
Lecturas Matemáticas
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Even from Gregory-Leibniz series π could be
computed: an example of how convergence of

series can be accelerated∗

Vito Lampret
University of Ljubljana, Ljubljana, Slovenia

Abstract. Gregory-Leibniz series Σ∞
j=1

(−1)j+1

2j−1
= π

4
, is discussed in

literature as an example of beautiful, interesting and simple analytic ex-

pression for π. Unfortunately, this series is considered by most authors

as unsuitable for computation of π. It is shown that, using a simple

transformation of the series and applying the Euler–Maclaurin summa-

tion formula, slow convergence can be accelerated to the point where

numerical computation of π can be performed accurately to several dec-

imal places. It is also suggested that the Euler–Maclaurin formula, of

some low order, should be included in the undergraduate mathematics

curriculum.
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Resumen. La serie de Gregory-Leibniz Σ∞
j=1

(−1)j+1

2j−1
= π

4
, se conoce

en la literatura como un ejemplo de una hermosa, interesante y sen-
cilla expresión anaĺıtica de π. Desafortunadamente, la mayoŕıa de los
autores la consideran inapropiada para el cálculo de π. En esta nota
se usa una simple transformación de la serie y una aplicación de la
fórmula sumación de Euler-Maclaurin para mostrar cómo esta conver-
gencia lenta puede acelerarse hasta el punto de que el cálculo numérico
de π nos produzca un valor bastante preciso con varias cifras decimales.
También se sugiere que la fórmula de Euler-Maclaurin debiera incluirse
en los cursos de matemáticas del pregrado.

∗ Since next year is the third-centenary of Euler’s birth, April 15, 1707, we dedicate this

contribution to him, the main creator of the famous Euler-Maclaurin summation formula.
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It seems that the Gregory-Leibniz series, figuring in the identities

(1)
π

4
=

∞∑
j=1

(−1)j+1

2j − 1
= 1 +

∞∑
k=1

(−1)k

2k + 1
,

is not suitable for computation of π. Indeed, from the well known Leibniz
estimate† [6, p. 216-217]

0 ≤ an+1 − an+2 ≤ (−1)nrn ≤ an+1

of remainder rn :=
∑∞

k=n+1 ak of alternating series
∑∞

k=1(−1)k+1ak, where an

monotonically decreasingly converges to zero, we obtain, for the remainder in
series (1), the estimate

(1a)
2

(2n + 1)(2n + 3)
≤ (−1)nrn ≤ 1

2n + 1
,

valid for every positive integer n. Unfortunately, this estimate indicates slow
convergence of series (1). To compute π from (1), using (1a), to six decimal
places for example, we need to sum up much more than five millions terms of
series (1) due to rounding the terms of series during the calculations. Figure
1 illustrates relation (1a) by showing the graphs of sequences n �→ (−1)nrn ≡
π
4 − sn and n �→ 1/(2n + 1) for series (1).
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Figure 1: Graphs of sequences n �→ (−1)nrn and n �→ 1/(2n + 1).

In order to accelerate convergence in (1) we first substitute alternating con-
ditionally convergent series (1) by absolutely convergent one. Indeed, in partial
sums of (1) with even indexes, we collect pairwise the terms with odd and even

†This estimate is sharp as it could be seen from the example of geometric series.
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indexes

2n∑
k=1

(−1)k

2k + 1
=

n∑
i=1

1
4i + 1

−
n∑

i=1

1
4i − 1

=
n∑

i=1

−2
16i2 − 1

.

This way, using (1), we get the expression

(2)
π

4
= 1 − 2

∞∑
i=1

1
16i2 − 1

.

The obtained series converges faster than the original one. To accelerate also
convergence in (2) we use the Euler-Maclaurin summation formula of order
four [3, p. 320, Theorem ] or [4, p. 119, Theorem 2]. It says that for any
m ∈ N and any function f ∈ C4[1,∞), such that f (4)(x) does not change sign
and limn→∞f(n) = limn→∞f ′(n) = limn→∞f (3)(n) = 0 and

∫ ∞
1

∣∣f (4)(x)
∣∣ dx

converges, there exists a number ω(m), depending on m, such that

(3)
∞∑

k=1

f(k) =
m−1∑
k=1

f(k) +
∫ ∞

m

f(x) dx +
f(m)

2
− f ′(m)

12
+ ω(m) · f (3)(m)

and

(3a) 0 ≤ ω(m) ≤ 1
384

.

The infinite series in (2) originates from function ϕ : [1,∞) → R, such that

ϕ(x) ≡ 1
16x2 − 1

(4)

ϕ′(x) ≡ − 32x

(16x2 − 1)2
< 0(4a)

ϕ(2)(x) ≡ 32
(
48x2 + 1

)
(16x2 − 1)3

> 0(4b)

ϕ(3)(x) ≡ −6144
(
16x3 + x

)
(16x2 − 1)4

< 0(4c)

ϕ(4)(x) ≡ 6144
(
1280x4 + 160x2 + 1

)
(16x2 − 1)5

> 0.(4d)

Because ∫ ∞

m

ϕ(x) dx =
1
8

ln
(

4m + 1
4m − 1

)
,
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we obtain from equations (3)–(3a) and (4)–(4c), for any m ∈ N, the following
expression

∞∑
i=1

1
16i2 − 1

=
m−1∑
i=1

1
16i2 − 1

+
1
8

ln
(

4m + 1
4m − 1

)
+

1
2 (16m2 − 1)

+
8m

3 (16m2 − 1)2
− ω(m) · 6144

(
16m3 + m

)
(16m2 − 1)4

.

Hence, from (2) we conclude

(5) π = πm + ρm ,

where

(5a) πm = 4−
[
8

m−1∑
i=1

1
16i2 − 1

+ ln
(

4m + 1
4m − 1

)
+

4
16m2 − 1

+
64m

3 (16m2 − 1)2

]

and
(5b)

0 ≤ ρm ≤ 8ω(m) · 6144
(
16m3 + m

)
(16m2 − 1)4

<
32

(4m + 1) (4m − 1)4
<

1
(2m − 1)5

for every m ∈ N. Figure 2 shows graphs of sequences m �→ ρm and m �→
(2m − 1)−5.
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Figure 2: Graphs of sequences m �→ ρm and m �→ (2m − 1)−5.

Using [7] we find from (5a) that π10 = 3.1415924875 . . . and from (5b) that
0 ≤ ρ10 < 4.04 × 10−7. Hence 3.141592 ≤ π < 3.141592488 + 4.04 × 10−7 =
3.141592892. This way we determined π to six decimal places π = 3.141592 . . ..
We point out that during this computation we have to sum only 13 terms. To
obtain more decimal places of π we should increase parameter m. However,
sequence m �→ πm converges relatively slowly and therefore is not suitable
for the computation of large number of digits of π. For example, we have
π − π1000 > 1.6 × 10−17 and ρ1000 < 3.2 × 10−17. Thus to obtain 17 decimal
places we should sum much more than 1000 terms, due to their rounding during
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the computation. Faster convergent sequence, originating in series (2), could
be obtained using the Euler-Maclaurin formula of higher order than four [4].
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