Ole-Johan Dahl

ed. by J.N. Buxton,
North Holland, Amsterdam, 1967
pp. 158-174

92 Ole-Johan Dahl

CLASS AND SUBCLASS DECLARATIONS

OLE-JOHAN DAHL and KRISTEN NYGAARD

Novwegian Computing Centev. Oslo, Norway

1. INTRODUCTION

A central idea of some programming languages [28,57,58] is to
_provide protection for the user against (inadvertantly) making
meaningless data references. The effects of such errors are im-
plementation dependent and can not be determined by reasoning
within the programming language itself. This makes debugging dif-
ficult and impractical.

Security in this sense is particularly important in a list process-
ing environment, where data are dynamically allocated and de-al-
located, and the user has explicit access to data addresses (point-
ers, reference values, element values). To provide security it is
necessary to have an automatic de-allocation mechanism (refer-
ence count, garbage collection). It is convenient to restrict oper-
ations on pointers to storage and retrieval. New pointer values are
generated by allocation of storage space, pointing to the allocated
space. The problem remains of correct interpretation of data ref-
erenced relative to user specified pointers, or checking the validity
of assumptions inherent in such referencing. E.g. to speak of
"A of X" is meaningful, only if there is an A among the data pointed
to by X.

The record concept proposed by Hoare and Wirth [58] provides
full security combined with good runtime efficiency. Most of the
necessary checking can be performed at compile time. There is,
however, a considerable expense in flexibility. The values of ref-
erence variables and procedures must be restricted by declaration
to range over records belonging to a stated class. This is highly
impractical.

The connection mechanism of SIMULA combines full security
with greater flexibility at a certain expense in convenience and run
time efficiency. The user is forced, by the syntax of the connection
statement, to determine at run time the class of a referenced data
structure (process) before access to the data is possible.

The subclass concept of Hoare [59] is an attempt to overcome
the difficulties mentioned above. and to facilitate the manipulation
of data structures, which are partly similar, partly distinct. This
paper presents another approach to subclasses, and some applica-
tions of this approach.

Original Historic Documents
2. CLASSES

The class concept introduced is a remodelling of the record
class concept proposed by Hoare. The notation is an extension of
the ALGOL 60 syntax. A prefix notation is introduced to define
subclasses organized in a hierarchical tree structure. The mem-
bers of a class are called objects. Objects belonging to the same
class have similar data structures. The members of a subclass
are compound objects, which have a prefix part and a main part.
The prefix part of a compound object has a structure similar to ob-
' jects belonging to some higher level class. It can itself be a com-
pound object.

The figure below indicates the structure of a class hierarchy
and of the corresponding objects. A capital letter denotes a class.
The corresponding lower case letter denotes the data comprising

the main part of an object belonging to that class.

Classes Objects
A \ A B C D E
B E a a «a a a
/\
C D b b b e
c d

B. C, D. E are subclasses of A; C and D are sublasses of B.

2.1. Syntax

{class id.) :: = (identifier)

{prefix):: = {class id.)

(class body):: = {statement)

{main part):: = class (class id.) (formal parameter part);
(specification part) (class body)

(class declaration):: = (main part):(prefix) {(main part)

2.2. Semantics

An object is an instance of a class declaration. Different in-
stances of the same declaration are said to belong to class C, where
C is the class identifier. If the class body does not take the form of
an unlabelled block, it acts as if enclosed in an implicit block. The
parameters and the quantities declared local to the outermost block
of the class body are called the attributes of an object. The attri-
butes can be referenced locally from within the class body, or non-
locally by a mechanism called remote acessing (5).

The parameters are transmitted by value. One possible use of
the statements of the class body may be to initialize attribute val-
ues.

93

94

Ole-Johan Dahl

A prefixed class declaration represents the result of concaten-
ating the declaration referenced by the prefix and the main part.
The concatenation is recursively defined by the following rules.

1) The formal parameter lists of the former and the latter are
concatenated to form one parameter list.

2) The specification parts are juxtaposed.

3) A combined class body is formed, which is a block, whose
block head contains the attribute declarations of the prefix body and
the main body. The block tail contains the statements of the prefix
body followed by those of the main body.

The attributes of the main part are not accessible from within
the prefix body, except by remote accessing. The attributes of the
prefix are acessible as ordinary local quantities from within the
body of the main part.

The object class represented by a prefixed class declaration is
a subclass of the class denoted by the prefix. Subclasses can be
nested to any depth by using prefixed class identifiers as prefixes
to other class declarations.

Let Ag be any class. If A, is prefixed, we will denote this pre-
fix by Ay. The prefix of Ay 8f any) will be denoted by Ag etc. The
sequence

Al A, ...

will be called the "prefix sequence” of Ag. It follows from the syn-
tax that if A; and A both have A, as prefix, they have identical pre-
fix sequences

It will be required that all prefix sequences are finite. (This ex-
cludes multiple occurrence of any class A; in a prefix sequence.)
Let

Ay, Ay .. A,

be the prefix sequence of Ag. We shall say that the class A; is
"included in Aj" f0<si<jsn

3. OBJECT REFERENCES

Reference values in the sense of [59] are introduced, in a slight-
ly modified form.

3.1. Reference types
3.1.1. Syntax

{type) :: = (ALGOL type) | ref | ref {qualification)
(qua11f1cat1on> = ({class id.))

Original Historic Documents

3.1.2. Semantics

Associated with each object is a unique value of type ref, which
is said to reference or point to the object. A reference value may,
by qualifying a declaration or specification by a class identifier, be
required to refer to objects belonging to either this class or any of
its subclasses. In addition the value of any item of type reference
is restricted to objects belonging to classes whose declarations
are statically visible from fhe declaration or specification of the
item.

The reference value none is a permissible value for any refer-
ence item, regardless of its qualification.

3.2. Refevence Expressions
3.2.1. Syniax

(simple ref. expr.) :: = none !(variable) |(function designator)|
(object designator)|(local reference)
(ref. expr.) :: = (simple ref. expr.)| if (Boolean expr.) then
(simple ref. expr.) else (ref. expr.)
{object designator):: =(class id.) (actual parameter part)
(local reference):: = this (class id.)

3.2.2. Semantics

A reference expression is a rule for computing a reference
value. Thereby reference is made to an object, except if the value
is none, which is a reference to "no object".

i) Qualification. A variable or function designator is qualified
according to its declaration or specification. An object designator
or local reference is qualified by the stated class identifier. The
expression none is not qualified.

No qualification will be regarded as qualification by a universal
class, which includes all declared classes.

ii) Object genevation. As the result of evaluating an object de-
signator an object of the stated class is generated. The class body
is executed. The value of the object designator is a reference to
the generated object. The life span of the object is limited by that
of its reference value.

iii) Local refervence. A local reference "this C" is a meaningful
expression within the class body of the class C or of any subclass
of C. Its value is a reference to the current instance of the class
declaration (object).

Within a connection block (5.2) connecting an object of class C
" or a subclass of C the expression "this C" is a reference to the
connected object.

The general rule is that a local reference refers to the object,
whose attributes are local to the smallest enclosing block, and
which belongs to a class included in the one specified. If there is
no such object, the expression is illegal.

95

96

Ole-Johan Dahl

4. REFERENCE OPERATIONS

4.1. Assignment
4.1.1. Synlax

(reference assignment) :: = {variable): ={reference expr.){
{variable) : = (reference assign-
ment)

4.1.2. Semantics

Let the left and right hand sides be qualified by Cl and Cr, res-
pectively, and let the value of the right hand side be a reference to
an object of class Cv. The legality and effect of the statement de-
pends on the relations that hold between these classes.

Case 1. Cl includes Cr: The statement is legal, and the assign-
ment is carried out.

Case 2. Cl is a subclass of Cr: The statement is legal, and the
assignment is carried out if Cl includes Cv, or if the value is none.
If Cl does not include Cv, the effect of the statement is undefined
(cf. 6.1).

Case 3. Cland Cr satisfy neither of the above relations: The
statement is illegal.

The following additional rule is considered: The statement is
legal only if the declaration of the left hand item (variable, array
or {tvpe) procedure) is within the scope of the class identifier Cr
and all its subclasses. (The scope is in this case defined after hav-
ing effected all concatenations implied by prefixes.)

This rule would have the following consequences.

1) Accessible reference values are limited to pointers to objects,
whose attributes are accessible by remote referencing (5).

2) Classes represented by declarations local to different in-
stances of the same block are kept separate.

3) Certain security problems are simplified.

4.2. Relations
4.2.1. Svyntax

{relation):: = (ALGOL relation)!
(reference expr.) = (reference expr.)|
(reference expr.) # {reference expr.)|
(reference expr.) is (class id.)

4.2.2. Semantics

Two reference values are said to be equal if the point to the
same object, or if both are none. A relation "X is C" is true if
the object referenced by X belongs to the class C or to any of its
subclasses.

Original Historic Documents

4.3. For statements
4.3.1. Svntax

(for list element):: = (ALGOL for listelement) [(reference expr.)!
(reference expr.) while (Boolean expr.)

4.3.2. Semantics
The extended for statement will facilitate the scanning of list
structures.

5. ATTRIBUTE REFERENCING

An attribute of an object is identified completely by the following
items of information:

1) the value of a (reference expr.) identifving an object,

2) a {(class id.) specifying a class, which includes that of the
object. and

3) the (identifier) of an attribute declared for objects of the
stated class.

The class identification, item 2, is implicit at run time in a
reference value, however, in order to obtain runtime efficiency
it is necessary that this information is available to the compiler.

For a local reference to an attribute, i.e. a reference from
within the class body, items 1 and 2 are defined implicitly. Item 1
is a reference to the current instance (i.e. object), and item 2 is
the class identifier of the class declaration.

Non-local (remote) referencing is either through remote identi-
fiers or through connection. The former is an adaptation of the
technique proposed in [57], the latter corresponds to the connec-
tion mechanism of SIMULA [28].

‘ 5.1. Remote Ildentifiers
5.1.1. Syntax

{remote identifier):: = (reference expr.). (identifier)
(identifier 1) :: = {(identifier) l(remote identifier)

Replace the meta-variable (identifier) by (identifier 1) at appro-
priate places of the ALGOL syntax.

5.1.2. Semantics

A remote identifier identifies an attribute of an individual object.
Jtem 2 above is defined by the qualification of the reference expres-
sion. If the latter has the value none, the meaning of the remote
identifier is undefined (cf. 6.2).

97

98

Ole-Johan Dahl

5.2. Connection

5.2.1. Syntax
{connection block 1) :: = (statement)
(connection block 2):: = (statement)
(connection clause) :: = when {class id.) do (connection block 1)
(otherwise clause):: = {empty)’ otherwise (connection block 2)
(connection part):: = (connection clause) |

{connection part) {connection clause)

(connection statement) :: = inspect (reference expr.) do

(connection block 2)|
inspect (reference expr.)
(connection part) (otherwise clause)

5.2.2. Semantics

The connection mechanism serves a double purpose:

1) To define item 1 above implicitly for attribute references
within connection blocks. The reference expression of a connection
statement is evaluated once and its value is stored. Within a con-
nection block this value is said to reference the connected object.
It can itself be accessed through a (local reference) (see section
3.2.2).

2) To discriminate on class membership at run time, thereby
defining item 2 implicitly for attribute references within alterna-
tive connection blocks. Within a {connection block 1) item 2 is de-
fined by the class identifier of the connection clause. Within a
(connection block 2) it is defined by the qualification of the refer-
ence expression of the connection statement.

Attributes of a connected object are thus immediately accessible
through their respective identifiers, as declared in the class de-
claration corresponding to item 2. These identifiers act as if they
were declared local to the connection block. The meaning of such
an identifier is undefined, if the corresponding {local reference)
has the value none. This can only happen within a {connection
block 2).

6. UNDEFINED CASES

In defining the semantics of a programming language the term
"undefined" is a convenient stratagem for postponing difficult de-
cisions concerning special cases for which no obvious interpreta-
tion exists. The most difficult ones are concerned with cases,
which can only be recognized by runtime checking.

One choice is to forbid offending special cases. The user must
arrange his program in such a way that they do not occur. if ne-
cessary by explicit checking. For security the compiled program
must contain implicit checks, which to some extent will duplicate
the former. Failure of a check results in program termination and

Original Historic Documents

an error message. The implicit checking thus represents a useful
debugging aid, and, subject to the implementor's foresight, it can
be turned off for a "bugfree" program (if such a thing exists).

Another choice is to define ad hoc, but "reasonable"” standard
behaviours in difficult special cases. This can make the language
much more easy to use. The programmer need not test explicitly
for special cases, provided that the given ad hoc rule is appropriate
in each situation. However, the language then has no implicit de-
bugging aid for locating unforeseen special cases (for which the
standard rules are not appropriate).

In the preceding sections the term undefined has been used three
times in connection with two essentially different special cases.

6.1. Conflicting reference assignment
Section 4.1.2, case 2, Cl does not include Cv: The suggested
standard behaviour is to assign the value none.

6.2. Nom-existing attridbutes

Sections 5.1.2 and 5.2.2: The evaluation of an attribute refer-
ence, whose item 1 is equal to none, should cause an error print-
out and program termination. Notice that this trap will ultimately
catch most unforeseen instances of case 6.1.

7. EXAMPLES

The class and subclass concepts are intended to be general aids
' to data structuring and referencing. However, certain widely used
classes might well be included as specialized features of the pro-
gramming language.

As an example the classes defined below may serve to manipu-
late circular lists of objects by standard procedures. The objects
of a list may have different data structures. The "element" and
"set"” concepts of SIMULA will be available as special cases in a
slightly modified form.

class linkage; begin ref (linkage) suc, pred; end linkage;
linkage class link; begin
procedure out; if suc # none then
begin pred. suc: = suc; suc. pred: = pred;
suc: = pred: = none end out;
procedure into (L); ref (list) L;
begin if suc # none then out;
suc: = L; pred: = suc. pred;
suc. pred: = pred. suc: = this linkage end into;
end link;
linkage class list;
begin suc: = pred: = this linkage end list;

Any object prefixed by "link" can go in and out of circular lists. If
X is a reference expression qualified by link or a subclass of link,
whose value is different from none. the statements

99

100

Ole-Johan Dahl

X. into (L) and X. out

are meaningful, where L is a reference to a list.
Examples of user defined subclasses are:

link class car (license number, weight);
integer license number: real weight; .. .;
car class truck (load); ref (list) load; ...;
car class bus (capacity); integer capacity;
begin ref (person) array passenger [1: capacity] ...end;
list class bridge; begin real load: . ..end;

Multiple list memberships may be implemented by means of auxil-
iary objects.

link class element (X); ref X:;

A circular list of element objects is analogous to a "set" in SIMULA.
The declaration "set S" of SIMULA is imitated by "ref (list) S" fol-
lowed by the statement "S: = list".

The following are examples of procedures closely similar to the
corresponding ones of SIMULA.

procedure include (X, S); value X; ref X; ref (list) S

if X # none then element (X). into S);

ref (hnkage) procedure suc (X): value X; ref (linkage) X;
suc: = if X # none then X. suc else none;

ref (link) procedure first (S); ref (11st)
first: = S. suc;

Boolean procedure empty (S); value S; ref (list) S;
empty: =S. suc = S;

Notice that for an empty list S "suc (S)" is equal to S, whereas
"first (S)" is equal to none. This is a result of rule 6.1 and the
fact that the two functions have different qualifications.

8. EXTENSIONS

8.1. Prefixed Blocks
8.1.1. Syntax

(prefixed block):: =(block prefix) {(main block)

(block prefix):: = (object designator)

{main block :: ={unlabelled block)

(block) :: = (ALGOL block) (prefixed block)
(label):(prefixed block)

8.1.2. Sewmantics

A prefixed block is the result of concatenating (2.2) an instance
of a class declaration and the main block. The formal parameters
of the former are given initial values as specified by the actual pa-

Original Historic Documents

rameters of the block prefix. The latter are evaluated at entry into
the prefixed block.

8.2. Concalenation
The following extensions of the concepts of class body and con-
catenation give increased flexibility.

8.2.1. Syntax

(class body):: = (statement)|(split body)

{(split body):: =(block head);(part 1) inner; (part 2)
(part 1) :: = (empty)|(statement);(part 1)

(part 2):: = {compound tail)

8.2.2. Semantics

If the class body of a prefix is a split body, concatenation is de-
fined as follows: the compound tail of the resulting class body con-
. sists of part 1 of the prefix body, followed by the statements of the
main body, followed by part 2 of the prefix body. If the main body
is a split body, the result of the concatenation is itself a split body.

For an object, whose class body is a split body, the symbol
inner represents a dummy statement. A class body must not be a
prefixed block.

8.3. Virtual quantities

The parameters to a class declaration are called by value. Call
by name is difficult to implement with full security and good effi-
ciency. The main difficulty is concerned with the definition of the
dynamic scope of the actual parameter corresponding to the formal
name parameter. It is felt that the cost of an unrestricted call by
name mechanism would in general be out of proportion to its gain.

The virtual quantities described below represent another ap-
proach to call by name in class declarations. The mechanism pro-
vides access at one prefix level of the prefix sequence of an object
to quantities declared local to the object at lower prefix levels.

8.3.1. Syntax

(class declaration):: = (prefix){lass declarator){class id.)
{formal parameter part);
(specification part){virtual part)
{class body)

(virtual part):: = (empty)|virtual: (specification part)

8.3.2. Semantics

The identifiers of a (virtual part) should not otherwise occur in
the heading or in the block head of the class body. LetAy,..., 4,
be the prefix sequence of Ag and let X be an identifier occurring in
the (virtual part) of A;. I X identifies a parameter of A; or a quan-
tity declared local to the body of A;, j <, then for an object of
class A identity is established between the virtual quantity X and
the quantity X local to 4;.

101

102

Ole-Johan Dahl

If there is no Aj, j <1, for which X is local, a reference to the

virtual quantity X of the object constitutes a run time error (in an-
alogy with 6.2).

8.3.3. Example

class A; virtual: real X, Y, Z;...;
A class B(X,Y); real X,Y;...;

A class C(Y,Z); real v, Z;...;

A class D(Z, X); real Z,X;...;
ref (4) @;

The attribute reference @. X is meaningful if @ refers to an object
of class B or D. Notice that all three subclasses contain objects
with only two attributes.

8.4. Example

As an example on the use of the extended class concept we shall
define some aspects of the SIMULA concepts "process", "main
program", and "SIMULA block".

Quasi-parallel sequencing is defined in terms of three basic
procedures, which operate on a system variable SV. SV is an im-
plied and hidden attribute of every object. and may informally be
characterized as a variable of "type label”. Its value is either null
or a program point [5]. SV of a class object initially contains the
"exit" information which refers back to the object designator. SV
of a prefixed block has the initial value null. The three basic pro-
cedures are:

1) detach. The value of SV is recorded, and a new value, called
a reactivation point, is assigned referring to the next statement in
sequence. Control proceeds to the point referenced by the old value
of SV. The effect is undefined if the latter is null.

2) resume(X); ref X. A new value is assigned to SV referring to
the next statement in sequence. Control proceeds to the point ref~
erenced by SV of the object X. The effect is undefined if X.SV is
null or if X is none. null is assigned to X.SV.

3) goto(X); ref X. Control proceeds to the point referenced by
SV of the object X. The effect is undefined if X.SV is null or if X
is none. null is assigned to X.SV.

class SIMULA; begin
ref(process)current;
class process; begin ref(process)nextev; real evtime;
detach; inner; current: =nextev; goto(nextev)eﬂ;
procedure schedule(X, T); ref(process)X; real 7;
begin X. evtime: =7 ~=~--------- end;
process class main program; begin
L: resume(this SIMULA); go to L end;
schedule(main program, 0)end SIMULA;

Original Historic Documents

The "sequencing set" of SIMULA is here represented by a sim-
ple chain of processes, starting at "current”, and linked by the at-
tribute "nextev". The "schedule” procedure will insert the refer-
enced process at the correct position in the chain, according to the
assigned time value. The details have been omitted here.

The "main program" object is used to represent the SIMULA ob-

- ject within its own sequencing set.

Most of the sequencing mechanisms of SIMULA can, except for
the special syntax, be declared as procedures local to the SIMULA
class body.

Examples:

procedure passivate; begin current: = current. nextev;
resume(current)end;
procedure activate(X); ref X; inspect X when process do
if nextev = none then
begin nextev: =current; evtime: = current. evtime;
current: =this process; resume(current)end;
procedure hold(T); real T; inspect current do
begin current: =nextev; schedule(this process, evtime+T);
resume(current)end;

Notice that the construction "process class" can be regarded as a
definition of the symbol "activitv" of SIMULA. This definition is
not entirely satisfactory, because one would like to apply the pre-
fix mechanism to the activity declarations themselves.

9. CONCLUSION

The authors have for some time been working on a new version
of the SIMULA language, tentatively named SIMULA 67. A compiler
for this language is now being programmed and others are planned.
The first compiler should be working by the end of this vear.

As a part of this work the class concept and the prefix mecha-
nism have been developed and explored. The original purpose was
to create classes and subclasses of data structures and processes.
Another useful possibility is to use the class concept to protect
whole families of data, procedures, and subordinate classes. Such
families can be called in by prefixes. Thereby language "dialects"”
oriented towards special problem areas can be defined in a con-
venient way. The administrative problems in making user defined
classes generally available are important and should not be over-
looked.

Some areas of application of the class concept have been illu-
strated in the preceding sections. others have not yet been explored.
An interesting area is input/output. In ALGOL the procedure is the
only means for handling 1/0. However. a procedure instance is gen-
erated by the call. and does not survive this call. Continued exis-
tence. and existence in parallel versions is wanted for buffers and
data defining external layout, etc. System classes, which include
the declarations of local I/0 procedures. may prove useful.

103

104

Ole-Johan Dahl

The SIMULA 67 will be frozen in June this year. and the current
plan is to include the class and reference mechanisms described in

- sections 2-6. Class prefixes should be permitted for activity decla-

rations. The "element" and "set” concepts of SIMULA will be re-
placed by appropriate system defined classes. Additional standard
classes may be included.

SIMULA is a true extension of ALGOL 60. This property will
very probably be preserved in SIMULA 67.

DISCUSSION
Gavwick:

This language has been designed with a very specific line of
thought just as GPL has been designed with a very specific line.
Dahl's line is different from mine. His overriding consideration
has been security. My effort has always been security but not to
the same degree. I think that Dahl has gone too far in this respect
and thereby lost quite a number of facilities. especially a thing like
the "call by name". He can of course use a reference to a variable;
this corresponds very closely to the FORTRAN type of "call by ad-
dress”. as opposed to the call by name in ALGOL and so for in-
stance he can not use Jensens device. As vou know in GPL, I use
pointers. A pointer is not the same as a reference; it is a more
general concept. So I think the loss of facilities here is a little too
much to take for the sake of security.

The "virtuals" seem to be very closely corresponding to the
"externals” in FORTRAN or assembly languages. But you see first
of all you can only access things which belong to the same complex
structure and secondly it seems to me that it is pretty hard to get
type declarations for these procedures. You have to have declared
the type of the value of the procedure and the type of parameters. In
the example given the procedures seem to be parameterless and
they do not deliver any value for the function. So I would like to
know how Dahl would take care of that.

Dahl:

We think of SIMULA as an extension of ALGOL 60. We therefore
provide exactly the same kind of specification for a virtual quantity
as you would do for a formal parameter. You can write procedure
P; real procedure @; array 4; and so forth.

I would much have preferred to specify the formal parameters
of P within the virtual specification of P itself. Then, of course,
alternative actual declarations in subclasses could have been sim-
plified by omitting much of the procedure heading. This would have
made it possible to check at compile time the actual parameters of
a call for a virtual procedure. But in order to be consistent with
ALGOL 60, we decided not to do it in this way.

Original Historic Documents

The virtual quantities are in many ways similar to ALGOL's
name parameters, but not quite as powerful. It turns out that there
is no analogy to Jensen's device. This, I feel, is a good thing, be-
cause I hate to implement Jensen's device. It is awful.

If you specify a virtual real X, then you have the option to pro-
vide an actual declaration real X in a subclass. But you cannot de-
clare a real expression for X. So, if you specify a quantity which
looks like a variable, you can only provide an actual quantity which
is a variable. This concept seems more clean to me than the call
by name of ALGOL.

To begin with, the whole concept of virtual variables seemed to
be superfluous because there was nothing more to say about a vir-
tual variable than what had already been said in the specification.
But there is: you can say whether or not it actually exists. A virtual
variable X takes no space in the data record of an object if there is
no actual declaration of X at any subclass level of the object.
Therefore you can use the device for saving space, or for increas-
ing the flexibility in attribute referencing without wasting space. If
you access any virtual quantity out of turn, the implementation can
catch you and give a run time error message. It is a problem sim-
ilar to the "null" problem:.

Strachey:

Supposing you had classes C and D, could you then define pro-
cedures P in both and if so, if you defined one in C and one in D,
both being called P, which one would win? Do the scopes go the re-
verse way from the ordinary scopes or do they go the same way?

Dahl:

Thank you for reminding me of the problem which exists here.
The concatenation rule states that declarations given at different
prefix levels are brought together into a single block head. Name
conflicts in a concatenated block head are regarded as errors of
the same kind as redeclarations in an ordinary ALGOL block head.
However, if there is a "name conflict"” between a declared quantity
and a virtual one, identity is established between the two. if the
declaration and specification "match".

Strachey:

The other thing I was going to ask about is whether you have

“thought about the question of achieving security, not by making it
impossible to refer to any thing which has gone away but by making
it impossible to cause anything which is referred to, to go away.
That is to say, by keeping an account of the number of pointers or
references to each record, which is one of the methods of garbage
collection and only letting it go away when this count reaches zero.
The curious thing is this is generally faster than garbage collection.

105

106 Ole-Johan Dahl

Dahl:

We have made some experiments on that recently which suggest
that it may not be faster.

Strachey:

Anyway, have you thought of this as an alternative method for
providing security?

Dahl:

Evidently an actual parameter called by name is represented at
run-time by a pointer of some kind, and you could achieve security
by instructing the garbage collector tc follow such pointers in addi-
tion to stored reference values. But then the price you pay for the
call by name is much higher than for instance in ALGOL, where
data referenced by any parameter has to be retained for other rea-
sons. In my view, a call by name mechanism for classes would be
a convenient device which would invite a programmer to entirely
misuse the computer - by writing programs where no data can ever
be de-allocated and without realizing it.

Petrone:

My first question was covered by Strachey but I now have another
question which has arisen from his question. I am asking you wheth-
er the call by name mechanism was already present in the old
SIMULA in the array case. And did you use it in garbage collection
on arrays?

Dahl:

That is quite correct. There is a pointer from the object to the
array. and the garbage collector will follow it. The reason why we
did that is that an array is usually a big thing, which it is reason-
able to regard as a separate object. 7)

It is not reasonable to give a small thing like a real variable an
independent existence, because that may cause very severe frag-
mentation of the store. Fragmentation is a disaster if you do not
have a compacting scheme, and if you have one the fragmentation
will tend to increase the time for each garbage collection and also

" the frequency of calling for it.

Petrone:

Your concatenation mechanism expresses the possibility of gen-
erating families of activity declarations - I am speaking now in
terms of your old SIMULA - and the virtual mechanism seems to
be a restricted call by name of quantities declared within such a
family. Maybe it would be better to restrict the call by name to
within an activity block, so that an activity block is equivalent to
an ALGOL program with the full call by name mechanism available
for procedures.

Original Historic Documents

Dahl:

SIMULA in new and old versions has the complete call by name
mechanism for parameters to procedures. You could also have
name parameters to classes at no extra cost if you restricted any
actual parameter called by name to be computable within the block
enclosing the referenced class declaration. That is, it must only
reference quantities which are local to that block or to outer blocks.
But this is a rather unpleasant restriction considering that an ac-
tual parameter may be part of a generating expression occurring
deep down in a block hierarchy.

107

