
Cleaning Disguised Missing Data: A Heuristic Approach ∗

Ming Hua
School of Computing Science

Simon Fraser University, Canada
mhua@cs.sfu.ca

Jian Pei
School of Computing Science

Simon Fraser University, Canada
jpei@cs.sfu.ca

ABSTRACT
In some applications such as filling in a customer informa-
tion form on the web, some missing values may not be explic-
itly represented as such, but instead appear as potentially
valid data values. Such missing values are known as dis-
guised missing data, which may impair the quality of data
analysis severely, such as causing significant biases and mis-
leading results in hypothesis tests, correlation analysis and
regressions. The very limited previous studies on cleaning
disguised missing data use outlier mining and distribution
anomaly detection. They highly rely on domain background
knowledge in specific applications and may not work well for
the cases where the disguise values are inliers.

To tackle the problem of cleaning disguised missing data,
in this paper, we first model the distribution of disguised
missing data, and propose the embedded unbiased sample
heuristic. Then, we develop an effective and efficient method
to identify the frequently used disguise values which capture
the major body of the disguised missing data. Our method
does not require any domain background knowledge to find
the suspicious disguise values. We report an empirical eval-
uation using real data sets, which shows that our method
is effective – the frequently used disguise values found by
our method match the values identified by the domain ex-
perts nicely. Our method is also efficient and scalable for
processing large data sets.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

General Terms
Algorithms, Design, Experimentation

Keywords
Data Quality, Data Cleaning, Disguised Missing Data

∗This research is supported in part by NSERC Discovery
Grant 312194-05. All opinions, findings, conclusions and
recommendations in this paper are those of the authors and
do not necessarily reflect the views of the funding agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’07, August 12–15, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-609-7/07/0008 ...$5.00.

1. INTRODUCTION
Processing missing values is one of the most important

tasks in data cleaning. Many methods have been developed
to handle explicitly missing values or conduct analysis and
data mining on noisy data sets with explicitly missing data.

Interestingly, in many applications, some missing values
may not be explicitly represented as such, but instead ap-
pear as potentially valid data values. Such missing values
are known as disguised missing data [5].

Example 1 (Disguised missing values). Consider
the situation where a customer fills in an online applica-
tion form of a frequent flyer program. Attribute gender has
two choices: male or female. A system may set one of the
two values, say male in this example, as the default value.
Many customers may not want to disclose this information,
or may not want to spend time to fill in the information.
The consequence is that many missing values may disguise
themselves as the default value, male in this case.

Using system default values is not the only cause trans-
lating to disguised missing data. As another example, the
attribute birth date is often required in many customer ac-
count registration forms. However, many customers do not
want to disclose their privacy. Popularly, one may choose
January 1 (the first value in the pop-up lists of month and
day, respectively) in order to pass. Here, January 1 is a
disguise for the missing data.

Disguised missing data exist in real applications. For ex-
ample, we will analyze two real data sets in Section 5: the
Pima Indians Diabetes database containing records about
Pima Indian females who are at least 21 years old and tested
either positive or negative for diabetes, and the Adverse
Event Reporting System data set from the U.S. Food and
Drug Administration in the first quarter of 2004. Disguised
missing data are detected in both data sets. Interestingly,
many previous machine learning studies (e.g., [2, 6]) use the
Pima Indians Diabetes database but presume that the data
set has no missing data.

Disguised missing data may impair the quality of data
analysis severely. Significant biases may be caused by the
disguised missing data. As illustrated in [5], due to the dis-
guised missing data, some simple statistics such as standard
deviation may shift to some anomalous values. Moreover,
hypothesis tests, correlation analysis and regressions using
disguised missing data may give misleading results.

Disguised missing data pose a much more serious chal-
lenge for data cleaning than explicitly missing values. For
explicitly missing values, the exact missing entries are known

and thus strategies can be developed to avoid using those
entries in data analysis. For disguised missing data, how-
ever, we may not even know the exact missing entries. In
the situations illustrated in Example 1, the resulting data
set may contain the male customers who did provide the
information, and some customers born on January 1. How
to distinguish those disguised missing values and those real
values is far from trivial.

Although there are extensive studies on data analysis with
missing values, to the best of our knowledge, the problem
of cleaning disguised missing data has not been investigated
thoroughly. In this paper, we tackle the problem and make
the following contributions. First, we analyze the distribu-
tion of disguised missing values and identify the important
and interesting embedded unbiased sample (EUS) heuristic
that often holds for disguised missing values: the projected
database of a disguise value often contains a large unbi-
ased sample of the whole data set. Based on this prop-
erty, we propose a general framework to identify suspicious
frequently used disguise values. Second, mining frequently
used disguise values from large data sets is computationally
challenging. We devise efficient and scalable heuristic al-
gorithms. Last, we test our approach using both real data
sets and synthetic data sets. The experimental results show
that our method is effective—the frequently used disguise
values found by our method match the values identified by
the domain experts nicely. Our method is also efficient and
scalable for processing large data sets.

The rest of the paper is organized as follows. In Section 2,
we describe disguised missing data formally and review re-
lated work. In Section 3, we present the embedded unbiased
sample property and propose a framework of finding suspi-
cious frequently used disguise values. We develop an efficient
data mining approach in Section 4. Experimental results are
reported in Section 5. The paper is concluded in Section 6.

2. DISGUISED MISSING DATA
For a tuple t in a table T , the value of t on attribute A

is denoted by t.A, which is also called an entry. In data
collection, for an entry t.A, three situations may arise.

Case 1: The user provides a value to the entry that, to
the best of the user’s knowledge, reflects the fact in the real
world and should be captured. Due to observation errors,
it is possible that a user provides an incorrect value to the
entry. The point we want to make in this case is that the
entry value is not missing in its nature.

Case 2: The user does not provide a value. In other words,
t.A is explicitly missing, denoted by t.A = ⊗, where ⊗ is a
meta symbol not in the domain of any attribute.

Case 3: The user does not intend to provide a value that
reflects the fact in the real world. However, due to some data
collection mistakes, such as the cases illustrated in Exam-
ple 1, a value in the domain of A is recorded in the table. In
other words, a disguised missing value happens. Although
the entry value is missing in its nature, the table records a
“fake” value, which is called a disguise value.

Formally, let T be the truth table and T̃ be the recorded
table. Here, the truth table contains the data that should
be recorded. There exists a one-to-one mapping between the

tuples in T and T̃ . That is, for any tuple t ∈ T , there is a

corresponding tuple t̃ ∈ T̃ , and vice versa.
For any entry t.A, if t.A 6= ⊗, then t̃.A = t.A. That

Symbol Explanation

T The truth table

T̃ The recorded table

T̃ ′ A subset of T̃

t, t̃ A tuple in the fact/recorded table

t.A, t̃.A An entry in the fact/recorded table

T̃v The projected database of value v
Sv The disguised missing set of v
Mv The maximal embedded unbiased sample of v

φ(T̃ , T̃ ′) The correlation-based sample quality score

Figure 1: Some frequently used notations.

is, if an entry in the truth table is not missing, then it is
collected correctly in the recorded table. However, if t.A =
⊗, then t̃.A can be either ⊗ or a legal value in the domain
of A. Particularly, an entry t̃.A is called disguised missing
if t.A = ⊗ but t̃.A 6= ⊗. The value t̃.A is the disguise of the
disguised missing entry, or called a disguise value. Figure 1
summarizes some frequently used notations in the paper.

In data cleaning, we are given the recorded table T̃ , while
the truth table T is typically unavailable. Ideally, the prob-
lem of cleaning disguised missing data is to find the values
that are frequently used as disguise values, and the set of
disguised missing entries.

Cleaning disguised missing data in general is very difficult.
As an extreme example, if the missing values in the truth
table are disguised by independent and random values in
the domain of the attribute, it is very hard to unmask them
without any hints.

Several heuristic approaches have been considered for clean-
ing disguised missing data. For example, with background
knowledge, a domain expert can screen entries with suspi-
cious values, such as blood pressure of 0. More generally,
outliers can be found and considered as potential disguised
missing values [4]. However, if a data set has many disguised
missing entries, such as those disguised male entries in Ex-
ample 1, they may not appear as outliers. One heuristic way
to detect the existence of such disguised missing data is to
detect distribution anomalies [4]. For example, if we observe
that the number of tuples having value male is much larger
than that of tuples having value female, and we know that
the populations of males and females in the data set should
be balanced, then we can conclude that some male entries
in the data set may be disguised missing.

Although the problem of cleaning disguised missing data
has been tackled from some angles, the existing approaches
often rely on domain knowledge heavily, and are developed
for specific applications. However, domain knowledge is of-
ten incomplete or even unavailable for many data analysis
tasks. For example, the correct distribution of an attribute
may not be known. Then, analyzing suspicious values, out-
liers and distribution may become difficult and unreliable.
As observed in [1], a missing value may disguise itself as an
inlier, a data value that lies in the interior of the statistical
distribution of normal data values. Those inlier disguised
missing values cannot be detected effectively using the ex-
isting methods. In addition, due to their heavy reliance on
domain knowledge, most of the existing methods are not
general and capable for generic applications.

having value "male"
T_male: All tuples

disguise value "male"
missing tuples using
S_male: All disguised

in the fact table
having value "male"
R_male: All tuples

Figure 2: The EUS heuristic.

3. GENERAL FRAMEWORK
In this section, we first observe the embedded unbiased

sample heuristic of frequent disguise values. Then, we pro-
pose a framework for cleaning disguised missing data, and
analyze the computational challenges.

3.1 Embedded Unbiased Sample Heuristic
As analyzed before, if missing values disguise themselves

randomly, it is very difficult to identify the disguised missing
data. Fortunately, such random disguising often does not
happen extensively in practice. Instead, as illustrated in
Example 1, a small number of values (typically one or two
in an attribute) are frequently used as the disguises. It is
practical to make the following assumption.

Assumption 1 (Frequently used disguises). On an
attribute, there often exist only a small number of disguises
that are frequently used by the disguised missing data.

Under the missing completely at random (MCAR) and
missing at random (MAR) models [3], missing data are often
distributed randomly in real data sets. Consequently, dis-
guised missing entries are often distributed randomly, too,
as verified by our experimental results using real data sets.

Example 2 (EUS heuristic). Consider the situation

described in Example 1. Let T̃male be the set of tuples carry-

ing value male on attribute gender. Conceptually, T̃male can
be divided into two exclusive subsets as shown in Figure 2.

The first subset, Rmale, contains those tuples whose values
on attribute gender are not missing in the truth table. The
second subset, Smale, contains those tuples whose values on
attribute gender are disguised missing and the value male

is used by them as the disguise value.
Heuristically, if the disguised entries are randomly dis-

tributed and value male is frequently used as a disguise, the
set Smale is an unbiased sample of the truth table except for
attribute gender itself (all tuples in Smale take value male

on gender). Similarly, we can also divide T̃female, the set of
tuples having value female on attribute gender, into two
subsets Rfemale and Sfemale. If value male is used more fre-
quently as the disguise value on attribute gender, then Smale

from T̃male is larger than Sfemale from T̃female.
According to Assumption 1, on each attribute, there are

only a very small number of values that are used as disguises.
In other words, it is likely those disguise values contain sub-
sets of tuples that are unbiased samples of the whole data
set. As a heuristic, if a value contains a large subset of tu-
ples that is an unbiased sample of the whole data set, this
value is suspicious of a disguise value.

For a value v on attribute A, the set of tuples in T̃ carrying
the value on the attribute is called the projected database of

v, denoted by T̃A=v = {t̃ ∈ T̃ |t̃.A = v}. Hereafter, for the

T_v: the projected database

M_v: the maximal embedded unbias sample

S_v: the disguised missing set

Figure 3: The relationship among several concepts.

sake of brevity, we assume that the domains of attributes
are exclusive, and thus a value belongs to the domain of at

most one attribute. Then, we can write T̃A=v as T̃v.
We observe the following embedded unbiased sample heuris-

tic (EUS heuristic for short) of disguised missing data.

The Embedded Unbiased Sample Heuristic If v is a

frequently used disguise value on attribute A, then T̃A=v con-

tains a large subset Sv ⊆ T̃A=v such that Sv is an unbiased

sample of T̃ except for attribute A.

Interestingly, the heuristic is also applicable to contin-
uous attributes and does not need discretization, since as
the frequently used disguise values are fixed, their projected
databases may often be much larger than the projected
databases of other values. It is insensitive to the variances
of attribute values due to the same reason.

3.2 A General Framework
Since a small number of values may be used frequently as

disguises, a critical step in cleaning disguised missing data
is to find the disguise values used frequently in attributes.

For each value v on attribute A, let Tv be the set of tuples

carrying value v in the truth table. Clearly, Tv ⊆ T̃v. Then,

Sv = (T̃v−Tv) is the set of tuples using v as the disguise on
attribute A. We call Sv the disguised missing set of v.

According to the EUS heuristic, Sv is an unbiased sample

of T̃ . The larger the size of Sv, the more frequently v is used
as the disguise value. A value v is called a frequent disguise
value if it is frequently used as disguises.

Unfortunately, Sv is unknown and cannot be computed

accurately from T̃ in general. The EUS heuristic suggests
a heuristic way to find those frequent disguise values. Es-
sentially, on each attribute, we can find a small number of
attribute values whose projected databases contain a large
subset as an unbiased sample of the whole table. Such at-
tribute values are suspects of frequently used disguise values.
The larger the unbiased sample subset, the more likely the
value is a disguise value.

Technically, for value v on attribute A, let Mv ⊆ T̃v be the

maximal subset of T̃v that is an unbiased sample of D. Mv

is called the maximal embedded unbiased sample, or MEUS
for short. We can use the size and the quality (i.e., how
well it resembles the distribution of the whole data set) of
Mv as the indicators of how likely that v is a disguise value.
Those values with a large MEUS should be reported as the
suspects of frequent disguise values. Figure 3 illustrates the

relationship among the three sets T̃v, Mv, and Sv.
On the other hand, the above heuristic may not hold all

the time. For example, many people may submit their tax
returns on the deadline day. Thus, on attribute submission-
date, the projected databases of the dates on or right before

Phase 1: Mining candidates of frequent disguise
values

Input: A table T and a threshold on the number of
candidates of frequent disguise values k;

Output: for each attribute, k candidates of frequent
disguise values;

Method:
1: FOR each attribute A DO

2: // applicability test
check whether the projected databases of most
(frequent) values on A are unbiased samples of T ,
if so, break;

3: FOR each value v on A DO derive Mv;
4: find the value(s) with the best and largest Mv’s;

END FOR

Phase 2: postprocessing: verify the candidates of
frequent disguise values;

Figure 4: The framework.

the deadline may likely contain large unbiased samples of all
tax returns, while the dates on or right before the deadline
are often not frequently used disguise values.

To ensure that the EUS heuristic fits a data set, before
we apply the heuristic approach to look for suspicious dis-
guise values in an attribute, we should first test whether
most of the projected databases of the frequent values in
the attribute are unbiased samples of the whole database.
The heuristic should be applied only if most of the projected
databases are not unbiased samples.

Based on the above discussion, a general framework of
cleaning disguised missing data is shown in Figure 4. The
framework is in two phases. In the mining phase, we ana-
lyze each attribute to check whether our heuristic approach
is applicable. We find the candidates of frequent disguise
values on the applicable attributes. In the postprocessing
phase, those candidates can be verified by domain experts
or other data cleaning methods.

In the rest of this paper, we focus on the first phase of
the framework, which reduces the number of candidates sub-
stantially and thus makes the domain experts’ analysis effec-
tive. Please note that in our approach, the first phase does
not require any domain knowledge and can be conducted
automatically.

4. A DATA MINING APPROACH
There are some important technical challenges.
First, how can we measure whether a set of tuples is an

unbiased sample of a table? Typically, the table in ques-
tion is of multiple attributes. A sample with a non-trivial
sample rate (i.e., not close to 100%) may lose some informa-
tion about the rare combinations of attribute values. Statis-
tically, measuring whether two multidimensional data sets
have a similar distribution is far from trivial.

Second, how can we compute a maximal embedded unbi-

ased sample Mv from the projected database T̃v? One serious
difficulty is that the subsets are not monotonic in terms of
their similarity to the whole data set in distribution. For

U ⊆ T̃v, U may contain a subset V ⊂ U such that V re-

sembles the distribution of T̃ better than U . On the other

hand, another subset W ⊂ U may be worse than U in terms
of being an unbiased sample. In general, finding Mv is com-
putationally costly.

Last, Can we avoid computing the MEUS for every at-
tribute value v? As computing the MEUS for a value is
already costly, computing all MEUS’s for all values on all
attributes can be too expensive in large databases where
there are tens of attributes and each attribute has tens or
hundreds of possible values on average.

4.1 Correlation-Based Sample Quality Score
Given table T̃ on attributes A1, . . . , An and a subset T̃ ′ ⊂

T̃ , we want to measure whether T̃ ′ is a good sample of T̃ . In-
tuitively, correlations can capture the distribution of a data

set nicely. If values correlated in T̃ are also correlated in

T̃ ′ and vice versa, then likely T̃ and T̃ ′ are of similar dis-
tribution. Based on this intuition, we can use correlations

of pairs of values to measure how good a sample T̃ ′ is with

respect to T̃ .
Technically, let vi1 , . . . , vil be values on attributes Ai1 , . . .,

Ail , respectively, where Aij 6= Aik for j 6= k. The probabil-

ity of a tuple in T̃ having vi1 , . . . , vil is given by

PT̃ (vi1 , . . . , vil) =
|{t̃ ∈ T̃ | ∧l

j=1 (t̃.Aij = vij)}|
|T̃ |

.

The correlation among the occurrences of vi1 , . . . , vil is mea-
sured by

Corrvi1 ,...,vil
=

PT̃ (vi1 , . . . , vil)

Πl
j=1PT̃ (vij)

.

Similarly, we can obtain the probability and the correlation

on subset T̃ ′.
Computing correlations on multiple variables can be costly

on large data sets. Practically, we can consider only corre-
lations of variable pairs. Let vi and vj be two values on
attributes Ai and Aj , respectively. The correlation between
vi and vj (also called the lift sometimes) is given by

Corr(vi, vj) =
P (vi, vj)

P (vi)P (vj)
=

P (vj |vi)

P (vj)
.

To measure how good a sample the subset T̃ ′ is with re-

spect to T̃ , we compare the correlations in T̃ and T̃ ′ and
calculate the correlation-based sample quality score, denoted

by φ(T̃ , T̃ ′), as

∑

P
T̃ ′ (vi,vj)>0

PT̃ (vi, vj)

1 + |CorrT̃ (vi, vj)− Corr
T̃ ′(vi, vj)|q , (1)

where CorrT̃ and Corr
T̃ ′ are the correlations on T̃ and

T̃ ′, respectively, and q is the order imitating the order of
Minkowski distances.

The correlation-based sample quality score uses the value

pairs in the subset T̃ ′ as features to measure the sample
quality. A sample quality score is a non-negative number.

The larger the score, the better T̃ ′ an unbiased sample of T̃ .
In the score, we accommodate the following major factors.

First, the score opts for subsets T̃ ′ where the correlations

in T̃ ′ are similar to those in T̃ . However, since T̃ ′ is a sample

of T̃ and is smaller in size, there can be many pairs of at-

tribute values appearing in T̃ but not in T̃ ′. Thus, the score

does not check pairs correlated in T̃ but not appearing in

T̃ ′. Instead, to measure whether those popular correlations
are captured, the probability of an attribute value pair (i.e.,
P (vi, vj) as the numerator) is used as the weight. A sample
capturing more correlations and more popular correlations
has a higher score.

Second, in the score, we use correlations of attribute value
pairs. Generally, we can use correlations of sets of attribute
values of arbitrary size. In the worst case, two data sets
may have very similar correlations on every pair of attribute
values, but may still be quite different in the full space dis-
tribution. However, computing correlations among multiple
attribute values can be expensive on large data sets. On the
other hand, in practice, correlations of attribute value pairs
are often good enough to serve the purpose of measuring the
similarity of distributions, as shown by our experimental re-
sults on real data sets.

Last, we normalize the difference between the correlations

of an attribute value pair in T̃ and T̃ ′ to range [0, 1] by
using the difference of correlations in the denominator. This
technical treatment avoids biasing value pairs of very similar

correlations in T̃ and T̃ ′.
For each value v on attribute A, we compute Mv, the

MEUS of v. To measure the potential that a value v is a
frequent disguise value, we consider two aspects: the quality

of the MEUS measured by φ(T̃v, Mv) and the relative size

of Mv with respect to T̃v. The latter aspect reflects how
well the projected database fits the EUS heuristic. Thus,
we define the disguise value score (DV-score for short) of a

subset U ⊆ T̃v as dv(v, U) = |U|
|T̃v|

φ(T̃v, U). Moreover, the

(frequent) disguise value score(DV-score for short) of v is
defined as

dv(v) = max
U⊆T̃v

{dv(v, U)} = max
U⊆T̃v

{ |U |
|T̃v|

φ(T̃v, U)}.

Mv, the maximal embedded unbiased sample, is a subset
maximizing the DV-score. That is,

Mv = arg max
U⊆T̃v

{ |U |
|T̃v|

φ(T̃v, U)}.

4.2 Finding Approximate MEUS’s
Generally, the DV-score is not monotonic with respect to

the set containment relation. That is, for a subset U ⊆
T̃v and W ⊂ U , dv(v, W) may be larger or smaller than
dv(v, U). The non-monotonic nature of the DV-score indi-
cates that computing the maximal embedded unbiased sam-
ples is computationally challenging. In the worst case, one
may have to consider an exponential number of subsets in
order to find Mv. It is often too costly for popular values

(i.e., |T̃v| is large) in large databases.
To tackle the problem practically, we adopt a greedy ap-

proach as shown in Figure 5. We start with the projected

database T̃v as the initial sample. In each interaction, for
a tuple t̃ in the current sample, we calculate the DV-score
gain if t̃ is removed from the current sample set. A tuple
with the largest positive DV-score gain is removed as the
result of the current iteration. The iteration continues un-
til the DV-score cannot be improved further by removing
one tuple from the current sample. The resulting sample is
output as the approximation of Mv.

Input: a table T and a value v on attribute A;
Output: approximate Mv;
Method:

1: U ← T̃v;
2: REPEAT

3: FOR EACH tuple t̃ ∈ U

compute the DV-score gain of (U − {t̃}) over U ;

4: remove a tuple t̃0 with the largest DV-score gain if
the gain is positive;

5: UNTIL no tuple can be removed;
6: RETURN U ;

Figure 5: A greedy method to compute approximate
MEUS.

4.3 Efficient Implementation
A straightforward implementation of the greedy algorithm

may still be costly on large databases. Once a tuple is re-
moved, the total number of tuples in the current sample is
reduced, and thus the correlation between every value pair
changes. Therefore, for each round in the iteration, we may
have to update the correlation of each value pair, and also re-
compute the DV-score gain for every surviving tuple in the

current sample. The complexity of the algorithm is O(|T̃v|2).
Clearly, when the projected database T̃v is large, the over-
head can be substantial. Here, we present some techniques
to improve the efficiency of the greedy search.

4.3.1 Searching Using Contribution Scores
Since the DV-score of a tuple changes whenever the sam-

ple changes, and computing the DV-score gain can be costly,
we would like to find some heuristics that help us to, with-
out re-computing the DV-scores for all tuples, identify the
tuples that may lead to good DV-score gains.

Let support sup(vi) be the number of tuples in the cur-
rent sample that contain value vi. We denote the number
of tuples in the current sample by n. Then, the correla-
tion of vi and vj in the current sample can be rewritten as

Corr(vi, vj) =
sup(vi,vj)

sup(vi)sup(vj)
n.

Once a tuple is removed, one of the following three cases
arises.

Case 1: If the tuple does not contain vi or vj , then
sup(vi, vj), sup(vi) and sup(vj) remain, but n decreases.

The correlation decreases, too. The change is
sup(vi,vj)

sup(vi)sup(vj)
.

Case 2: If the tuple contains both vi and vj , removing the
tuple leads to a change of the correlation between vi and vj .
However, how the correlation changes depends on the values
of the supports of vi, vj and their combination.

Case 3: If the tuple contains only vi or vj but not both,
then removing the tuple boosts the correlation between vi

and vj . The change is n−sup(vi)
sup(vi)−1

· sup(vi,vj)

sup(vi)sup(vj)
if the tuple

contains vi but not vj ; and is
n−sup(vj)

sup(vj)−1
· sup(vi,vj)

sup(vi)sup(vj)
if the

tuple contains vj but not vi.
Based on the above observations, we can maintain the cor-

relation information as follows. For each value pair (vi, vj),
we keep its correlation and its probability in the whole data
set, i.e., CorrT̃ (vi, vj) and PT̃ (vi, vj). Those values do not
change during the computation and thus should be com-
puted only once.

We also maintain the correlation between vi and vj in the
current sample, i.e., CorrU (vi, vj), and whether it is greater
than or smaller than CorrT̃ (vi, vj). Instead of computing
the DV-score gain for each tuple at each iteration, which
is very costly, we assign each tuple t̃ a contribution score as
c(t̃) =

∑
vi,vj∈t̃,PU (vi,vj)>0 PT̃ (vi, vj)f(vi, vj , t̃), where

f(vi, vj , t̃) = 1 if removing t̃ reduces the difference between
CorrU (vi, vj) and CorrT̃ (vi, vj); and, otherwise, −1.

The value of f can be computed quickly using the three
cases of how Corr(vi, vj) changes as analyzed before. Once a
tuple is removed, we update the correlations affected. Then,
a surviving tuple in the current sample changes its contri-
bution score only if it contains some value pairs whose cor-
relations are affected. We do not need to recompute the
contribution scores of other tuples. Comparing to comput-
ing DV-score gains, contribution scores are often much easier
to maintain.

Following the spirit of the greedy search, we pick the tu-
ple with the largest positive contribution score, compute its
DV-score gain, and remove it from the current sample if
the gain is positive. The algorithm terminates if we cannot
find any tuple with a positive contribution score, or the DV-
score gain is not positive. As shown in our experiments us-
ing real data sets, the heuristic method improves the search
efficiency substantially, and still gets results of good quality.

4.3.2 Pruning Other Values in the Same Attribute
Computing the approximate MEUS for a value v may not

be cheap. If we have to compute the approximate MEUS
for each value on an attribute, it can be expensive. Once
we compute the MEUS for one value or some MEUS’s for
several values on one attribute, can we use the information
to prune the computation of the MEUS’s of other values
on the same attribute? There are multiple values on an
attribute. In which order should we process those values and
derive their DV-scores so that more pruning may happen?

If we can get large DV-scores from the first several values
that we process, then we may have a better opportunity to
prune the remaining values. Based on this observation, we
should start with the most frequent value on an attribute.
Heuristically, a large projected database may have a better
chance to have a subset as an unbiased sample, and thus
achieve a better DV-score. Therefore, on each attribute, we
should process the values in their support descending order
to compute their DV-scores.

Suppose u is the value on attribute A that has the largest
DV-score so far. When we consider value w on the same
attribute, if we can determine that dv(w) must be smaller
than dv(u), then we do not need to compute the exact value
of dv(w), since u is a better suspect of frequent disguise
value on this attribute. How can we determine early that
dv(w) is smaller than dv(u)?

If U is the current sample of w in the greedy search (Fig-
ure 5), then, since in the definition of the correlation-based
sample quality score (Equation 1)

1

1 + |CorrT̃ (vi, vj)− Corr
T̃ ′(vi, vj)|q ≤ 1,

an upper bound of d(w, U) is given by

d(w, U) ≤ |U|
|T̃v|

∑
PU (vi,vj)>0 PT (vi, vj)

≤ ∑
PU (vi,vj)>0 PT (vi, vj).

(2)

Therefore, during the greedy search, we check after each

iteration |U|
|T̃v|

∑
PU (vi,vj)>0 PT (vi, vj) against dv(u). Once

|U|
|T̃v|

∑
PU (vi,vj)>0 PT (vi, vj) becomes smaller than dv(u), the

search should stop since v cannot have a better DV-score
than u due to the first inequality of Equation 2.

Furthermore, for a value v, if
∑

PU (vi,vj)>0 PT (vi, vj) is

smaller than dv(u), then we even do not need to search for v
according to the second inequality of Equation 2. For many
infrequent values on the attribute, this case may happen and
thus those infrequent values can be pruned directly.

5. EXPERIMENTAL RESULTS
In this section, we report a systematic empirical study

using real data sets and synthetic data sets. All the ex-
periments were conducted on a PC computer running the
Microsoft Windows XP Professional Edition operating sys-
tem, with a 3.0 GHz Pentium 4 CPU, 1.0 GB main memory,
and a 160 GB hard disk. Our algorithms were implemented
in Microsoft Visual C++ V6.0. By default, our method was
implemented as described in Section 4. We used the greedy
search method with the help of contribution score, and set
the order q = 1 in the correlation-based sample quality score
(Equation 1).

5.1 Finding Suspicious Frequent Disguise Val-
ues on Real Data Sets

We tested our method on two real data sets, the Pima
Indians Diabetes Database from the UCI Machine Learn-
ing Database Repository1 and the AERS (Adverse Event
Reporting System) data set from the U.S. Food and Drug
Administration (FDA)2. In both data sets, all attributes
pass the applicability test of our approach. That is, for each
attribute there exists at least one relatively frequent value
whose projected database is not an unbiased sample of the
whole data set. We used some thresholds to conduct the
test. Limited by space, we omit the details here.

In the rest of this section, our goal is to find the most
likely frequent disguise value for each attribute.

There are 768 records in the Pima Indians Diabetes data
set. All the records are on eight attributes of Pima Indian
females who are at least 21 years old and tested either pos-
itive or negative for diabetes. The domain of each attribute
is numeric, and no explicitly missing value is reported. How-
ever, some disguise missing data are detected by examining
the suspicious values found in our experiments as shown in
Table 1.

On the attributes diastolic blood pressure, triceps skin fold
thickness, 2-hour serum insulin, and body mass index, our
method detects 0 as the most frequent disguise value. The
results match the domain knowledge. In those attributes,
0 is a suspicious value since unlikely those attributes take
values 0 for a person of reasonable condition. There are
35, 227, 374 and 11 tuples having value 0 in those four
attributes, respectively. Each projected database of those
values forms the maximum embedded unbiased sample of
the whole database. In other words, those values are quite
evenly distributed in the data set. This observation strongly
supports the embedded unbiased sample property of the fre-
quent disguise values.

1http://www.ics.uci.edu/ mlearn/MLRepository.html.
2http://www.fda.gov/cder/aers/aers-prev-data.htm.

Most frequent Number of Number of tuples in the
Attribute disguise value Occurrences approximate MEUS

Number of times pregnant 0 111 110
Plasma glucose concentration at 2 hours 91 9 9

Diastolic blood pressure (mm Hg) 0 35 35
Triceps skin fold thickness (mm) 0 227 227
2-Hour serum insulin (mu U/ml) 0 374 374

Body mass index (weight in kg/(height in m)2) 0 11 11
Diabetes pedigree function no no no

Age (years) 21 63 57

Table 1: Suspicious Disguised Missing Values in the Pima Indians Diabetes data Set.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

-0.2 -0.1 0 0.1 0.2 0.3 0.4

P
er

ce
nt

ag
e

of
 p

ai
rs

 (
%

)

Correlations between value v and other values

v=0
v=50

Figure 6: Distribution of covariance cor-
relation between the frequent disguise
value and values in other attributes.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10
D

is
gu

is
e

va
lu

e
sc

or
e

Support of value 0 (%)

Value 0
Value 3
Value 1

Figure 7: DV-score with re-
spect to Support of outlier dis-
guise value.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

D
is

gu
is

e
va

lu
e

sc
or

e

Support of value 6 (%)

Value 6
Value 3
Value 1

Figure 8: DV-score with re-
spect to Support of outlier dis-
guise value.

Let us further analyze the suspicious disguise value di-
astolic blood pressure 0 in detail. Figure 6 plots the co-
variance correlations between value 0 and values on other
attributes. To make the figure easy to read, we plot the
cumulative frequencies of the correlations. That is, we sort
all values on other attributes according to their covariance
correlations with respect to 0 on attribute diastolic blood
pressure, in value ascending order. The figure plots the per-
centage of values whose covariance correlation with 0 are up
to e, while e is the variable shown in the horizontal axis.
More than 80% of the values have a covariance correlation
in range [−0.1, 0.1]. This highly indicates that value 0 on
this attribute is distributed evenly. For comparison, we also
plot the distribution of normal value 50 as an example. As
can be seen, value 50 has stronger correlations with values
other than 0.

Our method is different from simply picking the most fre-
quent value on an attribute as the suspect. For example, on
attribute diastolic blood pressure, our method picks value 0,
which turns out is a suspicious value. In the same attribute,
value 70 is the most frequent one, appearing 57 times. In
fact, value 70 corresponds to the normal blood pressure of a
human being in good health. The reason that our method
can pick 0 as a suspicious value instead of 70 is that the
normal blood pressure may be correlated with some other
attribute values for a person in good health, which makes
the value 70 not evenly distributed in the database.

Our method can find not only disguise values that are
outliers or suspects in the domains of the attributes, but also
those inliers which cannot be found by previous methods.
For example, on the attribute age, value 21 is picked by our
method as a suspicious frequent disguise value. The domain
of the attribute is from 21 to 81. However, value 21 appears
in 63 tuples, nearly 10% of the data set. Our greedy method
finds a sample of 57 tuples that resembles the distribution

of the whole data set well. A conjecture here is that value
21 may be used as the default value when the patients’ age
information is collected.

On some attributes where the domain is highly diverse and
the frequency of every value is very low, our method cannot
find any suspicious frequent disguise values. For example,
in the attribute Diabetes pedigree function, the frequencies
of all values are below 1%. Therefore, no suspicious disguise
value is reported. In our implementation, we used a support
threshold to prune.

The Pima Indians Diabetes Data set is widely used in pre-
vious machine learning studies (e.g., [2, 6]). Most of the pre-
vious studies using this data set presume that the data set
has no missing data. However, the above analysis strongly
indicates that a substantial part of the tuples may have dis-
guised missing data in the five attributes, namely diastolic
blood pressure, triceps skin fold thickness, 2-hour serum in-
sulin, body mass index, and age. With the disguised missing
data, the results of those analysis may not be accurate.

We also tested our method on the AERS data set, which
contains adverse events reported to FDA from January 1,
2004 to March 31, 2004. Since some attributes contain a
large portion of explicitly missing values, we pick the 7 at-
tributes with the fewest missing values, namely ISR, CASE,
Event DT, FDA DT, AGE, WT, and Rept DT, and remove
the tuples with missing entries. There are totally 18, 174
records in the resulting data set.

Our method detects some inlier suspicious frequent dis-
guise values, such as value 20030101 (i.e., Jan 1, 2003) on
attribute Event DT, value 20040319 on attribute FDA DT,
and value 20040311 on attribute Rept DT. Our results match
the analysis reported in [5], which identifies the suspicious
disguise values using domain knowledge to detect abnormal
statistic distributions. Different from [5], our method de-
tects those disguise values without any domain knowledge.

The results on the two real data sets highly suggest that
our method is effective and accurate in finding suspicious
frequent disguise values. Moreover, our method can be ap-
plied to a wide range of applications, and does not need to
use any domain knowledge to identify suspects. It can find
frequent disguise values as outliers or inliers.

5.2 Detecting Disguised Missing Entries
We also tested whether our method can be used to detect

not only the frequent disguise values, but also the disguised
missing entries, that is, the exact locations (the tuples and
the attributes) where the entries are disguised missing.

To the best of our knowledge, there are not real data sets
in which the disguised missing entries are annotated. Thus,
we modified a real data set in our test.

We used the Breast Cancer Wisconsin data set from the
UCI Machine Learning Database Repository3. Totally there
are 699 records in the data set. Each record represents one
breast cancer case. There are only 16 missing values re-
ported in the data set.

We randomly injected the disguised missing data into the
attribute Uniformity of Cell Size whose domain is integers
between 1 and 10 (inclusive). We chose this attribute be-
cause there is one very frequent value in this attribute, value
1 occurring in 384 tuples (i.e., 54.94% of the tuples in the
data set). We want to test how sensitive our method is with
respect to the population of disguised missing data.

We tested the capability of our method in detecting dis-
guised missing values from two aspects.

First, we tested how well our method can identify the
disguised missing values which use an outlier as the disguise.
We randomly chose s% of the tuples in the data set and
replaced their values on the Uniformity of Cell Size attribute
by 0, where s is a parameter varying from 1% to 10% in our
experiments. Figure 7 shows the DV-score of the outlier
disguise value 0 and those of the top-2 legal values in the
domain with the highest DV-scores.

When the support of 0 is greater than 6%, the DV-score
of 0 is the highest on the attribute and thus 0 is captured
by our method as the frequent disguise value. Although
here the support of 1 is much higher than the support of
0 in such a case, our method can detect the disguise value
accurately based on the distribution, and is robust to the
large difference in frequency.

When the support of 0 is smaller than 6%, the DV-score of
0 cannot exceed those of 1 and 3, the two legal values with
the highest DV-scores. In such a situation, the projected
database of 0 is too small to resemble the distribution of
the whole data set, and thus 0 cannot be detected by our
method as a frequent disguise value.

This experiment clearly shows that our method can de-
tect outlier disguise values in very low support, and is not
sensitive to popular but not disguise values.

In the above case, the projected database of 0 is the MEUS
returned by our method. Thus, once 0 is detected as the
disguise value, all disguised missing entries can be identified
correctly.

Second, we tested the effectiveness of our method on dis-
guised missing entry detection for disguise values as inliers.
We chose value 6 as disguise since it has the lowest DV-score
in the attribute, which means that its projected database is
the most biased. We randomly chose s% of tuples in the

3http://www.ics.uci.edu/ mlearn/MLRepository.html.

data set and replaced their values on the Uniformity of Cell
Size attribute by 6, where s is a parameter varying from 1%
to 10% in our experiments. The results are shown in Fig-
ure 8. When the support of 6 is 8% or over, value 6 has the
largest DV-score and thus is identified by our method as the
top suspicious frequent disguise value. When the support
of 6 is 8%, there are 82 tuples in the projected database of
6, 56 of them are disguised missing values injected by us.
Our method reports a MEUS of 6 having 75 tuples. Among
those tuples, 55 are those injected by us. In other words,
the MEUS returned by our method captures most of the
disguised missing data. This also verifies the effectiveness of
our greedy method in searching MEUS’s.

From this set of experiments, we can clearly see that our
method is capable of finding MEUS’s for disguise values as
either outliers or inliers. The MEUS’s cover most of the
disguised missing data. This property is important and very
useful for cleaning disguised missing data.

5.3 Effectiveness of the Correlation-Based
Sample Quality Score

The correlation-based sample quality score (Equation 1)
takes a parameter, order q, to imitate the order of Minkowski
distances. To test the effect of the parameter, we varied
the order from 1 to 6 and compared the average size of the
approximate MEUS’s returned by our greedy method for all
values in each attribute in the Pima Indians Diabetes data
set. In Figure 9, we measure the relative size of a MEUS of
value v by dividing the number of tuples in the MEUS by the
number of tuples in the projected database of v. Limited by
space, the figure shows the results on only three attributes,
while the trends in other attributes are consistent.

The average MEUS size decreases when the order increases,
though the changes are quite moderate. With a higher or-
der, a sample is penalized more if it has more value pairs
of correlations different from the whole data set. On the
other hand, small samples with less value pairs in the sam-
ple may avoid some penalties, and thus are preferred by a
higher order.

Interestingly, the frequent disguise values are stable with
respect to the order. Among all the attributes in the Pima
Indians Diabetes data set, when the order varies from 1 to
6, only the suspicious disguise value on attribute Body mass
index changes. When the order is 3 or higher, value 312
replaces value 0 as the top frequent disguise value, but value
0 still has the second highest score among all the values.
Therefore, our method is insensitive to the order.

5.4 DV-Score Gain-based versus Contribution
Score-based search

In Section 4.3.1, we introduce contribution scores to im-
prove the efficiency. We tested the effectiveness of the contri-
bution scores. That is, we compared the MEUS’s computed
using the DV-score gain-based greedy search and those com-
puted using the contribution score-based greedy search.

We used the Pima Indians Diabets data set. The results
are shown in Table 2. We compared the most frequent dis-
guise values returned by the two search methods on the 7
attributes (i.e., except for the attribute diabetes pedigree
function where attribute values are of very low frequency
as analyzed before). In the table, the most frequent disguise
values and the numbers of tuples in the MEUS’s returned
by the two search methods are shown. We also list the num-

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

A
ve

ra
ge

 r
el

at
iv

e
si

ze
 o

f M
E

U
S

’s
 (

%
)

Order

2-Hour serum insulin
Body mass index

Age

Figure 9: Average relative MEUS
size with respect to order in sam-
ple quality score.

 0

 10000

 20000

 30000

 40000

 50000

 30000 45000 60000 75000 90000

R
un

tim
e

(s
ec

.)

Number of tuples

DV-score gain
Contribution score

Figure 10: Scalability with re-
spect to number of tuples.

 0

 50

 100

 150

 200

 250

 300

 350

 2 3 4 5 6 7 8

R
un

tim
e

(s
ec

.)

Number of attributes

DV-score gain
Contribution score

Figure 11: Scalability with re-
spect to dimensionality.

DV-score gain Contribution score Number
Attribute Most frequent Number of tuples Most frequent Number of tuples of common

disguise value in the MEUS disguise value in the MEUS tuples

Number of times pregnant 0 110 0 110 110
Plasma glucose concentration 91 9 91 9 9

Diastolic blood pressure 70 53 0 35 0
Triceps skin fold thickness 0 220 0 227 217

2-Hour serum insulin 0 374 0 374 374
Body mass index 0 11 0 11 11

Age 21 57 21 62 55

Table 2: The consistency between the DV-score gain-based search and the contribution score-based search.

ber of common tuples in the MEUS’s returned by the two
methods. We observe the following.

First, in most cases, the two search methods return the
most frequent disguise values consistently. In this experi-
ment, the only exception is the attribute diastolic blood pres-
sure, where the DV-score gain-based method returns value
70 (the most frequent value on this attribute) and the contri-
bution score method returns value 0 (the suspicious value).
It happens the contribution score method picks the correct
answer in this case. Overall, the two methods are consistent.

Second, the MEUS’s returned by the two methods are
highly consistent as long as they pick the same suspicious
disguise value. Occasionally, the contribution score method
returns a larger MEUS (e.g., for attributes triceps skin fold
thickness and age). The similarity between the MEUS’s is
at least 86% in our experiments4.

The experiments clearly show that the contribution score
method is consistent with the DV-score gain method. As we
can see in the next section, the contribution score method
can be much faster and more scalable than the DV-score
gain method, and is practical for large real data sets.

5.5 Efficiency and Scalability
We also evaluated the efficiency and the scalability of our

approach with respect to the size of the data set and the
dimensionality. We tested both the method using the DV-
score gain and the one using the contribution score in the
greedy search. To obtain large data sets, we duplicate the
AERS data set up to 5 times (with 7 attributes). As shown
in Figure 10, both methods have a linear scalability, but the
contribution score-based search is much more efficient.

We tested the scalability of the two methods with respect
to the dimensionality of the data sets using the Pima Indi-
ans Diabetes data set. The results are shown in Figure 11.

4The similarity between two sets A and B is defined as
|A∩B|
|A∪B| .

The contribution score-based search is faster. However, the
dimensionality curse appears. The runtime of both methods
increases exponentially as the number of attributes goes up.
The reason is that, with more attributes, there is an expo-
nential increase in the number of value pairs that need to
be checked in computing the scores.

6. CONCLUSIONS
Data cleaning is a foremost step for many data analy-

sis tasks. In this paper, we tackle the important, practical
and challenging problem of cleaning disguised missing data.
We identify the interesting and useful embedded unbiased
sample property of disguised missing data in practice, and
propose a novel and practical heuristic approach. Our ex-
tensive empirical evaluation using both real data sets and
synthetic data sets clearly show that our method is effective
and efficient for cleaning large data sets, and can be used in
practical applications.

7. REFERENCES
[1] D. DesJardins. Outliers, inliers, and just plain liars – new

graphical EDA+ (EDA Plus) techniques for understanding
data. In Proc. SAS User’s Group International Conference
(SUGI26), Long Beach, CA, 2001.

[2] B. Kégl and L. Wang. Boosting on manifolds: Adaptive
regularization of base classifiers. In NIPS’05.

[3] R. J. A. Little and D. B. Rubin. Statistical Analysis with
Missing Data. Wiley, New York, 1987.

[4] R. Pearson. Mining imperfect data: Dealing with
contamination and incomplete records. In SIAM DM’05.

[5] R. K. Pearson. The problem of distuised missing data.
ACM SIGKDD Explorations, 2006.

[6] G. Webb. Further experimental evidence against the utility
of occam’s razor. The Journal of Artificial Intelligence
Research, 4:397–417, 1996.

