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Arithmetic Coding 

The earlier introduced  arithmetic  coding  idea  has  been  generalized  to  a very  broad andflexible  coding  technique  which 
includes virtually all known variable rate  noiseless  coding  techniques  as  special  cases. An oufstanding  feature of this 
technique  is  that  alphabet  extensions  are  not  required. A complete  decodability  analysis  is  given.  The  relationship  of 
arithmetic  coding  to  other  known  nonblock  codes is illuminated. 

Introduction 
In the excellent  textbook on coding [l], Abramson neatly 
splits all codes into two  classes: block codes  and non- 
block codes. Of these he selects only the block codes  as 
being of much use  and  for which the important  decodabil- 
ity results hold. His  term, block code, is characterized by 
the familiar process in which the  code words of the sym- 
bols are  concatenated  to form coded messages. A further 
important  subclass of block codes is the  class of instanta- 
neous  codes  for which a both  necessary  and sufficient 
condition is the prefix property:  No  code word is to be a 
prefix of another. Finally, as  there is hardly any conceiv- 
able reason  to use other than compact  codes, which can 
be formed by Huffman’s  algorithm, it appears  that all 
“useful” noiseless  coding  should be confined to Huffman 
codes. But that  has not turned  out  to be the  case  at all, 
mainly because of the necessity to  resort  to  the  alphabet 
extension  to  achieve a  desired compression, particularly 
for small alphabets. We must therefore  conclude  that 
block codes,  despite  their simplicity and well-known 
decodability theory,  are unsatisfactory to  cover all coding 
needs, especially  when alphabet extension is required. 

In the neglected and  more diffuse class of nonblock 
codes, two  types of codes  have appeared:  Elias’ code [l], 
and the so-called enumerative  codes [ 2 ,  31, which, al- 
though clearly beset by the practical difficulty of requiring 
unlimited arithmetic  precision, have  the  attractive  feature 
that  no alphabet  extension is needed to achieve  near-opti- 
mum compression. More recently,  further  classes of non- 
block codes were  introduced by Rissanen [4] and (not in- 

dependently) by Pasco [ 5 ] ,  which have  the  same  attrac- 
tive feature of near-optimum  compression and whose 
practicability is comparable  to  the best block codes. Al- 
though these  codes  have a  number of common features, 
to  some  extent clarified by Pasco [ 5 ] ,  they still remain as 
so many distinct codes,  and  they  are totally different from 
the traditional block codes. We  should  add that in recent 
textbooks  the notion of block code  has been  used  when- 
ever “blocking” is used, be it for alphabet extension  or 
for  truncation of the numbers  represented by a  symbol 
string to a  manageable  size. Although virtually all codes 
then become block codes,  such a unification is meaning- 
less because  the  same decodability  results do  not hold 
for,  say,  the recently discovered arithmetic codes. 

In this paper we study coding in which the basic no- 
tions in block codes  have been  generalized  as  follows: 
concatenation  to  addition,  code words to rational  num- 
bers with finitely many fractional bits, integer  lengths to 
rational  lengths,  and the prefix property to magnitude or- 
der. All these were introduced in a restricted  form in [4], 
as  further discussed in the  next  section.  The symbol and 
the  code word selection is done  either by table look-up  or 
by a combination of table look-up  and  arithmetic  opera- 
tions. Finally the  code string is generated  recursively by 
growing it either  to  the left or  to  the right,  much as in the 
usual block codes  and Pasco’s codes  as well. Both these 
codes, called arithmetic codes,  are formulated  with the 
aid of a finite state machine and  constitute  the first main 
contribution of this paper. They  include the old block 
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codes  as a proper  subset,  and  they  also specialize to  the 
early  arithmetic  codes,  as  discussed in more  detail in the 
next section. 

the right,  the prefix property  enables a first-in, first-out 
(FIFO)  type of decoding.  The  code  string must always  be 
decoded from the most significant end. 

The second main contribution of this paper is the con- 
struction of an independent and self-contained  decodabil- 
ity theory  for  the  arithmetic  codes, which  then covers all 
codes  based upon the  described generalized “shift and 
add” operations.  Because of the lack of integer-length 
code words and  the  associated  trees, only a fraction of the 
needed results could have  been  derived by traditional 
means. For this reason, we do all of the work in a novel 
manner. 

We feel that  the main impact of this  study is to isolate 
and lay bare  the common  fundamental  principles in all 
known  variable rate, noiseless  coding, which permits  a 
unification of both block and known  nonblock codes un- 
der arithmetic  coding. In the new coding there is no 
longer  need for  such artificial ad hoc contrivances  as al- 
phabet  extensions  nor  the forming of blocks to avoid the 
requirement of unlimited precision in Elias’ code  or  the 
enumerative  codes. Similarly, the recognition that  the 
length parameters, traditionally given by the  number of 
symbols in the  code  words,  have  an independent  function 
contributes  to a simpler and  cleaner implementation of 
compact  codes. 

In what  follows a considerable  amount of notation is 
introduced. We have  therefore  ordered  these  symbols al- 
phabetically  in the  Appendix, which  should serve  as a 
quick  reference for  the  reader. 

Background; coding equations 
Because of the ambiguous  usage of the  term  “block 
code” in the  literature,  we use the clumsier  but quite  ac- 
curate  name  “concatenation  code”  for a code which  con- 
structs  the  code string by concatenation of the  code 
words, which themselves  are  concatenations of the  code 
symbols. In  what follows, the  code strings are  over  the 
binary alphabet,  and logarithms are to the  base 2. 

We describe first the familiar concatenation coding op- 
erations in an arithmetic manner.  Let a code  word A@) of 
length C(k) correspond  to  each symbol k of the  source al- 
phabet (0, l ,  . . ., N - l).  Let C(s) denote  the  code of the 
finite string s. To obtain  recursively the  code of the string 
sk, where k is the  next  source  symbol, A(k)  is appended 
either  to  the left  (most significant) or  the right (least signif- 
icant)  end of C(s). If the  encoded string is grown to  the 
left, C(sk) can be  decoded from  left to right into A(k) and 
C(s) “instantaneously,” provided that  the  code  words 
have  the prefix property. We call this case  last-in, first- 

150 out  (LIFO) decoding.  Dually, when A(k)  is appended  to 

Consider now a LIFO decoding where  the  code is 
grown to  the left. Let  the  code  words  as well as  the  en- 
coded string  be viewed as fractional numbers with the bi- 
nary  point at  the left end.  To  append A(k)  to  the pre- 
viously encoded string C(s), C(s) is shifted to  the right by 
f ( k )  places [length of A@)] ,  and A(k)  is added  to  the left 
into  the  vacated C(k)  bit positions.  This  can  be  expressed 
as  an arithmetic process  as follows  (see [4, 51): 

C(sk)  = A(k)  + 2-<‘’) . C(s). (1) 

As an  example, let k = 0, 1 ,  2 give  rise to  the  code  words 
1, 00, 01 of lengths 1, 2 ,  2, respectively. With c(s) = 

.010001, the result of appending  symbol 0 yields C(s0) = 

.1010001 = . I  + 2” x .010001. The decoding process  on 
C(s0) extracts symbols 0, 2, 1 ,  2 in that  order. In decod- 
ing, after A(k)  is removed,  the remaining string is shifted 
left by C(k) positions for  the  next decoding recursion. 

The  reader  can easily  visualize the analogous  arithmeti- 
zation of the  other  case  where  the  code  word is added  to 
the right end of the previously encoded string (see [5]): 

C(sk)  = C(S) + 2-L‘s) * A(k) .  (2) 

Here L(s)  is the  number of bits in C(s),  formed  by  sum- 
ming the individual  lengths [ ( k )  of  all symbols encoded in 
C(s). In  both  cases,  due  to  the nonoverlapping of the  code 
words,  the addition is in fact a concatenation. 

Observe  that  the  recursive “shift-and-add’’ technique 
used by arithmetic  coding as described  herein may be 
viewed as a generalization of the traditional  con- 
catenation mechanization in that  the  code  words may 
now overlap  and  that  the integer-length shift [ ( k )  is re- 
placed, in effect,  by a rational-length  shift. Also the prefix 
property  for decoding is replaced by the magnitude order 
relation for  the  code  words, which  then are viewed as bi- 
nary numbers.  Because  the notion of noninteger-length 
shift is somewhat  intricate  and clearly the  least  obvious of 
these  three generalized items,  we illustrate the  basic ideas 
by a fairly detailed discussion of Elias’ coding, which 
when  appropriately reinterpreted includes all these no- 
tions in a natural, albeit restricted, way. We then con- 
tinue  with  a brief exposition of the  two  early  versions of 
arithmetic codes [4j and [5] ,  and we conclude this  section 
by defining two new dual and wider  classes of arithmetic 
codes. 

The following viewpoint on Elias’ code  appears in 
Pasco [ 5 ] ;  however,  Fig. 1 does  not.  In Elias’  coding  the 
alphabet is ordered, and the  order is extended lexically to 
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the  source strings  with  priority to  left,  say. If p ( k )  is the 
probability of symbol k ,  then define the cumulative proba- 
bility P(k)  = p ( 0 )  + . . . + p ( k  - 1 ) ,  P(0) 0. Each 
source string s has a  probability,  and corresponding  to the 
lexical ordering of the strings we also  obtain  a  cumulative 
probability in the  space of all strings over  the considered 
alphabet (0, I ,  . . ., N - 1). The cumulative  probability 
of a string s with length t is the sum of the probabilities of 
all strings of length t smaller than s under the given order, 
and this probability can  be taken  as  the  code C(s) of s. 

The  recursive  construction of C(s) can be written as a 
sum of terms,  one  for  each symbol in s. The first term is 
the probability of strings  smaller  than the first symbol; 
i.e., it is P(k)  if k is the first symbol.  The  second  term is 
the probability of all strings whose first symbol is k and 
the  second symbol  smaller  than the second symbol,  say, i 
of s. Similarly, the  other  terms  are defined. 

The recursive  calculation of these  terms,  as well as  that 
of C(s), is best  illustrated  graphically by the  example in 
Fig. 1 for the  string s = 1 ,  3 ,   2 ,   3 ,  which differs from the 
customary graphical depictions of Elias' coding. 

In Fig. 1 the first term is P ( l ) ,  which is p(O), the proba- 
bility of all strings beginning with symbol 0. The second 
term is p (  1 )  multiplied by P ( 3 ) .  We write the  second term 
as 

2-e") . p ( 3 )   2 - ! ~ " ) [ 2 - " ' ~ ) ~ ( 3 ) ] ,  

where y ( k )  and x ( k )  are  the integer and the  fractional 
parts, respectively, of f ( k )  = -log p ( k ) .  This  illustrates 
what is meant by a  noninteger-length  shift: the  composite 
of ordinary integer-length shift and multiplication by 2 
raised to  the  power indicated by the fractional part. This 
device was introduced in [4]. 

which except  for an interpretation is  of the  type of Eq. 
( 2 ) .  The product T(1, 3 ,  2) = p ( l ) p ( 3 ) ~ ( 2 )  gives the total 
shift 

~ ( 1 ,  3 , 2 )  = -log ~ ( 1 ,  3 , 2 )  = [(I) + e(3) + e ( 2 ) .  

The  terms in (3) can also  be  accumulated  from the right: 

C(1, 3 ,  2 ,   3 )  = P(1) + p U ) C ( 3 ,  2, 3) 

= P(1)  + 2-e'1) . C ( 3 ,   2 ,   3 ) .  
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Figure 1 Graphical  interpretation of Elias'  code for string s = 
1, 3,  2, 3. 

Observe  that this  recursion starts from the right end of s; 
Le., it acts from left to right on  the  reverse string S = 3 , 2 ,  
3, I .  Hence, if we put C ( 1 ,  3 ,  2 ,  3)  = C ( 3 ,   2 ,  3 ,  I ) ,  we 
transform Elias' code  into its  dual: 

C(1, 3 ,  2 ,  3 )  = P(3) + 2 - e ' 3 ) .  C(1, 3 ,  2), (4) 

which is of the  type of Eq. (1). 

When the symbol  probabilities are rational numbers, it 
can be seen that  the  number of bits in the fractional num- 
bers c(s) and C(s) is essentially given by the integer  part 
of L(s ) ,  and the per-symbol length approaches  the  en- 
tropy.  However,  the precision  required in the coding cal- 
culations  grows with the string. We see  that in (4) all the 
past string is  to be multiplied by the number 2-", where x 
is the fractional part of f ( 3 ) .  This is not so serious, 
though, because viewing the  code string as merely an in- 
termediary between  the  encoder and decoder, it is the rel- 
ative  displacement of the  two terms in (4) which is rele- 
vant. Accordingly,  a key step toward realizability of the 
dual is to modify the  code  as follows: 

C(1, 3,  2, 3 )  = 2 s .  P (3 )  + 2 - y .  C(1, 3 ,  2), ( 5 )  

where x and y are  the fractional  and the integer parts of 
f ( 3 ) ,  respectively. Now  the fractional  shift only applies to 
a fixed number of bits. We also retain the  same  letter C 
for  the code, although the  two  code strings in (4) and (5) 
may differ by a multiplication factor.  Finally,  as a matter 
of terminology, P(3)  in (5) is called the  code element [ 5 ] ,  
and the  product 2" . P(3) is called the augend A(x,  3 ) .  
[Note  that  Eq. ( 3 )  could  also be trivially reformulated to 
give C( I ,  3 ,  2) an integral shift left, leaving  a  fractional 
shift for  the  code element P ( 3 ) . ]  151 
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In 141 Rissanen studied  codes of the general  type of Eq. 
(5 ) ,  called “arithmetic  codes,” in which the ideal lengths 
4(k)  = -log p ( k )  were  based  on  the  probabilities, and the 
numbers 2” were  approximated by rational numbers with 
a fixed number of fractional  bits.  This  then  removed the 
basic  defect (a requirement  for unlimited precision) of 
such  codes. While the decodability of the  codes of the 
type in Eqs. (3) and (5) with the  exact, nonapproximated 
parameters is obvious  from  the  fact  that  the cumulative 
probabilities form a monotonic  nondecreasing sequence, 
the same becomes a matter of a  delicate  analysis with the 
approximated parameters.  However, it was shown in [4] 
that when the  approximations  are  done  properly,  the  code 
will have a unique  inverse,  and a practicable non- 
concatenation code  results. 

In his  excellent thesis 151, Pasco, while  being aware of 
[4], studied the approximation and  other  issues of Elias’ 
code of the  type of Eq. ( 3 ) ,  and his codes, which he also 
called arithmetic codes, removed  the  requirement for un- 
limited precision inherent in Elias’ code.  His main contri- 
bution was to obtain  a FIFO type of arithmetic  code.  The 
key observation was  to  represent  the  product T of the 
probabilities  in the string as a floating point number, a 
fractional part  truncated  to K bits  and the integer  part 
consisting of the  number of leading 0’s plus one.  The frac- 
tional  part multiplied by the  code element P ( k )  just  as in 
(5) forms  the  augend,  and  the integer part of T indicates 
where in the  code string the augend is to be added.  Had 
the fractional part been  rounded  up  instead of truncated, 
it would have  corresponded  to a length  displacement less 
than the ideal, and  the decodability would have been lost, 
as  Pasco  demonstrated. Finally, Pasco  proposed a unifi- 
cation of the  arithmetic  codes by  listing eight distinct 
types depending on whether  the  code string is grown to 
the left (LIFO)  or  to  the right (FIFO), whether shift factor 
Tis calculated by a product of probabilities or by its loga- 
rithm L treated  as a length, and whether  the  code string or 
the  code element is shifted. However, in the  present 
work, we feel only the  LIFO  versus  FIFO  property is sig- 
nificant enough for generalization purposes,  as  the  decod- 
ability conditions we derive  are valid independently of the 
implementation  details of the shift requirement. 

Although the  two  basic  types  [Eq. (3) and  Eq. ( S ) ]  of 
arithmetic codes indeed  provide nonconcatenation  codes, 
they still do not adequately unify the  hitherto unexplored 
class of nonblock or  nonconcatenation  codes.  For in- 
stance,  as we shall see,  there is no  LIFO  type of dual 
code of Pasco’s main code, which suggests that a  mean- 
ingful unification involves  more than  just superficial per- 
mutation of the  cases.  Moreover, from a coding theoretic 
standpoint, it is a defect if, despite having generalized the 
basic coding operations,  we  arrive  at a class which still 

does not include the traditional concatenation  codes as 
special cases. 

A careful study of the described  approximation steps in 
the  early arithmetic  codes  as well as of the traditional 
concatenation codes  reveals  that  the  two kinds of param- 
eters,  the length parameters [ ( k )  and  the augends 2”P(k), 
should not both  be linked  directly to the symbol probabili- 
ties p ( i ) ,  and  hence  to  each  other,  as  was  the  case in [4]. 
In fact, in Huffman codes neither the optimum  lengths nor 
the  code  words  are  unique; they are  needed so to speak 
only as a  vehicle for decodability. For this reason, we 
study coding where  the augends are  set  free from their 
direct  dependency on  the lengths  and the symbol proba- 
bilities. To be sure,  the decodability question  becomes 
then  a  crucial issue  to be  analyzed separately. 

Observe in Eq. (5) that  the previous code string is only 
being shifted an integer amount y,  and that we still “owe” 
the  fractional  shift x. The fractional shift amount x is 
called the retained  fraction, and we characterize it as  the 
internal state of a finite state machine. The augend A ( x ,  k )  
for  the “shift-and-add’’ is a  function of x. For  the next 
recursion,  the length  involved is the sum of f ( k )  for  the 
new symbol and x, the retained fraction.  This sum has  an 
integer  part which determines  the  code string (or augend) 
shift and a  fractional part which determines  the new re- 
tainedfraction.  Thus,  the augends A ( x ,  k )  added  to  the old 
code string are a  function of the  past  history,  as repre- 
sented by the retained  fraction. 

We next consider a finite state machine  formulation of 
the  recursive “shift-and-add’’ encoding process,  where 
the summands,  the  augend, and the  code string  undergo 
an integral (nonfractional)  relative  shift y while the  frac- 
tional part x is incorporated in the  augend. We view the 
apportioning of the relative shift y as  an implementation 
consideration; in Eq. (6) it is applied to  the  augend, while 
in Eq. (7) it is applied to the code string. 

Each of the dual equations, ( 1 )  and ( 2 )  or ( 3 )  and ( S ) ,  
admits its  corresponding generalization. The first or FIFO 
version is defined by the recursion equations 

C(a,  sk) = C(a, s) + A[x(s) ,  k]2-Y‘”), 

x(sk) = z[x(s), kl,  

Y(sk) = Y(s)  + y[x(s) ,  k l ,  

x(h) = a ,  Y(A) = C(a, A) = 0, A is  the empty 

string. (6) 

Here,  the  functions z ( x ,  k )  and y ( x ,  k )  denote  the  state 
transition  and the  output functions, respectively, of a ma- 
chine with a state  space X ,  initial state u ,  input space 
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(0, . . ., N - I ) ,  and  the  output  space consisting of non- 
negative integers. In all the  practicable codes considered 
in this paper,  the  state  space is finite, the  state  con- 
stituting a retained  fractional part from the preceding 
code string. An example of another  case is Elias’ code, 
which is defined by (6) with X the  set of all numbers less 
than 1 .  We view Elias’  code  as a limiting case  to FIFO 
arithmetic codes when the  state  space is infinite. The pa- 
rameters A(x, k ) ,  called augends,  are  numbers  less than 2 
with at  most,  say, r fractional  bits in their  binary  repre- 
sentation. 

The dual code is defined by the  equations 

C(b, sk)  = A[x(sk ) ,  k] + C(h, .7)2-z/‘rts)’k1 

x(sk )  = i [ x ( s ) ,  k ]  

x(A) = b ,  C ( h ,  A )  = 0, (7) 

where ?(x, k )  and j ( x ,  k )  denote  the  next  state  and  the 
output functions of a  machine just  as in the previous case. 
This  machine has a finite state  space  except in certain 
nonpracticable,  idealized codes  such  as  the  enumerative 
codes [ 3 ] .  

Letting F ( P )  and I([) denote  the fractional and integer 
parts of P ,  respectively, we are particularly  interested in 
the class of codes  where  the  state  space X consists of q- 
bit fractional numbers, and the machines in  (6)-(7) are de- 
fined by the  functions 

Zk, k )  = F[e(k) + x], 

j ( x ,  k )  = I [ f ( k )  + x]; 

Z(X, k )  = F{1 + X - F[P(k)]}, 

Y ( X >  k )  = I[P(k) + dx, ,411 = j [ z ( x ,  k ) ,  kl;  (8) 

where  the length parameters f ( O ) ,  . . ., P(N - 1) are posi- 
tive numbers with at most q fractional bits. 

Apart from the normalization of the  augends, which 
causes the code  to  be a number  less  than 2, the  codes (7) 
with (8) include Rissanen’s arithmetic code  as a special 
case. Also, the traditional concatenation  codes can  be 
embedded in these in a canonical manner,  as will be  de- 
scribed below in detail. The  code (6) with (8) is new. It 
permits a FIFO type of decoding, and it will be  shown to 
be closely related to (7). Pasco’s  code is of type (6) with a 
special and  narrow choice for  the augends  and in which 
the next state z(x, k )  results from truncation of the prod- 
uct of the old state x and p ( k )  to,  say, K most significant 
fractional bits, while the number of the leading zeros plus 
one defines the  output y ( x ,  k ) .  In contrast with Pasco’s 
code,  the length parameters P(k) appear  here explicitly in 
a role which is entirely  analogous to  the integer  lengths in 

ordinary codes.  Hence,  as  we shall see,  the decodability 
theory of these  codes parallels and naturally extends  the 
existing theory  for  concatenation  codes. 

We illustrate these coding equations  and  the notions of 
“state,”  “shift,”  and  the  two kinds of parameters by two 
examples. 

Example 1 
Let the source  alphabet  be S = {0, 1, 2, 3}, where  the 
symbols occur with  probabilities p(0)  = 0.25, p(1) = 0.65, 
p ( 2 )  = 0.075, and p(3) = 0.025. Pick the length parameters 
as those given by the Huffman algorithm: 

e(o) = 2, P ( I )  = I ,  e(2) = e(3) = 3 .  

Because there  are  no fractional bits, q in (8) is 0, and there 
is but one  state, x = 0. Consider the  set of augends, which 
later will be shown  to be  unique with certain conventions 
(the now needless state variable is dropped): 

A(0) = 0 
A(1) = 0.01 
A(2) = 0.11 
A(3) = 0.111. 

The  code (6) of the string s = 2013 is seen  to  be  the 
staggered sum 

. l l  = A(2) 

.om = A(O) . 2-3 

.om0001 = ~ ( 1 )  . 2-5 

.000000111 = A ( 3 )  . 2-6 

.110001011 = C(2013). 

This is an  arithmetic implementation of a compact  code. 
As will be seen,  the mean  per-symbol  length of this code 
is the  same  as  that of the Huffman code: 

C p ( i ) P ( i )  = I .45. 
I 

Example 2 
With the same  symbols and  symbol  probabilities as in Ex- 
ample 1, pick the length parameters  as follows (the num- 
bers in binary): 

e(o) = 0.1, [ ( I )  = 10.1, e(2) = 100.0, ~ ( 3 )  = 100.1. 

These were chosen so as  to minimize the mean per-sym- 
bo1 length 

c P ( i ) f ( i )  
i 

subject to  the  Kraft inequality and the  constraint  that 
each P( i )  has  at  most q = 1 fractional  bit. The mean per- 
symbol length in the limit when the length of the string 
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goes to infinity is now about 1.36; Le.,  better than in Ex- 
ample 1 .  The  state  space  consists of the  numbers 0 and . 1 ,  
the  latter of which is identified with 1. 

Consider the list of augends, whose  determination will 
be  discussed later: 

A(0,  0) = 0 A(1, 0)  = 0 
A(0,  1) = 0.001011 A(I ,  1) = 0.0100001 
A(0, 2) = 0.110111 A(1, 2) = 1.01000011 
A(0,  3) = 0.1110111 A(1, 3) = 1.01011. (9) 

The maximum number of fractional  bits in these is then 
r =  8. 

By putting the initial state a = 0 and by writing C(0, s) 
= C(s), we calculate the  code (6) of the string s = 2013 as 
follows: 

C(2) = 0.110111 

4 2 )  = z(0, 2) = 0 
Y(2) = y ( 0 ,  2) = 4 

C(20) = C(2) 

420)  = z(0, 0) = 1 
Y(20) = 4 + y ( 0 ,  0 )  = 7 

C(201) = C(20) + A(1, 1)2-"'20' = 0.11011100100001 

4201) = z(1, 1) = 0 
Y(201) = 7 

C(2013) = C(201) + A(0,  3)2-y'201' = 0.11 100000001 11 1 

Because of the longer  augends in this case than in the 
previous one,  the length of the  code is longer, due  to the 
"end effect" of the last  symbol. For long strings,  the  per- 
symbol length gets  shorter,  though,  because  the end ef- 
fect is bounded above by [r  + 1 - t?(.~,)], as discussed 
below. This example  also illustrates that a carry-over 1 
may occasionally propagate  towards  the left end of the 
string. Hence,  strictly speaking,  neither  this nor  Pasco's 
code in [5] permits  a FIFO decoding  unless the  carry-over 
bit is suitably treated.  Fortunately, this can  be  done with 
a negligible length penalty. We omit a  detailed  description 
of such a blocking mechanism. Observe  that  the  LIFO 
codes of (7) do  not  have such carry-over problems. 

Decoding  and  code  length 
We describe the decoding process  for  the  two  codes in (6) 
and (7) with general finite state machines. In (6) ,  let 
s =sl, sz, . . ., s,; si E ( 0 ,  . . ., N - 1 )  be  a  string,  and 
consider the  associated  state  trajectory 

S,/~, S"'U" 
a = no- a, -+ . . ' - a, = x(s )  = z*(a, s), 

where ai = Z ( U ~ - ~ ,  s i ) ,  y i  = y(ai-,, s i ) ,  and z*(a, s) is the n- 
fold composite of z ( x ,  k )  starting  at u .  By iteration we get 
from (6) 

C(a,  S) = A(a ,  s,) + A(a,, ~~)2- '( '~ '~1) + . . . 
+ )2-"(asSl ) -  . . ' -"(fln-z,Sn-l) 

n (10) 

Under suitable  selection of yi  and the  augends such  that 
A(u, k + 1) > A(a, k )  [to  be  stated precisely later in Eq. 
(25)], the first term in (10)  will be  greater than the sum of 
the  others.  Then  the left-most  symbol s1 can be decoded 
as  the largest  index k for which 

C(a, s) 2 A(a, k ) .  (11) 

Because the condition C(a, s) < A(a ,  1) automatically  de- 
codes s, = 0, the  value of A(x, 0) is not  needed  and will be 
set to  zero.  The decoding process can  be  continued by the 
equations 

C[Z(U, SI), .y2 . . . sn] = [C(U, S )  - A(u ,  ~,)]2~('~''1) (12) 

until C(x, s') = 0 for some state x and postfix s' of s. 
Because C(a, SO)  = C(a,  s), we must have  an  extra in- 
dication of the  number of the trailing 0's in s, or  an end-of- 
string marker.  Observe  that we may always  set a = 0. 
Also, observe  that s1 can be decoded from the  code of any 
prefix of s; e.g., from C(a, s,), which permits a FlFO  type 
of decoding. The number of the left-most  bits of C(a, s) 
needed for (2) is at most Y + 1. Hence,  the decoding is not 
quite  "instantaneous" in the  traditional sense, but the 
number of "excess"  bits [6] needed is only the difference 
between the  numbers of bits in A(a, k + 1) and A(a,  k ) ,  
where k is the  current left-most symbol of s. 

Consider  next the dual code (7) of the  same string s. 
The associated state  trajectory is 

This  time it is the right-most symbol s, of s that can  be 
decoded first as  the maximum index i for which 

C(b,  s) 2 A(x(s) ,  i). (14) 

Here,  the terminal state x($) is required.  The decoding 
process  can  be continued by the  equations 

@(b, s,, . . ., s,-]) = [C(b, S) - A(x(s) ,  ~~)]2~('n-l '~n), 

b,-] = Z-'(b,. s,), (1 5 )  
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provided that  the  next  state function 

i(-, k )  : x + x 
has  inverse 2-’(-, k )  for  every k .  The  process terminates 
when C(h, st )  = 0, which correctly decodes s1 = 0 only 
when a suitable  indication of the number of the leading 
zeros in s is given or a beginning-of-string marker pro- 
vided. In  contrast with the previous code,  the dual code 
has no carry-over problems. 

In Pasco’s code  the  next  state function does  not in gen- 
eral  have  an inverse and  the  dual  code (7) with its  LIFO 
type decoding cannot be constructed. 

We prove now a theorem which justifies the name 
“dual”  for  the  two  codes. 

Theorem 1 
If z( - , k )  has an inverse for  every k ,  then with Z( - , k )  = 

zY1(-, k )  and j ( x ,  k)  = y(Z(x, k ) ,  k ) ,  

C(a, s) = C(x(s), S ) ,  

where S = sn, s,-~ . . . s1 and x ( s )  = z*(a, s). 

Proof 
The claim follows from comparison of the  corresponding 
terms in (10) and (13). QED. 

With the particular  choice of the next state  and  the 
output functions as given in (8), we can verify that  the 
conditions in Theorem 1 are satisfied. To see  that Z( - , k )  
= z-’(-, k ) ,  we calculate 

z(Z(X, k ) ,  k )  = F[1 + F(x + e(/?)) - F(e(k))] = X, 

Z(Z(X, k ) ,  k )  = F[f(k) + F(l + X - F(t‘(k)))] = X. 

Similarly, 

Y(x, k )  = I [ f ( k )  + z(Z(x, k ) ,  k)l  = Y ( Z ( X ,  k ) ,  k ) ,  

and we have the  important identity in x and k: 

z ( x ,  k )  + e ( k )  = x + y ( x ,  k ) .  (16) 

Equations (8) imply further useful  results. The  state  tra- 
jectory  generates  the recursion 

a, + f ( s i + l )  = ai+l + Y b , ,  .T i+] ) ’  

which  by summing up  both  sides gives 

L(s) = 1 rn( i ) f ( i )  = x(s) - a + Y(s) ,  
N- 1 

i=0 

x($ )  = F(L(s) + a ) ,  ( 17) 

where m(i) denotes  the  number of times the symbol i oc- 
curs in s. In particular,  the  second  equation permits one 
to  select  the initial state b for  the dual code (7) in such a 

way that  the terminal state x(s) = 0; namely, 

b = F[l - F(L(s))], 

so that  the decoding process  can be started without stor- 
age of x(s). Observe,  though,  that by setting b = 0 and 
storing x ( s ) ,  an  error  check is obtained,  because b f 0 
after decoding implies that  an  error  has  occurred. This 
can be an  important  consideration  for a noiseless code. 

We conclude this section by deriving an inequality for 
the  code length when the special functions (8) are being 
used. When the augends are normalized to  make 0 5 

C(a,  s) < 2 true, we can  see from (10) that  the smallest 
term is the  last.  Therefore, with (15) the  total  number of 
bits  in C(a,  s) is bounded by 

IC(a, s) l  5 L(s)  + r + 1 - t?(s,). (18) 

where  the augends have r fractional  bits  and sn is the last 
symbol encoded. 

For strings generated by a stationary,  ergodic,  and in- 
dependent  source with symbol  probabilities p ( i ) ,  the 
mean per-symbol length is therefore given by (17) and (18) 
as 

= 2 p ( i ) f ( i ) .  
.A- 1 

i=0 

This  clearly  justifies the  name “length parameters”  for 
W ) .  

Decodability criteria 
In the preceding sections  the encoding  and the decoding 
mechanisms have  been  explained.  In this  section the in- 
vertibility of the  encoding  process, which we recall was 
based on a magnitude comparison, is analyzed. The re- 
sults  clearly  apply to  any  code using the same  mecha- 
nism. 

We begin by deriving  a  decodability  criterion for  the 
code in (6). By Theorem 1 the result will be  applicable to 
its  dual code  as well whenever this latter  exists. 

Define for  each  state x in X ,  

B(x) = sup{C(x, s)}. (20) 
S 

These  numbers  turn  out  to be well defined whenever  the 
augends are  less than 2 and  the  code  has  an  inverse.  The 
suprema B(x) ,  which have  no  counterpart in the tradi- 
tional theory of concatenation  codes, play a  crucial  role in 
what  follows. 155 
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Theorem 2 develops  necessary  and sufficient condi- 
tions for decoding arithmetic  codes. In addition, it shows 
that  the B(x)  values are  the limits of the  code  strings, 
viewed as  numbers, when the strings consist of stretches 
of the last  symbol ( N  - 1 )  of the  alphabet (and the binary 
point  for C remains  on  the left). 

Theorem 2 
For  every  state x in X Eqs. (21) and (22) hold if and only if 
decoding  by Eq. (1 1) is correct: 

B(x)  = A(x ,  N - 1)  + B(z(x,  N - 1))2”Yts’N”l) (21) 

A(x ,  k + 1 )  - A(x,  k )  2 B(z (x ,  k))2”y‘r’k), 

k < N - 1 .  (22) 

Finally, B(x)  > C(x, s) for all (finite) strings s. 

Proof 
First  assume decoding by (1 1). From (IO) we  have with 
s = ( N  - 1)s’ 

C(X, S) = A(x,  N - 1) + 2 - ” ‘ S ’ N - 1 ) C ( ~ ( ~ ,  N - l),  s’). 

This  leads at once  to 

B(x)  2 A(x,  N - 1)  + 2-”‘s’N-1) . B(z(x,  N - 1)). (23) 

On  the  other  hand, 

C(X, S) 5 A(x, N - 1)  + 2”ltr3N”) . B(z(x, N - 1)). (24) 

Now, by (1 I), for  every k < N - 1 ,  

A(x,  k + 1) > C(x, ks’) 2 A(x,  k ) ,  (25) 

which shows  that 0 9 A(x,  0) < A(x,  1) < . . . < 
A(x,  N - 1). Because s = ( N  - l)s’, 

C(X, S) 2 A(x,  N - l ) ,  

which  with the previous  inequalities implies that C(x,  
( N  - 1)s‘) > C ( x ,  ks‘) .  This, in turn, implies that B(x)  is 
the  supremum of the  codes C ( x ,  s) where  the initial sym- 
bol of s is N - 1.  By (24), then,  the  reverse inequality in 
(23) holds, which proves (21). The first equation in (6)  im- 
mediately implies that B(x)  cannot be  attained  by any 
string s, which proves  the  last claim. 

To  show (22), we  substitute 

C(x,  ks’)  = A(x,  k )  + C(Z(X, k ) ,  s’) . 2P””’k) 

from (10) into the first inequality in (25) with the result 

A(x,  k + 1)  - A(x,  k )  > C(Z(X, k ) ,  s’) . 2-”‘””’. 

This  holds even  when s’ is a string N - 1, N - 1, . . *. 
Because B(x)  is the  supremum of the  numbers C(x,  s’), 
where s’ runs over  such  strings, (22) follows. Conversely, 
if (21) and (22) hold for all x and k ,  then (1 1) will clearly 

always result in correct  decoding, so that (21) and (22) are 
both  necessary and sufficient conditions for  correct  de- 
coding. 

Equation (21) may be useful in two ways: First,  from a 
set of values B(x) ,  the values of A(x,  N - 1) can  be  deter- 
mined. Conversely, if the values of A(x,  N - 1)  are given, 
then the values B(x)  can be determined.  Once  the B(x)  are 
determined  for given values of A(x,  N - I), Eq. (22) can 
be  used to calculate the  intermediate values for  the A ( x ,  k )  
tables.  When state x is a fraction  as in Eq. (8), this is an 
iterative process  for which the values P(k)  . 2” serve  as 
good starting  points. A useful final objective  would  be to 
find solutions to (21) and (22) which employ a minimum 
number of fractional  bits r .  We illustrate  this  by an  ex- 
ample in a later section. 

In  the  rest of this paper we assume  the special state 
transition and output  functions (8). With these,  the decod- 
ability criteria (21) and (22) can  be  converted into another 
form  which  explicitly  involves the primary  length  param- 
eters C(k)  and shows that  these may  be  selected indepen- 
dently from  the augends. 

Our first aim is to derive a generalized  Kraft  inequality 
as  an  important  part of the decodability  criteria.  Although 
the  necessity of this  inequality  could  be  derived  from the 
length  inequality (18) by a modification of the proof by 
Karush  [l],  we give an  altogether different derivation 
which is  constructive in nature  and  leads to further  results 
discussed  subsequently. 

From (22) we get 

N--2 

A(x,  N - 1 )  2 1 B(z (x ,  i))2-’(z’i), 
i=0 

which  with (21) leads to 

N -  1 

B(x) 2 2 B(z (x ,  i))2-”(”Si). 
i=0 

With (16), the last  inequality becomes 

B(x)2-” 2 1 B(z(x,j))2-“ . 
N- 1 

2-e(J’, all x in X .  (26) 
j=O 

We write  this as a vector inequality by writing the ele- 
ments of X in their  natural  order (x(l) ,  . . ., x ( M ) ) ,  
and u = col(u(l), . . ., u(M)) ,  

u(i)  = ~ ( x ( i ) ) 2 - ” ‘ ~ ’ .  

Then (26) turns into 

u P Pu, 

I. RISSANEN AND G. G. LANGDON, JR. IBM J .  RES.  DEVELOP. 8 VOL. 23 8 NO. 2 MARCH 1979 



where  the M X M matrix P = { p ( i ,  j ) }  is given  by 

p( i ,  j )  = 2"'"'; 
k E K ( i ,  j )  

K(i ,  j )  is the  set of indices k for which z(x(i) ,  k) = x ( j ) ,  and 
p( i ,  j )  = 0 if K(i ,  j )  is empty. An example will illustrate 
how the matrix P gets defined in a  straightforward  way. 

Example 1 
Let N = 3, f ( 0 )  = (10.10)2, e(1) = ( l . l O ) z ,  f(2) = (l . l l)z.  
The  state  space X is then  given by 

x = {.OO, .01, .lo,  .ll}; 

and P becomes  the  four by four matrix 

P =  
2-e12) 

0 

0 

2-p'0' 
+ 2-e"' 

2-e'o) 

2-e'2' 

+ 2-ec~)  

0 

0 

Lemma 1 
For  every rn and n ,  

M M N- 1 1 p ( r n , j )  = 1 p( i ,  n )  = 2 2-'"('. 

Proof 
We showed earlier that  for  each k the function z(-  , k)  has 
an  inverse.  Therefore,  for  each m the nonempty sets in 
the family {K(rn, j )  I j = 1, . . ., M }  partition the  alphabet 
{0, . - ., N - l}, and  the  same is true  for  each n about  the 
family { K ( i ,  n )  I i = 1, . . ., M } .  By the first property the 
double sum in 

j=1 i=1 k=O 

has the N terms, 2-'"', i = 0, . . *, N - 1. Similarly, by the 
second  property,  the double sum in 

M M 

1 p ( i ,  n )  = 1 P " '  
i = l   i = l  kEK(i ,n)  

has  the same N terms.  This  proves  the claims. 

Theorem 3 
Inequality (27) has positive  solutions u; i.e., u(i)  > 0, if 
and  only if 

k=O 
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Proof 
Let (28) hold. The  vector u = col (1, . . ., 1) satisfies (27) 
as immediately verified with the  help of Lemma 1. 

Then let 

N -  1 c - - a > l .  
k=O 

If some uo satisfies (27), then so does u1 = P u o ,  and uk = 

Pkuo, so that 

uo 2 U" 2 p u k  = u k + 1 ,  (29) 

because P has nonnegative elements.  Also, for each posi- 
tive number K ,  Kuo satisfies (27). By picking K appropri- 
ately we may assume  that  the smallest component of uo 
equals  one.  But  then  the  components u'(i) satisfy 

M M 

u'(i) = p ( i , j ) u o ( j )  2 1 p( i ,  j )  min uo(k) = a, 

and  by  repeating this, 

uk(i) 2 ak. 

Pick k so large that 

ak > max u o ( j ) .  

Then 

uk(i) > max uo( j ) ,  i = 1, . . . > M ,  

which contradicts  the inequality (29). Therefore,  no solu- 
tion uo exists, which completes  the proof. 

1=1 j = 1  

j 

j 

We show  next  that if (28) holds  with equality,  then  the 
augends are  determined by (21) and  the equalities in (22). 
This,  then, is a singular case,  and r fractional bit augends 
exist only for special values  for t ( k ) .  

Theorem 4 
If (28) holds  with equality,  then  every solution to (27) or, 
equivalently,  to (22) also satisfies these with equality. 

Remark 
This theorem is of fundamental  importance,  above all in 
codes with  integer-length code  words,  because it permits 
a description of the  code  words by a formula. See  the next 
section. 

Proof 
Suppose u satisfies (27) and  for  some k 

u(k) > p ( k ,  l ) ~ ( l )  + . . . + p ( k ,  M)u(M). 

Then by Lemma 1 and (28), 157 
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M M M c 4 k )  > c P(k, i)u(i) = c UG), 
k = l  k,i=l i=l  

which is impossible. Hence u = Pu. 

For  the  associated  value, 

B(x(i))  = ~(i)2"'~),  (30) 

(26) holds with equality,  and  from (21) and (16) 

A(x,  N - 1 )  = 1 B(~(i))2-"'~""~'. 
i=O 

A--2 

(3 1) 

From (22) then, 

A(x,  k) 2 1 B ( ~ ( i ) ) 2 - " ' ~ ' ~ ) ~ ~ )  

which with (31) implies that (32) holds with equality. 

k-I 

, k = 1 ,  . . ., N - 1 ,  (32) 
i=O 

The  next  theorem implies that  the inequality (28) is in 
effect a  decodability  criterion in an analogous sense  to 
Kraft inequality. 

Theorem 5 
Let  the  numbers t ( k )  have  at most q fractional  bits and let 

N - I  

2-!'"' < 1 .  
k=O 

Then,  for some r ,  augends A(x,  k), k = 1 ,  . . ., N - 1 ,  
exist,  each having at most r fractional bits,  such  that (21) 
and (22) hold, and  correct decoding is obtained. 

Proof 
The  set of solutions to  the inequality u 2 Pu, unless 
empty, always  includes the special  solution 

u = col (1, . . .) l ) ,  

which  gives  rise to  the  particular values 

~ ' ( x )  = 2", all x in X .  (33) 

These, in turn, by (21) lead to  the special  values for  the 
largest  augends: 
AO(& N - 1 )  = 2" - ~%("c.IV-~)-Y(S,~"~) - 2"(1 - 2-ec.b-l)). - 

(34) 

The  numbers Bo(x) may also be  used  with the equalities 
in (22) to give recursively the  other augends: 

A0(x, k + 1) = A0(x, k) + 2 P k )  . 2", k < N - 2. (35) 

With these special augends, decodability is ensured, be- 
cause (22) holds fork < N - 2 with equality, while fork = 
N - 2 we  get  from (34) and (35) 

A0(x, N - 1 )  - A0(x,  N - 2) 

> Bo(z(x, N - 2))2-y'"'R"-2), 

where  we used (16). However,  these augends may be irra- 
tional numbers.  Our plan is to  prove  the  theorem by dem- 
onstrating  that in a  neighborhood about  these  numbers r- 
fractional bit augends exist  such  that decodability still re- 
sults. 

Before  proceeding  with the  proof,  compare  these spe- 
cial "ideal" augends, 

k 

A"(x, k + 1)  = 2" 1 2-p'i', 
i=O 

with the  corresponding  terms 

2s . P(k + 1 )  (37) 

appearing in Elias'  coding, as in Eq. (5) .  The augends in 
both (36) and (37) may be viewed as being generated by 
the  code element  undergoing  a fractional shift. It  is impor- 
tant  to  observe  that  the augends  should  be dependent on 
the  chosen lengths rather than the symbol  probabilities. 
This increases  the flexibility in developing codes by facili- 
tating the  replacement of code  words by formulas,  as was 
the case earlier in Example 1 .  Also, by letting the  Kraft 
inequality hold strictly,  we may be able  to select the  au- 
gends  with fewer fractional  bits and  thereby  trade imple- 
mentation  complexity for performance. 

For  each x ,  select A ( x ,  N - 1 )  as  the  number obtained 
when Ao(x, N - 1) is  truncated  to r fractional  bits and 2" 
is added to  the  result.  Then by (34), 

where 0 5 p(x) 5 2-r. Next, by Lemma 2 below, 

B(x)  = 2" + 6 ( x ) ,  (39) 

where 6(x )  tends  toward  zero  as p,(x) and r tend toward 
zero.  In  order  to satisfy (22)  define recursively A(x,  k + 1) 
for k = 0 ,  . . ., N - 3 as  the number  obtained when 

A(x,  k) + B(z (x ,  k))2-y'x3k' 

is truncated  to r fractional bits, 2" is added  to  the  result, 
and where A(x,  0) = 0. Then,  clearly, 
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where  the  error E(X, k)  satisfies 0 < €(x, k)  5 2". The 
inequalities (22) now  surely hold for k = 0, . . ., N - 3. 

To check the  last inequality in (22) ,  we calculate  from 
(38)-(39): 

Because 

i = O  

and 

2r(s9N-2) 1 B(z(x ,  N - 2) )  - S ( Z ( X ,  N - 2 ) ) ,  

we get 

A(x,  N - 1) - A(x ,  N - 2)  = B(z(x ,  N - 2))2?x'N-2) 

+ V ( X ) >  (41) 

where 

N--2 

? ( X )  = E . 2" + /.(x) - 2 6(Z(X, i))2-y'""' - 1 € ( X ,  i). 
N - 3  

i=O i = O  

Now, pick r so large that q(x) 2 0, which can be done, 
because all terms in q(x) other than E . 2" go  to  zero  as r 
grows to infinity. Then clearly (22) holds even  for k = 

N - 2. This completes  the proof. 

For Lemma 2 to follow we write (21) as a vector  equa- 
tion 

u = Gu + V ,  (42) 

where u as  above  denotes  the column vector  col(u(l), 
. . . 9  u(M)) ,  

u(i) = B(x(i))  . 2--E(i), 

and 

v = col (v(l), . . .) V ( M ) ) ,  

~ ( i )  = A(x(i) ,  N - 1) . 2-s(i). 

The matrix G = {g(i, j ) }  is given by 

g ( i , j )  = 0 if z (x ( i ) ,  N - 1) f xG) 
= 2 - m - 1  otherwise. (43) 

Lemma 2 
If (28) holds and not all C(k) are  zero,  then  the matrix 
I - G in (42) has  inverse. 

Proof 
Because the  state transition  map z( - , N - 1) has  inverse, 
G  has one  element, 2-ecN-1), in each row and  each column. 
Therefore, G" has  one  element, 2-"ecN-1) , in each row and 
each  column. Because 2-ecN-1' < l , G " - + O a s k - + m . T h e  
inverse of I - G is given by 

(I - G)-' = lim (I + G + . . . + G"). 
k-m 

Consider now the performance of the  arithmetic  code. 
Consider a set of ideal  lengths f ' ( i ) ,  and  approximate 
them to q fractional bits, rounded  up. Each length differs 
at most by 2-q from the ideal,  and the  average symbol 
length L for  the  code is therefore  bounded by 

(44)  

The first sum is the  source  entropy.  Therefore, by mak- 
ing q sufficiently large,  the mean per-symbol length can  be 
made  arbitrarily close  to  entropy. 

A somewhat  better way to  determine  the length param- 
eters is to select q and then find C(k) as  the solution to  the 
optimization problem: 

subject to  the inequality (28) .  For q = 0, Huffman's al- 
gorithm solves  this  problem. 

Integer-valued  length  parameters 
The special case of arithmetic  codes  where  the length pa- 
rameters are positive  integers is of particular  interest be- 
cause  the finite state machine degenerates  to a l-state ma- 
chine and thereby  disappears. We emphasize  that within 
the arithmetic codes  the length parameters being integers 
by no means implies that  the resulting codes  are con- 
catenation codes,  as in Example 1. Indeed, nothing in the 
above  theory  states  that  these lengths  must  be given by 
the number of bits in the  code  words,  i.e.,  the augends 
A(x,  k )  !? A&). 

Because the lengths of binary Huffman codes satisfy 
(28) with equality,  Theorem 4 implies that  there is only 
one  set of augends defined by (21) and  the equalities in 1 
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(22). Specifically, supremum B e B(x) = 1,  and 

k-1 

A(k) = 2-'"', k > 0 
i=n 

A(0)  = 0. (46) 

In  the special case  where  the symbols are so ordered  that 
i < j implies p ( i )  2 p ( j ) ,  so that f ( i )  5 f ( j ) ,  this formula 
reduces  to  one given by Gilbert and Moore [6]. If we put 
A(0)  = .O . . . 0, C(0) zeros,  the addition in (6) and (7) 
degenerates  to a concatenation, and the  code  apart from 
the  irrelevant scaling is just a Huffman code. 

To  conclude this section  we  describe briefly how  ordi- 
nary  prefix-concatenation codes  are  represented  as arith- 
metic codes in which the decodability criteria (21) and 
(22) are satisfied. By reordering of the  alphabet, if neces- 
sary, we may further  assume  that  the  code  words satisfy 
0 = a(0) < a(1) < . . . < a(N - I), when  they  are re- 
garded as binary  integers. These inequalities hold be- 
cause of the prefix property. Clearly, the  opposite is not 
true,  i.e.,  the magnitude order  does  not imply the prefix 
property.  Now, define the  augends 

A(k)  = a(k) . 2-ew). 

Then,  because a(N - 1) has f ( N  - 1) bits, 

A ( N  - 1 )  5 1 - 2-P'N-1). 

Then B(0) 5 B ,  as a solution to (21), satisfies 

B s  1 .  

By the prefix property, 

A(k)  2 A(k - 1) + 2-eck-1), k =  1 , .  . . 9 N - 1,  

and,  hence, 

A(k)  2 A(k - I )  + B . 2-""-", 

which verifies (22). 

If in addition the code is compact, all the preceding in- 
equalities hold with  equality. 

Code design 
Code design consists of assigning  values to  the length pa- 
rameters f ( i )  and the  augends A(x,  k ) .  The problem of 
finding the values for  the length parameters  was already 
discussed in Eq. (49 ,  although no elegant  algorithm was 
given for  the solution. The  number of fractional  bits  in f ( i )  
is chosen so as  to  achieve  close approximation to the  en- 
tropy. 

The  augends,  then,  are  to be  found to satisfy (21) and 
(22). The  fact  that  the  augends  have  at most  r  fractional 
bits, r to be chosen  as small as possible, permits a sim- 
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plification of (21) and (22), which we  derive  next.  First, 
(22) is seen  to be true if and only if 

A(x,  k + 1 )  - A(x,  k )  > B,.(z(x, k))2-y'"'k), 

k < N - 1 ,  (47) 

where Br(z) denotes  the  truncation of B(z) to r fractional 
bits. 

Turning then to (21) we  can  expand iteratively 

B(x) A(x ,  N - 1 )  + A(z(x ,  N - I ) ,  N - 1)2-y'x3'v-1) 

+ . . .  (48) 

from  which Br(x) can  be obtained as a sum of finitely 
many terms. 

An approach  to finding the  augends is suggested  by the 
analysis following Theorem 5.  We guess a  value for r such 
that 2" is about 

1 - 1 2-f[i ', 
A- I 

i=n 

and pick A(x ,  N - 1 )  in (21) so that B(x)  = 2". By (48), 
then, Br(x) is calculated exactly.  The  other augends 
A(x,  k )  for k < N - 1 are  determined recursively from (47) 
as small as possible with r  fractional  bits. If the  last in- 
equality  holds, we have found a valid set of augends. If 
not,  increase rand try  again. Theorems 4 and 5 guarantee 
that  for r large enough a valid set will result. A more  sys- 
tematic  and likely faster way is to  convert (47) and (48) for 
each r into integer  equalities  and  inequalities, and use the 
extended Euclidean  algorithm [7] to find a solution if one 
exists. 

We illustrate the  code design and some of the practical 
issues  involved  by means of Example 2. With the length 
parameters given in Example 2 we have 

2-eci) = .990578. 
i = O  

Because  the sum above is very close  to 1 ,  Theorems 4 and 
5 imply that  the neighborhoods about  the "ideal" au- 
gends are not  large,  and we must expect  to  select r on  the 
order of 7; i.e., 2" = E = .01. 

Denote  the  state .O by 0 and . 1 by 1. The  state transi- 
tions and  outputs  as given  by Eq. (8) are in the  table be- 
low. 

0 113 111 014 115 
1 I 012 010 114 014 

(49) 
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while Eq. (47) reads  as follows: 

A(0, 1) > Br(l)Y3 

A(0, 2) > A(0, 1 )  + Br(1)2-’ 

A(O, 3) > A(O, 2) + 4 ( 0 ) 2 - ~  

A(1, 1) > Br(0) . 2-’ 

A(1, 2) > A(1, I )  + Br(0) 

~ ( 1 ,  3) > A(], 2) + ~ ~ ( 1 ) 2 - ~ .  

After a bit of trial and  error A(0, 3) and  A(1, 3) are 
picked as (in binary) 

A(0, 3) = .1110111 

A(1, 3) = 1.01011  (52) 

which  by (50) give B,(O) = 1.0  and B,(1) = 1.01011111. 
The  other augends can  then be chosen easily by (50) and 
(51) as given  by (9). 

Summary 
Material in the  second section was intended to  provide 
perspective  for variable rate noiseless  coding from  the 
viewpoint of arithmetic coding. The fundamental  parame- 
ters in arithmetic  coding are  the noninteger-valued  length 
parameters and the similar augends, which are combined 
by a shift  and  addition to recursively  grow the  code string 
from  either  end  for  LIFO  or  FIFO coding. The decoding 
is based  on magnitude comparison, and it is virtually in- 
stantaneous without the prefix property, which is re- 
placed  by the more  general  magnitude order.  The notion 
of a sequential  machine was introduced to  remember the 
fractional shift amount.  For integer  length codes, the 
number of states  reduces  to  just  one.  For Elias’ code, in 
the idealized formulation,  the number of states  can be- 
come arbitrarily  large.  This has forced  earlier practical 
implementations of it to  introduce some  way of system- 
atically  terminating the  code strings. The  sequential ma- 
chine formulation is quite general  as it also  provides a 
common basis for  understanding  the differences between 
the  arithmetic  codes of Rissanen [4] and Pasco [ 5 ] .  

The per-symbol  length of arithmetic  codes  can  be made 
as  close to the  entropy  as  desired. This is achieved by 
increasing the precision of fractional  lengths, instead of 
performing alphabet  extensions. 
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Finally, a self-contained, widely applicable, and fairly 
thorough  decodability  analysis  (Theorem 2) has been 
made with results which  permit construction of invertible 
codes with any desired  realizable  per-symbol  length. The 
analysis  applies to  any  scheme whose  encoding  mecha- 
nism can  be formulated by Eqs. (6) or (7), (recursive shift- 
and-add process)  and  for which Eq. (1 1) can be  used for 
decoding. Since  these hold for prefix codes,  Eqs. (21) and 
(22) of Theorem 2  apply to prefix codes,  as well as  to 
Elias’  [l],  Rissanen’s [4] and Pasco’s [5] codes. What re- 
mains open,  however,  are algorithms for a fast  and  conve- 
nient determination of the design parameters in which the 
desired  compression  can rapidly  be  balanced  with the 
complexity of the implementation of the  code.  The decod- 
ability  analysis and  the proof of Theorem 5 [see Eqs. (36) 
and (37)] demonstrate  the  importance of the sum 

k-1 c P i ’  
i=O 

as a code element.  When the generalized Kraft inequality 
(Theorem 3) is satisfied with equality, this is the only 
choice for symbol k.  Theorem 5 has a  semi-constructive 
proof showing  how  augend tables  can  be designed. 
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Appendix:  Symbol definitions 
A b ,  k )  “real”  augend; it is a state- 

dependent  code  word of 
symbol k .  

A%, k )  “ideal” augend based  on 
ideal BO(x), 

IC-1 

Ao(x, k)  = 2’ 1 2-““ 
i=O 

a, b initial states  for  the finite 
state machine 

B(x) the  supremum of the values 
attained by the  code strings 
C(x, s) interpreted  as num- 
bers.  It is also  the su- 
premum of C(x, s) when s is 
a string of symbols ( N  - 1). 

B0(X) “ideal” limit 2” 

a )  code  string  for strings  grown 
to the right 161 

J. RISSANEN AND G.  G.  LANGDON, JR. 



C(S)  

FIFO 

I 

I ( 4  

k 

LIFO 

M 

N 

P 
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code string for string s 
grown to  the left, which is 
the dual of code string C(s)  

first-in,  first-out; the  code 
string is recursively encoded 
to  the right, then recursively 
decoded from the left. 

fractional  part of t 

N x N matrix whose ele- 
ments g( i ,  j )  are  zero unless 
z(x( i ) ,  N - 1 )  = x ( j ) ,  in 
which case it is 2-“”-” 

M x M identity matrix 

integer  part of 

a  symbol of alphabet 
( 0 ,  1 ,  . . ., k ,  . . ., N - 1) 

set of indices k which take 
state x( i )  to  state x ( j ) :  
W ( x ( i ) ,  k )  = x ( j ) }  

length parameter of source 
symbol k 

total length, the  sum of all 
lengths [ ( s i )  where s = s,, 
s g ,  sg, . . . 
last-in,  first-out; the  code 
string is recursively encoded 
to  the  left, and then  recur- 
sively  decoded  from the left. 

number of states in state 
space X 

number of occurrences of 
symbol i in string s 

number of source  symbols 

M x M matrix of element 

cumulative  probability; 

k-1 

i=0 

probability of occurrence of 
symbol k 

maximum  number of frac- 
tional  bits in 4(k )  

r maximum  number of bits in 
fractional  part of augends 
A(x,  k )  

S reversal of string s 

S’  

T 

post fix substring of source 
string s 

a multiplication factor  corre- 
sponding to a  shift of length 
L ,  L = -log T o r  T = 2-L 

V 

X 

column vector  whose ith 
component is A(x( i ) ,  N - 1 )  

.--“ti’ 

state  space of the finite state 
machine 

states [x(i)  E a, where X is 
ordered 

x(k)  fractional  part of [ ( k )  

Y(k)  integer part of [ ( k )  

h 

integer  part of total length 
U s )  

next-state  function;  present 
state x(s)  and input k .  

n-fold composite of z ( x ,  k )  
starting at  state a.  

empty string,  used to ex- 
press initial conditions for fi- 
nite state machine 

0, 1,  . . ., k ,  . . ., ( N  - I )  source symbol alphabet 
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