Appeared in the Proceedings of GSPx’04, Santa Clara, September 2004

Porting GCC to the TMS320-C6000 DSP
Architecture

Jan Parthey
Community4you GmbH
Annaberger StraBe 240

09125 Chemnitz

Germany

Phone: +49 371 5347 242
jan.parthey@informatik.tu-chemnitz.de

Robert Baumgart!

Chemnitz University of Technology
Department of Computer Science
Real-Time Research Group

09107 Chemnitz

Germany

Phone: +49 371 531 1592
robert.baumgartl@informatik.tu-chemnitz.de

Abstract

This paper describes our efforts towards the im-
plementation of a C compiler for the Texas In-
struments TMS320C6x DSP architecture based
on the GNU Compiler Collection GCC. We give
a detailed motivation and introduce GCC ba-
sics. Following, we motivate important design
decisions made during the work and demon-
strate the current state of the project by looking
closely at some code generated by our compiler.
The paper is finished with a critical evaluation
and an outlook onto future project stages.

1 Introduction

Digital Signal Processors (DSP) are widely used
today, for example in sound and video process-
ing. In order to accelerate the design process
of applications, large parts of DSP programs
are usually written in C and only a few criti-
cal functions need to be written in Assembler.
Of course, an essential prerequisite for this way
of software design is a C compiler with target
support for the envisaged DSP platform.

Currently, a number of projects at Chem-
nitz University evolve around the TMS320C6x
DSP by Texas Instruments [1]. To our knowl-
edge, the only C compiler currently available for
this architecture is a commercial one, which is
offered by the manufacturer.

There are a number of reasons why this sit-
uation is not satisfactory: Firstly, with the cur-
rent Tl compiler, the interface for embedding
hand-optimized Assembler code into C code is
far from optimal, mainly due to lacking means
for explicit register allocation in such Assem-
bler blocks. By using unallocated registers, the
compiler user would be at risk of overwriting
register values used by the enclosing C code for
holding temporaries and local variables. Only
whole functions can therefore safely be imple-
mented in Assembler code. However, the re-
sulting performance is not optimal, because fre-
quent function calls to small routines often re-
quire unacceptably many CPU cycles. Given
that only time-critical parts of the algorithms
shall be hand-coded, it is thus virtually impos-
sible, with the Tl compiler, to speed up DSP
programs using inline Assembler code. A sec-

ond reason is the fact that open source soft-
ware projects are customarily optimized for be-
ing compiled with GCC and often cannot easily
be compiled with the TI compiler.

Having target support for the Cox imple-
mented in GCC would help to bring a variety
of Linux software to the C6x platform. Since
uClinux could eventually be run as operating
system, porting should be relatively inexpensive
[6]. Another option is the implementation of
RTAI, the Real-Time Application Interface [2].

Because of GCC's sophisticated interfacing
mechanisms to inline Assembler code, this would
also solve the first problem mentioned above.
Another advantage would be the support for all
input languages accepted by GCC, which would
include C++, Fortran, and others. Finally, GCC
is distributed under the GPL, which would allow
tailoring the C6x target to special optimization
requirements, if this is needed.

The rest of the paper is organized as fol-
lows. In section 2 we give a very brief introduc-
tion to the internals of GCC to give the reader
a basic understanding of the encountered prob-
lems with the port. Section 3 highlights some
design decisions taken, mostly dictated by the
C6x microarchitecture. In section 4 we provide
a very basic C source code example and the
output generated by our compiler. The output
is discussed and critically evaluated. The paper
finishes with a short summary and description
of the next project stages in section 5.

2 The GNU Compiler Collec-
tion (GCC)

The GNU Compiler Collection (GCC) is proba-
bly one of the most popular open source soft-
ware project. It is distributed under the GNU
General Public License, which grants free us-
age but requires distribution of the source code
along with every binary of a derived project.
GCC is available for a large number of processor
architectures, among them 1A-32, 1A-64, ARM
and PowerPC. On the other hand, DSP sup-
port is very scarce: to our knowledge, only the
TMS320C4x target belongs to the official GCC
distribution. There exist unofficial patches for
the A21xxx (Sharc) and 21xx DSPs by Analog

Devices as well as for Motorola’s 56k processors
but the current status of these projects is un-
clear. Their development is not connected with
the evolution of GCC.

C Sources

Preprocessor

|Preprocessed C Sources |

C Compiler ’ccl’

| Assembler Sources |

GNU Assembler "gas’

|Binary Object Code|

GNU Linker ’1d’

| Executable File |

Figure 1: GCC Tool Chain

GCC consists of a pipeline of tools, which it
uses to process the high-level language sources
all the way down to the final executable (fig-
ure 1).

Additionally, there are a number of further
tools, such as the disassembler objdump, the
Binary Format Descriptor (BFD) library, which
is responsible for generating the correct output
format, or the GNU Debugger GDB. The com-
piler alone sums up to roughly 400000 lines of
code.

The compiler itself consists of three phases
(table 1). This modular structure greatly sim-
plifies extending GCC. If a new programming
language is to be supported, another front-end
must be written. Adding a new target archi-
tecture means developing a new back end, as
is the case in our project. The middle-end per-
forms most of the optimizations by manipulat-
ing the internal representation of the program
to be translated, the so-called Register Transfer
Language (RTL).

The implementation of a new backend con-
sists primarily of implementing each a set of
target macros, expander definitions and instruc-
tion patterns. Target macros are responsible for

Phase Purpose

Front End Translation HLL — RTL
Middle End Optimization Passes
Back End Translation RTL — Assembler

Table 1: Compiler Stages

technical aspects, such as definition of stack
frame layout, calling conventions, purpose of
registers or width of operands. Expander defini-
tions are used to transform the tree representa-
tion of C functions into RTL expressions which
reflect the capabilities of the target architec-
ture. In a later stage, a matching process uses
instruction patterns to transform RTL expres-
sions into one or several assembler instructions.
Figure 2 gives an example for an instruction
pattern defining an add operation.

(define_insn "addsi3"
[(set <Template—Variable 0>
(plus:SI
<Template—Variable 1>
<Template—Variable 2>))

]

"add %1, %2, %0")

Figure 2: Instruction Pattern Example

Suppose it is matched by the RTL expres-
sion

(set (reg 5) (plus (reg 7) (reg 8)))

, it could emit a corresponding assembler state-
ment add A7, A8, AS5.

During the course of this project, approx-
imately 140 target macros, 26 expander defi-
nitions and 21 instruction patterns have been
implemented, although by far the majority of
project time was consumed by analyzing GCC
source code and understanding its structural
and operational aspects.

3 Design Aspects

As many DSPs do, the C6x architecture lacks
hardware support customarily encountered in
contemporary general-purpose processors. This

certainly complicates porting GCC. Surely, GCC
was developed with other microarchitectures in
mind.

Firstly, Cbx does not support the notion of a
stack. There are no dedicated stack pointer and
frame pointer registers as well as corresponding
push and pop operations. Therefore, some of
the general purpose registers have to be sacri-
ficed; we chose B15 as stack pointer and A15
as frame pointer.

The layout of a stack frame is depicted in
figure 3; it is chosen somewhat arbitrarily. The
picture illustrates why both stack and frame
pointer are necessary: the length of the “Dy-
namic Variables” block is variable at runtime
(cf. the alloca() machine-dependent C library
function).

Secondly, the C6x architecture does not pro-
vide a call-return mechanism. The only means
of leaving sequential execution are a branch in-
struction or an interrupt. Having implemented
a stack as described above allows us to emu-
late the call-return. Additionally, there are no
enter and leave instructions as in Intel's |A-
32 architecture to ease the management of indi-
vidual stack frames. Instead, the corresponding
functionality must be implemented “by hand".

Furthermore, C6x neither provides a multi-
bit condition code register nor a universal com-
pare instruction. Instead, it provides specialized
compare instructions as CMPEQ and CMPGT and
only a single bit for the representation of truth
values. This must be reflected in code genera-
tion for conditional expressions.

4 Results

So far our preliminary port supports all C con-
trol constructs, such as for, while, switch-case
etc. Macros for many operators are still miss-
ing, but implementing them should be fairly
straightforward.

Figure 4 depicts a very short C fragment. It
demonstrates variable definition, assignment, a
comparison and an arithmetic shift operation.

The corresponding output of our compiler
is shown in figure 5.

Let's try to interpret the output. The first
four instructions after the main label constitute
the function prologue. The “old” frame pointer

int main(void)

inta = 3;

if (a<34)
a >>= 4

return 12;

Figure 4: Simple C Example

text
.align 32
.global main

main:

add bl5, —4, blb

stw alb, *b15

mv blb, alb

add bl5, —4, blb

mvkl 3, a0

stw a0, ¥*—al5(4) 10
ldw *—al5(4), bl

nop 4

mvkl 33, b2

cmpgt .L2 bl, b2, b0

[bO] mvkl .S2 L2, bl

[bO] mvkh .S2 L2, bl

[bO] b .S2 bl

nop 5

ldw *—al5(4), b2

nop 4 20
shr b2, 4, b2

stw b2, *—al5(4)

L2:

mvkl 12, a0

mv a0, a4

add alb, —4, blbs
mv alb, blbs

Idw *b15, alb
nop 4

add bl5, 4, bls 30
Idw *b15, al4
nop 4

add b15, 4, bl5
b .S2 al4

nop 5

Figure 5: Generated Assembler Code

Temporary Slots

Register Save Area

Dynamic Variables

Frame of current Function
|

Argument Block

Return Address

L_| Dynamic Chain Pointer

Frame of called Function

Frame of Caller higher addresses, deeper in stack
current frame pointer FP
Local Variables and — allocated in prologue by adjusting SP

— allocated in prologue by adjusting SP

— allocated by alloca() at runtime
size cannot be determined at compile—time

— holds arguments to be passed to a called function
— base address decreases as dynamic variables grow

current stack pointer SP

pushed when current function makes a call

pushed by prologue of any called function
-<— FP after prologue of callee

Figure 3: Stack Frame Layout

is saved onto the stack, the new FP gets the
current value of the SP and space for the local
variable a is allocated on the stack.

After the prologue, the body of main starts.
Variable a obtains the value three. Note that
the compiler generates if (!(a>33)) instead
of if (a<34) due to the unavailability of a
“lesser-than” instruction pattern. The condi-
tional jump is implemented using the unique
conditional execution feature of the Céx archi-
tecture. If the branch to label L2 is not taken,
variable a is loaded, right-shifted four bits and
written back to memory.

The function epilogue starts at label L2.
The return value is transferred to register a4.
The finishing clean-up consists of

e deletion of the current stack frame,
e restoration of the previously saved FP,
o load of the return address into al4 and

e an register-indirect branch (“jump”) to
that address.

From the generated code it can be observed
that there is no machine-dependent optimiza-
tion. WhereasWhile the compiler middle-end

is responsible for machine-dependent optimiza-
tions such as loop-hole detection, dead code
elimination etc., our backend does no optimiza-
tion at all. Instructions are not packed into
VLIW words yet, and necessary delay slots are
incorporated in the form of NOP instructions
(consider for example the branch instruction at
the end).

5 Conclusions & Outlook

We have demonstrated that it is possible even
with very limited resources to craft a DSP com-
piler on the basis of the GNU Compiler Collec-
tion. We hope to close the remaining gaps and
to convert the somewhat prototypic compiler
into a powerful development tool as it is already
the case for many other processor architectures.

Among the most important problems to be
solved are the following:

e The full set of arithmetic operations must
be supported. For example, our compiler
lacks target macros for logic operators.

e Machine-dependent optimization is indis-
pensable.

e Floating-point data must be integrated
(and a way of supporting the C67 DSP
must be found).

e A suite of C conformance tests is neces-
sary.

e A maximum of compatibility to the code
generation tools by Tl is desirable.

e The tool chain must be completed.

The two most needed features in code opti-
mization are delay slot and instruction schedul-
ing and VLIW instruction word packing, as our
code example demonstrated. Current work at
the Real-Time Group at Chemnitz University is
focused on optimization issues.

The conventions for function calls (which
arguments to pass in registers etc.) and the
layout of types in memory should be made com-
pliant with those described in Chapter 8 of [5].
This might open the way for linking GCC-com-
piled object code against object code compiled

by Texas Instruments’ C6x Code Composer Stu-
dio.

As far as the GCC tool chain is concerned,
we are making progress. At the time of writing
this paper, the port of the GNU assembler is
almost done, we have a functioning BFD library
producing COFF output and the disassembler
objdump is up and running. The latter is even
able to analyze output of the T| development
tools.

We invite interested people to the project's
web pages at

http://rtg.informatik.tu-chemnitz.de

where we offer documents describing in detail
the compiler port ([3]) and other aspects of the
tool chain ([4]), as well as current CVS snap-
shots of the tools. The software is distributed
under the GNU General Public License (GPL).

References

[1] Robert Baumgartl, Ingo Oeser, Daniel
Schreiber, Michael Schwindt: DSP Accel-
erator Support for Linux. Proceedings of
ICSPAT'00, Dallas, 2000

[2] E. Bianchi, L. Dozio, G. L. Ghiringhelli,
P. Mantegazza: Complex Control Sys-
tems, Applications of DIAPM-RTAI at DI-
APM, Realtime Linux Workshop, Vienna,
1999

[3] Jan Parthey: Porting the GCC Backend
to a VLIW Architecture. Diploma Thesis,
Chemnitz University of Technology, March
2004

[4] Adrian Stratling: Extending the GNU
Assembler for Texas Instruments
TMS320C6x-DSP. Term Paper, Chemnitz
University of Technology, March 2004

[5] Texas Instruments, Inc.: TMS320C6000
Optimizing Compiler User’s Guide. Octo-
ber 2002

[6] uCLinux Embedded Linux/Microcontroller
Project. http://www.uclinux.org/

