
A Fault Model for Subtype Inheritance and Polymorphism �

Jeff Offutt
Department of Information and Software Engineering

George Mason University
Fairfax, VA 22030-4444 USA

ofut@ise.gmu.edu

Roger Alexander
Computer Science Department

Colorado State University
Fort Collins, CO 80523-2001 USA

rta@cs.colostate.edu

Ye Wu, Quansheng Xiao, Chuck Hutchinson
Department of Information and Software Engineering

George Mason University
Fairfax, VA 22030-4444 USA

fwuye,xiaoqsg@ise.gmu.edu, chuckhutchinson2@yahoo.com

The Twelfth IEEE International Symposium on Software
Reliability Engineering (ISSRE ’01), pages 84–95, Hong
Kong, PRC, November 2001.

Abstract

Although program faults are widely studied, there are
many aspects of faults that we still do not understand, par-
ticularly about OO software. In addition to the simple fact
that one important goal during testing is to cause failures
and thereby detect faults, a full understanding of the char-
acteristics of faults is crucial to several research areas. The
power that inheritance and polymorphism brings to the ex-
pressiveness of programming languages also brings a num-
ber of new anomalies and fault types. This paper presents
a model for the appearance and realization of OO faults
and defines and discusses specific categories of inheritance
and polymorphic faults. The model and categories can be
used to support empirical investigations of object-oriented
testing techniques, to inspire further research into object-
oriented testing and analysis, and to help improve design
and development of object-oriented software.

1. Introduction

Like their procedural counterparts, programs written in
object-oriented languages have data flow anomalies and
faults. Occasionally one of these faults manifests a fail-
ure, and corrective measures are then usually taken to elim-
inate the fault. Fortunately, many of the traditional testing

�This work is supported in part by the U.S. National Science Founda-
tion under grantCCR-98-04111.

techniques and strategies for fault elimination are applicable
to object-oriented programs, although the techniques pri-
marily focus on the syntactic and semantic constructs that
are also found in procedure-oriented languages. The power
that inheritance and polymorphism brings to the expressive-
ness of programming languages also brings a number of
new anomalies and fault types. We refer to these asobject-
oriented faults. Unfortunately, the techniques that are used
to eliminate faults in procedure-oriented programs are not
as applicable to those found in object-oriented programs.

The current paper restricts attention to what is commonly
known as subtype inheritance, rather than subclass. If class
B usessubtypeinheritance to inherit from class A, then it
will be semantically possible for any instance of class B to
freely be used (substituted) when an instance of class A is
expected [11, 12]. This is called “substitutability”. That is,
B has an “is-a” relationship with A, for example, acar “is a”
special case of avehicle. Subclass inheritance relaxes this
restriction, and allows descendant classes to reuse methods
and variables from ancestor classes without necessarily en-
suring that instances of the descendants are type-compatible
with the ancestor type. There is some disagreement over
which use of inheritance is appropriate [10, 19], and the au-
thors of this paper arenot taking a position with regards
to this debate. Rather, we recognize that professional pro-
grammers use both types of inheritance, and both can lead
to faults. This paper restricts attention to faults that can oc-
cur when subtype inheritance is used, and later work will
address faults that arise from subclass inheritance. For this
paper, a classextendsits parent class if it introduces a new
method name and does not override any methods in an an-
cestor class. A classrefinesthe parent class if it provides
new behavior not present in the overridden method, does

not call the overridden method, and its behavior is semanti-
cally consistent with that of the overridden method.

This paper makes several assumptions. Unless otherwise
noted, state variables that are inherited have sufficient vis-
ibility to allow direct reference by methods defined in de-
scendant classes. For example, in the languages Java and
C++, the access specifier for the state variables arenot pri-
vate.

Inheritance is used to create classes that are subtypes of
their parents, not subclasses [12]. Methods may be overrid-
den in a descendant class.

Finally, when considering the state effects of a particular
method, the transitive closure of state definitions is assumed
over called methods that are locally defined in a descendant
class. That is, if a methodm() callsn() andn() gives a def-
inition to a state variabley, m() is considered to definey by
transitivity. Without loss of generality, we can ignore those
non-publicmethods in a descendant that affect state and that
are only called by other methods also defined in the descen-
dant. This is safe to do since the state definitions made by
those methods cannot be called by any method defined out-
side of the descendant, and considering them would not add
new fault types. Further, the effects of these methods is cap-
tured in the transitive closure mentioned above.

1.1. A fault/failure model for object-oriented pro-
grams

In standard IEEE terminology [9], afailure is an exter-
nal, incorrect behavior of a program (an incorrect output or
a runtime failure). Afault is the group of incorrect state-
ments in the program that causes a failure. Based on these
definitions, the fault/failure model that is widely used in the
testing literature states that there are three conditions neces-
sary for a failure to be observed [6, 15]. First, the location in
the program that contains the fault must be reached (Reach-
ability). Second, after executing the location, the state of the
program must be incorrect (Infection). Third, the infected
state must propagate to cause some output of the program
to be incorrect (Propagation)1. Faults that result from poly-
morphic behavior must conform to this model, and a gen-
eral failure model can be formulated in terms of this model.
Figure 1 depicts a UML class diagram that shows an inher-
itance hierarchy and client relationships. This figure is used
in the following to describe the fault model for failures that
result from the use of polymorphism.

The first condition,reachability has five requirements:

1. There exists an inheritance hierarchy rooted at classT

with descendantD (class D extends T).
1Morell used Execution, Infection, and Propagation [14, 15]. Offutt

used Reachability, Sufficiency, and Necessity [16, 6]. We choose to com-
bine the two sets of terms by using what we consider to be the most
descriptive.

Client
−o : T

+f()

T
−v

+m()

D
Method Client::f calls T::m()
through the context variable o

+m()

Figure 1. Example inheritance hierarchy.

2. T has a methodm() andD has a methodm() that
overridesT::m().

3. There is a variableo in a clientC with a declared type
of T (T o;).

4. The actual type of the instance bound too is D (for
example,o = new D();).

5. C invokesm through the instance context provided by
o (o:m();).

Infection occurs under the following condition. For a
polymorphic fault to exist,T::m() andD::m() must modify
different portions of the state space ofT . Note thatD::m()
may define a variable with an incorrect value, but we do
not consider this to be a polymorphic fault, but a traditional
fault2. To model this situation, we want to compare the
portion of the state that is declared byT . Any state added
by D is not relevant. Thus:defs (D::m())[state(T) 6=
defs (T::m()). That is, there is some state variablev such
thatD : m() definesv butT::m()does not, orT::m()defines
v butD::m() does not.

Propagation occurs under the following condition.
There must be a variable that is defined by eitherD::m()
or by T::m() and not both, there must be an execution path
from the definition to a later use that contains no interven-
ing definition to that variable. That is:9n 2 methods(T) j
C calls o:n() ^ 9w 2 state(T) j uses(n;w) ^
((w 2 defs(D::m()) ^w 2 defs (T::m())) _ (w 2 defs

(D::m()) ^ w 2 defs (T::m())). C need not be the same
client that calledo:m() earlier. The only requirement is that
at some future point in time,n() is called in the context of
the same instance thatm() was called in.

2A definition may be direct through an assignment, as inx = y, or
indirect through a method call whose effect is to change the state of the
instance bound to the variable. Without loss of generality, the (conserva-
tive) view adopted in this paper is that any such method call always results
in a state change to the instance. However, static analysis techniques can
usually be used to identify some of the calls that actually define the state.

2. A Graphical Model for Polymorphic Faults

One of the most difficult aspects of developing object-
oriented software isvisualizing the often complex interac-
tions that can occur in the presence of inheritance, polymor-
phism, and dynamic binding [5]. The compositional rela-
tionships of inheritance and aggregation, combined with the
power of polymorphism and the inherent undecidability of
dynamic binding, increase the difficulty of modeling soft-
ware, detecting faults, and debugging the faults [4]. This
section presents a model for visualizing these interactions,
particularly with the idea of understanding actual and po-
tential faults in object-oriented software.

2.1. Overview of object-oriented language features

The fundamental building block in object-oriented soft-
ware is theclass, which is used to define new types. A class
encapsulates state information in a collection ofstate vari-
ables, and has a set of behaviors that are implemented by
methods that use those state variables. Classes define types
that are used to instantiate objects [13, 18].

Classes can be composed to form new types in two ways.
In aggregation, one type contains instances of another type.
Previous languages implement aggregation with records.
Inheritanceallows the representation of one type to be de-
fined in terms of the representation of one or more existing
types. The new type (thechild) has all of the state and be-
havior properties of the existing (parents), That is, itinher-
its the parent’s variables and methods.

Polymorphismallows the same pointer to reference ob-
jects of different types, subject to limitations of the inher-
itance hierarchy. Thus, the type of the object referenced
can change during execution. A pointer’sdeclared typeis
the type used when it is declared, and itsactual typeis the
type of the object last assigned to the pointer. Most OO
languages (including Java and C++) require that the type of
the pointer’s object be its declared type or a descendant of
its declared type.

When polymorphism is combined with method overrid-
ing, the same call can execute different methods. This is
called dynamic binding. The method that is executed de-
pends on theactual type of the object when the call is
reached. Thus, which method is actually executed cannot
be known statically, and must be determined dynamically
(during execution).

As an example, consider the UML class diagram and
code fragment shown in Figure 2. The declared type ofo
is W, but at line 10, the actual type will be eitherV or W.
SinceV overridesm(), which version ofm() is executed de-
pends on whether the input flag to the methodf() wastrue
or false .

W
−v
+m()
+n()

+m()
+n()

X

+m()

V
−x

(A) (B)

 1. void f (boolean b)
 2. {
 3. W o;
 4. ...
 5. if (b)
 6. o = new V();
 7. else
 8. o = new W();
 9. ...
10. o.m();
11. }

Figure 2. Example class hierarchy in UML. V and
X inherit from W. V overrides method m() and X
overrides m() and n(). The minuses (“-”) indicate
the attributes are private and the pluses (“+”) in-
dicate the attributes are non-private.

2.2. Problems with overriding and polymorphism

To illustrate the problems that can be caused by method
overriding and polymorphism, consider the simple inheri-
tance hierarchy that is three classes deep, shown on the left
of Figure 3. The root classA contains four state variables
and six methods. The state variables areprotected, and thus
are available to descendents ofA. Its immediate descendant
B specifies one state variable and three methods. Finally,
classC specifies only three methods. The arrows on the left
show the overriding:B::h() overridesA::h(), B::i() over-
ridesA::i() , C::i() overridesB::i() , C::j() overridesA::j() ,
andC::l() overridesA::l() . The table of the right of Figure
3 shows the state variable definitions and uses of some of
the methods in the hierarchy. The problem begins with a
call to A::d(). This small example has some very complex
interactions that potentially yield some very difficult prob-
lems to model, understand, test, and debug.

Suppose that an instance ofA is bound to an objecto and
a call is made througho to A::d(), which callsA::g(), which
callsA::h(), which callsA::i() , which finally callsA::j() . In
this case, the variablesA::u andA::w are first defined, then
used inA::i() andA::j() , which poses no problems.

Now suppose that an instance ofB is bound too, and a
call to d() is made. This timeB’s version ofh() andi() are
called,A::u andA::w arenot given values, and thus the call
to A::j() can result in a data flow anomaly.

2.3. Modeling polymorphism: The yo-yo graph

One of the major difficulties with using polymorphism
and dynamic binding is that of modeling and visualizing the
complicated interactions. The essential problems are that of
understanding which version of a methodwill be executed

Method Defs Uses
{A::u, A::w}

{A::v}
{A::u}
{A::w}
{A::v}

{B::x}

{C::y}
{A::v}

A::h

A::j
A::l
B::h
B::i
C::i
C::j
C::l

{C::y}

{B::x}

A::i

A

C

B

t
u
v
w

+d()
+g()
+h()
+i()
+j()
+l()

x

+h()
+i()
+k()

+i()
+j()
+l()

Figure 3. Data flow anomalies with polymor-
phism.

and which versionscan be executed. The fact that execu-
tion can sometimes “bounce” up and down among levels of
inheritance has been called the yo-yo effect by Binder and
he introduced a preliminary graph [5]. We have extended
this notion as a basis for a graphical representation that we
call the “yo-yo graph” to show all possible actual execu-
tions in the presence of dynamic binding. Theyo-yo graph
is defined on an inheritance hierarchy that hasT0 as root
and descendantsT1 throughTn. For each classTi, all new,
inherited, and overridden methods are shown. Methodcalls
in the source are represented as arrows from caller to callee.
Each classTi is given alevel in the yo-yo graph that shows
the actual calls made if an object has the actual typeTi.
Bold arrows are actual calls and light arrows are calls that
cannot be made due to overriding.

Consider the inheritance hierarchy shown in Figure 3.
Assume that inA’s implementation,d() calls g(), g() calls
h(), h() calls i(), and i() calls j(). Further, assume that in
B’s implementation,h() calls i(), i() calls its parent’s (that
is, A’s) version ofi(), andk() calls l(). Finally, assume that
in C’s implementation,i() calls its parent’s (this timeB’s)
version ofi(), andj() callsk().

Figure 4 is a yo-yo graph of this situation and expresses
theactual sequence of calls if a call is made tod() through
an instance of actual typeA, B, andC. At the top level of
the graph, it is assumed that a call is made to methodd()
through an object of actual typeA. In this case, the sequence
of calls is simple and straightforward. In the second level,
where the object is of actual typeB, the situation starts to

A
+d()
+g()
+h()
+i()
+j()
+l()

B

+h()
+i()
+k()

C
+i()
+j()
+l()

A

B

C

d() g() j()

l()

i()h()

h() i()

i() j()

l()

k()

A

B

C

d() g() j()

l()

i()h()

h() i()

i() j()

l()

k()

A

B

C

d() g() j()

l()

i()h()

h() i()

i() j()

l()

k()

Figure 4. Calls to d() when object has various ac-
tual types.

get more complex. Wheng() calls h(), the version ofh()
defined inB is executed (the light dashed line fromA::g() to
A::h() emphasizes thatA::h() isnot executed). Then control
continues toB::i() , A::i() , and then toA::j() .

When the object is of actual typeC, it becomes clear why
the term “yo-yo” is used. Control proceeds fromA::g() to
B::h() to C::i() , then back up throughB::i() to A::i() , back
to C::j() , back up toB::k(), and finally down toC::l() .

This example illustrates some the complexities that can
result in object-oriented programs due to method overrid-
ing and polymorphism. Along with this induced complexity
comes more difficulty and required effort in testing.

3. Categories of Inheritance Faults and
Anomalies

Benefits of using inheritance include more creativity, ef-
ficiency, and reuse. Unfortunately, it also allows a number
of anomalies and potential faults that anecdotal evidence
has shown to be some of the most difficult problems to de-
tect, diagnose, and correct. This section presents a list of
fault types that can be manifested by polymorphism. Table
1 summarizes the fault types that result from inheritance and
polymorphism. The goal is a complete list of faults, though
we do not make this claim. Most of the types are program-
ming language-independent, although the language that is
used will affect how the faults manifest. In all cases, we are
concerned with how each anomaly or fault is manifested
through polymorphism in a context that uses an instance of
the ancestor. Thus, we assume that instances of descendant
classes can be substituted for instances of the ancestor.

Acronym Fault/Anomaly
ITU Inconsistent Type Use

(context swapping)
SDA State Definition Anomaly

(possible post-condition violation)
SDIH State Definition Inconsistency

(due to state variable hiding)
SDI State Defined Incorrectly

(possible post-condition violation)
IISD Indirect Inconsistent State Definition
ACB1 Anomalous Construction Behavior (1)
ACB2 Anomalous Construction Behavior (2)
IC Incomplete Construction
SVA State Visibility Anomaly

Table 1. Faults and anomalies due to inheritance
and polymorphism.

3.1. Inconsistent type use (ITU)

For this fault type, a descendant class does not override
any inherited method. Thus, there can be no polymorphic
behavior. Every instance of a descendant classC that is
used where an instance ofT is expected can only behave
exactly like an instance ofT . That is, only methods ofT can
be used. Any additional methods specified inC are hidden
since the instance ofC is being used as if it is an instance of
T . However, anomalous behavior is still a possibility. If an
instance ofC is used in multiple contexts (that is, through
coercion, say first as aT , then as aC, then aT again),
anomalous behavior can occur ifC has extension methods.
In this case, one or more of the extension methods can call
a method ofT or directly define a state variable inherited
from T . Anomalous behavior will occur if either of these
actions results in an inconsistent inherited state.

As an example, consider the class hierarchy shown in
Figure 53. ClassVectorencapsulates a sequential data struc-
ture that supports directaccess to its elements. ClassStack
also encapsulates a sequential data structure that has a “last-
in/first-out” access policy. As shown,Stackuses methods
inherited fromVectorto implement its behavior. The top ta-
ble summarizes the calls made by each method, and the bot-
tom table summarizes the definitions and uses (represented
as “d” and “u”, respectively) of the state space ofVector.

The extension method Stack::pop() calls Vec-
tor::removeElementAt(), and Stack::push() calls Vec-
tor::insertElementAt(). Clearly these two classes have
different semantics. As long as an instance ofStackis used
solely as an instance ofStack, there will be no behavioral
problems. Alternatively, theStackinstance could be used

3This example is based on the library provided with the Java Develop-
ment Kit version 1.2.

Vector
−array

+insertElementAt()
+removeElementAt()

Stack

call

Method CalledMethods

Vector::insertElementAt

Vector::removeElementAt

Stack::pop

Stack::push

Vector::removeElementAt

Vector::insertElementAt

Variable

d*, u*

d*, u*

d, u

d, u

array

Vector

Method

Vector::insertElementAt

Vector::removeElementAt

Stack::pop

Stack::push

State Variable Uses and Definitions

+pop () : Object
+push () : Objectcall

Figure 5. ITU: Descendant with no overriding
methods.

solely as a instance ofVector, again without experiencing
behavioral problems. However, if the usage of the instance
is mixed between theStackandVector, behavioral problems
can occur.

The code fragment in Table 2 illustrates how behavioral
anomalies can occur when the type system is used to manip-
ulate the manner in which instances of classes are used. For
the methodf(), the instance bound to the formal argument
s is used only as aStack in lines 3 through 9. However,
at line 11,s is passed as an actual argument to methodg,
which expects an instance ofV ector. This is syntactically
correct because an instance ofStack is also an instance of
Vector. There is a potential behavioral problem that begins
at line 21 where the last element ofs is removed. The fault
is manifested when control returns and reaches the first call
to Stack::pop()at line 14. Here, the element removed from
the stack isnot the last element that was added, thus the
stack integrity constraint will be violated.

3.2. State definition anomaly (SDA)

In general, for a descendant class to be behaviorally com-
patible with its ancestor, the state interactions of the descen-
dant must be consistent with those of its ancestor. That is,
the refining methods implemented in the descendant must
leave the ancestor in a state that is equivalent to the state
that the ancestor’s overridden methods would have left the
ancestor in. For this to be true, the refining methods pro-
vided by the descendant must yield the same net state in-
teractions as eachpublic method that is overridden. From a
data flow perspective, this means that the refining methods
must provide definitions for the inherited state variables that
are consistent with the definitions in the overridden method.
If not, then a potential data flow anomaly exists. Whether or
not an anomaly actually occurs depends upon the sequences

1 public void f (Stack s)
2 f
3 String s1 = "s1";
4 String s2 = "s2";
5 String s3 = "s3";
6 : : :

7 s.push (s1);
8 s.push (s2);
9 s.push (s3);

10
11 g (s);
12
13 s.pop();
14 s.pop();
15 // Oops! The stack is empty!
16 s.pop();
17 : : :

18 g

19 public void g (Vector v)
20 f
21 // Remove the last element
22 v.removeElementAt (v.size()-1);
23 g

Table 2. ITU: Code example showing inconsistent
type usage.

of methods that are valid with respect to the ancestor.
As an example, consider the class hierarchy and tables

of definitions and uses shown in Figure 6. The parent of the
hierarchy is classW , and it has descendantsX, andY . W
defines methodsm() andn(), each of which has the def-
initions and uses shown in the table. Assume that a valid
method call sequence isW::m() followed by W::n(). As
the table of definitions and uses shows,W::m()defines state
variableW::v andW::n() uses it. Now consider the classX
and its refining methodX::n(). As the table shows, it too
uses state variableW::v, which is consistent with the over-
ridden method and with the method sequence given above.
Thus far, there is no inconsistency in howX interacts with
the state ofW . In fact, because a use can never affect future
state-dependent behavior,X::n() could just as easily have
used a different variable.

Now consider classY and the methodY::m(), which
overridesW::n() through refinement. Observe thatY::m()
does not defineW::v, asW::m() does; but definesY::w in-
stead. Now, a data flow anomaly exists with respect to
the method sequencem();n() for the state variableW::v.
When an instance ofY is subjected to this sequence,Y::w
is defined first (becauseY::m() executes), but thenW::v is
used by methodX::n(). Thus, the assumption made in the
implementation ofX::n() that W::v is defined by a call to
m() prior to a call ton() no longer holds, and a data flow
anomaly has occurred. In this particular example, a fail-
ure occurs since there is no prior definition ofW::v when
Y is the type of an instance being used. Note that this will
not be true in the general case since the controlling factor

W
v
u

m()
n()

n()

x

X

Y
w

m()

W::m

W::n

X::n

Y::l

Y::m

W::l

W::u X::x Y::wW::v

def

def

def

def

use

use

use

def

Figure 6. SDA, SDIH: State definition anomalies.

in whether a fault has occurred will be a function of what
prior method invocations have occurred, any default initial-
izations that were applied, and how individual state vari-
ables are handled during instance construction.

Any extension method that is called by a refining method
must also interact with the inherited variables of the ances-
tor in a manner that is consistent with the ancestor’s current
state. Since the extension method provides a portion of the
refining method’s net effects, to avoid a data flow anomaly
the extension must not define inherited state variables in a
way that would be inconsistent with the method being re-
fined. Thus, the net effect of the extension method cannot
be to leave the ancestor in a state that is logically differ-
ent from when it was invoked. For example, if the logical
state of an instance of a stack is currently not-empty/not-
full, then execution of an extension method cannot result
in the logical state spontaneously being changed to either
empty or full. Doing so would preclude the execution of
popor pushas the next methods in sequence.

3.3. State definition inconsistency due to state vari-
able hiding (SDIH)

The introductionof an indiscriminately named local state
variable can easily result in a data flow anomaly where none
would otherwise exist. If a local variable is introduced to a
class definition where the name of the variable is the same
as an inherited variablev, the effect is the inherited variable
is hidden from the scope of the descendant (unless explic-
itly qualified, as insuper:v). A reference tov by an exten-
sion or overriding method will refer to the descendant’sv.
This is not a problem if all inherited methods are overridden
since no other method would be able to implicitly reference
the inheritedv. However, this pattern of inheritance is the
exception rather than the rule. There will typically be one or
more inherited methods that are not overridden. There is a

possibility for a data flow anomaly to exist if a method that
normally defines the inheritedv is overridden in a descen-
dant when an inherited state variable is hidden by a local
definition.

As an example, again consider the class hierarchy shown
in Figure 6. Suppose the definition of classY has the lo-
cal state variablev that hides the inherited variableW::v.
Further suppose methodY::m()definesv, just asW::m()de-
fines W::v. Given the method sequencem();n(), a data
flow anomaly exists betweenW andY with respect toW::v.

3.4. State defined incorrectly (SDI)

Suppose an overriding method defines the same state
variablev that the overridden method defines. If the com-
putation performed by the overriding method is not se-
mantically equivalent to the computation of the overridden
method with respect tov, then subsequent state dependent
behavior in the ancestor will likely be affected, and the ex-
ternally observed behavior of the descendant will be differ-
ent from the ancestor. While this problem is not a data flow
anomaly, it is a potential behavior anomaly.

3.5. Indirect inconsistent state definition (IISD)

An inconsistent state definition can occur when a de-
scendant adds an extension method that defines an inherited
state variable. For example, consider the class hierarchy
shown in Figure 7A, whereY specifies a state variablex
and methodm(), and the descendantD specifies method
e(). Sincee() is an extension method, it cannot be directly
called from an inherited method, in this caseT::m(), be-
causee() is not visible to the inherited method. However,
if an inherited method is overridden, the overriding method
(such asD::m() as depicted in Figure 7B) can calle() and
introduce a data flow anomaly by having an effect on the
state of the ancestor that is not semantically equivalent to
the overridden method (e.g. with respect to the variableT::y
in the example). Whether an error occurs depends on which
state variable is defined bye(), wheree() executes in the se-
quence of calls made by a client, and what state dependent
behavior the ancestor has on the variable defined bye().

3.6. Anomalous construction behavior(1) (ACB1)

The constructor of an ancestor classC calls a locally de-
fined polymorphic methodf(). Becausef() is polymor-
phic, a descendant classD can provide an overriding def-
inition of f(). If this is so, thenD’s version off() will
execute when the constructor ofC calls f(), not the ver-
sion defined byC. To see this, consider the class hierarchy
shown in the left half of Figure 8. Class C’s constructor calls
C::f(). ClassD contains the overriding methodD::f() that

T

D

x
y

m()

e()

Defines

Defines

Cannot
Call!

(A)

T

D

x
y

m()

Defines

Defines

Overrides

m()
e()Calls

(B)

Figure 7. IISD: Example of indirect inconsistent
state definition.

f()

D()

C()

f()

class C

class D

call callnew

Client
D

C

Calls

f()

x
Uses

Overrides

C()
f()

Figure 8. ACB1: Example of anomalous construc-
tion behavior.

defines the local state variableD::x. There is no apparent
interaction betweenD andC sinceD::f() does not interact
with the state ofC. However,C interacts with D’s state
by virtue of the apparent call that C’s constructor makes to
C::f(). In some object-oriented languages (e.g. Java and C-
Sharp), constructor calls to polymorphic methods execute
the method that is closest to the instance that is being cre-
ated. For the classC in the hierarchy in Figure 8, the clos-
est version off() to C is specified byC itself, and thus
executes when an instance ofC is being constructed. For
D, the closest version isD::f() , which means that when an
instance ofD is being constructed, the call made tof() in
C ’s constructor actually executesD::f() instead of its own
locally specifiedf(). This is illustrated by the partial yo-yo
graph in the right half of Figure 8.

The result of the behavior shown in Figure 8 can easily
result in a data flow anomaly ifD::f() uses variables defined
in the state space ofD. Because of the order of construction,
D’s state space will not have been constructed. Whether or
not an anomaly exists depends on if default initializations
have been specified for the variables used byf(). Further-
more, a fault will likely occur if the assumptions or precon-

ditions ofD::f() have not been satisfied prior to construction
[2].

3.7. Anomalous construction behavior(2) (ACB2)

Similar to ACB1 (Section 3.6), the constructor of an an-
cestor classC calls a locally defined polymorphic method
f(). A data flow anomaly can occur iff() is overridden
in a descendant classD and if that overriding method uses
state variables inherited fromC. The anomaly occurs if the
state variables used byD::f() have not been properly con-
structed byC::f(). This depends on the set of variables used
by D::f() , the order in which the variables in the state of
C are constructed, and the order in whichf() is called by
C ’s constructor. Note that it is not generally possible for the
programmer of classC to know in advance which version
of f() will actually execute, and which state variables that
the executing version depends on. Thus, the invocation of
polymorphic method calls from constructors is unsafe and
introduces non-determinism into the construction process.
This is true of both ACB2 and ABC1.

3.8. Incomplete (failed) construction (IC)

In some programming languages, the value of the vari-
ables in the state space of a class before construction is un-
defined. This is true, for example, in C++ but not in Java.
The role of the constructor is to establish the initial state
conditions and the state invariant for new instances of the
class. To do so, the constructor will generally have state-
ments that define every state variable. In some circum-
stances, again depending upon the programming language,
default or other explicit initializations may be sufficient. In
either case, by the time the constructor has finished, the state
of the instance should be well defined. There are two pos-
sibilities for faults here. First, the construction process may
have assigned an initial value to a particular state variable,
but it is the wrong value. That is, the computation used to
determine the initial value is in error. Second, the initializa-
tion of a particular state variable may have been overlooked.
In this case, there is a data flow anomaly between the con-
structor and each of the methods that will first use the vari-
able after construction (and any other uses until a definition
occurs).

An example of incomplete construction is shown by the
code fragment in Table 3. ClassAbstractF ile contains
the state variablefd that is not initialized by a construc-
tor. The intent of the designer ofAbstractF ile is that a
descendant class provide the definition offd prior to its use,
which is done by methodopen() in the descendant class
SocketF ile. If any descendant that can be instantiated de-
fines fd, and no method is called that usesfd prior to the
definition, there is no problem. However, a fault will occur

if either of these conditions is not satisfied.
Observe that while the designer’s intent is for a de-

scendant to provide the necessary definition, a data flow
anomaly exists withinAbstractFilewith respect tofd for
methodsread() andwrite(). Both of these methods use
fd, and if either are called immediately after construction,
a fault will occur. Note that this design introduces an ele-
ment of non-determinism intoAbstractF ile since it is not
known at design time what type of instancefd will be bound
to, or if it will be bound (i.e. defined) at all. Suppose that the
designer ofAbstractF ile also designed and implemented
SocketF ile, as also shown in Table 3. By doing so, the
designer has ensured that the data flow anomaly that exists
in AbstractF ile is abated by the design ofSocketF ile.
However, this still does not eliminate the problem of non-
determinism and the introduction of faults since, at some
point in time in the future, a new descendant can be added
that fails to provide the necessary definition.

3.9. State visibility anomaly (SVA)

The state variables in an ancestor classA are declared
private, and a polymorphic methodA::m() definesA::v.
Suppose thatB is a descendant ofA, andC of B, as de-
picted in Figure 9A. Further,C provides an overriding defi-
nition of A::m() butB does not. SinceA::v has private vis-
ibility, it is not possible forC::m() to properly interact with
the state ofA by directly definingA::v. Instead,C::m()
must callA::m() to modify v. Now suppose thatB also
overridesm (Figure 9B). Then forC::m() to properly de-
fine A::v, C::m() must callB::m(), which in turn must call
A::m(). Thus,C::m() has no direct control on whether the
data flow anomaly is resolved! In general, when private
state variables are present, the only way that avoiding a data
flow anomaly can be ensured is for every overriding method
in a descendant to call the overridden method in its ances-
tor class. Failure to do so will quite possibly result in the
manifestation of a fault in the state and behavior ofA.

4. Applications and Implications

By considering this OO fault model, and specifically the
types of faults that can be generated from OO constructs, we
can gain insight into a number of issues in object-oriented
analysis. In the following subsections, we discuss how this
fault/failure model and the fault types impact several areas
in object-oriented analysis.

4.1. Fault seeding for OO test evaluations

Fault seeding refers to artificially introducing faults into
programs, usually to measure the quality of testing or to em-
pirically compare testing strategies. When we seed faults

1 Class abstract AbstractFile 14 Class SocketFile extends AbstractFile
2 f 15 f
3 FileHandle fd; 16 public open()
4 17 f
5 abstract public open(); 18 fd = new Socket (: : :);
6 19 g
7 public read() ffd.read (: : :); g 20
8 21 public close()
9 public write() ffd.write (: : :); g 22 f

10 23 fd.flush();
11 abstract public close(); 24 fd.close();
12 g 25 g

26 g

Table 3. IC: Incomplete construction of state variable fd.

B

A

m()

−v Private

+m()

C

(A)

Overrides B

A

m()

−v
Private

+m()

C

m()

Overrides

(B)

Over rides

Figure 9. SVA: State visibility anomaly.

into programs we desire to have faults that are representa-
tive of real faults that could appear in software. Previously,
the idea of faultsemantic sizewas introduced as the relative
number of inputs on which the program behaves incorrectly
[17]. If the semantic size of a seeded fault is too small, then
the fault will introduce a bias against the testing strategy
being evaluated; if the semantic size of a seeded fault is too
large, the fault will introduce a bias in favor of the testing
strategy. It can be reasonably assumed that realistic faults,
that is, faults that are representative of naturally occurring
faults, are likely to have semantic sizes that are neither too
large or too small.

Hamlet [7] pointed out that empirical comparisons of
testing techniques face two problems with regards to sub-
jects: choosing a representative collection of programs, and
choosing a representative collection of tests. Both of these
are examples of internal controls on the empirical process
and represent problems that are always present in any ex-
periment. Problems with internal control can mean that the
results of the experiment may not scale up to be true in all
situations. We suggest that another potential problem is that

if the techniques are compared based on the faults they find,
a representative collection of faults must be used.

It is hoped that the types of faults presented in this paper
can allow empirical researchers in the testing area to seed
faults that are representative of naturally occurring faults.
In Alexander’s dissertation [1], these fault types were used
to empirically compare criteria that he developed for inte-
gration testing of object-oriented software. The fault types
were used to create a large number of specific faults that
were seeded into ten subject programs. The fault types pre-
sented in this paper can be used for other empirical compar-
isons involving object-oriented software.

4.2. Metrics for polymorphism use

One thing that is currently missing in object-oriented
software development is that of metrics that measure com-
plexity of software that uses inheritance and polymorphism
[3, 8]. The fault/failure model, the yo-yo graph, and the
fault types can be used as a basis for which to measure
object-oriented software. If a class, or a collection of classes
in an inheritance hierarchy, is structured in such a way as to
allow many of the problems discussed in this paper, then
that should represent a negative measurement of that class
or inheritance hierarchy.

4.3. Standards for appropriate use of polymor-
phism

Software is increasingly being built by combining and
extending pre-existing software components. In particular,
we often create new classes through inheritance by extend-
ing from pre-existing classes. Moreover, we often do not
have access to the source for these library classes! A com-
mon example in web software is Java Servlets, which are
created by extending the pre-existingHttpServletclass. Al-
though this is a very powerful abstraction mechanism, the
implementation can be somewhat problematic. In particu-
lar, careless inheritance and overriding can create problems

in the state space interactions of the resulting objects (as
described in Section 2). Unfortunately, providers of class
libraries often want to keep the implementation proprietary,
and thus do not provide the source. Since the developer
may notknow the internals of the parent class, there is no
way to know what type of inheritance and polymorphism is
“careless”!

4.4. Summary

This paper has presented a model for faults and failures
in object-oriented programs, a graphical model for poly-
morphic faults, and a collection of specific object-oriented
fault types. In the future, we plan to extend this work to
model faults that can appear when subtyping is used. These
models and fault types can be used in a variety of situa-
tions, as has been outlined. One obvious subject of future
work is to ask questions such as how often the faults pre-
sented in this paper appear and what percentage of failures
in OO software is due to these faults. Although few simple
programs will use dynamic binding as freely as the manu-
factured example in Section 2, our experience is that this
type of software design is used frequently and these types
of faults occur regularly.

5. Acknowledgments

We would like to thank Len Gallagher of NIST for a
number of helpful comments.

References

[1] R. T. Alexander. Testing the Polymorphic
Relationships of Object-oriented Programs.
PhD thesis, George Mason University, Fair-
fax VA, 2001. Technical report ISE-TR-01-04,
http://www.ise.gmu.edu/techrep.

[2] Roger T. Alexander, James M. Bieman, and John
Viega. Coping with Java programming stress.Com-
puter, 33(4):30–38, 2000.

[3] V. Basili, L. Briand, and W. Melo. A validation
of object-oriented design metrics as quality indica-
tors. IEEE Transactions on Software Engineering,
22(10):751–761, October 1996.

[4] Edward Berard. Issues in the testing of object-oriented
software. InElectro’94 International, pages 211–219.
IEEE Computer Society Press, 1994.

[5] Robert V. Binder. Testing object-oriented software:
A survey. Journal of Software Testing, Verification &
Reliability, 6(3/4):125–252, 1996.

[6] R. A. DeMillo and A. J. Offutt. Constraint-based auto-
matic test data generation.IEEE Transactions on Soft-
ware Engineering, 17(9):900–910, September 1991.
http://ise.gmu.edu/faculty/ofut/rsrch/abstracts/cbt.html.

[7] D. Hamlet. Theoretical comparisons of testing meth-
ods. InProceedings of the Third Symposium on Soft-
ware Testing, Analysis, and Verification, pages 28–37,
Key West Florida, December1989. ACM SIGSOFT
89.

[8] R. Ibba and D. Natale. Structure-based clustering
of components for software reuse. InProceedings
of the International Conference on Software Mainte-
nance 1993, pages 210–215. IEEE Computer Society
Press, September 1993.

[9] IEEE. IEEE Standard Glossary of Software Engineer-
ing Terminology. ANSI/IEEE Std 610.12-1990, 1996.

[10] W. LaLonde and J. Pugh. Subclassing != subtyping !=
is-a. Journal of Object Oriented Programming, 3(5),
January 1991.

[11] B. Liskov and John Guttag.Program Development in
Java: Abstraction, Specification, and Object-Oriented
Design. Addison Wesley, New York NY, 2000.

[12] B. H. Liskov and J. M. Wing. A behavioral no-
tion of subtyping.ACM Trans. Prog. Lang. and Sys.,
16(1):1811–1841, November 1994.

[13] Bertrand Meyer.Object-Oriented Software Construc-
tion. Prentice Hall, Englewood Cliffs, New Jersey,
1997.

[14] L. J. Morell. A Theory of Error-Based Testing. PhD
thesis, University of Maryland, College Park MD,
1984. Technical Report TR-1395.

[15] L. J. Morell. A theory of fault-based testing.IEEE
Transactions on Software Engineering, 16(8):844–
857, August 1990.

[16] A. J. Offutt. Automatic Test Data Generation. PhD
thesis, Georgia Institute of Technology, Atlanta GA,
1988. Technical report GIT-ICS 88/28.

[17] A. J. Offutt and J. H. Hayes. A semantic model of pro-
gram faults. InProceedings of the1996 International
Symposium on Software Testing, and Analysis, pages
195–200, San Diego, CA, January 1996. ACM Press.
http://ise.gmu.edu/faculty/ofut/rsrch/abstracts/synsem.html.

[18] D. L. Parnas, J. E. Shore, and D. Weiss. Abstract types
defined as classes of variables. InProceedings of Con-
ference on Data: Abstraction, Definition and Struc-
ture, pages 22–24, Salt Lake City, UT, USA, 1976.

[19] Antero Taivalsaari. On the notion of inheritance.ACM
Computing Surveys, 28(3):438–479, 1996.

