows:

• The human population data from 0 to 1998 was retrieved from the web-site of

The United Nations Population Division Department of Economic and Social A6airs

(http:==www.popin.org=pop1998=).

• The GDP of the world from 0 to 1998, estimated by J. Bradford DeLong at the

Department of Economics, U.C. Berkeley [17], was given to us by Hanson [18].

• The &nancial data series include the Dow Jones index from 1790 2 to 2000, the

Standard & Poor (S&P) index from 1871 to 2000, as well as a number of regional

and global indices since 1920. The Dow Jones index was constructed by The Foun-

dation for the Study of Cycles. 3 It is the Dow Jones index back to 1896, which has

been extrapolated back to 1790 and further. The other indices are from Global Fi-

nancial Data. 4 These indices are constructed as follows. For the S&P, the data from

1871 to 1918 are from the Cowles commission, which back-calculated the data using

the Commercial and Financial Chronicle. From 1918, the data is the Standard and

Poor’s Composite index (S&P) of stocks. The other indices uses Global Financial

Data’s indices from 1919 through 1969 and Morgan Stanley Capital International’s

indices from 1970 through 2000. The EAFE Index includes Europe, Australia and

the Far East. The Latin America Index includes Argentina, Brazil, Chile, Colombia,

Mexico, Peru and Venezuela.

Demographers usually construct population projections in a disaggregated manner,

&ltering the data by age, stage of development, region, etc. Disaggregating and con-

trolling for such variables are thought to be crucial for demographic development and

for any reliable population prediction. Here, we propose a di6erent strategy based on

aggregated data, which is justi&ed by the following concept: in order to get a mean-

ingful prediction at an aggregate level, it is often more relevant to study aggregate

variables than “local” variables that can miss the whole picture in favor of special

idiosyncrasies. To take an example from material sciences, the prediction of the failure

of heterogeneous materials subjected to stress can be performed according to di6erent

2 Even though USA was recognised as a nation by the Paris Treaty in 1783, a number of events point to

the fact it was not established as a nation before ≈ 1790. They are as follows. (1) The constitution went

into e6ect in March 1789, having been rati&ed by New Hampshire as the ninth state on June 21, 1788. (2)

The last of the 13 states, Rhode Island, &rst approved it on May 29, 1790. (3) The &rst census in the US

was made in 1790. (4) The Naturalisation Act of 1790 grants the right of US citizenship to all “free white

persons”. (5) In 1790, the Federal Government declared that it was redeeming the SCRIP MONEY that was

issued during the Revolutionary War. (6) At about this time, the Government announced the creation of the

&rst bank of the United States in conjunction with the sale of $10 000 000 dollars in shares of stock.
3 More information about the foundation can be found at http:==www.cycles.org=cycles.htm. However, it

seems that the foundation is not very active presently.
4 Global Financial Data, Freemont Villas, Los Angeles, CA 90042. The data used are free samples available

at http:==www.global&ndata.com=



A. Johansen, D. Sornette / Physica A 294 (2001) 465–502 469

methodologies. Material scientists often analyse in exquisite details the wave forms

of the acoustic emissions or other signatures of damage resulting from micro-cracking

within the material. However, this is of very little help to predict the overall failure

which is often a cooperative global phenomenon [19] resulting from the interactions

and interplay between the many di6erent micro-cracks nucleating, growing and fusing

within the materials. In this example, it has been shown indeed that aggregating all

the acoustic emissions in a single aggregated variable is much better for prediction

purpose [13].

1.3. Content of the paper

In the next section, we &rst show that the exponential model is utterly inadequate

in describing the population growth as well as the growth in the World GDP and the

global and regional &nancial indices. We then present the alternative model consisting

of a power law growth ending at a critical time tc. We &rst give a non-parametric

approach complemented by a &tting procedure. Section 3 proposes a &rst generalization

of power laws with complex exponents, leading to so-called log-periodic oscillations

decorating the overall power law acceleration. The &tting procedure is described as

well as a non-parametric test of the existence of the log-periodic patterns for the

world population. Section 4 presents a second-order generalisation of the power law

model, which allows for a frequency modulation in the log-periodic structure. This

extended formula is used to &t the extended Dow Jones Industrial average. Section 5

summarizes what has been achieved and compares our results with previous work.

In particular, we give the explicit solutions of multivariate dynamical equations for

several coupled variables, such as population, technology and capital, to show that the

same &nite-time singularity can emerge from the interplay of these factors while each

of them individually is not enough to create the singularity. Section 6 concludes by

discussing a set of scenarios for mankind close to and beyond the critical time.

2. Singular growth rate

2.1. Tests of exponential growth

2.1.1. Human population and world GDP

A faster than exponential growth is clearly observed in the human population data

from year 0 up to 1970, at which the estimated annual rate of increase of the global

population reached its (preliminary?) all-time peak of 2:1%. Fig. 1 shows the loga-

rithm of the estimated world population as a function of (linear) time, such that an

exponential growth rate would be quali&ed by a linear increase. In contrast, one clearly

observes a strong upward curvature characterising a “super-exponential” behaviour. A

faster than exponential growth is also clearly observed in the estimated gross domestic

product (GDP) of the World, shown in Fig. 2 for the year 0 up to 2000.
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Fig. 1. Semi-logarithmic plot of World population from year 0 until Oct. 1999. In this representation, a

linear increase would qualify an exponential growth. Note in contrast the super-exponential behavior.

Fig. 2. Semi-logarithmic plot of World GDP from year 1 until 2000.

2.1.2. Financial indices

Over a shorter time period, a faster than exponential growth is also observed in

Figs. 3–8 for a number of economic indicators such as the Dow Jones Average since

the establishment of the USA in 1790 (see footnote 2), the S&P since 1871, as well

for a number of regional and global indices since 1920, including the Latin American

index, the European index, the EAFE index and the World index. In all these &gures,

the logarithm of the index is plotted as a function of (linear) time, such that an

exponential growth rate would be quali&ed by a linear increase. In all cases, one clearly

observes in contrast a signi&cant upward curvature characterising a “super-exponential”

behaviour.
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Fig. 3. Semi-logarithmic plot of the Dow Jones from 1790 until 2000.

Fig. 4. Semi-logarithmic plot of the S&P from 1871 until 2000.

2.2. A =rst test of power law growth

2.2.1. Procedure

As shown in the derivation of Eq. (2), it is enough that the growth rate increases

with any arbitrarily small positive power of p(t) for a &nite-time singularity to develop

with the characteristic power law dependence (3). Can such a behaviour explain the

super-exponential behaviour documented in Figs. 1–8?

The small number of data points in these time series and the presence of large

Nuctuations prevent the use of a direct &tting procedure with (3). Indeed, such a &t,

which typically attempts to minimise the root-mean-square (r.m.s.) di6erence between

the theoretical formula and the data, is highly degenerate: many solutions are found

which di6er by variations of at most a few percent of the root-mean-square (r.m.s.)
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Fig. 5. Semi-logarithmic plot of the Latin American index from 1938 until 2000.

Fig. 6. Semi-logarithmic plot of the European index from 1920 until 2000.

of the errors. Such di6erences in r.m.s. are not signi&cant, especially considering the

strongly non-Gaussian nature of the Nuctuations in these data sets. Maximum likelihood

methods are similarly limited. To address this problem of degeneracy, we turn to a

non-parametric approach, consisting in &xing tc and plotting the logarithm of the data

as a function of log(tc − t). In such a plot, a linear behaviour quali&es a power law

(3), and the slope gives the exponent z which then can be determined visually or,

better, by a &t but now with tc &xed. This procedure is not plagued by the previously

discussed degeneracy and provides reliable and unique results.

2.2.2. World population

In Figs. 9–11, the world population in logarithm scale is shown as a function of

tc − t also in logarithmic scale for three choices 2030, 2040 and 2050, respectively,
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Fig. 7. Semi-logarithmic plot of the EAFE index from 1920 until 2000.

Fig. 8. Semi-logarithmic plot of the World index from 1920 until 2000.

for tc. Even though the three &ts with (3) for three cases varies in quality, they all

capture the acceleration in the second half of the data on a logarithmic scale. The

curvature seen in the data far from tc can be modelled by including a constant term in

Eq. (3) embodying for instance the e6ect of an initial condition, as we discuss below.

Changing tc from 2030 to 2050 has two competing e6ects observed in Figs. 9–11:

a larger value of tc provides a better &t in the latter time period while deteriorating

somewhat the &t to the data in the early time periods.

2.2.3. World GDP

As discussed in the introduction, the human population is strongly coupled with

its outputs and with the Earth’s carrying capacity, and can partly be measured by its

economic production. Hence, we should expect a close relationship between the size
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Fig. 9. World population as a function of tc − t with tc = 2030. The straight line is the &t with a power law

p(t) = a(tc − t)z with a &xed tc = 2030, see Table 1.

Fig. 10. World population as a function of tc − t with tc = 2040. The straight line is the &t with a power

law p(t) = a(tc − t)z with tc = 2040 &xed, see Table 1.

of the human population and the worlds GDP. Figs. 12–14 show the logarithm of the

estimated World GDP as a function of tc− t, both in log–log coordinates, where tc has

been chosen to 2040, 2050 and 2060, respectively. The Eq. (3) is again parameterising

the data quite satisfactorily.

We stress that we use the logarithm of the World GDP as well as the logarithm of

the national, regional or global indices presented below as the “bare” data on which we

test the power law hypothesis. This means that we plot the logarithm of the GDP or

of the indices in logarithmic scale, which e6ectively amounts to taking the logarithm

of the logarithm of the GDP as a function of tc − t, itself also in logarithmic scale

in order to test for the power law (3). This is done in order to minimise the e6ect
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Fig. 11. World population as a function of tc − t with tc = 2050. The straight line is the &t with a power

law p(t) = a(tc − t)z with tc = 2050 &xed, see Table 1.

Fig. 12. World GDP as a function of tc − t with tc = 2040. The straight line is the &t with a power law

p(t) = a(tc − t)z with tc = 2040 &xed, see Table 1.

of inNation and other systematic drifts, and in accordance with standard economic

practice that only relative changes should be considered. Removing an average inNation

of 4% does not change the results qualitatively but the corresponding results are not

quantitatively reliable as the inNation has varied signi&cantly over US history with

quantitative impacts that are diScult to estimate.

2.2.4. Financial indices

Further support for a singular power law behaviour of the economy can be found by

analysing in a similar way the national, regional or global indices shown in

Figs. 3–8. The results are shown in Figs. 15–32. Eq. (3) is again perfectly compatible
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Fig. 13. World GDP as a function of tc − t with tc = 2050. The straight line is the &t with a power law

p(t) = a(tc − t)z with tc = 2050 &xed, see Table 1.

Fig. 14. World GDP as a function of tc − t with tc = 2060. The straight line is the &t with a power law

p(t) = a(tc − t)z with tc = 2060 &xed, see Table 1.

with the data and much better than any exponential model. As shown in Table 1, the

&ts of all six indices are found to be consistent with similar values for the exponent

z≈− 1, the absolute value of the exponent increasing with tc.

The results presented in this section on the world population, on the world GDP

and on six &nancial indices suggest that the power law (3) is an adequate model. It

is also parsimonious since the same simple mathematical expression, approximately

the same critical time tc and same exponent are found consistently for all time series.

These results con&rm and extend the analysis presented 40 years earlier for the world

population only [20], which concluded at a tc = 2026. The results shown in Figs. 9–11,

with the sensitivity analysis provided by varying tc from 2030 to 2050, illustrate the
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Fig. 15. The Dow Jones as a function of tc − t with tc = 2040. The straight line is the &t with a power law

p(t) = a(tc − t)z with tc = 2040 &xed, see Table 1.

Fig. 16. The Dow Jones as a function of tc − t with tc = 2050. The straight line is the &t with a power law

p(t) = a(tc − t)z with tc = 2050 &xed, see Table 1.

large uncertainty in its determination. It is thus worthwhile to attempt quantifying

further the observed power law growth and test how well tc is constrained.

2.3. Quantitative =ts to a power law

In the derivation of (3), a key assumption was to neglect the limiting negative term

in (1), which is warranted suSciently close to tc. Far from tc, this analysis and more

general considerations lead us to expect the existence of corrections to the pure power

law (3). Furthermore, it may be necessary to include higher order terms as well as

generalise the exponent as we will see in the next section.
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Fig. 17. The Dow Jones as a function of tc − t with tc = 2060. The straight line is the &t with a power law

p(t) = a(tc − t)z with tc = 2060 &xed, see Table 1.

Fig. 18. The S&P as a function of tc − t with tc = 2040. The straight line is the &t with a power law

p(t) = a(tc − t)z with tc = 2040 &xed, see Table 1.

The simplest extension of Eq. (3) is

p(t) =A+ B(tc − t)z : (5)

In order to make a &rst quantitative estimate of the acceleration in the growth rate,

determined by the exponent z and the position tc of the singularity, we now let tc
be a free parameter. In Fig. 33, Eq. (5) is &tted to the world population from 0 to

1998. The parameter values of the &t are A≈ 0; B≈ 22120; tc ≈ 2078 and z≈ − 1:9.

The negative value of the exponent is compatible with A≈ 0. The negative exponent

z≈−1:9 obtained in the &t means that Eq. (5) has a singularity at t= tc corresponding

to an in&nite population. This is clearly impossible on a &nite Earth. The point to be

extracted from this analysis is that the world population until very recently has grown at
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Fig. 19. The S&P as a function of tc − t with tc = 2050. The straight line is the &t with a power law

p(t) = a(tc − t)z with tc = 2050 &xed, see Table 1.

Fig. 20. The S&P as a function of tc − t with tc = 2060. The straight line is the &t with a power law

p(t) = a(tc − t)z with tc = 2060 &xed, see Table 1.

an accelerating growth rate in good agreement with a singular behaviour. Singularities

are always mathematical idealisations of natural phenomena: they are not present in

reality but foreshadow an important transition or change of regime. In the present

context, they must be interpreted as a kind of “critical point” signaling a fundamental

and abrupt change of regime similar to what occurs in phase transitions [21].

As already discussed in relation with Eq. (1) and in the previous section, the growth

in the world population cannot be separated from that of its evolving carrying capac-

ity. As a &rst attempt to quantify this variable in an independent way, we analyse

quantitatively the two largest data sets among all the &nancial indices and GDP: due

to the large Nuctuations of the &nancial indices compared to the number of points,
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Fig. 21. The Latin America index as a function of tc − t with tc = 2040. The straight line is the &t with a

power law p(t) = a(tc − t)z with tc = 2040 &xed, see Table 1.

Fig. 22. The Latin America index as a function of tc − t with tc = 2050. The straight line is the &t with a

power law p(t) = a(tc − t)z with tc = 2050 &xed, see Table 1.

only the S&P and the Dow Jones Average gave reliable results when tc was a free

parameter. Fig. 34 shows the corresponding &ts with Eq. (5). The parameter values of

the best &ts are A≈− 14; B≈ 71; z≈− 0:27 and tc ≈ 2068 for the Dow Jones Aver-

age and A≈ 0; B≈ 1693; z≈ − 1:3 and tc ≈ 2067 for the S&P. The &t with Eq. (5)

exempli&es the acceleration of the growth rate, which is our main message. However,

the location of the critical point is still not very reliable when based on simple power

&ts of very noisy data [22]. This motivates us to extend our analyses in the following

sections.
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Fig. 23. The Latin America index as a function of tc − t with tc = 2060. The straight line is the &t with a

power law p(t) = a(tc − t)z with tc = 2060 &xed, see Table 1.

Fig. 24. The European index as a function of tc − t with tc = 2040. The straight line is the &t with a power

law p(t) = a(tc − t)z with tc = 2040 &xed, see Table 1.

3. Beyond a simple power law

The results shown in the Figs. 9–32, with the sensitivity analysis provided by varying

tc from 2030 or 2040 to 2050 or 2060, illustrate the large uncertainty in the determi-

nation of the critical time. A direct &t with (5) still gives a very large uncertainty.

As can be seen from the &gures, an important reason lies in the existence of large

Nuctuations around the average power-law behaviour. In the next section, we will see

that this variability might be genuine and not simply noise. Furthermore, adding an

extra degree of freedom will certainly improve a parametrisation of the data.
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Fig. 25. The European index as a function of tc − t with tc = 2050. The straight line is the &t with a power

law p(t) = a(tc − t)z with tc = 2050 &xed, see Table 1.

Fig. 26. The European index as a function of tc − t with tc = 2060. The straight line is the &t with a power

law p(t) = a(tc − t)z with tc = 2060 &xed, see Table 1.

3.1. Generalisation to power laws with complex exponents: log-periodicity

The idea is to generalise the real exponent z to a complex exponent �+i!, such that

the power law (3) is changed into (tc− t)�+i!, whose real part is (tc− t)� cos(! ln(tc−
t)) [11]. The cosine will decorate the average power law behaviour with so-called

log-periodic oscillations, the name steming from the fact the oscillations are periodic

in ln(tc − t) and not in t. As we shall see, these log-periodic oscillations can account

for a large part of the observed variability around the power law. Thus, taking them

into account provides a better parametrisation of the data and hence better constraints

on the parameters of the power law � and tc.
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Fig. 27. The EAFE index as a function of tc − t with tc = 2040. The straight line is the &t with a power

law p(t) = a(tc − t)z with tc = 2040 &xed, see Table 1.

Fig. 28. The EAFE index as a function of tc − t with tc = 2050. The straight line is the &t with a power

law p(t) = a(tc − t)z with tc = 2050 &xed, see Table 1.

There are fundamental reasons for introducing log-periodic corrections. Singularities

often exhibit genuine log-periodic corrections that result from speci&c mechanisms

[11]: singularities in the Euler equations with complex exponents have been found to

result from a cascade of Rayleigh–Taylor instabilities leading to log-periodic oscillatory

structures around singular vortices organised according to discrete self-similar pancakes

[6]; in the process of formation of black holes, the matter &eld solution oscillates

periodically in the logarithm of the di6erence between time and time of the formation

of the singularity [7,8]; the phase separation kinetics of a binary mixture subjected to

an uniform shear Now quenched from a disordered to a homogeneous ordered phase

exhibits log-periodic oscillations due to a cyclical mechanism of stretching and break-up
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Fig. 29. The EAFE index as a function of tc − t with tc = 2060. The straight line is the &t with a power

law p(t) = a(tc − t)z with tc = 2060 &xed, see Table 1.

Fig. 30. The World index as a function of tc − t with tc = 2040. The straight line is the &t with a power

law p(t) = a(tc − t)z with tc = 2040 &xed, see Table 1.

of domains, which allows storage and dissipation of elastic energy in the system [23];

material failure occurs after intermittent damage acceleration and quiescent phases that

are well-described by log-periodic structures decorating an overall power law singularity

[12]; stock market crashes preceded by speculative bubbles [15,16] provide an highly

relevant analogy to the question of sustainability in the growth rate of the human

population. More generally, from the point of view of &eld theory as a tool-box for

constructing models of complex systems, we should generically expect the existence of

complex exponents and their associated log-periodic corrections [24]. We suggest that

the presence of log-periodic oscillations deriving from general theoretical considerations

can provide a &rst step to account for the ubiquitous observation of cycles in population

dynamics and in economics.
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Fig. 31. The World index as a function of tc − t with tc = 2050. The straight line is the &t with a power

law p(t) = a(tc − t)z with tc = 2050 &xed, see Table 1.

Fig. 32. The World index as a function of tc − t with tc = 2060. The straight line is the &t with a power

law p(t) = a(tc − t)z with tc = 2060 &xed, see Table 1.

3.2. Log-periodic =t of the World population

3.2.1. Results

Guided by the recent progress in the understanding of complex systems and the

possibility of complex exponents discussed in the previous section, we have &tted the

world population data with the following equation:

p(t)≈A1 + B1(tc − t)� + C1(tc − t)� cos(! ln(tc − t) + �) ; (6)

as shown in Fig. 33. We obtained two solutions, the best with A≈ 0; B≈ 1624; C ≈
−127; z≈ − 1:4; tc ≈ 2056; !≈ 6:3 and �≈ 5:1. The second solution had A≈ 0:25;
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Table 1

Values for the exponent z from the &ts with Eq. (3) shown in Figs. 9–32

Index Year z

DJ 2040 −0:68

DJ 2050 −0:77

DJ 2060 −0:86

S&P 2040 −1:10

S&P 2050 −1:25

S&P 2060 −1:40

Latin Am 2040 −0:89

Latin Am 2050 −1:04

Latin Am 2060 −1:18

Europe 2040 −0:89

Europe 2050 −1:05

Europe 2060 −1:20

EAFE 2040 −0:87

EAFE 2050 −1:00

EAFE 2060 −1:13

World 2040 −0:88

World 2050 −1:01

World 2050 −1:14

Fig. 33. The dotted line is the best &t with Eq. (5) to the world population (data set 5 de&ned in the text).

The &t gives r:m:s:= 0:111; A≈ 0; B≈ 22120; tc ≈ 2078 and z≈ − 1:9. The full line is the best &t with

Eq. (6) and gives r:m:s:= 0:030; A≈ 0; B≈ 1624; C≈− 127; z≈− 1:4; tc ≈ 2056; !≈ 6:3 and �≈ 5:1.

B≈ 1624; C ≈−127; z≈−1:7; tc ≈ 2079; !≈ 6:9 and �≈−4:4. In this extension of

Eq. (5), the cosine term embodies a so-called discrete scale invariance [25] decorat-

ing the overall acceleration with a geometrical scaling ratio �= exp(2�=!): the local

maxima of the oscillations are converging to tc with the geometrical ratio 1=�.
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Fig. 34. Left: The Dow Jones Average &tted with Eq. (5). The values of the &t are A≈ − 14;

B≈ 71; z≈ − 0:27 and tc ≈ 2068. Right: The S&P &tted with Eq. (5). The values of the &t are A≈ 0;

B≈ 1693; z≈− 1:3 and tc ≈ 2067.

3.2.2. Sensitivity analysis

Due to the small number of points in the population data set, the robustness of the

&t with Eq. (6) was investigated with respect to Nuctuations in the important physical

parameters tc; � and ! [26]. 5 The method we used was as follows. Together with the

data set (data set 1) obtained from the United Nations Population Division Department

of Economic and Social A6airs (see the introduction section), which covers the period

[0 : 1998], seven other data sets where analysed in an identical manner. The &rst three

new data sets were generated by removing the &rst point (data set 2), the two &rst

points (data set 3) and the 3 &rst points (data set 4). Hence, those three data sets cover

the periods [1000 : 1998]; [1250 : 1998] and [1500 : 1998]. A &fth data set (data set 5)

was constructed by including the UN estimate that the world’s population would reach

6 billion in October 1999 to the original data set (data set 1). Three additional data

sets were created by removing points in the other end from the original data set (data

set 1), i.e., by removing the last point (data set 6), the two last points (data set 7)

and the three last points (data set 8). Hence, those three data sets cover the periods

[0 : 1990]; [0 : 1980] and [0 : 1970].

The di6erences between the results obtained for the &rst &ve data sets are minor,

as can be seen in Table 2. Data set 6 and 7 are also compatible with the previous 5

whereas the &t to data set 8 exhibit a signi&cant discrepancy. For tc, this gives the win-

dow 2052± 10 years, which is rather well-constrained. Furthermore, the values obtained

for !≈ 6± 0:5 (again except for data set 8) are also quite compatible with previous

results. The corresponding Nuctuations in the fundamental parameters z≈ 1:35± 0:11

5 The &ts have been performed using the “amoeba-search” algorithm (see Ref. [26]) minimizing the variance

of the &t to the data. We stress that all three linear variables A; B and C are slaved to the other nonlinear

variables by imposing the condition that, at a local minimum, the variance has zero &rst derivative with

respect these variables. Hence, they should not be regarded as free parameters, but are calculated solving

three linear equations using standard techniques including pivoting. Note in addition that the phase � in (6)

is just a (time) unit as are the coeScients A; B and C. The key physical variables are thus tc ; � and !.
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Table 2

tc is the critical time predicted from the &t of the world population data to Eq. (6). The other physical

parameters � and ! of the &t are also shown. �= exp(2�=!) is the preferred scale ratio of the underlying

dynamics. !spectrum is the angular log-frequency obtained from the non-parametric spectral analysis of the

log-periodic oscillations

Data Number of points Time period tc � ! � !spectrum Peak power

Set 1 18 [0 : 1998] 2056 −1:39 6:3 2:7 5:7 4:3

Set 2 17 [1000 : 1998] 2053 −1:35 6:2 2:8 5:8 5:0

Set 3 16 [1250 : 1998] 2059 −1:45 6:5 2:6 5:8 5:9

Set 4 15 [1500 : 1998] 2058 −1:43 6:5 2:6 5:9 6:1

Set 5 19 [0 : 1999:75] 2062 −1:46 6:5 2:6 6:1 4:5

Set 6 17 [0 : 1990] 2043 −1:24 5:8 2:9 5:3 3:4

Set 7 16 [0 : 1980] 2043 −1:25 5:5 3:1 5:2 3:4

Set 8 15 [0 : 1970] 2034 −1:20 4:9 3:9 5:1 3:4

and �≈ 2:8± 0:3 are also within reasonable bounds. Note that it is diScult to obtain a

better resolution in time as world population statistics in past centuries are all generated

by using some sort of statistical regression model. This might explain the relatively low

value of the spectral peak obtained for data set 5, see below. Furthermore, the peak

clearly stands out against the background for seven out of eight spectra as we now

discuss. Another encouraging observation is the notable amplitude of the log-periodic

oscillations quanti&ed by C, approximately 5–10% of the pure power law acceleration

quanti&ed by B, as seen in the caption of Fig. 33.

3.2.3. Non-parametric tests of log-periodicity

We also present a non-parametric test for the existence of the log-periodic oscillations

decorating the spontaneous singularity, obtained by eliminating the leading trend using

the transformation

p(t) → p(t) − A1 − B1(tc − t)�

C1(tc − t)�
: (7)

This transformation should produce a pure cos(! ln(tc− t)+�) if Eq. (6) was a perfect

description. In Fig. 35, we show the residual de&ned by (7) for data 3 and data 5 as

a function of ln(tc − t) as well as their Lomb periodograms which provide a power

spectrum analysis for unevenly sampled data: the approximately regular oscillations

in ln(tc − t) give a signi&cant spectral peak at a log-angular frequency !≈ 5:8–6:1

compatible with the &t of Eq. (6), see Table 2.

3.3. Summary

To sum up the evidence obtained so far, the comparison between the semi-logarithmic

plots in Figs. 1–8 and the log–log plots in Figs. 9–32 validate the power law model (3)

at the expense of the exponential model: there is no doubt that the world

population and major economic and &nancial indices on average have grown much
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Fig. 35. Left: Residue between best &t and data sets 3 and 5, as de&ned by Eq. (7). Right: Spectrum

of residue using a Lomb periodogram. The position of the peak corresponds to !≈ 5:8, which should be

compared with !≈ 6:5 for the &t with Eq. (6) for data set 5. For data set 3, the peak corresponds to !≈ 6:1,

which should be compared with !≈ 6:5 for the &t.

faster than exponentially. The second message is that the rather large Nuctuations dec-

orating an average power law acceleration can be remarkably well described by a

simple generalisation of the power law in terms of a complex exponent: not only do

we see a good agreement between the spectral analysis and the &ts with Eq. (6), in

addition the small Nuctuations in the values for tc; � and ! for the 7 of the 8 data sets

make the analysis of the world population credible. Of course, this does not prove that

Eq. (6) is a correct description and Eq. (5) is a wrong description. However, since the

r.m.s. of the &ts with the two equations di6ers by a factor of ≈ 4, there is no doubt that

Eq. (6) does a better job of parameterising the data. This is the numerical argument.

The theoretical justi&cation has already been given above. The two combined certainly

makes the case stronger. For the &nancial indices, the use of Eq. (6) does not lead to

a signi&cant improvement, which leads us to examine the relevance of second-order

correction to a pure power law.

4. To second order

4.1. Next order of the log-periodic expansion

The data set containing the Dow Jones Average consists of ≈ 2500 monthly quotes

for the period [1790 : 1999:9]. We propose that it is representative of the capitalistic

growth of the U.S.A. The time span and the sampling rate of this data set makes

it reasonable to use the generalisation (12) of (6) to second order which allows

for a continuous shift in the angular log-frequency ! [27] in what e6ectively cor-

responds to a Landau or renormalisation group expansion depending on the prefered

framework.
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We brieNy summarise the method. Using the renormalisation group (RG) formalism

on a &nancial index I amounts to assuming that the index at a given time t is related

to that at another time t′ by the transformations

x′ =�(x) ; (8)

F(x) = g(x) +
1

�
F (�(x)) ; (9)

where x= tc − t. tc is the critical time and � is called the RG Now map. Here,

F(x) = I(tc) − I(t) ;

such that F = 0 at the critical point and � is a constant describing the scaling of

the index evolution upon a rescaling of time (8). The function g(x) represents the

non-singular part of the function F(x). We assume as usual that the function F(x) is

continuous and that �(x) is di6erentiable. In order to use this formalism to constrain

the possible time dependence of the index, we notice that the solution in terms of a

power law of the RG Eq. (9) together with (8) and the linear approximation �(x) = �x

valid close to the critical point can be rewritten as

dF(x)

d ln x
= �F(x) : (10)

This simply states that a power law is nothing but a linear relationship when expressed

in the variables ln F(x) and ln x. A critical point is thus characterized by observables

which have an invariant description with respect to scale transformations on x. We can

exploit this and expression (10) to propose the structure of the leading corrections to

the power law with log-periodicity. Hence, we notice that (10) can be interpreted as

a bifurcation equation for the variable F as a function of a &ctitious “time” (ln x) as

a function of the “control parameter” �. When �¿0; F(x) increases with ln x while it

decreases for �¡0. The special value �= 0 separating the two regimes corresponds to

a bifurcation. Once we have recognized the structure of expression (10) in terms of a

bifurcation, we can use the general reduction theorem telling us that the structure of

the equation for F close to the bifurcation can only take a universal non-linear form

given by

dF(x)

d ln x
= (� + i!)F(x) + (�+ i�)|F(x)|2 + O(F3) : (11)

where �¿0; !; � and � are real coeScients and O(F3) means that higher order

terms are neglected. The generality of this expression stems from the fact that it

is nothing but a Taylor’s expansion of a general functional form dF(x)=d ln x=

F(F(x)). Such expansions are known in the physics literature as Landau expan-

sions. We stress that this expression represents a non-trivial addition to the theory,

constrained uniquely by symmetry laws. Going up to second order included, Eq. (6)
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becomes [27]

ln(I(t)) = A2 + B2

(tc − t)�
√

1 + ((tc − t)=�)2�

×
[

1 + C2 cos

(

! ln(tc − t) +
T!

2�
ln

(

1 +

(

tc − t

�

)2�

− �

))]

:

(12)

This extension has been found useful in order to account for the behaviour of stock

market prices before large crashes over extended period of times up to 8 years [27].

The present analysis thus constitutes a major generalisation as it includes over 200

years of data. Previous work have established a robust and universal signature preced-

ing large crashes occurring in major &nancial stock markets, namely accelerated price

increase decorated by large scale log-periodic oscillations culminating in a spontaneous

singularity (critical point). The previously reported cases, which are well-described by

Eq. (6), comprise the Oct. 1929 US crash, the Oct. 1987 world market crash, the Jan.

1994 and Oct. 1997 Hong-Kong crashes, the Aug. 1998 global market event, the April

2000 Nasdaq crash, the 1985 Forex event on the US dollar, the correction on the US

dollar against the Canadian dollar and the Japanese Yen starting in Aug. 1998, as well

as the bubble on the Russian market and its ensuing collapse in June 1997 [15,16].

Furthermore, twenty-one signi&cant bubbles followed by large crashes or by severe cor-

rections in the stock markets indices of the South American and Asian countries, which

exhibit log-periodic signatures decorating an average power law acceleration, have also

been identi&ed [28]. In all these analyses, the time scales have been restricted to

1 to 8 years. In contrast, the general renormalisation group theory of such spontaneous

singularities allow for an hierarchy of critical points at all scales [29,30]. The results

given below suggest that singularities do indeed cascade in a robust way up to the

largest time scales or conversely from the largest scale to the smallest scales [31].

4.2. Second order =t of the Dow Jones Average index

4.2.1. Methodology

We &t the logarithm of the extended Dow Jones index to Eq. (12). As mentioned,

taking the logarithm provides in our opinion the simplest and most robust way to

account for inNation. Furthermore, taking the logarithm embodies the notion that only

relative changes are important. Another more subtle reason can be given in terms

of the magnitude of the crash following the singularity: a simple model of rational

expectations [32] shows that if the loss during a crash is proportional to the maximum

price, then the relevant quantity is the logarithm of the price in accordance with the

standard economic notion that only relative changes should be relevant.

Fitting Eq. (12) to some data set is diScult even with a large data set (for noisy

data with only a few hundred points or less, it becomes quite impossible), due to the

degenerate r.m.s. landscape corresponding to the existence of many local minima as

a function of the free parameters tc, �; !; �; T! and �. This means that the r.m.s.
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Table 3

tc is the critical time predicted from the &t of the logarithm of the extended Dow Jones for the period

[1790 : 1999:75] to Eq. (12). The other physical parameters �; ! and � of the &ts are also shown

Minima tc � ! � r.m.s.

First 2053 0:39 6:5 171 0:23582

Second 2046 0:36 5:3 240 0:23584

Third 2067 0:42 6:8 122 0:23644

Fourth 2009 0:61 5:5 188 0:27459

Fifth 2007 0:62 4:8 206 0:27461

alone is not a good measure of the quality of the &t and additional physical constraint

are needed as discriminators. This has been discussed at length in Ref. [33]. In brief,

we will demand that the value of � and ! are compatible with what has been found

previously for large crashes and that the value of the transition time � between the

two competing frequencies is compatible with the time window tc − t0, where t0 is

the date of the &rst data point and tc the date of the singularity in the &rst derivative.

Unfortunately, we have no means to impose a criterion on the frequency-shift T!.

Speci&cally, we will demand that 0:2¡�¡0:7; 4:5¡!¡9 and (tc− t0)=3¡�.(tc−
t0) and the more the parameters fall in the mid-range, the higher con&dence is attributed

to the &t. These constraints are similar to what was used in Ref. [33] except for the

constrain on � which upper limit has been made stricter here. The reason for this is

simply that, whereas in the cases of the 1929 and 1987 stock market crashes on Wall

Street, it was not obvious to decide the starting date of the bubble, it is now objectively

determined by a historical event being the creation of the USA as an independent nation

(see footnote 2). The parameter values of the &ve qualifying &ts is shown in Table 3.

We stress that the majority of the &ts were discarded due to rather large values for

either ! or � or negative values for !. We see that the best &t in terms of the r.m.s.

also has the most reasonable parameter values for �; ! and � in terms of the discussion

above.

4.2.2. Results

The best &t with Eq. (12) to the 210 years of monthly quotes is shown in Fig. 36

and its parameter values are given in the caption. Note that the value of the angular

log-frequency !≈ 6:5 compared to !≈ 6:3 as well as the value for the position of

the singularity tc ≈ 2053 compared tc ≈ 2056 are in close agreement with the values

found for the analysis of the world population. Furthermore, the cross-over time scale

�≈ 171 years is perfectly compatible with the total time window of 210 years. In

Fig. 37, the relative error between the &t and the data is shown. We see that the error

Nuctuates nicely around zero as it should. Furthermore, the error is decreasing from left

to right clearly showing that the acceleration in the data is better and better modelled by

Eq. (12) as we approach the present. This behaviour is in fact to be expected from an

equation such as (2) allowing for an additive noise term to describe other sources of
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Fig. 36. The noisy line is the logarithm of the yearly quotes from Dec. 1790 to Dec. 1999, which are

shown instead of the monthly quotes used in the &t to better show the two &t curves. The upward trending

dotted line is the best &t with Eq. (5) with r:m:s:= 0:307; A≈− 13:7; B≈ 70:8; z≈− 0:27 and tc ≈ 2068.

The full oscillating line is the best &t with Eq. (12) to the extended Dow Jones for the period [1790 :

1999:75]. The &t gives r:m:s = 0:236; A≈ 25:1; B≈ − 4:13; C≈ − 0:055; �≈ 0:39; tc ≈ 2053; !≈ 6:5;

�≈ 171; T!≈ − 58 and �≈ − 5:8. The inset shows the extrapolation of the &t up to the critical time

tc ≈ 2053.

Fig. 37. Relative error between the &t with Eq. (12) and the data as a function of time.
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uncertainties: using the Fokker–Planck formalism, one can show that, as the singularity

at tc is approached, the noise term becomes negligible and the acceleration of the data

should approach better and better a pure power law. This can also be seen directly

from (2) with an additive noise: the divergence of p(t) dwarves any bound noise

contribution.

4.2.3. Discussion

The inset of Fig. 36 shows the extrapolation of the &t up to the critical time tc = 2053.

It suggests that the Dow Jones index will climb to impressive values in the coming

decades from its present level around 11 000 at the beginning of year 2000. It is in-

teresting that this resonates with a series of claims that the Dow Jones will climb to

36 000 [34], 40 000 [35] or even 100 000 [36] in the next two or three decades. Glass-

man, an investing columnist for the Washington Post, and Hassett, a former senior

economist with the Federal Reserve, develop the argument that stocks have been un-

dervalued for decades and that, for the next few years, investors can expect a dramatic

one-time upward adjustment in stock prices [34]. Elias, a &nancial advisor and author,

believes that forces such as direct foreign investment, domestic savings, and cooper-

ative central-banking policies will drive the vigorous market, as will the dynamics of

the New Economy, which allows for the coexistence of high economic growth, low

interest rates, and low inNation. In his view, the Dow Jones could reach 40 000 around

2016 [35]. Kadlec, chief investment strategist for Seligman Advisors Inc. predicts that

the Dow Jones Industrial Average will end up at 100 000 in the year 2020 [36]. We

&nd that Eq. (12) predicts that the level 36 000–40 000 will be reached in 2018–2020

AD and the level 100 000 in 2026 AD, not far from these claims! Of course, the

extrapolation of this growth closer to the singularity becomes unreliable due to stan-

dard limitations, such as &nite size e6ects, and must be taken with a “hand-full of

salt”.

In the academic &nancial literature, a time series such as the Dow Jones shown in

Fig. 36 has been argued to exhibit an anomalously large return, averaging 6% per year

over the 1889–1978 period [37], which cannot be explained by any reasonable risk

aversion coeScient. A solution for this puzzle is that infrequent large crashes occur

or even a major still untriggered crash is looming over us; in this interpretation, the

“anomalous” return becomes the normal remuneration for the risk to stay invested in

the market [38]. Our analysis suggests that the situation is even worse than this: not

only the market has a large growth rate but this growth rate is accelerating such that

the market is growing as a power law towards a spontaneous singularity.

5. Synthesis and theoretical discussion

5.1. Summary

The fact, that both the human world population over two thousand years, the GDP

of the world and six national, regional and world &nancial indices over most of their
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lifespan agree both in (i) the prediction of a spontaneous singularity, (ii) the ap-

proximate location of the critical time and (iii) the approximate self-similar patterns

decorating the singularity is quite remarkable to say the least. This suggests that they

may have a closely correlated dynamics, in fact more than the coupling between popu-

lation p(t) and carrying capacity K(t) written in equations such as (1) would make us

believe. The outstanding scienti&c question is whether the rate of innovations fueling

the economic growth is a random process on which industrial and population selection

operates or if it is driven by the pressing needs of the growing population. The main

message of this study is that, whatever the answer and irrespective of one’s optimistic

or pessimistic view of the world sustainability, these important pieces of data all point

to the existence of an end to the present era, which will be irreversible and cannot

be overcome by any novel innovation of the preceding kind, e.g., a new technology

that makes the &nal conquest of the Oceans and the vast mineral resources there pos-

sible. This, since any new innovation is deeply embedded in the very existence of a

singularity, in fact it feeds it. As a result, a future transition of mankind towards a

qualitatively new level is quite possible.

The reader not familiar with critical phenomena and singularities [22,21,25] may dis-

miss our approach without further ado on the basis that all demographic insights show

that the population growth is now decelerating rather than accelerating. Indeed, many

developed countries show a substantial reduction in fertility. However, “the tree should

not hide the forest” as the proverb says, in other words this deceleration is compatible

with the concept of a &nite-time singularity in the presence of so-called “&nite size

e6ects” [39]. Namely, it is well-known that nature does not have pure singularities

in the mathematical sense of the term. Such critical points are always rounded o6 or

smoothed out by the existence of friction and dissipation and by the &niteness of the

system. This is a well-known feature of critical points [39]. Finite-time singularities

are similarly rounded-o6 by frictional e6ects, A clear example is provided by Euler’s

disk [10], a rotating coin settling to rest in &nite time after, in principle, an in&nite

number of rotations. In reality, the rotational speed accelerates until a point when

friction due to air drag and solid contact with the support saturate this acceleration

and stop the rotation abruptly. The upshot here is that &nite-size e6ect and friction

do not prevent the e6ect we document here to be present, namely the acceleration of

the growth rate, up to a point where the proximity to the critical point makes &nite

size e6ects and dissipation-like e6ects to take over. The fact that these “imperfections”

become relevant in the ultimate stage of the trajectory does not change the validity

of the conclusions. The change of regime to a new phase subsists. Only its absolute

abruptness is replaced by a somewhat smoother transition, albeit still rather sharp on

the time scale of the total time span. In the present context, the observed very recent

deceleration of the growth rate can be taken as a signature that mankind is entering

in the critical region towards a transition to a new regime. Since the world popu-

lation growth rate topped in 1970, this corresponds to approximately 80 years from

the predicted critical point, or only 4% of the total timespan of the investigated time

series.
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5.2. Related work

Other authors have documented a super-exponential acceleration of human activity.

Kapitza has recently analysed the dynamical evolution of the human population [40],

both aggregated and regionally and also documents a consistent overall acceleration

until recent times. He introduces a saturation e6ect to limit the blow-up and discuss

di6erent scenarios. Using data from the Cambridge encyclopedia, he argues that epochs

of characteristic evolutions or changes shrink as a geometrical series. In other words,

the epoch sizes are approximately equidistant in the logarithm of the time to present. In

a study of an important human activity, van Raan has found that the scienti&c produc-

tion since the 16th century in Europe has accelerated much faster than exponentially

[41]. Using the data of DeLong [17], Hanson &nds that the history of the world eco-

nomic production since prehistoric times can only be accounted for by adding three

exponentials, each one being interpreted as a new “revolution” [18]: hunting followed

by farming and then by industry. He &nds that each exponential mode grew over one

hundred times faster than its predecessor. He also plots the logarithm of the world

product as a function of the logarithm of tc − t with tc = 2050 and &nd a reasonable

straight line decorated by oscillations marking the di6erent transitions.

Macro-economic models have been developed that predict the possibility of accel-

erated growth [43]. Maybe the simplest model is that of Kremer [42] who notes that,

over almost all human history, technological progress has led mainly to an increase in

population rather than an increase in output per person. In his model, the economic

output per person Y (t)=L(t), where Y (t) is the total output comprising all artifacts

and L(t) is the total population, is thus set equal to the subsistence level Wy which is

assumed &xed:

Y (t)

L(t)
= Wy : (13)

The output is supposed to depend on technology and knowledge A(t) and labour (pro-

portional to L(t)):

Y (t) =Y0[A(t)L(t)]1−� ; (14)

where 0¡�¡1. The growth rate of knowledge and technology is taken proportional

to population and to knowledge

dA

dt
=BL(t)A(t) ; (15)

embodying the concept that a larger population o6ers more opportunities for &nding

exceptionally talented-people who will make important innovations and that new knowl-

edge is obtained by leveraging existing knowledge. Eliminating Y (t) and A(t) between

(13) and (15) gives the equation for the total population:

dL

dt
=

1 − �

�
B[L(t)]2 : (16)



A. Johansen, D. Sornette / Physica A 294 (2001) 465–502 497

This is the case 
= 1 of Eq. (2), showing that the population and its output develop a

&nite-time singularity (3) with the exponent z=−1. Kremer tested this prediction by us-

ing population estimates extending back to 1 million BC, constructed by archaeologists

and anthropologists: he showed that the population growth rate is approximately lin-

early increasing with the population [42], in agreement with (16). Our result z≈− 1:9

for the human population exaggerates the singularity. On the other hand, as shown

in Table 1, we &nd a remarkable consistent value z≈ − 1 for all &nancial indices.

Our re&nements with the log-periodic formulas in order to account for the signi&cant

structures decorating the average power laws necessary lead to deviations from this

“mean-&eld” value, which should be considered as an approximation neglecting the ef-

fect of Nuctuations. This theory also predicts, in agreement with historical facts, that in

the historical times when regions were separated, technological progress was faster in

regions with larger population, thus explaining the di6erences between Eurasia–Africa,

the Americas, Australia and Tasmania.

5.3. Multivariate =nite-time singularities

Kremer’s model is only one of a general class of growth models [43]. We brieNy

recall the general framework developed by Romer [44], which allows us to generalise

the concept of &nite-time singularities to multivariate dynamics and to exhibit the

structure of its solution and follow [43] in our exposition. The model involves four

variables, labour L, capital K , technology A and output Y . There are two sectors, a

goods-producing sector where output is produced and an R&D sector where additions

to the stock of knowledge are made. The fraction aL of the labour force is used in

the R&D sector and the fraction 1 − aL in the goods-producing sector; similarly, the

fraction aK of the capital stock is used in R&D and the rest in goods production. Both

sectors use the full stock of knowledge. The quantity of output produced at time t is

de&ned as

Y (t) = [(1 − aK)K(t)]� [A(t)(1 − aL)L(t)]1−� (17)

with 0¡�¡1. Expression (17) uses the so-called Cobb-Douglas functional form with

power law relationships which imply constant returns to capital and labour: within

a given technology, doubling the inputs doubles the amount that can be produced.

Expression (17) states that the economic output increases with invested capital, with

technology and R&D and with labour.

The production of innovation is written as

dA

dt
=B[aKK(t)]� [aLL(t)]# [A(t)]$; B¿0; �¿ 0; #¿ 0 : (18)

The growth of knowledge is thus controlled by the pre-existing knowledge, by capital

investment in research and by the size of the population of innovators.
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As in the Solow model [43], the saving rate s is exogenous and constant and depre-

ciation is set to zero for simplicity so that

dK

dt
= sY (t) = s[(1 − aK)K(t)]� [A(t)(1 − aL)L(t)]1−� : (19)

Let us consider (18). If K and L are constant, it reduces to an equation of the

form (2), which exhibits a &nite-time singularity only for $¿1. In the presence of the

coupling to the other growing dynamical variables K and L, a &nite-time singularity

may occur even in the situation $¡1.

As a &rst example, let us consider the case of a &xed population L(t) = constant.

Eqs. (18) and (19) can be rewritten as

dA

dt
= bA$K� ; (20)

dK

dt
= aA1−�K� : (21)

We look for the condition on the exponents such that A(t) and K(t) exhibit a &nite-time

singularity. We thus look for solutions of the form

A(t) =A0(tc − t)−
 ; (22)

K(t) =K0(tc − t)−� ; (23)

with 
 and � positive. Inserting these expressions in (21) and (20) leads to two equa-

tions for the two exponents 
 and � obtained from the conditions that the powers of

(tc − t) are the same on the r.h.s. and l.h.s. of (21) and (20). Their solution is


=
1 + � − �

(1 − �)($ + � − 1)
; (24)

�=
2 − $− �

(1 − �)($ + � − 1)
: (25)

The condition that both 
 and � are positive enforce that $ + �¿1, which is the

condition replacing $¿1 for the existence of a &nite-time singularity in the monovari-

ate case. This shows that the combined e6ect of past innovation and capital has the

possibility of creating an explosive growth rate even when each of these factors in

isolation does not. Note that inequality $+ �¿1 ensures that 
¿�, i.e., the growth of

the technological stock is faster than that of the capital.

There are many ways to reinsert the dynamical evolution of the population. Let us

here consider the simplest one used by Kremer [42], which consists in assuming that

L(t) is proportional to K(t) as given by (13). Then, expressions (18) and (19) give

dA

dt
= a′[L(t)]�+# [A(t)]$; a′¿0; �¿ 0; #¿ 0 ; (26)

dL

dt
= b′L(t)[A(t)]1−� : (27)



A. Johansen, D. Sornette / Physica A 294 (2001) 465–502 499

Looking for solutions of form (22) and (23) gives


=
1

1 − �
; (28)

�=
2 − $− �

� + #
: (29)

It is interesting to &nd that the technology growth exponent 
 is not at all controlled

by $ nor � and #. This illustrates that a &nite-time singularities can be created from the

interplay of several growing variables resulting in a non-trivial behaviour. In the present

context, it means that the interplay between di6erent quantities, such as capital and

technology, may produce an “explosion” in the population even though the individual

dynamics do not. In particular, this interplay provides an explanation of our &nding

of the same value of the critical time tc(≈ 2052± 10) both for the population and

economic indices.

6. Possible scenarios

We now attempt to guess what could be the possible scenarios for mankind close

to and beyond the critical time tc.

A gloomy scenario is that humanity will enter a severe recession fed by the slow

death of its host (the Earth), in the spirit of the analogy [2] proposed between the

human species and cancer. This concern about the e6ect of the size and continuing

growth of the human population is shared by many scientists, including the Union

of Concerned Scientists (comprising 99 Nobel Prize winners) which asks nations to

“stabilise population.” Representatives of national academies of science from through-

out the world met in New Delhi, 24–27 October 1993, at a “Science Summit” on

World Population. The participants issued a statement, signed by representatives of 58

academies, on population issues related to development, notably on the determinants of

fertility and concerning the e6ect of demographic growth on the environment and the

quality of life. The statement &nds that “continuing population growth poses a great

risk to humanity,” and proposes a demographic goal: “In our judgment, humanity’s

ability to deal successfully with its social, economic, and environmental problems will

require the achievement of zero population growth within the lifetime of our children”

and “Humanity is approaching a crisis point with respect to the interlocking issues

of population, environment and development because the Earth is &nite” [45]. Possible

scenarios involve a systematic development of terrorism and the segregation of mankind

into at least two groups, a minority of wealthy communities hiding behind fortresses

from the crowd of “barbarians” roaming outside, as discussed in a recent seminar at

the US National Academy of Sciences. Such a scenario is also quite possible for the

relation between developed and developing countries.

On a more positive note, it may be that “ecological” actions of the kind men-

tioned above will grow in the next decades, leading to a smooth transition towards

an ecologically-integrated industry and humanity. Some signs may give indications
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of such a path: during the 1990s, wind power has been growing at a rate of 26%

a year and solar photo-voltaic power at 17% compared to the growth in coal and

oil under 2%; governments have “rati&ed” more than 170 international environmen-

tal treaties, on everything from &shing to decerti&cation [46]. However, serious re-

sistance exists [47], in part because there is no consensus on the seriousness of the

present situation: for instance, the economist J.L. Simon writes that “almost every

measure of material and environmental human welfare in the United States and in

the World shows improvement rather than deterioration” [4]. It may be that the strik-

ingly similar explosive trend in population and GDP would not necessarily persist in

the future when taking the di6erences between regional developments into account.

Perhaps what is needed to avoid the &nite-time singularity is a massive transfer of re-

sources from developed to developing countries. The recent discussions at the G7/8

summit indicates that the developed world is becoming increasingly aware of the

problems related to this discrepancy.

Extrapolating further, the evolution from a growth regime to a balanced symbiosis

with nature and with the Earth’s resources requires the transition to a knowledge-

based society, in which knowledge, intellectual, artistic and humanistic values re-

place the quest for material wealth. Indeed, the main economic di6erence is that

“knowledge” is non-rival [44]: the use of an idea or of a piece of knowledge in

one place does not prevent it from being used elsewhere; in contrast, say an item

of clothing by an individual precludes its simultaneous use by someone else. Only

the emphasis on non-rival goods will limit ultimately the plunder of the planet. Some

so-called “primitive” societies seem to have been able to evolve into such a

state [48].

The race for growth could however continue or even be enhanced if fundamentally

new discoveries at a di6erent level of the hierarchy witnessed until present enabled

mankind to start the colonisation of other planets. The conditions for this are rather

drastic, since novel modes of much faster propulsions are required as well as revolutions

in our control of the adverse biological e6ects of space on humans. It may be that

some evolved form of humans will appear who are more adapted to the hardship of

space. This could lead to a new era of renewed accelerated growth after a period of

consolidation, culminating in a new &nite-time singularity, probably centuries in the

future.

Note added in proof

After this work was completed, we learned of the work of Nottale et al. [49,50]

who have applied the concept of log-periodic jumps of evolutions to the acceleration

observed in the economic crisis and no-crisis patterns in Western and pre-Columbian

civilizations. In each case, they &nd that these data are consistent with a log-periodic

law of acceleration or deceleration, to a high level of statistical signi&cance. Such a

law is characterized by a critical epoch of convergence tc speci&c to the lineage of
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crises under consideration. These resutls support a description of evolutionary trees in

terms of critical phenomena. For the Western civilizations, the log-periodic acceleration

with scale factor 1:32 ± 0:018 converge toward tc = 2080 ± 30, which is compatible

with our analysis performed on completely independent data sets and reported in the

present article.
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