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Summary

An investigation of common techniques for approximating the Normal distribution Quantile function is
presented. The high-precision arithmetic and rational approximation packages built in to Mathematica are
used for this investigation, but we also present a benchmark easily used in other languages, based on the
power series representation of the Normal Quantile developed recently by Steinbrecher, and using a simpe
non-linear recursive definition of its coefficients to provide a benchmark. Within an arbitrary precision
environment this can be used to provide as much precision as is needed, and our working benchmark tool has
relative accuracy better than 107" on 0.5 <u < 0.99, and better than 1077 on 0.5 < u <0.98. A simple
version in C-style C++ is provided for benchmarking/education purposes with error order 107" on
0.005 < u <0.995. Using this benchmark with Mathematica's MiniMaxApproximation functions allows
rational functions of diverse complexity to be constructed with relatively little effort. In this version of the
note we explore the Beasley-Springer-Moro (BSM), Wichura "AS241" (1988) and Acklam algorithms,
paying particular attention to the main rational approximations employed within a central region
|#—0.5| <a. We find that the BSM rational approximation is sub-optimal with regard to both absolute and
relative error on the interval on which it is applied, and that an approximation of the same degree (3,4) as
BSM exists whose maximum relative error is less than one-fifth of the BSM approach. This may be applied
by a small adjustment to the coefficients. Within the same BSM interval an approximations of degree (4,5)
and (5,6) are found with maximum relative errors of 1.5x 107" and 1.0« 107" respectivcely. For the Acklam
approach, which is degree (5,5) but on a larger region, we find that Mathematica generates a (5,5) rational
approximation that is extremely close to Acklam's formula and a similar relative error. We can also find a
(6,6) variation on Acklam's method with a relative error less than 2.5 % 107" on the central region, and a (5,6)
variation on Acklam's method with a relative error less than 1.7%107'" on the central region. Wichura's
AS241 correspondingly uses a (7,7) variation on a different interval to obtain a relative error that is of order
machine precision, and we are able to regenerate an expression that is also very close to that of AS241 with a
similar error. Within these central regions it is clear that the accuracy just increases with the degree of the
rational approximation. Within environments limited to standard machine precision, AS241 is the clear
winner on accuracy grounds, though if pure speed is needed, a revised form of BSM can be considered, with
rational approximations of the Acklam class or similar degree being a compromise. We also show how the
central region for the Acklam formula may be extended, and the error more than halved, by combining a
rational approximation with a polynomial of similar average length. In the tail regions we find good behaviour
of the AS241 and Acklam formulae, though Moro's approach has issues in the deep tails.
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1 Introduction

The purpose of this note is to explore the various approaches to working out the Normal quantile function, for
efficient Monte Carlo simulation. We will exploit Mathematica's high-precision arithmetic tools and rational
approximations packages in order to try to obtain further optimization of fast methods for approximating the
Normal quantile function used within various types of financial simulation. It is very much a "work in
progress" and will be updated over the next few months as I learn new ways of doing further optimization.
There is no claim that results discussed below are actually absolutely optimal, rather they represent some
improvements and other options that I think are worth mentioning as they provide some benefit. Comments
and suggestions for improvement are welcome. Furthermore, given that this is a Mathematica project, there is,
despite the high-precision nature of this environment, a small desire to see the results so far checked in
another symbolic environment exists. So I would be pleased to hear from any Maple etc. uses to see if they
can verify these results or indeed improve on them. I hope the ideas developed here will be improved on and
applied to other quantile construction problems. I will add discussions of

(a) hybrid polynomial-rational methods;
(b) tail series;
(c) other CDFs

in due course. First some reminders.

Given a distribution function Fy(x), a simple means of simulation is to set

X=Fy'(U) (1)

where U is a sample from the uniform distribution on [0, 1]. Making U is compsci probem. The inverse CDF:
F~'(u) = Qp(u) is the Quantile Function associated with the distribution. We do not have to do this, witness
the use of Box-Muller, Polar-Marsaglia methods for the Normal case, and its extension to Student by Bailey.
But it is very useful if we can, particularly if we are working with algorithms based on hypercube-filling
quasi-Monte-Carlo methods, or in particular copula methods. Readers should see Jaeckel (2002), who pro-
vides a detailed discussion of why quantile functions are a much better idea than methods of Box-Muller type.
Many financial applications make use of a composite of methods, that I shall refer to as BSM, developed by
Beasley and Springer (1977) and Moro in his RISK article (1995). They are summarized by Glasserman
(2004) in Section 2.3.2, who also points out that the BSM approach can be made much more accurate by
going once around a Newton-Raphson loop. The BSM method has been implemented in various systems
supporting financial modelling in C++, including Joshi (2004), who has it on his web site, and is also avail-
able in QuantLib. QuantLib also cites an improvement by Acklam, who gives a very detailed discussion of his
methods on his web site at:

http://home.online.no/~pjacklam/notes/invnorm/

We shall also explore Acklam's approach here. He uses, for example, a higher order rational approximation
than BSM in a central region, and we shall look at this issue in particular. Jaeckel (2002) provides an Acklam
implementation. The other method we shall consider is Wichura's (1988) AS241 algorithm, which in my view
has been wrongly neglected by the mathematical finance community, and provides machine precision. It
should also be noted that "Acklam's method" actually comprises two stages - a pair of rational approxima-
tions for work not requiring machine precision, together with a Halley refinement (i.e. Newton-Raphson with
a quadratic rather than a line) that gets to machine precision.
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B Error Measures

One needs to distinguish between absolute and relative error when comparing algorithms. The BSM discus-
sion focused on absolute error while Acklam focuses on relative error.
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2 Benchmark Quantile Functions

The first thing we need to establish is: How do we know when we have a good answer? In estimating the error
properties of any model of the Normal Quantile one needs a benchmark, and preferably one that may be used
in a diverse set of computational environments. In Mathematica we have an easy life. Here is the Normal
Quantile function expressed in terms of Mathematica's InverseErf function:

QuantileN[u_] := Sqrt[2] InverseErf[2u - 1]

This, as it stands, is not efficient enough for fast numerical computation, but it is a very useful benchmark.
What else can we do, and how indeed would we check the answers from Mathematica's InverseErf? How
would be check for accuracy in any other computer language where we do not have any
fast/slow/precise/imprecise implementation of the quantile? The following result established recently by G.
Steinbrecher is very useful. We shall use it here to construct an alternative high precision benchmark.

B Steinbrecher's recurrence formula and a super-precision Normal Quantile

In 2002 G. Steinbrecher posted the following result to functions.wolfram.com.
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The observation that such a simple recursion for the series exists, and the method of its derivation are new and
ingenious. This result was certainly not known to Carlitz, whose 1963 paper looked at series for the formal
inverse of erf. It was established by Steinbrecher by doing a series solution of the differential equation for the
inverse. (Personal communication from GS.) Let's implement this using Mathematica's approach to efficient
recursion.

Clear[q];
q[0] =1;
q[k_] s =
q[k] = Sum[g[m] *q[k-1-m]/ (m+1)/(2m+1), {m, O, k-1}]

The array could be populated by calling value for a length we want to employ, but to avoid large recursions
we just fill out this array in order. The following command takes a substantial time, but the results may be
stored on disk or indeed held in fast memory.

max = 1000;
Timing[Do[dummy = q[j], {j, 1, max}]]

{925.611 Second, Null}
Having done some work to compute this, we shall save it.

Save['"qdata", q];

This may be reloaded as necessary:

<< qdata;

{q[0], a[l], a[2], q[3]}

7 127
L 5 5]
$// N

{1., 1., 1.16667, 1.41111}
q[1000] // N
3.31126x10'*
Next we want to generate a table of ratios for use in an optimized algorithm:

algpoly = Table[q[k] / (2k+1), {k, O, max}];
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algpoly[[{1l, 2, 3, 4}]]

{1 1 7 127}

>3730° 630

$//N

{1.,0.333333, 0.233333, 0.201587}

algratios = RotateLeft[algpoly] / algpoly;
algratios = Drop[algratios, -1];
algratios[[{1, 2, 3}]] //N

{0.333333, 0.7, 0.863946}

Length[algratios]

1000

Last[algratios] // N

1.27189

We convert to numerical values in high precision, and use 200 sig figs for internal use. This may seem
excessive, but the error in a truncated form of this series can get so small, way below machine precision, that
it is necessary in order to get a grip on measuring it.

polydata = Table[N[q[k], 200], {k, O, max}];
Length[polydata]
1001

Here is a crude and not very efficient implementation (don't even think of working out polynomials like this is
real applications - this is just to get an idea of how it works!):

SuperPolyQuantile[u_, data_] := Module[{v = Sqrt[Pi] (u-1/2),
len = Length[data], w = Pi* (u-1/2) "2},
Sqrt[2] *v+Sum[data[[k]] *w" (k-1) / (2k-1), {k, 1, len}]]

Here is a variaton that stops at a fixed point:

SuperPolyQuantileShort [u_, data_, end_] :=
Module[{v = Sqrt[Pi] (u-1/2),
len = Length[data], w = Pi* (u-1/2) "2},
Sqrt[2] *v*Sum[data[[k]]*w" (k-1)/(2k-1), {k, 1, end}]]

SuperPolyQuantile[0.975, polydata]

1.95996
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m Optimal evaluation to a tolerance

This is a faster scheme that keeps going until a tolerance is reached. Note how simple this algorithm is once
the ratios have been precomputed. This algorithm is modelled on Marsaglia's for the forward Normal CDF.

SbNormalQuantile[u_, ratios_, tol_]
Module[{b = Sqrt[Pi] * (u-1/2), q, 1i=0, s, t=0, end = tol},
s=b; q = b*b;
While[s -t > 10" (-end),
(t=s; bx=qg+ratios[[i+=1]]; s=t+Db)];
Sqrt[2]
s]
In the following plot we evaluate out to 0.99 stopping the iteration onces the last term added is less than
107" This gets us down to order 1077 relative accuracy on 0.5 < u < 0.99 with this one function.

N[SbNormalQuantile [975 /1000, algratios, 16], 16]

1.959963984540053

N[QuantileN[975/1000], 16]

1.959963984540054

N[QuantileN[998/1000], 16]

2.878161739095484

Plot [SbNormalQuantile[u, algratios, 10.13] /QuantileN[u] -1,
{u, 0.5, 0.99}, PlotRange - All];

-8x 10

-1x 10

For assessment of amount of work done we will have a variation from which we can extract the number of
terms taken.
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SbNormalQuantileReport [u_, ratios_, tol_] :=
Module[{b = Sqrt[Pi] * (u-1/2), q, 1i=0, s, t =0},
s = b;g=bxb;
While[s -t > 10" (-tol),
(t=s; bx=g+ratios[[i+=1]]; s=t+Db)];
{Sqrt[2] *s, i}]

Plot [SbNormalQuantileReport [u, algratios, 10.13][[2]],
{u, 0.5, 0.99}, PlotRange - All];

30

00

e

0.5 0.6 0.7 0.8 0.9

iterreport =
Table [SbNormalQuantileReport [u, algratios, 10.13][[2]],
{u, 0.5, 0.99, 0.0001}];

Mean[iterreport] // N

30.1236

So this is not in fact taking, on average, a great deal of calculation to get errors of order 10 or better on a
large sub-interval - my guess is around three times the effort of Acklam's central approximation. Although
this is doing more work than the traditional rational approximations, note that we have not worked very hard
on optimization, nor on advanced methods for summing the series, and that this series works in a complex
disk - not just on a real interval. Furthermore we can just dial up the precision when we need to. To see the
real power of the method, we note that with the terms generated so far we can get a relative error better than
107" on 0.5 < u < 0.995 with this single function, or better than 2 10™"* on 0.5 < u < 0.992!
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Plot [SbNormalQuantile [u, algratios, 12.4] /QuantileN[u] -1,
{u, 0.5, 0.995}, PlotRange - All];

™

-6x 10~

™

-8x 10~

T

-1x 10~

Plot [SbNormalQuantile[u, algratios, 15] /QuantileN[u] -1,
{u, 0.5, 0.992}, PlotRange - All];

-1x 10(°f

-1.25x 101

=3
s

-1.5x 10~

Let's see how much precision we can get. Going back to the full series, here is the comparison with the
internal quantile over a larger region than the Acklam range. In this first graph we plot the log to the base 10
of the absolute error over the range for which we can work it out. Note that this graph is showing the differ-
ence as below 1072 for u less than 0.65! The superimposed line is at -16, i.e. the a rough estimate of the
machine precision limit.
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edata = Table[{u, SuperPolyQuantileShort[u, polydata, 200] -
N[QuantileN[u], 200]},
{u, 1/2+1/1000, 99/100, 1/1000}];

rawlogs = Map[{#[[1]], Log[10, Abs[#[[2]]]]} &, edata];
plotdata = Select[rawlogs, NumberQ[#[[2]]] &];
ListPlot [plotdata, PlotJoined - True,

PlotRange -» {{0.5, 1}, {-200, 0}},

Epilog -» Line[{{0.5, -16}, {1, -16}}]1;

Here is the polynomial taken to 300 terms:

edata = Table[{u, SuperPolyQuantileShort[u, polydata, 300] -
N[QuantileN[u], 200]},
{u, 1/2+1/1000, 99/100, 1/1000}];

rawlogs = Map[{#[[1]], Log[10, Abs[#[[2]]]]} &, edata];
plotdata = Select[rawlogs, NumberQ[#[[2]]] &];
ListPlot [plotdata, PlotJoined - True,

PlotRange » {{0.5, 1}, {-200, 0}},

Epilog - Line[{{0.5, -16}, {1, -16}}]1;
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edata = Table[{u, SuperPolyQuantileShort[u, polydata, 400] -
N[QuantileN[u], 200]},
{u, 1/2+1/1000, 99/100, 1/1000}];

rawlogs = Map[{#[[1]], Log[10, Abs[#[[2]]]]} &, edata];
plotdata = Select[rawlogs, NumberQ[#[[2]]] &];
ListPlot [plotdata, PlotJoined - True,

PlotRange » {{0.5, 1}, {-200, 0}},

Epilog -» Line[{{0.5, -16}, {1, -16}}]1;

=50+

=75

=100t

-125+¢

=150 ¢

-175¢

-200"

Now we need to zoom in and make sure our polynomial is good enough to rather better than machine preci-
sion deep into the tail.

ListPlot [plotdata, PlotJoined - True,
PlotRange -» {{0.9, 1}, {-200, 0}},
Epilog -» Line[{{0.5, -16}, {1, -16}}]1;

0.9 0.92 0.94 0.96 0.98 —

=25+t

=50+

=75t

=100t

-125+¢

=150 ¢

-175¢

-200"
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edata = Table[{u, SuperPolyQuantileShort[u, polydata, 500] -
N[QuantileN[u], 200]},
{u, 1/2+1/1000, 99/100, 1/1000}];

rawlogs = Map[{#[[1]], Log[10, Abs[#[[2]]]]} &, edata];
plotdata = Select[rawlogs, NumberQ[#[[2]]] &];
ListPlot [plotdata, PlotJoined - True,

PlotRange -» {{0.9, 1}, {-200, 0}},

Epilog -» Line[{{0.5, -16}, {1, -16}}]1;

0.9 0.92 0.94 0.96 0.98

=25+t

=50+

=75

=100t

-125+¢

=150 ¢

-175¢

-200"

So we are now better than machine precision up to about 0.98. Finally by going to 1000 terms the error at
u = 0.99 is almost down to 1072,

edata = Table[{u, SuperPolyQuantileShort[u, polydata, 1000] -
N[QuantileN[u], 200]},
{u, 1/2+1/1000, 99/100, 1/1000}];
rawlogs = Map[{#[[1]], Log[10, Abs[#[[2]]]]} &, edata];
plotdata = Select[rawlogs, NumberQ[#[[2]]] &];
ListPlot [plotdata, PlotJoined - True,
PlotRange -» {{0.9, 1}, {-200, 0}},
Epilog -» {Line[{{0.5, -16}, {1, -16}}],
Line[{{0.5, -25}, {1, -25}}1}1;

0.9 0.92 0.94 0.96 0.98

N
g

=75

=100t

-125+¢

=150+

-175¢

-200°"
N[Last[plotdata] [[2]], 3]

-19.8
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Note that at u = 0.98, which is above the end point of all three popular approximation schemes, the error is
less than 1077, so we can be confident about using our polynomial as a benchmarking tool for schemes that
go to, and well below, machine precision. For u at about 0.9 or below the error is about 1072 or less! This
may all seem like overkill but given that Wichura's scheme goes to machine precision we have to do much
better in order to have any kind of plausible benchmark.

We now go to the popular schemes and implement them.

A first implementation in C++ (C style)

The following is my very first attempt at this in C++. You can switch the doubles to long doubles if you like -
on my system it makes only a marginal improvement. I also use the public domain part of the Numerical
Recipes vector routines for array storage. Readers can swap in whatever their preference is. Note that this is a
stand alone program with comments and I/O. The actual routine is very short, largely immune to data transcrip-
tion errors, and will work with complex numbers if suitably modified. (n.b. Suggestions for improvement
welcome)

//recursivequantile.cpp

//Normal quantile using

//Steinbrecher's non-linear recursion
//This test program works on 0.004<u<0.996
//with max relative error<3e-15

//using Bloodshed Dev C++

//(l.1le-15 with double-long double everywhere)
//William Shaw

//Version 0.2-provisional version

//for education and benchmarking only
//February 2007

//william.shaw@kcl.ac.uk

#include<cmath>

#include<iostream>

#include<fstream>

#include "nrutil nr.h"//public domain Numerical Recipes vectors
using namespace std;

double RecursiveQuantile(double u,NRVec<double>&rat)
{int P=rat.size();
int i;
double b,s,t,q;
const double rootpi=1.77245385090551602729816748334;
const double roottwo=1.41421356237309504880168872421;
b=rootpi*(u-0.5);
i=-1;
t=0;
s=b;
g=b*b;
while(fabs(b)>1.0e-17&&1i<P) s=(t=s)+(b*=g*rat[i+=1]);
if (i==P) {cout <<"recursion limit reached \n";
cout <<"switch to tail series \n ";
cout <<"last term = " <<b <<"\n";}
return roottwo*s;

}
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int main()

{

NRVec<double>qgarr(2701);
NRVec<double>ratios(2700);
double u;

double quantile;

char name[5];

int k,m;
cout <<"Steinbrecher's recursive quantile \n ";
cout <<"Initializing series..... \n";

//Initialize the array of coefficients and ratios
//using Steinbrecher recursion:
//alk]=Sum[g[m]*q[k-1-m]/(m+1)/(2m+1),{m,0,k-1}] qgarr[0]=1.0;
garr[1]1=1.0;
for (k=2;ks2700;k++)
{gqarr[k]=0.0;
for (m=0;m<k;m++) {garr[k]+=garr[m]*qgarr[k-1-m]/(m+1)/(2*m+1);}};
for (k=1;ks2700;k++)
{qarr[k]=qgarr[k]/(2*k+1);
ratios[k-1l]=qgarr[k]/qgarr[k-1];}
cout <<"Series ratios computed to order 2700 \n";
cout <<garr[2700] <<"\n";
cout <<ratios[2699]<<"\n";
cout <<"Working on test array \n";
ofstream out("quantiles.txt");
for (k=4;k=<996;k++) {u=k/1000.;
quantile=RecursiveQuantile(u,ratios);
out.precision(25);
out <<u <<","<<quantile <<"\n";}
cout <<"Output written to quantiles.txt \n";
cout <<"Hit any key to quit \n";
cin>>name;
return(0);}

This program (or my modifications to it) can be downloaded from

http://www.mth.kcl.ac.uk/~shaww/web_page/papers/recursivequantile.cpp

3 The Beasley-Springer-Moro method

All algorithms exploit the symmetry of the quantile and focus on one half of the unit interval. Many algo-
rithms recognize that it is then best to split the upper region 1/2 < u < 1 into two or even three sub-intervals.
BS worked with a split 0.5 <z < 0.92 and 0.92 < u < 1. Moro's RISK article modified the tail formula and
we shall work with that combination. In the inner region their rational approximation is of type (3, 4) in
m—O@?meGM%ﬂmmm%mmkquwmgmeC}+aﬂaﬂmbﬂwSmmgpMmommmbm
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BSMQuantile[u_] :=

Module[{v, r,

a = {2.50662823884, -18.61500062529,
41.39119773534, -25.44106049637},

b = {-8.47351093090, 23.08336743743,
-21.06224101826, 3.13082909833},

{0.3374754822726147, 0.9761690190917186,
.1607979714918209, 0.0276438810333863,
.0038405729373609, 0.0003951896511919,
.0000321767881768,

.0000002888167364, 0.00000039603151871}},
If[0.08 < ux< 0.92,
(v =u-1/2;
r=(u-1/2)"2;
v (a[[1]] +xr=* (a[[2]] +r=* (a[[3]] +r= (a[[4]])))) /
(L+rx(b[[1]] +r* (b[[2]] +xr* (P[[3]] +r*b[[4]]))))),
(If[u>0.92, r = Log[-Log[l-u]], r = Log[-Log[u]]];
Sign[u-1/2] % (c[[1]] +r* (c[[2]] +xr* (c[[3]] +r* (c[[4]] +
r* (c[[5]] +r* (c[[6]] +r=*
(c[[7]1] +xrx (c[[8]] +r*xc[[9]])))))))))]

OO oOoOoI

]

Let's make a quick evaluation check:

Map [BSMQuantile, {0.025, 0.5, 0.975}]

{—1.95996, 0., 1.95996}
Let's plot it together with the built-in function:

Plot [{BSMQuantile[u], QuantileN[u] }, {u, 0.001, 0.999}];

You cannot see the difference over most of this plot, wo we really need to plot the difference and will do so
over the interval over which this approximation is applied in the BSM framework. First here is the absolute
error.
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Plot [BSMQuantile [u] - QuantileN[u] ,
{u, 0.001, 0.999}, PlotRange - All];

2x 10~

=LA A AL
S i AVAAVARYE(

-2x 10~

This graph is consistent with the claim that the absolute error is no more than 3 x10™°. Let's tabulate the error
to find the maximum over the central region - we only need to worry about the upper half:

Max [Table [Abs [BSMQuantile [x] - QuantileN[x]],
{x, 0.5, 0.92, 0.00001}]]

3.00778 x 10~°

So the claim is almost true in this interval. Here is the relative error plot for comparison with Acklam's
analysis. Acklam, rather more usefullym, works with relative errors. :

Plot [BSMQuantile [u] / QuantileN[u] -1,
{u, 1/2, 0.999}, PlotRange - All];

[N AN

0.5 .7 0. 8\\J/ d\ﬁrf

-2.5x 10~

-5x 10~
-7.5x 10~
-1x 10~

-1.25x 10~

So the relative error is not so good, and peaks in the middle at:

BSMQuantile[0.50000000001] / QuantileN[0.50000000001] -1

-1.42785%x 1078

The shape of both these error plots is also rather worrying and suggests that the BSM central series is sub-opti-
mal. In a minimax approximation one would expect to see either the relative or absolute error to be managed
in a more uniform way, with one of these error graphs showing oscillations between essentially level and
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parallel lines. With the growing or decaying errors shown in the plots, we might expect to be able to squeeze
down the maximum errors. Before attempting to do this, we shall look at Acklam's result, which is altogether
better in this respect, and demonstrates the effect we are looking for.

4 Acklam's approximation

1-0.97575

0.02425

Acklam worked with a split 0.5 <u < 0.97575 and 0.97575 < u < 1. The following data has been pasted
electronically from his web site, noting that he stores the coefficients in reverse order to that used by Glasser-
man. I have coded this ever so slightly differently from BSM.

Acklam[u_] :=

Module[

{a = Reverse[{-39.69683028665376, 220.9460984245205,
-275.9285104469687, 138.3577518672690,
-30.66479806614716, 2.506628277459239}],

b = Reverse[{-54.47609879822406, 161.5858368580409,
-155.6989798598866, 66.80131188771972,
-13.28068155288572}],

c = Reverse[{-0.007784894002430293, -0.3223964580411365,
-2.400758277161838, -2.549732539343734,
4.374664141464968, 2.938163982698783}],

d = Reverse[{0.007784695709041462, 0.3224671290700398,
2.445134137142996, 3.7544086619074161}]},

Which[0.02435 < u< 0.97575,

Module[{v = u-1/2, r = (u-1/2) "2},

v (a[[1]] +r=*(a[[2]] +
rx (a[[3]] +r«(a[[4]] +r=* (a[[5]] +rxa[[6]]))))) /
(l+r*x (b[[1]] +xr* (b[[2]] +r* (b[[3]] +
r* (b[[4]] +r*Db[[5]]1)))))],
u> 0.97575,
Module[{q = Sqrt[-2*Log[l -u]]l}, -(c[[1]] +a=* (c[[2]] +
a* (c[[3]] +a=* (c[[4]] +q* (c[[5]] +axc[[6]])))))/
(L+qgx (A[[1]] +a=* (A[[2]] +q+ (A[[3]] +a=*=d[[4]]))))],
True,
Module[{q = Sqrt[-2*Log[u]]}, (c[[1]] +a=* (c[[2]] +
a* (c[[3]] +a=* (c[[4]] +q* (c[[5]] +axc[[6]1])))))/
(L+qgwx (A[[1]] +q=* (d[[2]] +q= (d[[3]] +a=*d[[4]]1))))]]]

Let's plot the two together:

Acklam[0.975]

1.95996
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Plot [{Acklam[u], QuantileN[u] }, {u, 0.001, 0.9999}];

Again we really need to plot the difference:

Plot[Acklam[u] - QuantileN[u] ,
{u, 0.001, 0.999}, PlotRange - All];

3x 10

2x 10~

" Q\/M M/\./\ _L
V M

-1x 10~

-2x 10~

-3x 10~

This is good, but growing, but we should note that Acklam sought to minimize the maximum relative error.
Here is the maximum absolute error

Max [Table [Abs [Acklam[u] - QuantileN[u]],
{u, 0.5, 0.99999, 0.00001}]]

3.92266 x 10~°

Here is the relative error for comparison with Acklam's plot and claim that the Max Rel Error is less than 1.15
x 10E-9:
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Plot [Acklam[u] / QuantileN[u] -1, {u, 0.000001, 0.999999},

PlotPoints -» 300, Epilog - {RGBColor[l, O, 0],
Line[{{0, 1.1510%-9}, {1, 1.1510"-9}}],
Line[{{0, -1.1510"-9}, {1, -1.1510"-9}}]}1;

1x 10~
5% 107*
.2 0.4 0.6 0.
-5x 107
-1x 107}

This graph is consistent with the claim that the relative error is no more than 1.15x107°.

Max [Table [Abs [Acklam[u] /QuantileN[u] - 1],
{u, 0.5000001, 0.99999, 0.00001}]]

1.12885%x107°

So the error data is very good. This graph also shows the correct properties of a minimax approximation - the
error is not bulging anywhere and sits between two level lines. A further probe into the tails confirm all is OK

to at least u = 10722,

But it should also be borne in mind that the Acklam approximation uses a numerator of degree two higher,
and a denominator of degree one higher, than the Beasley-Springer method - we need to ask if we can do
better in some sense, either, being more accurate with only the same amount of computation as BS, or using
the extra terms in Acklam's method to do better. Of course these considerations depend on the tail region as
well, and Acklam's approach uses a simple rational approximation much deeper into the tail than does BS or

BSM, which is a big benefit.

5 Wichura's AS241

The central portion of the Wichura (1988) AS241 algorithm is given on a region

1
O<u—5<0.425

A3)

It works in a similar way to the BSM and Acklam formulae, except that this is now a larger rational approxima-
tion of type (7,7), involving substantially more calculation, and the polynomials in the numerator and denomi-
nator are expressed in terms of a reflection in the endpoint: 0.186025 = 0.425%. The outer region is also split

again into two sub-regions.
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AS241[u_] :=

Module[{a = {3.3871328727963666080, 133.14166789178437745,
1971.5909503065514427, 13731.693765509461125,
45921.953931549871457, 67265.770927008700853,
33430.575583588128105, 2509.0809287301226727},

b = {42.313330701600911252, 687.18700749205790830,
5394.1960214247511077, 21213.794301586595867 ,
39307.895800092710610, 28729.085735721942674,
5226.4952788528545610},

c = {1.42343711074968357734, 4.63033784615654529590,
5.76949722146069140550, 3.64784832476320460504,
1.27045825245236838258, 0.241780725177450611770,
0.0227238449892691845833, 0.000774545014278341407640},

d {2.05319162663775882187, 1.67638483018380384940,

.689767334985100004550, 0.148103976427480074590,
.0151986665636164571966, 0.000547593808499534494600,
.05075007164441684324 10" (-9) },

e = {6.65790464350110377720, 5.46378491116411436990,
.78482653991729133580, 0.296560571828504891230,
.0265321895265761230930, 0.00124266094738807843860,
.0000271155556874348757815,

.01033439929228813265 10" (-7) },
{0.599832206555887937690, 0.136929880922735805310,
.0148753612908506148525,

.000786869131145613259100,
.84631831751005468180 » 10~ (-5),
.42151175831644588870 10~ (-7),
.04426310338993978564 » 10" (-15) }

N O O = O O 1

N == OO

T
I£[0.075 < u < 0.925,

Module[{v=u-1/2, r},
r =180625/10"6 -v*V;
v+ (a[[1]] +r* (a[[2]] +r=* (a[[3]] +
r+ (a[[4]] +r* (a[[5]] +
r+ (a[[6]] +r* (a[[7]] +r=*a[[8]1])))))))/
(l+r*x (b[[1]] +r* (b[[2]] +r* (B[[3]] +r* (b[[4]] +
r+ (b[[5]] +r* (b[[6]] +r*b[[7]1]1)))))))1,
If[u<1l/2, r =u,r=1-u]; r=S8qrt[-Log[r]];
If[r<=5,
(r = r-16/10;
Sign[u -1/ 2]
(c[[1]1] +r* (c[[2]] +r* (c[[3]] +r* (c[[4]] +r* (c[[5]] +
r+ (c[[6]] +r*(c[[7]] +r*c[[8]1])))))))/
(l+r* (d[[1]] +r* (d[[2]] +r* (d[[3]] +r* (d[[4]] +
r+ (A[[5]] +r* (d[[6]] +r*d[[7]11)))))))),
(r = r-5; Sign[u-1/2] (e[[1]] +r* (e[[2]] +
r+ (e[[3]] +r* (e[[4]] +r=* (e[[5]] +
r+(e[[6]] +r*(e[[7]] +r=*xe[[8]1])))))))/
(l+rx (£[[1]] +r* (£[[2]] +r* (£[[3]] +r* (£[[4]] +
r+ (E£[[5]] +r* (£[[6]1] +r*£[[71]1)))))))
)1
11

This is now a larger rational approximation of type (7,7), involving substantially more calculation.
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AS241[0.975]

1.95996

Plot [{AS241[u], QuantileN[u] }, {u, 0.0001, 0.9999}];

So we just test the claim that the error is of order machine precision. This requires some more specialized
plotting routines to dig down below machine precision. The red lines are drawn at 10™'® and the relative error
is less than this down to less than u = 1072, First here is an analysis that ignores the deep tails.

edata = Table[{u, AS241[u] /N[QuantileN[u], 200] -1},
{u, 10" (-6), 1-10"(-6), 1/1000}];

Max [Abs [Transpose [edata] [[2]]]]

7.43x107"
So the relative error is less than 107, Here is a plot that shows the errors in the central and inner tail regions:
ListPlot [edata, PlotJoined - True, Epilog -
{RGBColor[1l, 0, 0], Line[{{0, 10~-16}, {1, 10"°-16}}],

Line[{{0, - 107-16}, {1, -107-16}}1},
PlotRange » {-210"(-16), 210"-16}];

1.5x

-5x

-1x

-1.5x%

Here we check the left tail:
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edata = Table[{u, AS241[u] /N[QuantileN[u], 200] -1},
{u, 107 (-8), 107 (-6), 10" (-8)}];

ListPlot [edata, PlotJoined - True, Epilog -
{RGBColor[1, 0, 0], Line[{{0, 107-16}, {1, 10~-16}}],
Line[{{0, - 107-16}, {1, -107-16}}1},
PlotRange -» {-210"(-16), 210"°-16}];

1.5x 10
1x 10

_1p 2x 10774x 1077 6x 1077 8x 107 1x 10~
-5x 10 ¢

-1x 10
-1.5x 10

Now we go deeper into the left tail:

edata = Table[{u, AS241[u] /N[QuantileN[u], 200] -1},
{u, 10" (-10), 10" (-8), 10" (-10)}];

ListPlot [edata, PlotJoined - True, Epilog -
{RGBColor[1, 0, 0], Line[{{0, 10°-16}, {1, 10~-16}}],
Line[{{0, - 10"-16}, {1, -10"-16}}]},
PlotRange -» {-210" (-16), 210"°-16}];

1.5x 10
1x 10

15 2x 107%4x 10776x 10778x 1077 1x 10~
-5x 10 ¢

-1x 10
-1.5x 10

Deeper still, to investigate the switch at vV —log[u] =5, i.e. u =Exp[-25]:

Exp[-25] // N

1.38879 x 1071

edata = Table[{u, AS241[u] /N[QuantileN[u], 200] -1},
{u, 10" (-12), 10" (-10), 10" (-12)}1;
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ListPlot [edata, PlotJoined - True, Epilog -
{RGBColor[1, 0, 0], Line[{{0, 10°-16}, {1, 10~-16}}],
Line[{{0, - 107-16}, {1, -107-16}}1},
PlotRange -» {-210"(-16), 210"°-16}];

1.5x 10
1x 10

\ VAW B ‘ ‘
vV
2% 107Max 107 ek 107 107k 107

-16

-5x 10
-1x 10
-1.5x 10

-16

I have repeated this down to 107>* with no problems emerging. This is outstanding.

Note that Wichura's method gets to machine precision with only a (7, 7) rational approximation, so is roughly
40% more effort than the Acklam scheme which is (5, 5), albeit on a shorter interval. Acklam's scheme goes
further into the tail and so the more complex tail series needs to be used less frequently. Of course Acklam
also allows for a Halley iteration to get to machine precision.

6 Rational Approximations in Mathematica and checking BSM

Mathematica has a package for constructing rational approximations and may be set up to find approxima-
tions that minimize either the maximum relative error or the maximum absolute error. We load it with the
following package load statement.

Needs [ "NumericalMath Approximations™ "]

Now we want to work on optimizing a rational approximation exploiting the fact that the inverse is an odd
function, so we work on the key part of the inverse function. Let's look at it using the built in function and the
first part of our big polynomial:

KeyBitA[x_, data_] :=
Module[{len = Length[data], w = Pi*x"2},
Sqrt[2Pi] »Sum[data[[k]] *w"~ (k-1) / (2k-1), {k, 1, len}]]

KeyBit[x_] :=Sqrt[2] InverseErf[2x] /x
Series[KeyBit[y], {y, 0, 14}]

1 - 7 512 |4 127 7/2 |,6 4369 9/2 8
‘/27T+—\/27T3/2y2+ T z + Vg _y N ey N
3 152 31542 11340 V2
34807112 Y10 20036983732 y!? 2280356863 n'%” '
89100 V2 48648600 2 5108103000 V2

+0(")
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N[%]

2.50663 + 2.62493 (y + 0.)* + 5.77253 (y + 0.)* +15.6676 (y + 0.)° + 47.0358 (y + 0.)* +
149.83 (y + 0.)'° +496.274 (y + 0.)'% + 1689.87 (y + 0.)'* + O((y +0.)"°)

The truncated series is a polynomial in y?>so we will work on this basis and put a square root into the defini-
tion. Also, Mathematica's rational approximation stuff is a bit fussy about what you give it (it objects to using
KeyBit directly, which may well have been found by others as an obstacle to using this tool), so the first
thing we do is truncate the power series at a sufficiently high order such that the resulting polynomial is very
accurate on the Beasley Springer region 0.5 < u <0.92 or the corresponding Acklam region. So we use our
big polynomial:

rootthing = KeyBitA[Sqrt[y], polydata];

PolyQuantileOne[x_] = (x-1/2) rootthing /. y-» (x-1/2)"2;
We already know that this is extremely accurate over the given region.
Now do a rational approximation on the remaining BSM interval. The settings of the following follow from a

little experimentation. The important thing is to note that the 3,4 means a numerator of degree three and a
denominator of degree 4.

revrelBSM =

MiniMaxApproximation [rootthing, {y, {0, 0.42"2}, 3, 4},
Brake -» {10, 10}, MaxIterations - 40,
WorkingPrecision - 20, PlotFlag - False][[2, 1]]

(—24.820209533706798850 y* + 40.864622120467790785 y* —

18.515898959450185753 y + 2.5066282682076065359) /

(3.0154847661978822127 y* —20.641301545177201274 y* +
22.831834928541562628 y* — 8.4339736056039657294 y + 1)

RatQuantileOne[x_] = (x-1/2)% /. y-» (x-1/2)"2;

Here is a plot of the relative error over the region:

Plot [RatQuantileOne [x] /QuantileN([x] -1,
{x, 0.5, 0.92}, PlotRange - All];

2x 10~

1x 10~

-1x

-2x
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Max [Table [Abs [RatQuantileOne [u] / QuantileN[u] - 1],
{u, 0.5000001, 0.92, 0.00001}]]

2.56256 %1077

So this is better by a factor of more than 5 than the maximum relative error with the BSM data. And the error
plot has the characteristics of a minimax approximation that we expect. So to use an rational approximation
of BSM form that minimizes the maximum relative error the list of "a" coefficients should be adjusted slightly,
to:

CoefficientList [Numerator [revrelBSM], y]

{2.5066282682076065359, —18.515898959450185753,
40.864622120467790785, —24.820209533706798850}

While the list of "b" coefficients should be adjusted to.

Rest[CoefficientList [Denominator [revrelBSM], y]]

{—8.4339736056039657294, 22.831834928541562628,
—20.641301545177201274, 3.0154847661978822127}

This decreases the maximum relative error from about 1.4 E-8 to 2.6E-9, over the central BSM region.

Absolute error minimization

This is a slightly trickier issue due to the need to use a generalization of the function used above, and the
introduction of an error weighting function:

? GeneralMiniMaxApproximation

GeneralMiniMaxApproximation[{x, y, (9)}, {t, {t0, tl}, m, k}, xvar,
(opts)] finds the mini-max approximation to the function y[Xx]
on the interval t0 < t < tl where x and y are functions of t,
which parametrically define y[x], m and k are the degrees of the
numerator and denominator, respectively, and xvar is the variable
to be used for x in the approximation. The optional g is also a
function of t, and the error to be minimized is (y[x[t]] - approx|
x[t]])/g[t]. The answer returned is {Abscissalist, {Approximation,
MaxError}}, where AbscissaList is a list of the abscissas (values
of t) where the maximum error occurs. Approximation is the rational
approximation desired, and MaxError is the value of the mini-max error.
GeneralMiniMaxApproximation[{x, y, (9)}, approx, {t, {t0, tl}, m,
k}, xvar, (opts)] is a form that allows the user to start the
iteration from a known approximation. Here approx must be in the

form of an answer returned by GeneralMiniMaxApproximation. More...

Some thought reveals that the appropriate weight function is just 1 / V1, but this cannot be used as is due to
the singular behaviour at the origin. So we perturb it to 1 / (e +/1 t) and then optimize over €. Some rather
extensive search calculations lead to € = 0.035771 and the following rational approximation.

compthing = rootthing /. y- t;
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revabsBSM = GeneralMiniMaxApproximation [
{t, compthing, 1/ (0.035771 +Sqrt[t])}, {t, {0, 0.42"2},
3, 4}, t, Brake -» {10, 10}, MaxIterations - 40,
WorkingPrecision -» 20, PlotFlag - False][[2, 1]]

(=25.965959614983341521 1* + 41.841057826285191701 £* —

18.700226003845536893 ¢ + 2.5066282186077179315) /

(3.2269921657498348465 t* — 21.419275595427556433 1* +
23.298480931332967694 1> — 8.5075119518749713281 1 + 1)

RatQuantileOne[x_] = (x-1/2) revabsBSM /. t-> (x-1/2)"2;

Max [Abs [Table [
RatQuantileOne[x] - QuantileN[x], {x, 0.5, 0.92, 0.01}]]]

1.84673x10~°
Plot [RatQuantileOne [x] - QuantileN[x],

{x, 0.5, 0.92}, PlotRange - All]

1.5x 10~
1x 10~
5x 10~

0/6 .7 0.8 0l.
-5x 107*
-1x 10~
-1.5x 10~

- Graphics -

So this is better than the maximum absolute error with the BSM data. And the error plot has more of the
characteristics of a minimax approximation that we expect. However, in this case given the method employed
we can only claim that this is better than BSM, and not necessarily optimal. So to use a rational approxima-
tion of BSM form that lowers the maximum absolute error the list of "a" coefficients should be adjusted
slightly, to:

CoefficientList [Numerator [revabsBSM], t]

{2.5066282186077179315, —18.700226003845536893,
41.841057826285191701, —25.965959614983341521}

While the list of "b" coefficients should be adjusted to.

Rest[CoefficientList [Denominator [revabsBSM], t]]

{—8.5075119518749713281, 23.298480931332967694,
—21.419275595427556433, 3.2269921657498348465}
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However, from a precision point of view the set that minimizes relative error is preferable, and indeed better
than BSM by a factor of five in the relative error.

B Variations using the BSM region

= One more term in numerator and denominator

Let's do a little more work and allow one more square in both the numerator and denominator

revrelBSMA =

MiniMaxApproximation [rootthing, {y, {0, 0.42"2}, 4, 5},
Brake -» {10, 10}, MaxIterations - 40,
WorkingPrecision -» 20, PlotFlag - False][[2, 1]]

(41.336656803386989331 y* — 105.84210116376198023 y* +
81.124697593450729775 y* — 24.301357591165500310 y + 2.5066282745938837616) /
(—3.9151522373688291510 y° + 39.896238821445256473 y* — 66.997432181293659162
¥ +41.310199682875185297 y* — 10.742036575321449665 y + 1)

RatQuantileVarOne[x_] = (x-1/2) revrelBSMA /. y-» (x-1/2)"2;

Here is a plot of the relative error over the region:

Plot [RatQuantileVarOne [x] /QuantileN([x] -1,
{x, 0.5, 0.92}, PlotRange - All];

1.5x 10 [

1x 107

5% 107F
0.6 0l7 0. 0.9

-1.5x 10

Max [Table [Abs [RatQuantileVarOne [u] / QuantileN[u] - 1],
{u, 0.5000001, 0.92, 0.00001}]]

1.48106 x 1071

So we get down to better than 1.5E-11. This is less work than in Acklam's fomula but over a shorter interval.
The a list is now

CoefficientList [Numerator [revrelBSMA], y]

{2.5066282745938837616, —24.301357591165500310,
81.124697593450729775, —105.84210116376198023, 41.336656803386989331}
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While the list of "b" coefficients should be adjusted to.

Rest[CoefficientList [Denominator [revrelBSMA], y]]

{—10.742036575321449665, 41.310199682875185297,
—66.997432181293659162, 39.896238821445256473, —3.9151522373688291510}

m Two more terms in numerator and denominator

Let's do a little more work and allow one more square in both the numerator and denominator

revrelBSMB =

MiniMaxApproximation [rootthing, {y, {0, 0.42"2}, 5, 6},
Brake -» {10, 10}, MaxIterations - 40,
WorkingPrecision - 20, PlotFlag - False][[2, 1]]

(—65.871752394631995007 y° + 240.90242193180930121 y* — 273.80041456455819039 y* +
134.66512972532018904 y* — 30.079483805333604735 y + 2.5066282746307863413)/
(5.0928736250315728292 y§ — 72.194957674033174332 y° +
169.85006173352583420 y* — 153.59006018987562373 y* +
65.083676406361719335 y* — 13.047175413875805207 y + 1)

RatQuantileVarTwo[x_] = (x-1/2) revrelBSMB /. y-» (x-1/2)"2;

Here is a plot of the relative error over the region:

Plot [RatQuantileVarTwo [x] /QuantileN[x] -1,
{x, 0.5, 0.92}, PlotRange - All];

-2.5x%

-5x

-7.5x%x

Max [Table [Abs [RatQuantileVarTwo [u] / QuantileN[u] - 1],
{u, 0.5000001, 0.92, 0.00001}]]

9.90319x 107"

So we get down to better than 1.0E-13. This is a bit more work than in Acklam's fomula and over a shorter
interval. The coefficients are
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CoefficientList [Numerator [revrelBSMB], y]

{2.5066282746307863413, —30.079483805333604735, 134.66512972532018904,
—273.80041456455819039, 240.90242193180930121, —65.871752394631995007 }

While the list of "b" coefficients should be adjusted to.

Rest[CoefficientList [Denominator [revrelBSMB], y]]

{—13.047175413875805207, 65.083676406361719335, —153.59006018987562373,
169.85006173352583420, —72.194957674033174332, 5.0928736250315728292}

7 A corresponding investigation of Acklam's method

Acklam's graphs on his web site and the one we have given above indicate a rather better approach and that
the formula given is almost certainly an optimal minimax for the relative error. Let's see what Mathematica
comes up with! We will need to work quite hard as Acklam's formula is very good!

PolyQuantileTwo[x_] = (x-1/2) rootthing /. y-» (x-1/2)"2;

revrelAck =

MiniMaxApproximation [rootthing, {y, {0, 0.47575"2}, 5, 5},
Brake -» {70, 70}, MaxIterations - 50,
WorkingPrecision - 25, PlotFlag - False][[2]]

{(=39.69686278848757498642429 y° + 220.9461801327657812942595 y* —
275.9285654331351510312671 y* + 138.3577661367497249833873 y* —
30.66479934626074106764235 y + 2.506628277460319276759223) /

(-54.47612957075147289732531 y° + 161.5858866432906228265978 y* —
155.6990071150346771962174 y* + 66.80131811358923018209895 y* —
13.28068206353032233422245 y + 1), —1.128734883819165410635651 x 1077}

RatQuantileThree[x_] =
(x-1/2) revrelAck[[1]] /. ¥y (x-1/2)"2;

Here is a plot of the relative error over the region:
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Plot [RatQuantileThree [x] /QuantileN[x] -1,
{x, 0.5, 0.97575}, PlotRange - All];

1x 1077

5x 10 T

1

U=}

-5x 10~

O

-1x 10~

Max [Table [Abs [RatQuantileThree [u] / QuantileN[u] - 1],
{u, 0.5000001, 0.97575, 0.00001}]]

1.12882x10~°
So we are ever so slightly better than what we get from Acklam's formula, which is:

Max [Table [Abs [Acklam[u] /QuantileN[u] - 1],
{u, 0.5000001, 0.97575, 0.00001}]]

1.12885x107°

i.e. the max error from our method is very marginally better than Acklam. So we will not be necessarily
suggesting replacing his coefficients with ours, which for the numerator are, in the order given by Acklam

Reverse[CoefficientList [Numerator [revrelAck[[1]]], Y]]

{—39.69686278848757498642429, 220.9461801327657812942595,
—275.9285654331351510312671, 138.3577661367497249833873,
—30.66479934626074106764235, 2.506628277460319276759223}

and the denominator list is

Reverse[Rest [CoefficientList [Denominator [revrelAck[[1]]1], v1]]

{—54.47612957075147289732531,
161.5858866432906228265978, —155.6990071150346771962174,
66.80131811358923018209895, —13.28068206353032233422245}

We remind the reader that the corresponding data from Acklam's web site is:

{-39.69683028665376, 220.9460984245205, -275.9285104469687,
138.3577518672690, -30.66479806614716, 2.506628277459239};

{-54.47609879822406, 161.5858368580409, -155.6989798598866,
66.80131188771972, -13.28068155288572};

Clearly the coefficients are also almost identical, and here is a plot of the errors of the two functions overlaid:



30 NormalQuantilel .nb

Plot[{RatQuantileThree [x] /QuantileN[x] -1,
Acklam[x] /QuantileN[x] -1},
{x, 0.5, 0.97575}, PlotRange - All];

1x 1077

5x 10 °F

-5x 1071

-1x 10~

Here is the difference

Plot [RatQuantileThree [x] - Acklam[x],
{x, 0.5, 0.97575}, PlotRange - All];

3x 10
2x 10

1x 10

-1x 10

-2x 10

-3x 10

= A modification to Acklam with one more power top and bottom

revrelAckA =

MiniMaxApproximation [rootthing, {y, {0, 0.47575"2}, 6, 6},
Brake -» {70, 70}, MaxIterations - 50,
WorkingPrecision - 25, PlotFlag - False][[2, 1]]

(63.83254693322136566188807 y° —
489.5133581983256689241613 y° + 838.5319954259973887488977 y* —
604.2274869543201246471315 y* +214.1861555101569440118991 y* —
37.06067825689877615032746 y + 2.506628274689389273431613) /
(99.95378117839194217196559 y° — 394.7736036000437859716064 y° +
515.2163224848749999753231 y* — 315.2733228580261880164159 y* +
99.72451761284519542913740 y* — 15.83226903488722523627608 y + 1)

RatQuantileVarThree[x_] = (x-1/2) revrelAckA /. y-» (x-1/2)"2;
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Here is a plot of the relative error over the region:

Plot [RatQuantileVarThree [x] / QuantileN[x] -1,
{x, 0.5, 0.97575}, PlotRange - All];

2x 10

1x 10

0.6 0.7 .8 )
-1x 107
—2x 107t

Max [Table [Abs [RatQuantileVarThree [u] / QuantileN[u] - 1],
{u, 0.5000001, 0.97575, 0.00001}]]

2.40931 x 107!

So if want wants to work with a method of Acklam type with this level of error in the central region it is a
simple matter of extending the two sets of coefficients to be, first for the numerator,

Reverse[CoefficientList [Numerator [revrelAckA], y]]

{63.83254693322136566188807,
—489.5133581983256689241613, 838.5319954259973887488977,
—604.2274869543201246471315, 214.1861555101569440118991,
—37.06067825689877615032746, 2.506628274689389273431613}

and the denominator list is

Reverse[Rest [CoefficientList [Denominator [revrelAckA], y]]]

{99.95378117839194217196559, —394.7736036000437859716064,
515.2163224848749999753231, —315.2733228580261880164159,
99.72451761284519542913740, —15.83226903488722523627608 }
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= A modification to Acklam with one more power in the bottom

revrelAckB =

MiniMaxApproximation [rootthing, {y, {0, 0.47575"2}, 5, 6},
Brake -» {70, 70}, MaxIterations - 50,
WorkingPrecision - 25, PlotFlag - False][[2, 1]]

(—164.7576553660347200314572 y° + 451.7139679518615844537619 y* —
416.6567742314157889190224 y* + 173.6821540958537046016187 y* —
33.81938143513469679728244 y + 2.506628274221047429091663) /

(16.28319283447602122654025 y® — 161.0462551275919445411612 y° +
298.7041337185320394790773 y* — 225.0821730483348303189079 y* +
82.21164639322003641753099 y* — 14.53917878291234960873113 y + 1)

RatQuantileVarFour[x_] = (x-1/2) revrelAckB /. y-» (x-1/2)"2;

Here is a plot of the relative error over the region:

Plot [RatQuantileVarFour [x] /QuantileN[x] -1,
{x, 0.5, 0.97575}, PlotRange - All];

1.5x 107!
1x 107"
5x 107
0.6 0.7 0.l olo
5% 107
-1x 107* \/ \/
-1.5x 107*

Max [Table [Abs [RatQuantileVarFour [u] /QuantileN[u] - 1],
{u, 0.5000001, 0.97575, 0.00001}]]

1.64121x 10710

So if want wants to work with a method of Acklam type with this level of error in the central region it is a
simple matter of extending the two sets of coefficients to be, first for the numerator,

Reverse[CoefficientList [Numerator [revrelAckB], y]]

{—164.7576553660347200314572, 451.7139679518615844537619,
—416.6567742314157889190224, 173.6821540958537046016187,
—33.81938143513469679728244, 2.506628274221047429091663 }

and the denominator list is



NormalQuantilel .nb 33

Reverse[Rest [CoefficientList [Denominator [revrelAckB], y]]]

{16.28319283447602122654025, —161.0462551275919445411612,
298.7041337185320394790773, —225.0821730483348303189079,
82.21164639322003641753099, —14.53917878291234960873113}

8 A corresponding investigation of Wichura's AS241

It will be evident by now that all these different schemes correspond to making different choices for the
degree and numerator of the rational approximation, and a good choice of split in the interval. If we go to
(7,7) and split at u =0.925 we can try to generate something like Wichura's AS241 central formula. The
algorithm AS241 reverses the coordinates so we shall build this in, by considering:

(425 /1000) "2 // N

0.180625

reversed = rootthing /. y-» (425/1000) "2 - z;

Now we form an approximation to this object, using a lot of internal precision during the calculation.
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sevenseven = MiniMaxApproximation [reversed,

{z, {0, 0.425~2}, 7, 7}, Brake - {80, 80},

MaxIterations - 200, WorkingPrecision - 50, PlotFlag - False]

{{0, 0.0010075858381111393057337545725534568135240404401126

0.0040640295753441735675621871636779453829293403189251 ,
0.0092655008873804214208805967631039751901859860972354 ,
0.016754935571102927014759840247178038266352238389339,
0.026692534986935099704109052956289221971424461342594 ,
0.039208363664503262959149267890497724269931505933308 ,
0.054333469763630834119049108317875194725608308225216,
0.071909688770700123623511965088692267392354073022536
0.091486840568097063554456793190989520269944944185784 ,

0.11222984216309460821755551961765023856139515740147 ,
0.13287422010834830264555261159524408100317757982694 ,
0.15177763514462983388233272818551374535836767378744
0.16710360760259937067006242674050505744700311885425 ,
0.17713176486572202576747318588839360920652045854678 ,
0.18062499999999998001598555674718227237462997436523 },

{(2509.

0814069870534781529831560407278731068028274270 7’ +
33430.580423506993022366545337636415809973223808597 z° +
67265.778102764018588449157431865730541748168710612 7° +
45921.957400032815544819980657702498844637293527101 z* +
13731.694456624315217864236408896200772793054228337 7° +
1971.5910094275027424697683591038339346936953627853 7% +
133.14166968794228852770808564748670287633346154120 z +
3.3871328727963666080259528779427788158739210379764 ) /

(5226.4961724990340848855571296643657843805218376688 7’ +

28729.089491615611535067926442316676533115693351172 z° +
39307.899609448792796879833774972167788565304184291 7° +
21213.795765973111651970052869305507789573595154341 z* +
5394.1962710137248305498997611193069508648159382145 7 +
687.18702654028253804115761174023624065078998751050 7> +

42.313331231889500017187287592131981830109606699891 z + 1),

7.4281948860287173689531750261245514258282250119427 x 107'7}}

RatQuantileVarFive[x_ ] =
(x-1/2) sevenseven|[[2, 1]] /.2 > (425/1000) "2 - (x-1/2)"2;

RatQuantileVarFive [0.975]

1.95996

Here is a plot of the relative error over the region:

edata

Table[{u, RatQuantileVarFive[u] /N[QuantileN[u],

{u,

501/1000, 925/1000, 1/1000}];

Max [Abs [Transpose [edata] [[2]]]]

7.42819488602871736895317502612455 x 10"

200] - 1},
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We cannot really claim any difference from the original error of the published scheme, which over this
interval is

oldedata = Table[{u, AS241[u] /N[QuantileN[u], 200] -1},
{u, 501/1000, 925/1000, 1/1000}];

Max [Abs [Transpose [oldedata] [[2]]]]

7.43%107"

So the relative error is less than 10™'®and almost identical to the published scheme. Here is a plot that shows
the errors in the central and inner tail regions:

ListPlot [edata, PlotJoined - True, Epilog -
{RGBColor[1, 0, 0], Line[{{0, 10°-16}, {1, 10~-16}}],
Line[{{0, - 107-16}, {1, -107-16}}1},
PlotRange -» {-210"(-16), 210"°-16}];

1.5x 107 tP

1x 10

SN AN N
I VARV RV AT

-1x 1071

Jary

Jary

-1.5%x 107 P

The coefficients in the numerator in the original AS241 were

{3.3871328727963666080, 133.14166789178437745,
1971.5909503065514427, 13731.693765509461125,
45921.953931549871457, 67265.770927008700853,
33430.575583588128105, 2509.0809287301226727}

whereas our formula has

CoefficientList [Numerator [sevenseven[[2, 1]]], 2]

{3.3871328727963666080259528779427788158739210379764 ,
133.14166968794228852770808564748670287633346154120,
1971.5910094275027424697683591038339346936953627853 ,
13731.694456624315217864236408896200772793054228337 ,
45921.957400032815544819980657702498844637293527101,
67265.778102764018588449157431865730541748168710612,
33430.580423506993022366545337636415809973223808597 ,
2509.0814069870534781529831560407278731068028274270 }

The corresponding coefficients in the denominator in AS241 were
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{42.313330701600911252, 687.18700749205790830,
5394.1960214247511077, 21213.794301586595867,
39307.895800092710610, 28729.085735721942674,
5226.4952788528545610},

whereas we have generated the following:

Rest[CoefficientList [Denominator [sevenseven[[2, 1]]], 2]]

{42.313331231889500017187287592131981830109606699891 ,
687.18702654028253804115761174023624065078998751050,
5394.1962710137248305498997611193069508648159382145,
21213.795765973111651970052869305507789573595154341,
39307.899609448792796879833774972167788565304184291 ,
28729.089491615611535067926442316676533115693351172,
5226.4961724990340848855571296643657843805218376688 }

There is clearly not a lot of difference, and the higher significant figures are not that "significant".

9 Hybrid Polynomial-Rational Approximations - a first look

n.b. This section is new and not at all optimized.

One issue with all of the methods descibed above is that they throw away a known polynomial that is very
accurate in a neighbourhood of u = 1 /2. Of course, we would not, with current technology, propose using our
benchmark polynomial of degree 1000. However, given that the popular schemes have rational degrees (3,4),
(5,5) and (7,7), we can consider polynomials of degree 7, 10 and 14. The target accuracy for the three cases is
about 107, 107, 107'%. Using our high precision plotting tools we can see that polynomials of degree 7, 10,
and 14 attain this level of relative accuracy in a region extending to about u = 0.64t0 0.7:
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= Polynomial of BSM Complexity

edata = Table[{u, SuperPolyQuantileShort[u, polydata, 7]/
N[QuantileN[u], 200] -1},
{u, 1/2+1/1000, 80/100, 1/1000}];

rawlogs = Map[{#[[1]], Log[10, Abs[#[[2]]]]} &, edata];
plotdata = Select[rawlogs, NumberQ[#[[2]]] &];
ListPlot [plotdata, PlotJoined - True,

PlotRange -» {{0.5, 0.8}, {-50, 0}},

Epilog -» Line[{{0.5, -9}, {0.8, -9}}11;

-10F

=20+

=30+

=40

-50"

For example:

SuperPolyQuantileShort [u, polydata, 7]/
N[QuantileN[u], 200] -1 /. u- 0.64

—-7.87073 % 10710
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= Polynomial of Acklam Complexity

edata = Table[{u, SuperPolyQuantileShort[u, polydata, 10]/
N[QuantileN[u], 200] -1},
{u, 1/2+1/1000, 80/100, 1/1000}];

rawlogs = Map[{#[[1]], Log[10, Abs[#[[2]]]]} &, edata];
plotdata = Select[rawlogs, NumberQ[#[[2]]] &];
ListPlot [plotdata, PlotJoined - True,

PlotRange -» {{0.5, 0.8}, {-50, 0}},

Epilog -» Line[{{0.5, -9}, {0.8, -9}}11;

-10F

=20+

=30+

=40

=50

SuperPolyQuantileShort [u, polydata, 10]/
N[QuantileN[u], 200] -1 /. u- 0.7

—-3.47025%x 10710
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= Polynomial of Wichura Complexity

edata = Table[{u, SuperPolyQuantileShort[u, polydata, 14]/
N[QuantileN[u], 200] -1},
{u, 1/2+1/1000, 80/100, 1/1000}];

rawlogs = Map[{#[[1]], Log[10, Abs[#[[2]]]]} &, edata];
plotdata = Select[rawlogs, NumberQ[#[[2]]] &];
ListPlot [plotdata, PlotJoined - True,

PlotRange -» {{0.5, 0.8}, {-50, 0}},

Epilog -» Line[{{0.5, -16}, {0.8, -16}}11;

=10+

=20+

=30+

=40

-50¢

For example

SuperPolyQuantileShort [u, polydata, 14]/
N[QuantileN[u], 200] -1 /. u- 0.66

—4.44089 x 10716

For non-Mathematica users wishing to employ such hybrids, here are the coefficients of the polynomials out
to degree 20, both exactly and to high numerical precision

Table[q[k], {k, 1, 20}]

7 127 4369 34807 20036983 2280356863 49020204823
{L 6’ 90 2520 ° 16200 ° 7484400 ° 681080400 * 11675664000
65967241200001  15773461423793767 655889589032992201
12504636144000 * 2375880867360000 ° 78404068622880000 ’
94020690191035873697  655782249799531714375489
8910391798788480000 * 49229914688306352000000 ’
44737200694996264619809969  10129509912509255673830968079
2658415393168543008000000 *  476169110129306674080000000
108026349476762041127839800617281  10954814567103825758202995557819063
4015057936610313875842560000000 *  321778214634055154906810880000000
61154674195324330125295778531172438727
1419041926536183233139035980800000000
54441029530574028687402753586278549396607
997586474354936812896742294502400000000
452015832786609665624579410056180824562551
6538802100813871546718142770688000000000 }

s

s
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N[%, 24]

{1.00000000000000000000000, 1.16666666666666666666667,
LAITI1111111111111111111, 1.73373015873015873015873,
2.14858024691358024691358, 2.67716623911068355512800,
3.34814636128128191620255, 4.19849396342683379720417,
5.27542268646125590137763, 6.63899509461546110676198,
8.36550450191292060060557, 10.5518020210760645655979,
13.3208081702262335261296, 16.8285215357839056042421,
21.2729253053784283794474, 26.9053027832426678849999,
34.0446123102593385209080, 43.0957486538823464455622,
54.5727422435001394019095, 69.1282326361197204618150}

Though we are not advocating this many terms, we note that a degree twenty expression has relative accuracy
better than 102 —16 for u < 0.72 and better than 1072 for u < 0.675, so is itself a simple checking tool.

edata = Table[{u, SuperPolyQuantileShort[u, polydata, 20]/

N[QuantileN[u], 200] -1},
{u, 1/2+1/1000, 80/100, 1/1000}];
rawlogs = Map[{#[[1]], Log[10, Abs[#[[2]]]]} &, edata];
plotdata = Select[rawlogs, NumberQ[#[[2]]] &];
ListPlot [plotdata, PlotJoined - True,
PlotRange -» {{0.5, 0.8}, {-50, 0}},
Epilog -» Line[{{0.5, -16}, {0.8, -16}}11;

=10+

=20+

=30+

=40+

-50"-

exdata = Table[q[k], {k, 0, 20}];

For example

N[SuperPolyQuantileShort [u, exdata, 20]/
N[QuantileN[u], 200] -1 /. u-» 72/100]

-8.52987x 107"

N[SuperPolyQuantileShort [u, exdata, 20] /N[QuantileN[u],
1 /. u-» 675/1000]

-8.51869%x 1072

200] -
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m Hybrid polynomial variations of Acklam's method - fixed length polynomials

It seems that the lack of use of the truncated power series might be most useful in the Acklam level of approxi-
mation, becase we can get out to # = 0.7 with a degree 10 polynomial and keep the relative error down to less
than 3.5 x107!°. We do have to make one more switch in the code, but also do not have to do a division on
the most central interval. In fact in a pure Monte Carlo method, the switch could be avoided altogether by
grouping the samples appropriately. Let's create a target accuracy of 5 x 107'°, which is less than half the
standard Acklam formula, and see what we can achieve. First we note that for this target the polynomial is
good out to just above 0.7036

SuperPolyQuantileShort [u, polydata, 10]/
N[QuantileN[u], 200] -1 /. u- 0.7036

~4.98005x 107"
Let's see what the accuracy is using a (5,5) rational on the original interval:

revrelAckC =
MiniMaxApproximation [rootthing, {y, {0.2036"2, 0.47575"2},
5, 5}, Brake -» {70, 70}, MaxIterations - 50,
WorkingPrecision - 25, PlotFlag - False][[2]]

{(—48.92434080245331694782753 y° + 249.3172454306726625050968 y* —
297.5820485499836963184556 y* + 144.5770608983980349205166 y* —
31.27420504146166039495158 y + 2.506628567610287323289097) /

(—64.148946079109468 18205980 y° + 179.5457440587141673356128 y* —
166.6382347325840836080735 y* + 69.53678255899736379967468 y* —
13.52379108336019763885320 y + 1), —4.826691860576169408401350 x 107'%}

RatQuantileHybrid[x_] =
(x-1/2) revrelAckC[[1]] /. v (x-1/2)"2;

Here is a plot of the relative error over the region:

Plot [RatQuantileHybrid [x] /QuantileN([x] -1,
{x, 0.7036, 0.97575}, PlotRange - All];

ax 1070
2x 1070
0o[75 oJ8  o0.85 .9 | olo
-2x 107
—4x 1071
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Max [Table [Abs [RatQuantileHybrid [u] / QuantileN[u] - 1],
{u, 0.7036, 0.97575, 0.00001}]]

4.82944 x 10710

So that comes out right. So we can make a hybrid with less than half the error with a similar amount of
computation.

Alternatively, what about stretching the interval over which we have s simple formula while still keeping the
relative error below 1072 The polynomial can be used out to u = 0.71072:

SuperPolyQuantileShort [u, polydata, 10]/
N[QuantileN[u], 200] -1 /. u- 0.71072

-9.99364 x 107'°
After some experimentation, we see that

revrelAckC =

MiniMaxApproximation [rootthing, {y, {0.21072"2, 0.4797 "2},
5, 5}, Brake -» {70, 70}, MaxIterations - 50,
WorkingPrecision - 25, PlotFlag - False][[2]]

{(=56.76318131628549079820109 y° + 273.4845709150046981169032 y* —
316.0664063925676738451016 y* + 149.8954769308509426073192 y* —
31.79612128052649469902721 y + 2.506628878924548383753761) /

(=72.37387908546304838668011 y° + 194.8530758845003555121700 y* —
175.9793431783894246767167 y* + 71.87631537065155501416878 y* —
13.73199695555435022968089 y + 1), —9.978832331386022287522457 x 1077}

RatQuantileHybrid[x_] =
(x-1/2) revrelAckC[[1]] /. ¥v-» (x-1/2)"2;

Here is a plot of the relative error over the region:

Plot [RatQuantileHybrid [x] /QuantileN([x] -1,
{x, 0.71072, 0.9797}, PlotRange - All];

Jary
=]

-1x 10°f
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Max [Table [Abs [RatQuantileHybrid [u] / QuantileN[u] - 1],
{u, 0.71072, 0.9797, 0.00001}]]

9.98275x 10710

So further optimizations can indeed be made in two ways: the first more than halves the error over the same
interval, the second allows a very small stretch of the interval while keeping the error smaller than the original
scheme. In some ways it is a reflection of the quality of Acklam's original scheme that the benefits of further
optimization are in fact quite small. But we are not quite done.

m Hybrid polynomial variations of Acklam's method - variable length polynomials

The other approach we can try is based on the fact that even quite a short polynomial wastes some evaluations
in a neighbourhood of u = 0.5. Recall the following definition:

SbNormalQuantileReport [u_, ratios_, tol_] :=
Module[{b = Sqrt[Pi] * (u-1/2), q, 1i=0, s, t =0},
s = b;g=bxb;
While[s -t > 10" (-tol),
(t=s; bx=g+ratios[[i+=1]]; s=t+Db)];
{Sqrt[2] *s, i}]

Plot [SbNormalQuantileReport [u, algratios, 9.4][[1]]/
QuantileN[u] -1, {u, 0.5, 0.85}, PlotRange - All];

-2x 10

-3x 10

-4x 10

edata = Table[SbNormalQuantileReport [u, algratios, 9.4][[1]]/
N[QuantileN[u], 30] -1, {u, 501/1000, 850/1000, 1/1000}];

Max [Abs [edata]]

4.23492700188231021050 x 10~1°
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Plot [SbNormalQuantileReport [u, algratios, 9.4][[2]],
{u, 0.5, 0.85}, PlotRange - All];

20 ¢

15+

10 ¢

/,_;07% 0.6 0.65 0.7 0.75 0.8 0.85

Mean [Table [SbNormalQuantileReport [u, algratios, 9.4]1[[2]],
{u, 0.5, 0.85, 0.0001}]] //N

9.94487

So we can get out to u = 0.85 working out a polynomial whose average length is 10 terms, with relative error
less than 5 107'°.

revrelAckD =
MiniMaxApproximation [rootthing, {y, {0.35"2, 0.485"2}, 5, 5},
Brake -» {70, 70}, MaxIterations - 50,
WorkingPrecision - 25, PlotFlag - False][[2]]

{(~114.9474876962197158154762 y° + 413.9473319026475054248935 y* —
411.3846362457469883226569 y* + 175.1618552310486463171764 y* —
34.12410337742904117832389 y + 2.506675146278758463123009) /

(—125.0470349986467989648475 y° + 280.0356930925240522935943 y* —
223.2878893643711612560419 y* + 82.91360501189534726399241 y* —
14.65993627738662622217046 y + 1), —4.060172180065606493485360 x 107'%}

RatQuantileHybridA[x ] =
(x-1/2) revrelAckD[[1]] /. v (x-1/2)"2;

Here is a plot of the relative error over the region:
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Plot [RatQuantileHybridA [x] /QuantileN[x] -1,
{x, 0.85, 0.985}, PlotRange - All];

x 107
2x\ 107 A /\
. .92 0.94 [0.96] .

Max [Table [Abs [RatQuantileHybridA [u] / QuantileN[u] - 1],
{u, 0.85, 0.985, 0.00001}]]

9

o)

4.07026 x 10710

So the hybrid polynomial-rational form of "Acklam style", i.e. the rational part is (5,5) and the average length
of the polynomial is about 10, is capable of getting a relative error less than 5x107'" on the interval
0.5 <u <0.985, and to do so without an increase in net effort. A suitable tail partner for this is under consider-
ation.

10 A Look at the Moro Tail Expression

We already looked at the Acklam and Wichura AS241 formulae into the tails. Let's go back to Moro's for-
mula.

B Moro's Formula for the tail

m Dealing with the Tail Issue

Moro's main contribution in his RISK article was to produce an expression for the tail using a polynomial in

r =log(-log(1l — u)) “)

c = {0.3374754822726147, 0.9761690190917186, 0.1607979714918209,
0.0276438810333863, 0.0038405729373609, 0.0003951896511919,
0.0000321767881768, 0.0000002888167364, 0.0000003960315187};

MoroTail[u_] := Module[{r = Log[-Log[l-u]]},

c[[1]] +
rx (c[[2]] +rx (c[[3]] +r* (c[[4]] +r* (c[[5]] +r* (c[[6]] +

rx (c[[7]] +xr* (c[[8]] +r*c[[9]])))))))]

MoroTail[0.975]

1.95996
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Superficially this looks good everywhere!

Plot [{MoroTail [u], QuantileN[u]} , {u, 0.5, 0.9999}];

Plot [MoroTail [u] /QuantileN[u] -1,
{u, 0.92, 0.9999}, PlotRange - All];

]
—
=

Let's probe the tail properly. Here is a parametric plot using ¢t = vV -2 Log(1 — u)

Sqrt[-2Log[l -0.92]]
2.24754
mtaildata = Table[MoroTail[l - Exp[-t~2/2]]/

N[QuantileN[1l - Exp[-t~2/2]], 40] -1,
{t, 224754/100000, 860000 /100000, 1/100}];
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ListPlot [mtaildata, PlotRange - All];

100 200 300 400 500 600

-1x 10~

-2x 10~

-3x 10~

-4x 10~

mtaildata = Table[MoroTail[l - Exp[-t~2/2]]/
N[QuantileN[1l -Exp[-t~2/2]], 40] -1,
{t, 224754/100000, 10, 1/100}];

Exp[-50] // N

1.92875 x 1072

ListPlot [mtaildata, PlotRange - All];

200 400 6
-1x 10~

-2x 10~
-3x 10~
-4x 10~

-5x 10~

relMoro[10] // N

-5.3623 %1078

So the Moro tail expression starts to behave badly in the far tail, with error passing through 5% 107% at
u=2%10"**. Note that Acklam's formula remains good down to at least 10~*" from my own testing.

relMoro[t_] := MoroTail[l - Exp[-t~2/2]]/
N[QuantileN[1l - Exp[-t~2/2]], 400] -1
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$SMaxExtraPrecision = 4000

4000

relMoro[120] // N

—-0.00628473

So the error does keep growing, but not at values of samples that are attainable with current double precision
technology!!

Exp[-120"2/2] // N

1.201518042084 x 10737



