
J. Rissanen
G. G. Langdon, Jr.

Arithmetic Coding

The earlier introduced arithmetic coding idea has been generalized to a very broad andflexible coding technique which
includes virtually all known variable rate noiseless coding techniques as special cases. An oufstanding feature of this
technique is that alphabet extensions are not required. A complete decodability analysis is given. The relationship of
arithmetic coding to other known nonblock codes is illuminated.

Introduction
In the excellent textbook on coding [l], Abramson neatly
splits all codes into two classes: block codes and non-
block codes. Of these he selects only the block codes as
being of much use and for which the important decodabil-
ity results hold. His term, block code, is characterized by
the familiar process in which the code words of the sym-
bols are concatenated to form coded messages. A further
important subclass of block codes is the class of instanta-
neous codes for which a both necessary and sufficient
condition is the prefix property: No code word is to be a
prefix of another. Finally, as there is hardly any conceiv-
able reason to use other than compact codes, which can
be formed by Huffman’s algorithm, it appears that all
“useful” noiseless coding should be confined to Huffman
codes. But that has not turned out to be the case at all,
mainly because of the necessity to resort to the alphabet
extension to achieve a desired compression, particularly
for small alphabets. We must therefore conclude that
block codes, despite their simplicity and well-known
decodability theory, are unsatisfactory to cover all coding
needs, especially when alphabet extension is required.

In the neglected and more diffuse class of nonblock
codes, two types of codes have appeared: Elias’ code [l],
and the so-called enumerative codes [2 , 31, which, al-
though clearly beset by the practical difficulty of requiring
unlimited arithmetic precision, have the attractive feature
that no alphabet extension is needed to achieve near-opti-
mum compression. More recently, further classes of non-
block codes were introduced by Rissanen [4] and (not in-

dependently) by Pasco [5] , which have the same attrac-
tive feature of near-optimum compression and whose
practicability is comparable to the best block codes. Al-
though these codes have a number of common features,
to some extent clarified by Pasco [5] , they still remain as
so many distinct codes, and they are totally different from
the traditional block codes. We should add that in recent
textbooks the notion of block code has been used when-
ever “blocking” is used, be it for alphabet extension or
for truncation of the numbers represented by a symbol
string to a manageable size. Although virtually all codes
then become block codes, such a unification is meaning-
less because the same decodability results do not hold
for, say, the recently discovered arithmetic codes.

In this paper we study coding in which the basic no-
tions in block codes have been generalized as follows:
concatenation to addition, code words to rational num-
bers with finitely many fractional bits, integer lengths to
rational lengths, and the prefix property to magnitude or-
der. All these were introduced in a restricted form in [4],
as further discussed in the next section. The symbol and
the code word selection is done either by table look-up or
by a combination of table look-up and arithmetic opera-
tions. Finally the code string is generated recursively by
growing it either to the left or to the right, much as in the
usual block codes and Pasco’s codes as well. Both these
codes, called arithmetic codes, are formulated with the
aid of a finite state machine and constitute the first main
contribution of this paper. They include the old block

Copyright 1979 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IEVELOP. VOL. 23 NO. 2 MARCH 1 919 J .

149

RISSANEN AND G. G. LANGDON, JR. IBM .I. RES. 1

codes as a proper subset, and they also specialize to the
early arithmetic codes, as discussed in more detail in the
next section.

the right, the prefix property enables a first-in, first-out
(FIFO) type of decoding. The code string must always be
decoded from the most significant end.

The second main contribution of this paper is the con-
struction of an independent and self-contained decodabil-
ity theory for the arithmetic codes, which then covers all
codes based upon the described generalized “shift and
add” operations. Because of the lack of integer-length
code words and the associated trees, only a fraction of the
needed results could have been derived by traditional
means. For this reason, we do all of the work in a novel
manner.

We feel that the main impact of this study is to isolate
and lay bare the common fundamental principles in all
known variable rate, noiseless coding, which permits a
unification of both block and known nonblock codes un-
der arithmetic coding. In the new coding there is no
longer need for such artificial ad hoc contrivances as al-
phabet extensions nor the forming of blocks to avoid the
requirement of unlimited precision in Elias’ code or the
enumerative codes. Similarly, the recognition that the
length parameters, traditionally given by the number of
symbols in the code words, have an independent function
contributes to a simpler and cleaner implementation of
compact codes.

In what follows a considerable amount of notation is
introduced. We have therefore ordered these symbols al-
phabetically in the Appendix, which should serve as a
quick reference for the reader.

Background; coding equations
Because of the ambiguous usage of the term “block
code” in the literature, we use the clumsier but quite ac-
curate name “concatenation code” for a code which con-
structs the code string by concatenation of the code
words, which themselves are concatenations of the code
symbols. In what follows, the code strings are over the
binary alphabet, and logarithms are to the base 2.

We describe first the familiar concatenation coding op-
erations in an arithmetic manner. Let a code word A@) of
length C(k) correspond to each symbol k of the source al-
phabet (0, l , . . ., N - l). Let C(s) denote the code of the
finite string s. To obtain recursively the code of the string
sk, where k is the next source symbol, A(k) is appended
either to the left (most significant) or the right (least signif-
icant) end of C(s). If the encoded string is grown to the
left, C(sk) can be decoded from left to right into A(k) and
C(s) “instantaneously,” provided that the code words
have the prefix property. We call this case last-in, first-

150 out (LIFO) decoding. Dually, when A(k) is appended to

Consider now a LIFO decoding where the code is
grown to the left. Let the code words as well as the en-
coded string be viewed as fractional numbers with the bi-
nary point at the left end. To append A(k) to the pre-
viously encoded string C(s), C(s) is shifted to the right by
f (k) places [length of A@)] , and A(k) is added to the left
into the vacated C(k) bit positions. This can be expressed
as an arithmetic process as follows (see [4, 51):

C(sk) = A(k) + 2-<‘’) . C(s). (1)

As an example, let k = 0, 1 , 2 give rise to the code words
1, 00, 01 of lengths 1, 2 , 2, respectively. With c(s) =

.010001, the result of appending symbol 0 yields C(s0) =

.1010001 = . I + 2” x .010001. The decoding process on
C(s0) extracts symbols 0, 2, 1 , 2 in that order. In decod-
ing, after A(k) is removed, the remaining string is shifted
left by C(k) positions for the next decoding recursion.

The reader can easily visualize the analogous arithmeti-
zation of the other case where the code word is added to
the right end of the previously encoded string (see [5]):

C(sk) = C(S) + 2-L‘s) * A(k) . (2)

Here L(s) is the number of bits in C(s), formed by sum-
ming the individual lengths [(k) of all symbols encoded in
C(s). In both cases, due to the nonoverlapping of the code
words, the addition is in fact a concatenation.

Observe that the recursive “shift-and-add’’ technique
used by arithmetic coding as described herein may be
viewed as a generalization of the traditional con-
catenation mechanization in that the code words may
now overlap and that the integer-length shift [(k) is re-
placed, in effect, by a rational-length shift. Also the prefix
property for decoding is replaced by the magnitude order
relation for the code words, which then are viewed as bi-
nary numbers. Because the notion of noninteger-length
shift is somewhat intricate and clearly the least obvious of
these three generalized items, we illustrate the basic ideas
by a fairly detailed discussion of Elias’ coding, which
when appropriately reinterpreted includes all these no-
tions in a natural, albeit restricted, way. We then con-
tinue with a brief exposition of the two early versions of
arithmetic codes [4j and [5] , and we conclude this section
by defining two new dual and wider classes of arithmetic
codes.

The following viewpoint on Elias’ code appears in
Pasco [5] ; however, Fig. 1 does not. In Elias’ coding the
alphabet is ordered, and the order is extended lexically to

I. RISSANEN AND G. G. LANGDON, JR. IBM J. RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979

the source strings with priority to left, say. If p (k) is the
probability of symbol k , then define the cumulative proba-
bility P(k) = p (0) + . . . + p (k - 1) , P(0) 0. Each
source string s has a probability, and corresponding to the
lexical ordering of the strings we also obtain a cumulative
probability in the space of all strings over the considered
alphabet (0, I , . . ., N - 1). The cumulative probability
of a string s with length t is the sum of the probabilities of
all strings of length t smaller than s under the given order,
and this probability can be taken as the code C(s) of s.

The recursive construction of C(s) can be written as a
sum of terms, one for each symbol in s. The first term is
the probability of strings smaller than the first symbol;
i.e., it is P(k) if k is the first symbol. The second term is
the probability of all strings whose first symbol is k and
the second symbol smaller than the second symbol, say, i
of s. Similarly, the other terms are defined.

The recursive calculation of these terms, as well as that
of C(s), is best illustrated graphically by the example in
Fig. 1 for the string s = 1 , 3 , 2 , 3 , which differs from the
customary graphical depictions of Elias' coding.

In Fig. 1 the first term is P (l) , which is p(O), the proba-
bility of all strings beginning with symbol 0. The second
term is p (1) multiplied by P (3) . We write the second term
as

2-e") . p (3) 2 - ! ~ ") [2 - " ' ~) ~ (3)] ,

where y (k) and x (k) are the integer and the fractional
parts, respectively, of f (k) = -log p (k) . This illustrates
what is meant by a noninteger-length shift: the composite
of ordinary integer-length shift and multiplication by 2
raised to the power indicated by the fractional part. This
device was introduced in [4].

which except for an interpretation is of the type of Eq.
(2) . The product T(1, 3 , 2) = p (l) p (3) ~ (2) gives the total
shift

~ (1 , 3 , 2) = -log ~ (1 , 3 , 2) = [(I) + e(3) + e (2) .

The terms in (3) can also be accumulated from the right:

C(1, 3 , 2 , 3) = P(1) + p U) C (3 , 2, 3)

= P(1) + 2-e'1) . C (3 , 2 , 3) .

IBM J. RES. DEVELOP. 0 VOL. 23 NO. 2 MARCH 1979

I
Radix point

Shift

Figure 1 Graphical interpretation of Elias' code for string s =
1, 3, 2, 3.

Observe that this recursion starts from the right end of s;
Le., it acts from left to right on the reverse string S = 3 , 2 ,
3, I . Hence, if we put C (1 , 3 , 2 , 3) = C (3 , 2 , 3 , I) , we
transform Elias' code into its dual:

C(1, 3 , 2 , 3) = P(3) + 2 - e ' 3) . C(1, 3 , 2), (4)

which is of the type of Eq. (1).

When the symbol probabilities are rational numbers, it
can be seen that the number of bits in the fractional num-
bers c(s) and C(s) is essentially given by the integer part
of L(s) , and the per-symbol length approaches the en-
tropy. However, the precision required in the coding cal-
culations grows with the string. We see that in (4) all the
past string is to be multiplied by the number 2-", where x
is the fractional part of f (3) . This is not so serious,
though, because viewing the code string as merely an in-
termediary between the encoder and decoder, it is the rel-
ative displacement of the two terms in (4) which is rele-
vant. Accordingly, a key step toward realizability of the
dual is to modify the code as follows:

C(1, 3, 2, 3) = 2 s . P (3) + 2 - y . C(1, 3 , 2), (5)

where x and y are the fractional and the integer parts of
f (3) , respectively. Now the fractional shift only applies to
a fixed number of bits. We also retain the same letter C
for the code, although the two code strings in (4) and (5)
may differ by a multiplication factor. Finally, as a matter
of terminology, P(3) in (5) is called the code element [5] ,
and the product 2" . P(3) is called the augend A(x, 3) .
[Note that Eq. (3) could also be trivially reformulated to
give C(I , 3 , 2) an integral shift left, leaving a fractional
shift for the code element P (3) .] 151

J . RISSANEN AND G . G. LANGDON, JR.

152

In 141 Rissanen studied codes of the general type of Eq.
(5) , called “arithmetic codes,” in which the ideal lengths
4(k) = -log p (k) were based on the probabilities, and the
numbers 2” were approximated by rational numbers with
a fixed number of fractional bits. This then removed the
basic defect (a requirement for unlimited precision) of
such codes. While the decodability of the codes of the
type in Eqs. (3) and (5) with the exact, nonapproximated
parameters is obvious from the fact that the cumulative
probabilities form a monotonic nondecreasing sequence,
the same becomes a matter of a delicate analysis with the
approximated parameters. However, it was shown in [4]
that when the approximations are done properly, the code
will have a unique inverse, and a practicable non-
concatenation code results.

In his excellent thesis 151, Pasco, while being aware of
[4], studied the approximation and other issues of Elias’
code of the type of Eq. (3) , and his codes, which he also
called arithmetic codes, removed the requirement for un-
limited precision inherent in Elias’ code. His main contri-
bution was to obtain a FIFO type of arithmetic code. The
key observation was to represent the product T of the
probabilities in the string as a floating point number, a
fractional part truncated to K bits and the integer part
consisting of the number of leading 0’s plus one. The frac-
tional part multiplied by the code element P (k) just as in
(5) forms the augend, and the integer part of T indicates
where in the code string the augend is to be added. Had
the fractional part been rounded up instead of truncated,
it would have corresponded to a length displacement less
than the ideal, and the decodability would have been lost,
as Pasco demonstrated. Finally, Pasco proposed a unifi-
cation of the arithmetic codes by listing eight distinct
types depending on whether the code string is grown to
the left (LIFO) or to the right (FIFO), whether shift factor
Tis calculated by a product of probabilities or by its loga-
rithm L treated as a length, and whether the code string or
the code element is shifted. However, in the present
work, we feel only the LIFO versus FIFO property is sig-
nificant enough for generalization purposes, as the decod-
ability conditions we derive are valid independently of the
implementation details of the shift requirement.

Although the two basic types [Eq. (3) and Eq. (S)] of
arithmetic codes indeed provide nonconcatenation codes,
they still do not adequately unify the hitherto unexplored
class of nonblock or nonconcatenation codes. For in-
stance, as we shall see, there is no LIFO type of dual
code of Pasco’s main code, which suggests that a mean-
ingful unification involves more than just superficial per-
mutation of the cases. Moreover, from a coding theoretic
standpoint, it is a defect if, despite having generalized the
basic coding operations, we arrive at a class which still

does not include the traditional concatenation codes as
special cases.

A careful study of the described approximation steps in
the early arithmetic codes as well as of the traditional
concatenation codes reveals that the two kinds of param-
eters, the length parameters [(k) and the augends 2”P(k),
should not both be linked directly to the symbol probabili-
ties p (i) , and hence to each other, as was the case in [4].
In fact, in Huffman codes neither the optimum lengths nor
the code words are unique; they are needed so to speak
only as a vehicle for decodability. For this reason, we
study coding where the augends are set free from their
direct dependency on the lengths and the symbol proba-
bilities. To be sure, the decodability question becomes
then a crucial issue to be analyzed separately.

Observe in Eq. (5) that the previous code string is only
being shifted an integer amount y, and that we still “owe”
the fractional shift x. The fractional shift amount x is
called the retained fraction, and we characterize it as the
internal state of a finite state machine. The augend A (x , k)
for the “shift-and-add’’ is a function of x. For the next
recursion, the length involved is the sum of f (k) for the
new symbol and x, the retained fraction. This sum has an
integer part which determines the code string (or augend)
shift and a fractional part which determines the new re-
tainedfraction. Thus, the augends A (x , k) added to the old
code string are a function of the past history, as repre-
sented by the retained fraction.

We next consider a finite state machine formulation of
the recursive “shift-and-add’’ encoding process, where
the summands, the augend, and the code string undergo
an integral (nonfractional) relative shift y while the frac-
tional part x is incorporated in the augend. We view the
apportioning of the relative shift y as an implementation
consideration; in Eq. (6) it is applied to the augend, while
in Eq. (7) it is applied to the code string.

Each of the dual equations, (1) and (2) or (3) and (S) ,
admits its corresponding generalization. The first or FIFO
version is defined by the recursion equations

C(a, sk) = C(a, s) + A[x(s) , k]2-Y‘”),

x(sk) = z[x(s), kl,

Y(sk) = Y(s) + y[x(s) , k l ,

x(h) = a , Y(A) = C(a, A) = 0, A is the empty

string. (6)

Here, the functions z (x , k) and y (x , k) denote the state
transition and the output functions, respectively, of a ma-
chine with a state space X , initial state u , input space

I. RISSANEN AND G. G. LANGDON, JR IBM 1. RES. DEVELOP. VOL. 23 e NO. 2 MARCH 1979

(0, . . ., N - I) , and the output space consisting of non-
negative integers. In all the practicable codes considered
in this paper, the state space is finite, the state con-
stituting a retained fractional part from the preceding
code string. An example of another case is Elias’ code,
which is defined by (6) with X the set of all numbers less
than 1 . We view Elias’ code as a limiting case to FIFO
arithmetic codes when the state space is infinite. The pa-
rameters A(x, k) , called augends, are numbers less than 2
with at most, say, r fractional bits in their binary repre-
sentation.

The dual code is defined by the equations

C(b, sk) = A[x(sk) , k] + C(h, .7)2-z/‘rts)’k1

x(sk) = i [x (s) , k]

x(A) = b , C (h , A) = 0, (7)

where ?(x, k) and j (x , k) denote the next state and the
output functions of a machine just as in the previous case.
This machine has a finite state space except in certain
nonpracticable, idealized codes such as the enumerative
codes [3] .

Letting F (P) and I([) denote the fractional and integer
parts of P , respectively, we are particularly interested in
the class of codes where the state space X consists of q-
bit fractional numbers, and the machines in (6)-(7) are de-
fined by the functions

Zk, k) = F[e(k) + x],

j (x , k) = I [f (k) + x];

Z(X, k) = F{1 + X - F[P(k)]},

Y (X > k) = I[P(k) + dx, ,411 = j [z (x , k) , kl; (8)

where the length parameters f (O) , . . ., P(N - 1) are posi-
tive numbers with at most q fractional bits.

Apart from the normalization of the augends, which
causes the code to be a number less than 2, the codes (7)
with (8) include Rissanen’s arithmetic code as a special
case. Also, the traditional concatenation codes can be
embedded in these in a canonical manner, as will be de-
scribed below in detail. The code (6) with (8) is new. It
permits a FIFO type of decoding, and it will be shown to
be closely related to (7). Pasco’s code is of type (6) with a
special and narrow choice for the augends and in which
the next state z(x, k) results from truncation of the prod-
uct of the old state x and p (k) to, say, K most significant
fractional bits, while the number of the leading zeros plus
one defines the output y (x , k) . In contrast with Pasco’s
code, the length parameters P(k) appear here explicitly in
a role which is entirely analogous to the integer lengths in

ordinary codes. Hence, as we shall see, the decodability
theory of these codes parallels and naturally extends the
existing theory for concatenation codes.

We illustrate these coding equations and the notions of
“state,” “shift,” and the two kinds of parameters by two
examples.

Example 1
Let the source alphabet be S = {0, 1, 2, 3}, where the
symbols occur with probabilities p(0) = 0.25, p(1) = 0.65,
p (2) = 0.075, and p(3) = 0.025. Pick the length parameters
as those given by the Huffman algorithm:

e(o) = 2, P (I) = I , e(2) = e(3) = 3 .

Because there are no fractional bits, q in (8) is 0, and there
is but one state, x = 0. Consider the set of augends, which
later will be shown to be unique with certain conventions
(the now needless state variable is dropped):

A(0) = 0
A(1) = 0.01
A(2) = 0.11
A(3) = 0.111.

The code (6) of the string s = 2013 is seen to be the
staggered sum

. l l = A(2)

.om = A(O) . 2-3

.om0001 = ~ (1) . 2-5

.000000111 = A (3) . 2-6

.110001011 = C(2013).

This is an arithmetic implementation of a compact code.
As will be seen, the mean per-symbol length of this code
is the same as that of the Huffman code:

C p (i) P (i) = I .45.
I

Example 2
With the same symbols and symbol probabilities as in Ex-
ample 1, pick the length parameters as follows (the num-
bers in binary):

e(o) = 0.1, [(I) = 10.1, e(2) = 100.0, ~ (3) = 100.1.

These were chosen so as to minimize the mean per-sym-
bo1 length

c P (i) f (i)
i

subject to the Kraft inequality and the constraint that
each P(i) has at most q = 1 fractional bit. The mean per-
symbol length in the limit when the length of the string

IBM J. RES. DEVELOP. VOL. 23 e NO. 2 MARCH 1979 J. RISSANEN AND G. G. LANGDON, JR.

154

goes to infinity is now about 1.36; Le., better than in Ex-
ample 1 . The state space consists of the numbers 0 and . 1 ,
the latter of which is identified with 1.

Consider the list of augends, whose determination will
be discussed later:

A(0, 0) = 0 A(1, 0) = 0
A(0, 1) = 0.001011 A(I , 1) = 0.0100001
A(0, 2) = 0.110111 A(1, 2) = 1.01000011
A(0, 3) = 0.1110111 A(1, 3) = 1.01011. (9)

The maximum number of fractional bits in these is then
r = 8.

By putting the initial state a = 0 and by writing C(0, s)
= C(s), we calculate the code (6) of the string s = 2013 as
follows:

C(2) = 0.110111

4 2) = z(0, 2) = 0
Y(2) = y (0 , 2) = 4

C(20) = C(2)

420) = z(0, 0) = 1
Y(20) = 4 + y (0 , 0) = 7

C(201) = C(20) + A(1, 1)2-"'20' = 0.11011100100001

4201) = z(1, 1) = 0
Y(201) = 7

C(2013) = C(201) + A(0, 3)2-y'201' = 0.11 100000001 11 1

Because of the longer augends in this case than in the
previous one, the length of the code is longer, due to the
"end effect" of the last symbol. For long strings, the per-
symbol length gets shorter, though, because the end ef-
fect is bounded above by [r + 1 - t?(.~,)], as discussed
below. This example also illustrates that a carry-over 1
may occasionally propagate towards the left end of the
string. Hence, strictly speaking, neither this nor Pasco's
code in [5] permits a FIFO decoding unless the carry-over
bit is suitably treated. Fortunately, this can be done with
a negligible length penalty. We omit a detailed description
of such a blocking mechanism. Observe that the LIFO
codes of (7) do not have such carry-over problems.

Decoding and code length
We describe the decoding process for the two codes in (6)
and (7) with general finite state machines. In (6) , let
s =sl, sz, . . ., s,; si E (0 , . . ., N - 1) be a string, and
consider the associated state trajectory

S,/~, S"'U"
a = no- a, -+ . . ' - a, = x(s) = z*(a, s),

where ai = Z (U ~ - ~ , s i) , y i = y(ai-,, s i) , and z*(a, s) is the n-
fold composite of z (x , k) starting at u . By iteration we get
from (6)

C(a, S) = A(a , s,) + A(a,, ~~)2- '('~ '~1) + . . .
+)2-"(asSl) - . . ' -"(fln-z,Sn-l)

n (10)

Under suitable selection of yi and the augends such that
A(u, k + 1) > A(a, k) [to be stated precisely later in Eq.
(25)], the first term in (10) will be greater than the sum of
the others. Then the left-most symbol s1 can be decoded
as the largest index k for which

C(a, s) 2 A(a, k) . (11)

Because the condition C(a, s) < A(a , 1) automatically de-
codes s, = 0, the value of A(x, 0) is not needed and will be
set to zero. The decoding process can be continued by the
equations

C[Z(U, SI), .y2 . . . sn] = [C(U, S) - A(u , ~,)]2~('~''1) (12)

until C(x, s') = 0 for some state x and postfix s' of s.
Because C(a, SO) = C(a, s), we must have an extra in-
dication of the number of the trailing 0's in s, or an end-of-
string marker. Observe that we may always set a = 0.
Also, observe that s1 can be decoded from the code of any
prefix of s; e.g., from C(a, s,), which permits a FlFO type
of decoding. The number of the left-most bits of C(a, s)
needed for (2) is at most Y + 1. Hence, the decoding is not
quite "instantaneous" in the traditional sense, but the
number of "excess" bits [6] needed is only the difference
between the numbers of bits in A(a, k + 1) and A(a, k) ,
where k is the current left-most symbol of s.

Consider next the dual code (7) of the same string s.
The associated state trajectory is

This time it is the right-most symbol s, of s that can be
decoded first as the maximum index i for which

C(b, s) 2 A(x(s) , i). (14)

Here, the terminal state x($) is required. The decoding
process can be continued by the equations

@(b, s,, . . ., s,-]) = [C(b, S) - A(x(s) , ~~)]2~('n-l '~n),

b,-] = Z-'(b,. s,), (1 5)

J. RISSANEN AND G . G . LANGDON. JR IBM J. RES. DEVELOP. 0 VOL. 23 NO. 2 MARCH 1979

provided that the next state function

i(-, k) : x + x
has inverse 2-’(-, k) for every k . The process terminates
when C(h, st) = 0, which correctly decodes s1 = 0 only
when a suitable indication of the number of the leading
zeros in s is given or a beginning-of-string marker pro-
vided. In contrast with the previous code, the dual code
has no carry-over problems.

In Pasco’s code the next state function does not in gen-
eral have an inverse and the dual code (7) with its LIFO
type decoding cannot be constructed.

We prove now a theorem which justifies the name
“dual” for the two codes.

Theorem 1
If z(- , k) has an inverse for every k , then with Z(- , k) =

zY1(-, k) and j (x , k) = y(Z(x, k) , k) ,

C(a, s) = C(x(s), S) ,

where S = sn, s,-~ . . . s1 and x (s) = z*(a, s).

Proof
The claim follows from comparison of the corresponding
terms in (10) and (13). QED.

With the particular choice of the next state and the
output functions as given in (8), we can verify that the
conditions in Theorem 1 are satisfied. To see that Z(- , k)
= z-’(-, k) , we calculate

z(Z(X, k) , k) = F[1 + F(x + e(/?)) - F(e(k))] = X,

Z(Z(X, k) , k) = F[f(k) + F(l + X - F(t‘(k)))] = X.

Similarly,

Y(x, k) = I [f (k) + z(Z(x, k) , k)l = Y (Z (X , k) , k) ,

and we have the important identity in x and k:

z (x , k) + e (k) = x + y (x , k) . (16)

Equations (8) imply further useful results. The state tra-
jectory generates the recursion

a, + f (s i + l) = ai+l + Y b , , .T i+]) ’

which by summing up both sides gives

L(s) = 1 rn(i) f (i) = x(s) - a + Y(s) ,
N- 1

i=0

x($) = F(L(s) + a) , (17)

where m(i) denotes the number of times the symbol i oc-
curs in s. In particular, the second equation permits one
to select the initial state b for the dual code (7) in such a

way that the terminal state x(s) = 0; namely,

b = F[l - F(L(s))],

so that the decoding process can be started without stor-
age of x(s). Observe, though, that by setting b = 0 and
storing x (s) , an error check is obtained, because b f 0
after decoding implies that an error has occurred. This
can be an important consideration for a noiseless code.

We conclude this section by deriving an inequality for
the code length when the special functions (8) are being
used. When the augends are normalized to make 0 5

C(a, s) < 2 true, we can see from (10) that the smallest
term is the last. Therefore, with (15) the total number of
bits in C(a, s) is bounded by

IC(a, s) l 5 L(s) + r + 1 - t?(s,). (18)

where the augends have r fractional bits and sn is the last
symbol encoded.

For strings generated by a stationary, ergodic, and in-
dependent source with symbol probabilities p (i) , the
mean per-symbol length is therefore given by (17) and (18)
as

= 2 p (i) f (i) .
.A- 1

i=0

This clearly justifies the name “length parameters” for
W) .

Decodability criteria
In the preceding sections the encoding and the decoding
mechanisms have been explained. In this section the in-
vertibility of the encoding process, which we recall was
based on a magnitude comparison, is analyzed. The re-
sults clearly apply to any code using the same mecha-
nism.

We begin by deriving a decodability criterion for the
code in (6). By Theorem 1 the result will be applicable to
its dual code as well whenever this latter exists.

Define for each state x in X ,

B(x) = sup{C(x, s)}. (20)
S

These numbers turn out to be well defined whenever the
augends are less than 2 and the code has an inverse. The
suprema B(x) , which have no counterpart in the tradi-
tional theory of concatenation codes, play a crucial role in
what follows. 155

IBM J. RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979 J. RISSANEN AND G. G. LANGDON, JR.

156

Theorem 2 develops necessary and sufficient condi-
tions for decoding arithmetic codes. In addition, it shows
that the B(x) values are the limits of the code strings,
viewed as numbers, when the strings consist of stretches
of the last symbol (N - 1) of the alphabet (and the binary
point for C remains on the left).

Theorem 2
For every state x in X Eqs. (21) and (22) hold if and only if
decoding by Eq. (1 1) is correct:

B(x) = A(x , N - 1) + B(z(x, N - 1))2”Yts’N”l) (21)

A(x , k + 1) - A(x, k) 2 B(z (x , k))2”y‘r’k),

k < N - 1 . (22)

Finally, B(x) > C(x, s) for all (finite) strings s.

Proof
First assume decoding by (1 1). From (IO) we have with
s = (N - 1)s’

C(X, S) = A(x, N - 1) + 2 - ” ‘ S ’ N - 1) C (~ (~ , N - l), s’).

This leads at once to

B(x) 2 A(x, N - 1) + 2-”‘s’N-1) . B(z(x, N - 1)). (23)

On the other hand,

C(X, S) 5 A(x, N - 1) + 2”ltr3N”) . B(z(x, N - 1)). (24)

Now, by (1 I), for every k < N - 1 ,

A(x, k + 1) > C(x, ks’) 2 A(x, k) , (25)

which shows that 0 9 A(x, 0) < A(x, 1) < . . . <
A(x, N - 1). Because s = (N - l)s’,

C(X, S) 2 A(x, N - l) ,

which with the previous inequalities implies that C(x,
(N - 1)s‘) > C (x , ks‘) . This, in turn, implies that B(x) is
the supremum of the codes C (x , s) where the initial sym-
bol of s is N - 1. By (24), then, the reverse inequality in
(23) holds, which proves (21). The first equation in (6) im-
mediately implies that B(x) cannot be attained by any
string s, which proves the last claim.

To show (22), we substitute

C(x, ks’) = A(x, k) + C(Z(X, k) , s’) . 2P””’k)

from (10) into the first inequality in (25) with the result

A(x, k + 1) - A(x, k) > C(Z(X, k) , s’) . 2-”‘””’.

This holds even when s’ is a string N - 1, N - 1, . . *.
Because B(x) is the supremum of the numbers C(x, s’),
where s’ runs over such strings, (22) follows. Conversely,
if (21) and (22) hold for all x and k , then (1 1) will clearly

always result in correct decoding, so that (21) and (22) are
both necessary and sufficient conditions for correct de-
coding.

Equation (21) may be useful in two ways: First, from a
set of values B(x) , the values of A(x, N - 1) can be deter-
mined. Conversely, if the values of A(x, N - 1) are given,
then the values B(x) can be determined. Once the B(x) are
determined for given values of A(x, N - I), Eq. (22) can
be used to calculate the intermediate values for the A (x , k)
tables. When state x is a fraction as in Eq. (8), this is an
iterative process for which the values P(k) . 2” serve as
good starting points. A useful final objective would be to
find solutions to (21) and (22) which employ a minimum
number of fractional bits r . We illustrate this by an ex-
ample in a later section.

In the rest of this paper we assume the special state
transition and output functions (8). With these, the decod-
ability criteria (21) and (22) can be converted into another
form which explicitly involves the primary length param-
eters C(k) and shows that these may be selected indepen-
dently from the augends.

Our first aim is to derive a generalized Kraft inequality
as an important part of the decodability criteria. Although
the necessity of this inequality could be derived from the
length inequality (18) by a modification of the proof by
Karush [l], we give an altogether different derivation
which is constructive in nature and leads to further results
discussed subsequently.

From (22) we get

N--2

A(x, N - 1) 2 1 B(z (x , i))2-’(z’i),
i=0

which with (21) leads to

N - 1

B(x) 2 2 B(z (x , i))2-”(”Si).
i=0

With (16), the last inequality becomes

B(x)2-” 2 1 B(z(x,j))2-“ .
N- 1

2-e(J’, all x in X . (26)
j=O

We write this as a vector inequality by writing the ele-
ments of X in their natural order (x(l) , . . ., x (M)) ,
and u = col(u(l), . . ., u(M)) ,

u(i) = ~ (x (i)) 2 - ” ‘ ~ ’ .

Then (26) turns into

u P Pu,

I. RISSANEN AND G. G. LANGDON, JR. IBM J . RES. DEVELOP. 8 VOL. 23 8 NO. 2 MARCH 1979

where the M X M matrix P = { p (i , j) } is given by

p(i , j) = 2"'"';
k E K (i , j)

K(i , j) is the set of indices k for which z(x(i) , k) = x (j) , and
p(i , j) = 0 if K(i , j) is empty. An example will illustrate
how the matrix P gets defined in a straightforward way.

Example 1
Let N = 3, f (0) = (10.10)2, e(1) = (l . l O) z , f(2) = (l . l l)z.
The state space X is then given by

x = {.OO, .01, .lo, .ll};

and P becomes the four by four matrix

P =
2-e12)

0

0

2-p'0'
+ 2-e"'

2-e'o)

2-e'2'

+ 2-ec~)

0

0

Lemma 1
For every rn and n ,

M M N- 1 1 p (r n , j) = 1 p(i , n) = 2 2-'"('.

Proof
We showed earlier that for each k the function z(- , k) has
an inverse. Therefore, for each m the nonempty sets in
the family {K(rn, j) I j = 1, . . ., M } partition the alphabet
{0, . - ., N - l}, and the same is true for each n about the
family { K (i , n) I i = 1, . . ., M } . By the first property the
double sum in

j=1 i=1 k=O

has the N terms, 2-'"', i = 0, . . *, N - 1. Similarly, by the
second property, the double sum in

M M

1 p (i , n) = 1 P " '
i = l i = l kEK(i ,n)

has the same N terms. This proves the claims.

Theorem 3
Inequality (27) has positive solutions u; i.e., u(i) > 0, if
and only if

k=O

IBM J . RES. DEVELOP. 0 VOL. 23 NO. 2 MARCH 1919

Proof
Let (28) hold. The vector u = col (1, . . ., 1) satisfies (27)
as immediately verified with the help of Lemma 1.

Then let

N - 1 c - - a > l .
k=O

If some uo satisfies (27), then so does u1 = P u o , and uk =

Pkuo, so that

uo 2 U" 2 p u k = u k + 1 , (29)

because P has nonnegative elements. Also, for each posi-
tive number K , Kuo satisfies (27). By picking K appropri-
ately we may assume that the smallest component of uo
equals one. But then the components u'(i) satisfy

M M

u'(i) = p (i , j) u o (j) 2 1 p(i , j) min uo(k) = a,

and by repeating this,

uk(i) 2 ak.

Pick k so large that

ak > max u o (j) .

Then

uk(i) > max uo(j) , i = 1, . . . > M ,

which contradicts the inequality (29). Therefore, no solu-
tion uo exists, which completes the proof.

1=1 j = 1

j

j

We show next that if (28) holds with equality, then the
augends are determined by (21) and the equalities in (22).
This, then, is a singular case, and r fractional bit augends
exist only for special values for t (k) .

Theorem 4
If (28) holds with equality, then every solution to (27) or,
equivalently, to (22) also satisfies these with equality.

Remark
This theorem is of fundamental importance, above all in
codes with integer-length code words, because it permits
a description of the code words by a formula. See the next
section.

Proof
Suppose u satisfies (27) and for some k

u(k) > p (k , l) ~ (l) + . . . + p (k , M)u(M).

Then by Lemma 1 and (28), 157

J. RISSANEN AND G. G . LANGDON, JR.

158

M M M c 4 k) > c P(k, i)u(i) = c UG),
k = l k,i=l i=l

which is impossible. Hence u = Pu.

For the associated value,

B(x(i)) = ~(i)2"'~), (30)

(26) holds with equality, and from (21) and (16)

A(x, N - 1) = 1 B(~(i))2-"'~""~'.
i=O

A--2

(3 1)

From (22) then,

A(x, k) 2 1 B (~ (i)) 2 - " ' ~ ' ~) ~ ~)

which with (31) implies that (32) holds with equality.

k-I

, k = 1 , . . ., N - 1 , (32)
i=O

The next theorem implies that the inequality (28) is in
effect a decodability criterion in an analogous sense to
Kraft inequality.

Theorem 5
Let the numbers t (k) have at most q fractional bits and let

N - I

2-!'"' < 1 .
k=O

Then, for some r , augends A(x, k), k = 1 , . . ., N - 1 ,
exist, each having at most r fractional bits, such that (21)
and (22) hold, and correct decoding is obtained.

Proof
The set of solutions to the inequality u 2 Pu, unless
empty, always includes the special solution

u = col (1, . . .) l) ,

which gives rise to the particular values

~ ' (x) = 2", all x in X . (33)

These, in turn, by (21) lead to the special values for the
largest augends:
AO(& N - 1) = 2" - ~%("c.IV-~)-Y(S,~"~) - 2"(1 - 2-ec.b-l)). -

(34)

The numbers Bo(x) may also be used with the equalities
in (22) to give recursively the other augends:

A0(x, k + 1) = A0(x, k) + 2 P k) . 2", k < N - 2. (35)

With these special augends, decodability is ensured, be-
cause (22) holds fork < N - 2 with equality, while fork =
N - 2 we get from (34) and (35)

A0(x, N - 1) - A0(x, N - 2)

> Bo(z(x, N - 2))2-y'"'R"-2),

where we used (16). However, these augends may be irra-
tional numbers. Our plan is to prove the theorem by dem-
onstrating that in a neighborhood about these numbers r-
fractional bit augends exist such that decodability still re-
sults.

Before proceeding with the proof, compare these spe-
cial "ideal" augends,

k

A"(x, k + 1) = 2" 1 2-p'i',
i=O

with the corresponding terms

2s . P(k + 1) (37)

appearing in Elias' coding, as in Eq. (5) . The augends in
both (36) and (37) may be viewed as being generated by
the code element undergoing a fractional shift. It is impor-
tant to observe that the augends should be dependent on
the chosen lengths rather than the symbol probabilities.
This increases the flexibility in developing codes by facili-
tating the replacement of code words by formulas, as was
the case earlier in Example 1 . Also, by letting the Kraft
inequality hold strictly, we may be able to select the au-
gends with fewer fractional bits and thereby trade imple-
mentation complexity for performance.

For each x , select A (x , N - 1) as the number obtained
when Ao(x, N - 1) is truncated to r fractional bits and 2"
is added to the result. Then by (34),

where 0 5 p(x) 5 2-r. Next, by Lemma 2 below,

B(x) = 2" + 6 (x) , (39)

where 6(x) tends toward zero as p,(x) and r tend toward
zero. In order to satisfy (22) define recursively A(x, k + 1)
for k = 0 , . . ., N - 3 as the number obtained when

A(x, k) + B(z (x , k))2-y'x3k'

is truncated to r fractional bits, 2" is added to the result,
and where A(x, 0) = 0. Then, clearly,

J . RISSANEN AND G. G. LANGDON. JR. IBM J. RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979

where the error E(X, k) satisfies 0 < €(x, k) 5 2". The
inequalities (22) now surely hold for k = 0, . . ., N - 3.

To check the last inequality in (22) , we calculate from
(38)-(39):

Because

i = O

and

2r(s9N-2) 1 B(z(x , N - 2)) - S (Z (X , N - 2)) ,

we get

A(x, N - 1) - A(x , N - 2) = B(z(x , N - 2))2?x'N-2)

+ V (X) > (41)

where

N--2

? (X) = E . 2" + /.(x) - 2 6(Z(X, i))2-y'""' - 1 € (X , i).
N - 3

i=O i = O

Now, pick r so large that q(x) 2 0, which can be done,
because all terms in q(x) other than E . 2" go to zero as r
grows to infinity. Then clearly (22) holds even for k =

N - 2. This completes the proof.

For Lemma 2 to follow we write (21) as a vector equa-
tion

u = Gu + V , (42)

where u as above denotes the column vector col(u(l),
. . . 9 u(M)) ,

u(i) = B(x(i)) . 2--E(i),

and

v = col (v(l), . . .) V (M)) ,

~ (i) = A(x(i) , N - 1) . 2-s(i).

The matrix G = {g(i, j) } is given by

g (i , j) = 0 if z (x (i) , N - 1) f xG)
= 2 - m - 1 otherwise. (43)

Lemma 2
If (28) holds and not all C(k) are zero, then the matrix
I - G in (42) has inverse.

Proof
Because the state transition map z(- , N - 1) has inverse,
G has one element, 2-ecN-1), in each row and each column.
Therefore, G" has one element, 2-"ecN-1) , in each row and
each column. Because 2-ecN-1' < l , G " - + O a s k - + m . T h e
inverse of I - G is given by

(I - G)-' = lim (I + G + . . . + G").
k-m

Consider now the performance of the arithmetic code.
Consider a set of ideal lengths f ' (i) , and approximate
them to q fractional bits, rounded up. Each length differs
at most by 2-q from the ideal, and the average symbol
length L for the code is therefore bounded by

(44)

The first sum is the source entropy. Therefore, by mak-
ing q sufficiently large, the mean per-symbol length can be
made arbitrarily close to entropy.

A somewhat better way to determine the length param-
eters is to select q and then find C(k) as the solution to the
optimization problem:

subject to the inequality (28) . For q = 0, Huffman's al-
gorithm solves this problem.

Integer-valued length parameters
The special case of arithmetic codes where the length pa-
rameters are positive integers is of particular interest be-
cause the finite state machine degenerates to a l-state ma-
chine and thereby disappears. We emphasize that within
the arithmetic codes the length parameters being integers
by no means implies that the resulting codes are con-
catenation codes, as in Example 1. Indeed, nothing in the
above theory states that these lengths must be given by
the number of bits in the code words, i.e., the augends
A(x, k) !? A&).

Because the lengths of binary Huffman codes satisfy
(28) with equality, Theorem 4 implies that there is only
one set of augends defined by (21) and the equalities in 1

.ANGDON, IBM J. RES. DEVELOP. 8 VOL. 23 NO. 2 MARCH 1979 I. RISSANEN AND G. G . I

160

(22). Specifically, supremum B e B(x) = 1, and

k-1

A(k) = 2-'"', k > 0
i=n

A(0) = 0. (46)

In the special case where the symbols are so ordered that
i < j implies p (i) 2 p (j) , so that f (i) 5 f (j) , this formula
reduces to one given by Gilbert and Moore [6]. If we put
A(0) = .O . . . 0, C(0) zeros, the addition in (6) and (7)
degenerates to a concatenation, and the code apart from
the irrelevant scaling is just a Huffman code.

To conclude this section we describe briefly how ordi-
nary prefix-concatenation codes are represented as arith-
metic codes in which the decodability criteria (21) and
(22) are satisfied. By reordering of the alphabet, if neces-
sary, we may further assume that the code words satisfy
0 = a(0) < a(1) < . . . < a(N - I), when they are re-
garded as binary integers. These inequalities hold be-
cause of the prefix property. Clearly, the opposite is not
true, i.e., the magnitude order does not imply the prefix
property. Now, define the augends

A(k) = a(k) . 2-ew).

Then, because a(N - 1) has f (N - 1) bits,

A (N - 1) 5 1 - 2-P'N-1).

Then B(0) 5 B , as a solution to (21), satisfies

B s 1 .

By the prefix property,

A(k) 2 A(k - 1) + 2-eck-1), k = 1 , . . . 9 N - 1,

and, hence,

A(k) 2 A(k - I) + B . 2-""-",

which verifies (22).

If in addition the code is compact, all the preceding in-
equalities hold with equality.

Code design
Code design consists of assigning values to the length pa-
rameters f (i) and the augends A(x, k) . The problem of
finding the values for the length parameters was already
discussed in Eq. (49 , although no elegant algorithm was
given for the solution. The number of fractional bits in f (i)
is chosen so as to achieve close approximation to the en-
tropy.

The augends, then, are to be found to satisfy (21) and
(22). The fact that the augends have at most r fractional
bits, r to be chosen as small as possible, permits a sim-

I. RISSANEN AND G. G. LANGDON, JR.

plification of (21) and (22), which we derive next. First,
(22) is seen to be true if and only if

A(x, k + 1) - A(x, k) > B,.(z(x, k))2-y'"'k),

k < N - 1 , (47)

where Br(z) denotes the truncation of B(z) to r fractional
bits.

Turning then to (21) we can expand iteratively

B(x) A(x , N - 1) + A(z(x , N - I) , N - 1)2-y'x3'v-1)

+ . . . (48)

from which Br(x) can be obtained as a sum of finitely
many terms.

An approach to finding the augends is suggested by the
analysis following Theorem 5. We guess a value for r such
that 2" is about

1 - 1 2-f[i ',
A- I

i=n

and pick A(x , N - 1) in (21) so that B(x) = 2". By (48),
then, Br(x) is calculated exactly. The other augends
A(x, k) for k < N - 1 are determined recursively from (47)
as small as possible with r fractional bits. If the last in-
equality holds, we have found a valid set of augends. If
not, increase rand try again. Theorems 4 and 5 guarantee
that for r large enough a valid set will result. A more sys-
tematic and likely faster way is to convert (47) and (48) for
each r into integer equalities and inequalities, and use the
extended Euclidean algorithm [7] to find a solution if one
exists.

We illustrate the code design and some of the practical
issues involved by means of Example 2. With the length
parameters given in Example 2 we have

2-eci) = .990578.
i = O

Because the sum above is very close to 1 , Theorems 4 and
5 imply that the neighborhoods about the "ideal" au-
gends are not large, and we must expect to select r on the
order of 7; i.e., 2" = E = .01.

Denote the state .O by 0 and . 1 by 1. The state transi-
tions and outputs as given by Eq. (8) are in the table be-
low.

0 113 111 014 115
1 I 012 010 114 014

(49)

IBM J. RES, DEVELOP. VOL. 23 NO. 2 MARCH 1979

while Eq. (47) reads as follows:

A(0, 1) > Br(l)Y3

A(0, 2) > A(0, 1) + Br(1)2-’

A(O, 3) > A(O, 2) + 4 (0) 2 - ~

A(1, 1) > Br(0) . 2-’

A(1, 2) > A(1, I) + Br(0)

~ (1 , 3) > A(], 2) + ~ ~ (1) 2 - ~ .

After a bit of trial and error A(0, 3) and A(1, 3) are
picked as (in binary)

A(0, 3) = .1110111

A(1, 3) = 1.01011 (52)

which by (50) give B,(O) = 1.0 and B,(1) = 1.01011111.
The other augends can then be chosen easily by (50) and
(51) as given by (9).

Summary
Material in the second section was intended to provide
perspective for variable rate noiseless coding from the
viewpoint of arithmetic coding. The fundamental parame-
ters in arithmetic coding are the noninteger-valued length
parameters and the similar augends, which are combined
by a shift and addition to recursively grow the code string
from either end for LIFO or FIFO coding. The decoding
is based on magnitude comparison, and it is virtually in-
stantaneous without the prefix property, which is re-
placed by the more general magnitude order. The notion
of a sequential machine was introduced to remember the
fractional shift amount. For integer length codes, the
number of states reduces to just one. For Elias’ code, in
the idealized formulation, the number of states can be-
come arbitrarily large. This has forced earlier practical
implementations of it to introduce some way of system-
atically terminating the code strings. The sequential ma-
chine formulation is quite general as it also provides a
common basis for understanding the differences between
the arithmetic codes of Rissanen [4] and Pasco [5] .

The per-symbol length of arithmetic codes can be made
as close to the entropy as desired. This is achieved by
increasing the precision of fractional lengths, instead of
performing alphabet extensions.

IBM J. RES. DEVELOP. VOL. 23 8 NO. 2 MARCH 1979

Finally, a self-contained, widely applicable, and fairly
thorough decodability analysis (Theorem 2) has been
made with results which permit construction of invertible
codes with any desired realizable per-symbol length. The
analysis applies to any scheme whose encoding mecha-
nism can be formulated by Eqs. (6) or (7), (recursive shift-
and-add process) and for which Eq. (1 1) can be used for
decoding. Since these hold for prefix codes, Eqs. (21) and
(22) of Theorem 2 apply to prefix codes, as well as to
Elias’ [l], Rissanen’s [4] and Pasco’s [5] codes. What re-
mains open, however, are algorithms for a fast and conve-
nient determination of the design parameters in which the
desired compression can rapidly be balanced with the
complexity of the implementation of the code. The decod-
ability analysis and the proof of Theorem 5 [see Eqs. (36)
and (37)] demonstrate the importance of the sum

k-1 c P i ’
i=O

as a code element. When the generalized Kraft inequality
(Theorem 3) is satisfied with equality, this is the only
choice for symbol k. Theorem 5 has a semi-constructive
proof showing how augend tables can be designed.

Acknowledgment
The authors are grateful for the encouragement provided
them by Patrick E. Mantey and R. Bruce Brodie. This
paper probably would not have been written had they not
foreseen the promise of this work and stimulated the col-
laboration of the coauthors.

Appendix: Symbol definitions
A b , k) “real” augend; it is a state-

dependent code word of
symbol k .

A%, k) “ideal” augend based on
ideal BO(x),

IC-1

Ao(x, k) = 2’ 1 2-““
i=O

a, b initial states for the finite
state machine

B(x) the supremum of the values
attained by the code strings
C(x, s) interpreted as num-
bers. It is also the su-
premum of C(x, s) when s is
a string of symbols (N - 1).

B0(X) “ideal” limit 2”

a) code string for strings grown
to the right 161

J. RISSANEN AND G. G. LANGDON, JR.

C(S)

FIFO

I

I (4

k

LIFO

M

N

P

162

J . RISSANEN AND G. G . LANGDON, JR.

code string for string s
grown to the left, which is
the dual of code string C(s)

first-in, first-out; the code
string is recursively encoded
to the right, then recursively
decoded from the left.

fractional part of t

N x N matrix whose ele-
ments g(i , j) are zero unless
z(x(i) , N - 1) = x (j) , in
which case it is 2-“”-”

M x M identity matrix

integer part of

a symbol of alphabet
(0 , 1 , . . ., k , . . ., N - 1)

set of indices k which take
state x(i) to state x (j) :
W (x (i) , k) = x (j) }

length parameter of source
symbol k

total length, the sum of all
lengths [(s i) where s = s,,
s g , sg, . . .
last-in, first-out; the code
string is recursively encoded
to the left, and then recur-
sively decoded from the left.

number of states in state
space X

number of occurrences of
symbol i in string s

number of source symbols

M x M matrix of element

cumulative probability;

k-1

i=0

probability of occurrence of
symbol k

maximum number of frac-
tional bits in 4(k)

r maximum number of bits in
fractional part of augends
A(x, k)

S reversal of string s

S’

T

post fix substring of source
string s

a multiplication factor corre-
sponding to a shift of length
L , L = -log T o r T = 2-L

V

X

column vector whose ith
component is A(x(i) , N - 1)

.--“ti’

state space of the finite state
machine

states [x(i) E a, where X is
ordered

x(k) fractional part of [(k)

Y(k) integer part of [(k)

h

integer part of total length
U s)

next-state function; present
state x(s) and input k .

n-fold composite of z (x , k)
starting at state a.

empty string, used to ex-
press initial conditions for fi-
nite state machine

0, 1, . . ., k , . . ., (N - I) source symbol alphabet

References
1. N. Abramson, Information Theory and Coding, McGraw-Hill

Book Co., Inc., New York, 1963.
2. J . P. M. Schalkwijk, “An Algorithm for Source Coding,”

ZEEE Trans. Info. Theory IT-18, 395 (1972).
3. T. M. Cover, “Enumerative Source Encoding,” IEEE Trans.

Info. Theory IT-19, 73 (1973).
4. J. Rissanen, “Generalized Kraft Inequality and Arithmetic

Coding,” IBM J . Res. Develop. 20, 198 (1976).
5. R. C. Pasco, “Source Coding Algorithms for Fast Data Com-

pression,” Ph.D. thesis, Dept. of Electrical Engineering,
Stanford University, CA (1976).

6. E. N. Gilbert and E. F. Moore, “Variable-length Binary En-
codings,” Bell. Syst . Tech. J . 38, 933 (1959).

7. D. Knuth, The Art of Computer Programming, Vol. 2, Addi-
son-Wesley Publishing Co., Reading, MA, 1969.

Received January 31, 1978; revised May 17, I978

The authors are located at the IBM Research Division
laboratory, 5600 Cottle Road, Sun Jose, California
951 93.

IBM J. RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979

