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Data Architecture

A Disquisition on The Performance Behaviour of Binary Search Tree Data Structures

Dominique A. Heger

From a performance perspective, applica-
tions and operating systems are faced with the
challenge to store data items in structures that
allow processing fundamental operations
such as insert, search, or remove constructs
as efficiently as possible. Over the years, a
variety of structures have been proposed,
focusing on the efficient representation of
data items. Some of the structures include
direct addressing schemes such as hash
tables, while others incorporate comparison
schemes such as binary search trees. This
study briefly elaborates on the internal char-
acteristics of 5 tree-based data structures and
focuses on their performance behaviour
under various workload conditions. The con-
ducted empirical studies revolve around
expected run-time performance, as well as
key-comparison and rotational behaviour.
The goal was to identify the most efficient data
structure under different workload scenarios.
The 5 data structures chosen for this study
represent 2 balanced (AA and red-black) and
3 unbalanced (treap, skip list, and radix)
binary search tree implementations, respec-
tively. 

 Keywords: Data Structures, Performance,
Binary Tree

1 Introduction
Binary search trees are the most basic (non-

linear) data structures utilized in the realm of
application and operating system develop-
ment. Their wide range of applicability can be
explained by their fundamentally hierarchical
nature, a property induced by their recursive
definition. A binary tree structure can be
defined as a finite set of nodes that are either
empty or consist of a root and the elements of
two disjoint binary trees, referred to as the left
and right subtrees of the root. Binary tree

structures support 2 primary application cate-
gories. First, they may represent hierarchical
structures and second, they may be utilized to
implement efficient data storage and retrieval
mechanisms. In a generic setup, the individual
tree components consist of 3 fields. First, a
data field that holds the key. Second, a pointer
to the root-node of the left subtree and third, a
pointer to the root-node of the right subtree. In
such a tree representation, NULL-pointers
indicate empty subtrees, and the argument can
be made that this representation is not space-
efficient, as most of the pointers are referenc-
ing NULL. An alternative to such a design is
known as a threaded binary tree structure, a
tree construct that utilizes the space more ef-
fectively [12]. Instead of pointing to NULL,
the leaf node pointers are linked to expedite
lookup and tree traversal operations. In gener-
al, the challenge faced is to differentiate
among the high-level tree features and opera-
tions, as well as the representation model, in
an effective way that does not break the algo-
rithms. Another venerable issue is that the tree
balancing mechanisms (the maintenance
operations per se) are from a performance
perspective rather expensive, as well as com-
plex to implement. The goal of this study was
threefold. First, to quantify the performance
behaviour of the red-black, the AA, the treap,
the skip-list, and the radix tree data structures
under varying workload conditions [5][17]
[20][21]. The focus was on implementation
complexity, expected time complexity, key
comparison, as well as on the restructuring
operations (in the case of the 2 balanced bina-
ry search tree implementations). Second, to
analyse the impact that some rather simple
code-changes in the treap implementation
have on the key comparison behaviour. Third,
to quantify the performance delta of the tree
traversal operation in a threaded and a non-

threaded red-black tree environment. Of the
discussed data structures, the AA and the red-
black tree represent balanced structures,
where all the individual operations (insert,
remove, search) are bounded by an asymptot-
ic upper bound of O(log n). In the case of the
treap, the radix, and the skip-list implementa-
tion, the underlying unbalanced binary search
tree structures result in performing the indi-
vidual operations in an expected time com-
plexity of O(log n) as well. With theses 3 data
structures though, an ergodicity of O(n)
exists. Some other tree constructs such as
AVL trees [5] or hash-based solutions were
not incorporated into this study. The reader is
referred to [27] for a comprehensive discus-
sion on dynamic hashing. 

2 Red-Black Trees
Binary search trees perform best when they

are either balanced, or the path length from
the root to any leaf node is within some
bounds. The red-black tree algorithm repre-
sents a method for balancing trees [5]. Red-
black trees are a variation of the classic binary
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search trees (BST) that utilize a rather effi-
cient mechanism for keeping the tree in
balance. The name derives from the fact that
each node is coloured red or black, and that
the colour of the node is instrumental in deter-
mining the balance of the tree. During insert
and delete operations, nodes may be rotated to
maintain the tree balance. In general, both
average and worst-case search time complex-
ity equals to O(log n). More specifically, the
red-black tree design incorporates the follow-
ing properties: 
1 Every node is coloured red or black
2. The root node has to be black
3. Every leaf is a NIL node, and is coloured

black
4. If a node is red, then both its children are

black
5. Every simple path from a node to a de-

scendant leaf contains the same number of
black nodes 
The number of black nodes on a path from

the root to a leaf is known as the black-height
of a tree. The properties mentioned above
guarantee that any path from the root to a leaf
is no more than twice as long as any other. All
operations on the tree must maintain the prop-
erties listed above. In particular, operations
that insert or delete items must abide within
these very specific rules [5]. The amount of
memory required to store a red-black node
should be kept to a minimum. This is especial-
ly true if many small nodes are being allocat-
ed. In most cases, each red-black tree node
has a left, a right, and parent pointer. In addi-
tion, the colour of each node has to be record-
ed. Although this requires only one bit, more
space may be allocated to ensure that the size
of the structure is properly aligned. To reiter-
ate, on a static red-black tree implementation,
the operations minimum, maximum, search,
successor, predecessor can be executed in
O(log n) time. Tree maintenance operations
such as insert or delete require dynamic
changes to the tree structure, and therefore
require rather sophisticated implementations
to meet the O(log n) time criteria. It has to be
pointed out that a simple rotation is being
executed in O(1) time. A threaded (red-black)
search tree represents a data structure where
the un-utilized child pointers are used to point
to either the successor (right child pointer) or
the predecessor (left child pointer) nodes,
respectively. From an implementation per-
spective, the pointers have to be flagged to
disclose if they represent a normal or a thread-
ing scenario [5]. One of the benefits of thread-
ing a tree structure is that it is feasible to proc-
ess an in-order traversal in constant space, as
it is not necessary to remember the entire path
from the root to the current position. There-
fore, a threaded tree structure represents a

stack free solution that is beneficial if lookup
(find) and tree traversal operations dominate
the workload. 

3 AA-Tree Data Structure
Andersson [1] introduced the AA-Tree

design in 1993, as basically a quest to present
new maintenance algorithms for balanced tree
structures. Additional work by Weiss (1996)
resulted into a much broader dissemination of
the AA-Tree design [21]. The AA-Tree is
considered as a simpler to code variant of the
red-black tree and satisfies the following
properties:
1. Every node is coloured red or black
2. The root node has to be black
3. Every leaf is a NIL node, and is coloured

black 
4. If a node is red, then both its children are

black
5. Every simple path from a node to a

descendant leaf contains the same number
of black nodes

6. Left children may not be red.
The advantages of an AA-Tree design

(compared to red-black trees) are that half the
restructuring cases are eliminated, and that
the delete operation is substantially simpli-
fied. In other words, if an internal node has
only one child, that child has to be a red right
child. Further, it is always possible to replace
a node with the smallest child in the right
subtree, as it either will represent a leaf node
or it will have a red child. In the AA design,
the balancing information is stored in each
node as the level. The actual level is defined
by the rules that (1) if a node is a leaf, its level
is set to 1. (2) If a node is red, its level equals
to the level of its parent. (3) If a node is black,
its level equals to 1 less than the level of its
parents. The level represents the number of
left links to a NULL (or NIL) reference. The
AA design further introduces the term hori-
zontal link, in the sense that a horizontal link
represents a connection between a node and a
child with equal levels. In other words, hori-
zontal links can be referred to as right refer-
ences. 

Based on the AA design, (1) it is not possi-
ble to have 2 consecutive horizontal links in
the tree. (2) Nodes at level 2 or higher have to
have 2 children, and (3) that if a node has 0
right horizontal links, its 2 children have to be
at the same level. Compared to the red-black
tree implementation, the vast number of
rebalancing cases is simplified in the AA
design by utilizing two rather simple mainte-
nance operations labelled as skew and split.
The skew operation removes left horizontal
links, whereas the split operation addresses
the issue of removing consecutive horizontal
links (that are by design not allowed). Both

operations are part of the AA insert and delete
maintenance set. All the unbalanced situa-
tions that are imaginable in an AA-Tree based
scenario can be eliminated by a sequence of at
most 3 skew and 2 split operations, respec-
tively. This statement holds true based on the
fact that the maintenance work may affect a
higher level, and therefore has to be propagat-
ed upward in a recursive manner. The fact that
the left children may not be red greatly simpli-
fies the delete operation (compared to the red-
black paradigm), and therefore an AA-Tree
solution should be considered if delete opera-
tions represent a significant portion of the
actual workload profile. 

4 Treap Data Structure
A treap is the basic data structure underly-

ing randomized search trees. The name itself
refers to synthesizing a tree and a heap struc-
ture [5], [19]. More specifically, assuming
that x represents a set of items where each
item is associated with a key and a priority. A
treap for a set x represents a special case of a
binary search tree, in which the node set is

Operation Time Complexity

Find/Search/Access O(log n)

Insert O(log n)

Delete O(log n)

Rotations per update 2

Update – rot. subtree s 
= O(s)

O(log n)

Update – rot. subtree s 
= O(s log^k s)

O(log^k+1*n)

Joining 2 trees (sizes m 
& n)

O(log max{m,n})

Splitting a tree (into 
size m & n)

O(log max{m,n})

Table 1: Treap Performance 
Characteristics – Generic Operations.

Operation Time Complexity

Insert with handle O(l)

Delete with handle O(1)

Finger search over 
distance d

O(log d)

Note: handle, finger, split, and join operations 
require additional pointers.

Table 2: Treap Performance  – 
Advanced Operations.
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arranged in order (in respect to the keys) as
well as in heap fashion (in regards to the
priority). Further, assuming that t represents
the treap structure storing a set of items x.
Given the scenario where the key of an item is
known, the location in t can easily be deter-
mined via a simple search tree algorithm. In a
treap, the access or search time is proportional
to the depth of an element in the tree. An
insert of a new item z into t basically consists
of a 2-step process. The first step consists of
utilizing the item’s key to attach to t at the
appropriate leaf position and second, to use
the priority of z to rotate the new entry up in
the structure until the item locates the parent
node that has a larger priority. The process of
deleting an item z from a treap structure t rep-
resents the reversed scenario. The first step
consists of locating the item, and second to
rotate the item down in the tree structure until
it becomes a leaf, where the item can be
removed. 

In some implementations, treap split and
join operations may be necessary. A split
operation is used to separate a set of items x
into 2 sets (x1 and x2). The separation utilizes
a heuristic where items are being placed in the
2 sets based on the item’s key values in com-
parison to the key of a reference element a. To
accomplish the split, the operation inserts an
item with key a that is affiliated with an infi-
nite priority. Based on the heap-order proper-
ty, the new item has to represent the root of the
heap. Based on the in-order property, the left
subtree represents the treap x1, whereas the
right subtree represents the treap x2. In a sim-
ilar fashion, the join operation is utilized to
combine the two sets x1 and x2 into a single
construct. The assumption made is that the

keys in x1 are smaller than the keys
in x2. The implementation of the
join operation creates a dummy
root item, where the left subtree
consists of x1 and the right subtree
represents x2. In a second step, the
join operation performs a delete on
the dummy root item, finalizing
the combined treap structure. In
some circumstances, handles or
fingers are being used to expedite
some of the maintenance
operations. To illustrate, in the
case that a handle is referring to a
specific node x, deleting the node x
can be accomplished by only
rotating it down into a leaf position
and freeing the item, circumvent-
ing the otherwise necessary search
operation. In a similar fashion, to
insert a new item x where a handle
to either the successor or the pred-
ecessor y of node x is available, the

search for the location for x can start at the ref-
erence point y (instead of at the root item).
The term finger search for a node y in a treap
refers to following the unique path between x
and y, where node x incorporates a handle that
points to it. Another aspect of treap imple-
mentations is that split and joint operations
can be processed more efficiently if handles
are available to the min and max key items, re-
spectively. A randomized search tree that
stores n items reveals the expected asymptotic
upper bound time complexity (see Table 1 and
Table 2).

The time complexity for a successful
search operation in a treap environment is
proportional to the number of
ancestors of x, and can be ex-
pressed as O(log n). An unsuc-
cessful search for a key that
falls between the keys of suc-
cessive items (x– & x+) takes on
an expected time complexity of
O(log n) as well [14]. In order to
insert an item into a treap, the
first step is to locate its leaf po-
sition (based on its key value),
and in second step to rotate the
item up in the tree structure
based on its priority. The
number of rotations can at most
be equal to the search path,
hence the time to insert an item
is proportional to the time
required to complete an un-
successful search, which as al-
ready discussed (in expectation)
equals to O(log n). In the case of
a delete operation, the insert
operation is being inverted,

therefore the conclusion that the time com-
plexity equals to O(log n). The number of
downward rotations during a delete operation
equals to the sum of the length of the right
spine of the left subtree of x, and the left spine
of the right subtree of x, respectively. A
scenario that (in expectation) is < 2 for a
randomized binary search tree. 

5 Skip List Data Structure
A skip list represents an ordered linked list,

in which every node contains a variable
number of links to other nodes in the structure
[13][16]. To illustrate, the nth link of a given
node points to subsequent nodes in the list,
and by design, skips over some number of
intermediary nodes. Therefore, these skipped
nodes have fewer than n links associated. As
most nodes have a variable number of links, a
skip list can be referred to as a collection of
linked lists of different levels. In order to
quickly traverse the structure, seeking for
some target key, the search operation seeks on
the upper level list until either the target data
is encountered, or the operation locates a node
with a key that is smaller than the target. At
this point, that particular node links to a sub-
sequent node. In this case, the search contin-
ues by repeating the same procedure (now
starting at the node that incorporates the
smaller value than the target) and by continu-
ing on the skip list. Skip lists can be consid-
ered as a probabilistic alternative to balanced
trees. 

Skip lists have balance properties that are
similar to the search trees that are built via
random insertions. Balancing a data structure
probabilistically is easier than explicitly

Figure 1: Insert Operations.

Figure 2: Search Operations.
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maintaining the balance. For many applica-
tions, skip lists represent a more natural
layout than tree structures, and therefore are
generally leading towards simpler algorithms.
The ramification is that the simplicity of skip
list algorithms allows easier implementations,
and provides in some cases a (constant factor)
speed improvement compared to the balanced
and self-adjusting tree algorithms. Skip lists
are rather space efficient. They can easily be
configured to hold (on average) 1 1/3 pointers
per element, and do not require balance or
priority information to be stored within each
node. The varying size of the nodes may be
regarded as a disadvantage of skip lists. As a s
skip list is balanced in a probabilistic fashion
(by using a random number generator), the
average search, insert, and delete operations
are processed in an expected time complexity
of O(log n). The probability of encountering
significantly worse performance is rather
slim, but nevertheless exists. In other words,
as the balance criteria is chosen randomly, the
chance of encountering the O(n) worst case
scenario is very small, as any input sequence
into a skip list will not consistently produce
the worst case performance scenario. 

6 Radix Tree Data Structure
A standard radix search tree design is simi-

lar to a digital search tree [2][5][21]. Howev-
er, in a radix search tree, all data items are
stored as leave objects, and therefore the
internal nodes of the radix tree do not have
any key values associated with them. An inter-
nal node's child represents either another
internal node or an actual data item. During a
search operation, the individual bits in the

search key are examined, and ei-
ther the left or the right pointer
to a child node is being activated
according to the specific bit val-
ue. Therefore, unlike the digital
search tree, the radix search tree
does not have to encounter any
key comparison overhead per se
at each node that is being tra-
versed. Instead, the traverse op-
eration continues until the corre-
sponding bit in a child node’s
link filed is zero. The child link
entity refers to a two-bit field en-
try, where bits 0 and 1 specify
the child pointers. In either case,
if the bit value equals to zero, the
pointer references either NULL
or points to a data item. Other-
wise, if the bit is 1, the pointer
references another node in the
radix tree. In other words, if the
child link field equals to 0, either
a NULL pointer or a data item

has been located. Further, the root node
always remains in the radix search tree, even
in the case when there are no items in the tree.
From a performance perspective, the number
of nodes, as well as the length of the key value
govern the efficiency of a radix tree. In gener-
al, large key values have a rather detrimental
impact on performance. 

Along these lines, the radix sort is a rather
good illustration of how lists and deques can
be combined with other container’s [5]. In the
case of a radix sort, a vector of deques is
manipulated, similar to a hash table. In a radix
sort, the values are successively
ordered on a per digit position
basis, normally from right to left
(straight radix sort). This is ac-
complished by copying the val-
ues into buckets, where the in-
dex for the bucket is determined
based on the position of the digit
being sorted. The straight radix
sort algorithm operates in O(nk)
time, where n represents the
number of items, and k refers to
the average key length. The
greatest disadvantage of a radix
sort algorithm is that the imple-
mentation can not be construct-
ed to execute in place. There-
fore, O(n) additional memory
space is required. Furthermore, a
radix sort implementation re-
quires 1 pass for each symbol of
the key, and therefore is rather
inefficient if long key values are
processed. The reader is encour-
aged to consult [26] for a com-

prehensive discussion on radix trees, extendi-
ble hashing, B-Trees, and performance. 

7 Benchmark Results
To conduct the performance comparison,

all the data structures were implemented in
ANSI C. The implementation of the data struc-
tures were based on work conducted in
[5][12][16][17][21]. Where applicable, the
same random number generator and the same
seed were used throughout the study. All the
data structures were exposed to the same
workload scenarios. The analysis was decom-
posed in 3 sections. Section 1 focused on the
individual insert, search, and remove per-
formance. The operations were benchmarked
either in an ascending, descending, or random
order while scaling the number of nodes from
5,000 to 100,000. Next to the response time
comparison, the study introduced the term
aggregate structure performance factor,
describing the mean performance of a data
structure as quantified over the set of invoca-
tion scenarios used in this study. To illustrate,
the insert performance was quantified based
on ascending, descending, and random data
distributions. Therefore, the overall consist-
ency factor for the insert operation incorpo-
rates the 3 invocation scenarios. Section 1
further discusses the performance behaviour
based on a mixed workload profile, consisting
of a chain of insert, search, and remove oper-
ations, respectively. Section 2 quantified the
data structure performance focusing on the
number of key comparisons and (where appli-
cable) the number of rotate operations. For the
treap data structure, code changes surround-

Figure 3: Remove Operations.

Figure 4: Mixed Workload.
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ing the placement of the equality, the less
than, and the greater than operations are pro-
posed and analysed. Section 3 discusses the
performance of the tree traversal operation,
comparing a standard red-black tree and a
threaded red-black tree implementation. 

The test environments for the benchmarks
in Section 1 and 2 consisted of a single CPU,
256MB memory, Linux 2.6 system that was
equipped with a single disk configured with
the XFS file system. For the benchmarks
described in Section 3, a 4-way, 1GB memory
system, configured with a 5-disk RAID-5 I/O
subsystem that utilized the Linux 2.6 and the
JFS file system was used. All the benchmarks
were executed 100 times. The performance
numbers reported in this study reflect the
mean over all the test runs. 

7.1 Insert, Search, and Remove 
Operations

The basic data structure benchmarks were
conducted on the single CPU system. In the
case where the nodes were inserted in
descending order, the treap outperformed the
other data structures by a rather significant
margin (Figure 1). As discussed, the treap
reflects a light-way data structure compared to
either a red-black or the AA implementation,
respectively. Therefor, the insert operations
are completed more efficiently, as the expen-
sive maintenance functions embedded in the
balanced data structures are much more
relaxed in a treap implementation. The delta
between the fastest (the treap) and the slowest
(the AA tree) structure equalled to 430 milli-
seconds (at the 100,000-node level). At the
10,000-node level, all 5 data structures report-
ed mean response time values within 10
milliseconds. In the case the nodes were
either inserted in an ascending or random
order, the radix tree proved to be the most
efficient solution (Appendix A).

From a structure performance factor per-
spective, at the 100,000-node level, the radix
tree’s insert operations outperformed the oth-
er data structures. Further analysing the fluc-
tuation among the different insert scenarios
(ascending, descending, and random) re-
vealed that the red-black tree performed most
consistently. At the 100,000-node level, the
fluctuation among the ascending, the de-
scending, and the random insert operations
was approximately 40 milliseconds. This can
be compared to a delta of 440 and 130 milli-
seconds for the treap and the radix tree,
respectively. The insert benchmarks disclosed
that the skip list and the AA tree experienced
scalability issues, especially in the random
insert scenario. 

The benchmarks conduced revolving the
search operations in a descending order
revealed a similar picture (Figure 2). From a
mean response time perspective, the treap
data structure outperformed the skip list, as
well as the radix tree, whereas the latter two
data structures were able to outperform the
more complex red-black and AA tree struc-
tures. At the 100,000-node level, the delta
between the fastest (the treap) and the slowest
(the red-black tree) data structure was 960
milliseconds. At the 10,000-node level, the
difference between the most (the treap) and
the least (AA and skip list) efficient imple-
mentations equalled to 40 milliseconds. The
search benchmarks conducted in ascending
order disclosed a similar behaviour as experi-
enced for the insert operations (see Appendix
A). The radix tree outperformed the treap,
which outperformed the other 3 implementa-
tions. At the 100,000-node level, quantifying
the aggregate structure performance factor
showed the radix tree and the treap in a dead
heat. At the same time, the other 3 data struc-

tures trailed by 530 milliseconds, 725 milli-
seconds, and 790 milliseconds for the skip
list, the AA, and the red-black tree structures,
respectively.

From a consistency perspective (smallest
delta between the search scenarios), the radix
tree outperformed the red-black and the AA
tree, which outperformed the treap and the
skip list. At the 100,000-node level, the delta
between the ascending and the descending
search operations was 10 milliseconds for the
radix tree, 150 milliseconds for the red-black
tree, and 380 milliseconds for the treap,
respectively. Benchmarking the remove oper-
ations in descending order revealed that the
treap was once again capable of outperform-
ing the other 4 data structures (Figure 3). The
mean delta between the treap and the slowest
structure (red-black tree) at the 100,000-node
level equalled to 1,430 milliseconds. At the
10,000-node level, the difference between the
treap and the least efficient implementation
(skip list) equalled to 90 milliseconds. Ana-
lysing the remove performance in ascending

Nodes Operation Treap Radix Skip

Insert 98,771 299,953 247,439

10,000 Search 169,977 320,032 251,764

Remove 108,758 309,974 184,254

Insert 555,109 1,499,955 1,420,190

50,000 Search 1,007,434 1,600,032 1,489,230

Remove 605,099 1,549,975 1,512,343

Insert 1,219,770 2,999,956 2,932,223

100,000 Search 2,070,369 3,200,032 2,969,512

Remove 1,319,758 3,099,975 2,865,642

Table 3: Key Comparisons – Unbalanced Data Structures.

Nodes Operation AA Red-Black

Insert 168,244 211,383

10,000 Search 114,707 128,853

Remove 114,037 103,671

Insert 1,016,999 1,286,225

50,000 Search 685,766 754,794

Remove 697,229 639,197

Insert 2,183,976 2,772,389

100,000 Search 1,471,511 1,609,564

Remove 1,494,441 1,378,359

Table 4: Key Comparisons – Balanced Structures.
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order disclosed the treap as the most efficient
implementation (Appendix A). As the mathe-
matical and structural analysis of the red-
black and the AA tree design suggested, the
AA tree outperformed the red-black imple-
mentation in every remove scenario that was
benchmarked in this study. Analysing the
aggregate structure performance factor at the
100,000-node level showed the treap with the
lowest mean response time, followed by the
radix, the skip list, the AA, and the red-black
tree. 

From a consistency perspective (smallest
delta between the remove scenarios), the
radix and the red-black tree outperformed the
other 3 implementations, underlying the
robustness of these data structures under
different operation patterns. To further quanti-
fy the performance behaviour of these data
structures, the study utilized a mixed work-
load profile. The profile triggered a chain of
insert (100% of the nodes in ascending order),
search (randomly for 10% of the nodes),
remove (randomly for 50% of the nodes), and
search (randomly for 10% of the nodes) oper-
ations. The conduced benchmark runs showed
that at every node level, the treap outper-
formed the other 4 data structures (Figure 4).
At the 100,000-node mark, the treap outper-
formed the slowest data structure (radix tree)
by 820 milliseconds. Decomposing the con-
ducted test runs into a small (5,000 to 50,000
nodes) and a large (greater than 50,000 up to
100,000 nodes) category, and conducting the
analysis accordingly did not change the
performance picture in any significant way. In
the small mixed workload category, the treap
represents the most efficient implementation,
whereas the radix tree encounters a rather
steep increase in response time at the 20,000
and the 50,000-node levels, respectively. The
same behaviour is reflected in the large mixed
workload category. 

Overall, the red-black tree performed well
at every node level, as the data structure was
capable of outperforming the more light-way
implementations of the radix tree and the skip
list at every measured data point. 

7.2 Key Comparisons and Rotations
The next few experiments in this study

focused on the number of key comparisons
performed by the data structures while
processing a certain workload. The results in
Table 3 and 4 outline key comparisons for a
descending permutation, attempting to model
a realistic situation where the inserted ele-
ments are in a nearly sorted order. Evaluating
the mean number of key comparisons (across
the 3 operations) showed the treap as the most
efficient implementation at all the bench-
marked node levels. The radix tree represents
the structure that processes the most key
(actual bit) comparisons. Despite processing
more key comparisons, the simplified AA
remove function outperforms the red-black
tree implementation from a response time
perspective. As the design suggests, the 2
balanced tree structures disclose the lowest
number of key comparisons for the search
operation. The number of key comparisons
processed by the 2 balanced structures (while
operating on remove scenarios) are in line
with the most efficient (treap) unbalanced
data structure, and clearly outperform the
other 2 (radix and skip list) solutions. The re-
balancing operations necessary in these 2 data
structures though squander that advantage,
which is reflected in the response time behav-
iour (Figure 3). Evaluating the key compari-
son behaviour on random data sets revealed
that the 2 balanced data structures outper-
formed the 3 unbalanced solutions. The anal-
ysis showed that the red-black tree slightly
edged the AA implementation at all the
benchmarked node levels (see Table 3 and
Table 4).

In order to further investigate the key com-
parison behaviour, and the impact on response
time, the study varied (in the treap solution)
the order in which the equality, the less than,
and the greater than operations were proc-
essed. The following pseudo code documents
the 2 experiments conducted for the treap
search operation.
Option 1:
1 f key_searched = key_current then found 
2 else if key_searched < key_current go to left child
3 else go right

Option 2:
1 f key_searched = key_current then found 
2 else if key_searched > key_current go to right 
child
3 else go left

The benchmarks conduced for the treap
search operation (at various node levels and
random input sets) revealed that option 2 out-
performed option 1 (response time wise) by
approximately 4%. The study further showed
that moving the comparison in line 1 further
down and executing the greater than operation
first, results in fewer key comparisons but a
higher overall response time. 

For the red-black and the AA structures,
Table 5 discusses the height and the number
of rotations executed at different node levels
with a descending input set. Both structures
revealed almost identical numbers of rota-
tions while inserting the data items. While
processing remove operations, the red-black
tree executed approximately 25% less rota-
tions than the AA implementation. In all the
benchmarks utilizing ordered data sets, the
AA tree presented a significantly flatter tree
hierarchy than the red-black implementation.
As outlined in Table 5, a height delta of 6, 8,
and 9 at the 10,000, the 50,000, and the
100,000 node-levels was reported. Studies
conducted on a random data set revealed that
the red-black tree executed on the insert as
well as the remove operations fewer rotations
than the AA tree. Further, with a random
sample set, the height of the tree structures
only varied by 2, 3, and 3 at the 10,000, the
50,000, and the 100,000-node levels, respec-
tively (see Table 5).

The benchmarks revealed that the compiler,
the systems architecture, and the time com-
plexity of the key comparisons significantly
impacts the response time behaviour. The
search operations for all the tree-based struc-
tures were essentially identical. Despite the
similar search solutions, methods that execut-
ed fewer key comparison operations not
always revealed the most efficient response
time behaviour. Processing 50,000 search
operations in ascending order resulted in
1,600,032 and 1,067,079 key comparisons for

Nodes Operation AA Red-Black

Insert 9,982 9,976

10,000 Height 18 24

Remove 3,340 2,489

Insert 49,976 49,971

50,000 Height 21 29

Remove 16,676 12,468

Insert 99,987 99,969

100,000 Height 22 31

Remove 33,339 24,985

Table 5: Height and Rotations – Balanced Structures.
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the radix tree and the treap data structures,
respectively. From a response time perspec-
tive, the radix tree outperformed the treap for
this data point by 110 milliseconds. Similar
tests conduced on an larger SMP system (run-
ning a commercial UNIX flavour) revealed
that based on the different compiler architec-
ture, instruction pipelining features, and
cache replacement polices, a slightly different
execution behaviour of some of the data struc-
ture operations. The results presented in this
Section for the treap, the skip list, and the red-
black tree data structures are comparable to
the performance data reported in studies con-
ducted by Sahni [24] and Papadakis [25]. 

7.3 Threaded Red-Black Tree Performance
The final experiment conducted in this

study focused on quantifying the performance
behaviour of the tree traversal operation
utilizing a regular and a threaded red-black
tree solution. The benchmark was conducted
on the SMP system discussed in Section 6.0.
The benchmark results depicted in Figure 5
reveal the improved traversal behaviour of the
threaded red-black solution. Additional tests
conducted on random and ascending data sets
disclosed the same pattern, as in all the exper-
iments, the threaded implementation outper-
formed the generic red-black data structure by
an average of 12% (Appendix A). Analysing
the insert performance of the 2 data structures
showed the complexity increase of maintain-
ing the additional pointers in the threaded
solution though, as the regular red-black tree
implementation outperformed the threaded
data structure by an average of 5%. 

8 Summary and Conclusion
The empirical analysis conducted for this

study supports the mathematical abstractions

for the tree data structures. In
other words, the theoretical
study of the tree structures and
the resulting performance
claims were highlighted
through the conducted bench-
marks. To illustrate, the AA
implementation was capable
of outperforming the red-
black tree structure in all the
remove cases. To summarize,
in the mixed workload envi-
ronment, the treap data struc-
ture outperformed the other 4
implementations by a rather
significant margin. In the in-
sert scenarios, the radix and
the treap structure outper-
formed the more complex AA
and red-black data structures.

A similar picture was drawn by the search op-
eration based benchmarks. It is interesting to
point out that in the case of random insert op-
erations, the red-black tree outperformed the
treap in the case that 20,000+ nodes were pop-
ulated into the data structure. The study re-
vealed that based on the mixed workload pro-
file, the treap represents the most efficient
implementation whereas overall, the red-
black data structure excelled from a consist-
ency perspective. In other words, the red-
black tree provided a rather consistent
response time behaviour under varying work-
load patterns. The more light-way data struc-
tures (such as the treap or the skip list) on the
other hand were rather fluctuation prone (a
statement made based on the ascending,
descending, and random operations executed
at the same node level). Based on the mathe-
matical and empirical study, the ramification
is that the implementation of a red-black tree
data structure in operating systems is consid-
ered as an effective and (to a lesser extent)
efficient solution. The consistency factor
reported in this study more than justifies the
usage of a red-black tree implementation. To
address the efficiency issue, one approach
may be to explore the possibility of convert-
ing a standard red-black tree data structure
into a threaded implementation, a design
change that would allow expediting the search
and traversal operations. As a search opera-
tion is part of any remove scenario (the node
has to be located first), the remove operation
benefits from the enhancement as well. The
actual tradeoff revolves around faster lookup
operations and increased pointer mainte-
nance. Further, the treap has to be considered
as a valuable alternative to any data structure.
To illustrate, despite all 3 unbalanced solu-
tions representing rather simple data struc-

tures, the treap outperformed the radix tree
and the skip list in the mixed workload
scenarios, whereas the radix tree represented
the least efficient solution of all the bench-
marked data structures. This study further
discussed the performance gain that is possi-
ble by re-ordering the logical operations used
in the data structures, and addressed the
impact of compiler, systems architecture, and
time complexity on the response time behav-
iour. 

References
[1]

A. Andersson. “Balanced Search Trees
Made Simple”, WADS, 1993.

[2]
A. Andersson, S. Nielsson. “A New Effi-
cient Radix Sort”, FOCS, 1994.

[3]
S. Baase. “Computer Algorithms, Intro-
duction to Design and Analysis”, 3rd ed.,
Addison-Wesley, 2000.

[4] M. Black. "Skip Lists vs. B-Trees”, CSI
Essex, 2001.

[5]
T. Cormen. “Algorithms”, Second Edi-
tion, MIT Press, 2001.

[6]
M. Garey, D. Johnson. “Computers and
Intractability: A Guide to the Theory of
NP-Completeness”, Freeman, 1979.

[7]
G. Gonnet, R. Baeza-Yates. “Handbook
of Algorithms and Data Structures”, 2nd.
ed., Addison-Wesley, 1991.

[8]
R. Graham, D. Knuth, O. Patashnik.
“Concrete Mathematics”, Addison-Wes-
ley, 1989.

[9]
T. Hagerup, C. Rueb. “A Guided Tour of
Chernoff Bounds”, 1990.

[10]
D. Hochbaum. “Approximation Algo-
rithms for NP-Complete Problems”,
PWS, 1997.

[11]
E. Horowitz and S. Sahni,  Fundamentals
of Computer Algorithms, Computer Sci-
ence Press, 1978.

[12]
D. Knuth. “The Art of Computer Pro-
gramming”, Volumes 1 and 3, Addison-
Wesley, 1997 and 1998.

[13]
P. Messeguer. "Skip Trees, an Alternative
Data Structure to Skip Lists in a Concur-
rent Approach", 1997.

[14]
R. Motwani, P. Raghavan. “Randomized
Algorithms”, Cambridge Univ. Press,
1995.

[15]
C. Papadimitriou. “Computational Com-
plexity”, Addison-Wesley, 1994.

Figure 5: Tree Traversal.

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org


Mosaic

74 UPGRADE Vol. V, No. 5, October 2004 © CEPIS

Appendix A: Additional Benchmark Charts

http://www.upgrade-cepis.org/issues/2004/5/upgrade-vV-5.html
http://www.upgrade-cepis.org


Mosaic

© CEPIS UPGRADE Vol. V, No. 5, October 2004 75

[16]
W. Pugh. “Skip Lists – A Probabilistic
Alternative to Balanced Trees”, ACM,
1990.

[17]
R. Sedgewick. “Algorithms” 2nd ed.,
Addison-Wesley, 1988.

[18]
R. Sedgewick, F. Lajolet. “An Introduc-
tion to the Analysis of Algorithms”,
Addison Wesley, 1996.

[19]
R. Seidel, C. Aragon. “Randomized
Search Trees”, Algorithmica 16, 1996.

[20]
C. Van Wyk. “Data Structures and C
Programs” Addison-Wesley, 1988.

[21]
M. Weiss. “Data Structures and C
Programs” Addison-Wesley, 1997.

[22]
N. Wirth. “Algorithms + Data Structures
= Programs”, Prentice Hall, 1978.

[23]
A. Harrison. “VLSI Layout Compaction
using Radix Priority Search Trees”,
1991.

[24]
S. Sahni, S. Cho. “A New Weight Bal-
anced Binary Search Tree”, University of
Florida, TR 96-001, 1996.

[25]
T. Papadakis. “Skip Lists and Probabilis-
tic Analysis of Algorithms”, Ph.D.
Dissertation, U. of Waterloo, 1993.

[26]
R. Fagin, J. Nievergelt, N. Pippenger, H.
Strong. “Extendible Hashing – A Fast
Access Method for Dynamic Files”,
ACM Transactions on Database Sys-
tems, 1979.

[27]
R. Enbody, H. Du. “Dynamic Hashing
Schemes”, ACM Computing, 1998.

News & Events

CEPIS Present in the European e-Skills 2004 Conference 
Long Term Strategies for E-Skills Development in Europe (Press Release)

The European Union should adopt a
comprehensive strategy for improving ICT
skills and training across all sectors, at all
levels and for all citizens. This was one of the
main messages of the European e-Skills 2004
Conference which ended Tuesday, 21 Septem-
ber at Cedefop in Thessaloniki, Greece. More
than 150 experts took part in this major event,
two years after the European e-Skills Summit
organised by the Commission and the Danish
Presidency in Copenhagen in 2002.

Among the participants, there were several
representatives of EU Member States and
acceding countries, of five Directorates
General of the European Commission (Enter-
prise and Industry, Education and Culture,
Employment and Social Affairs, Information
Society and Eurostat) as well as the European
Investment Bank, senior executives from
leading ICT companies such as Microsoft,
Nokia, Cisco Systems, IBM, Certiport,
CompTIA etc. and researchers, academic and
training world, representatives of European
and international professional ICT associa-
tions (Council of European of Professional
Informatics Professionals), consortia (Career
Space, e-Skills Certification Consortium, e-
Learning Industry Group, Project Manage-
ment Institute) and delegations of the social

partners (EICTA, Uni Europa and European
Metal Workers Federation).

The Synthesis Report of the European e-
Skills Forum “E-Skills in Europe: Towards
2010 and beyond” which constituted the basis
for the discussions during this event pinpoint-
ed the threats of moving European ICT jobs to
low-cost countries such as India and China
(offshore or international outsourcing). For
example, it is expected that by 2010 about
272.000 jobs will be lost in the UK alone due
to international outsourcing. There is a ten-
dency for companies to outsource services
such as call centres, commercial handling and
accounting, to countries with low labour
costs. Central and Eastern European Coun-
tries and the new Member states, notably the
Czech Republic, are increasingly attracting
foreign direct investments from ICT compa-
nies because of their comparatively lower
level of salaries and relative high skill level of
their labour force. Highly skilled people are
also being recruited in Europe, however, at
lower speed.

This creates a serious dilemma for the EU
Member States. On the one hand, their firms
can lower labour costs by moving (in part or
entirely) to low-cost countries, and thus
improve competitiveness internationally. But
at the same time, losing jobs in the ICT sector
threatens social cohesion: ICT has been the

main source of new employment in a time
when more traditional sectors have been shed-
ding employment opportunities. Mismatches
and skill gaps persist however as many ICT
jobs remain vacant due to the lack of qualified
personnel. The number of current ICT
specialists in Europe is 3.7 million and is
estimated to reach 5.1 million by 2010.

Among priority actions discussed for 2005,
the European e-Skills 2004 Conference also
concluded that the European Commission
should support alongside Cedefop and indus-
try partners a “European level ICT skills
meta- or reference framework” for better
planning of investments in training and skills
and must also further develop common princi-
ples for quality standards and for certification,
whether public or private, profit or non-profit
oriented. For these purposes it was proposed
to create a European network of e-skills
experts and a policy advisory group to devel-
op foresight scenarios and further promote e-
skills policies at the European level. The con-
ference also proposed the creation of a Euro-
pean ICT career portal and of a central link
between all educational institutions working
in ICT, whether public or private. 

More information at 
<http://www.eskills2004.org/>.

September 24, 2004
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EUCIP News

Norway: EUCIP1 and Abelia – Measuring Life Long Learning
Abelia (the Association of Norwegian ICT

and Knowledge-based enterprises) was host
to the conference “Measuring Life Long
Learning” held on 14 September in Oslo in
conjunction with partners Mintra AS, Norsk

Test, EUCIP Norway, NITH and Energibed-
riftenes Landsforening (EBL).

The schedule contained sessions on net-
based and interactive testing and a presenta-
tion about EUCIP by Renny Bakke Amund-

sen, in conjunction with one of Norway’s
largest learning providers NITH who are
accredited to run the EUCIP programme in
Norway.

13th September 2004

The 9th World Multi-Conference on Systemics, Cybernetics and Informatics: Call for Papers

This conference will take place in Orlando,
Florida, USA, from July 10–13, 2005. 

SCI 2005 is an international forum for
scientists and engineers, researchers and,
consultants, theoreticians and practitioners in
the fields of Systemics, Cybernetics and
Informatics. It is a forum for focusing into
specific disciplinary research, as well as for
multi, inter and trans-disciplinary studies and
projects. One of its aims is to relate disci-
plines fostering analogical thinking and,
hence, producing input to the logical thinking.

The conference´s Call for papers can be
found at <http://www.iiisci.org/sci2005/
website/callforpapers.asp>.

The best 10% of the papers will be pub-
lished in Volume 3 of SCI Journal, <http:/
/www.iiisci.org/Journal/SCI/Home.asp>. 12
issues of the volumes 1 and 2 of the Journal
have been sent to about 200 university and
research libraries. Free subscriptions, for 2
years, are being considered for the organiza-
tions of the Journals’ authors.

We are emphasizing the area of Wire-
less/Mobile computing.

You can find information about the suggest-
ed steps to organize an invited session in the
Call for Papers and in the conference web
page: <http://www.iiisci.org/sci2005>.

If by any reasons you are not able to access
the page mentioned above, please, try the
following pages: 
<http://www.iiis.org/sci2005>.

More information at 
<http://www.iiisci.org/sci2005>.

 1. EUCIP (European Certification of Infor-
mation professionals, <http://www.eucip.
com>) is a new pan-European qualifica-
tion scheme, promoted by CEPIS, for
people entering the IT profession and for
IT professionals wishing to continue their

professional development. EUCIP has
been developed as an independent, glo-
bally recognised scheme for IT profes-
sionals in a similar fashion to the ECDL
(European Computer Driving Licence)
which is aimed at the IT User. The quali-

fication will enable existing IT profes-
sionals to document their competencies
and skill sets for employers or prospec-
tive employers and in addition, increase
their market value.
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