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Abstract

With the current interest in copula methods, and fat-tailed or other non-Normal distributions, it
is appropriate to investigate technologies for managing marginal distributions of interest. We explore
“Student’s” T distribution, survey its simulation, and present some new techniques for simulation. In
particular, for a given real (not necessarily integer) value n of the number of degrees of freedom, we
give a pair of power series approximations for the inverse, F−1

n of the cumulative distribution function
(CDF), Fn. We also give some simple and very fast exact and iterative techniques for defining this
function when n is an even integer, based on the observation that for such cases the calculation of F−1

n

amounts to the solution of a reduced-form polynomial equation of degree n− 1. We also explain the use
of Cornish-Fisher expansions to define the inverse CDF as the composition of the inverse CDF for the
Normal case with a simple polynomial map. The methods presented are well adapted for use with copula
and quasi-Monte-Carlo techniques.

1 Introduction

There is much interest in many areas of financial modelling on the use of copulas to glue together marginal
univariate distributions where there is no easy canonical multivariate distribution, or one wishes to have
flexibility in the mechanism for combination. One of the more interesting marginal distributions is “Stu-
dent’s” T distribution. This statistical distribution was published by W. Gosset in 1908 [23]. His employer,
Guinness Breweries, required him to publish under a pseudonym, so he chose “Student.” This distribution
is familiar to many through its applications to small-sample statistics in elementary discussions of statistics.
It is parametrized by its mean, variance (as in the Normal case) and a further variable n indicating the
number of “degrees of freedom” associated with the distribution. As n → ∞ the Normal distribution is
recovered, whereas for finite n the tails of the density function decay as an inverse power of order (n + 1),
and is therefore fat-tailed relative to the Normal case. For current purposes, its fat-tailed behavior compared
to the Normal distribution is of considerable interest. Recent work by Ferguson and Platen [9] suggests, for
example, that the “T” (with n ∼ 4) is an accurate representation of index returns in a global setting, and
propose models to underpin this idea. That returns are in general leptokurtic, in the sense that they have
positive excess kurtosis (see below for definitions) has been known for over four decades – see e.g. the work
in the 1960s by Mandelbrot [16] and Fama [7].

The idea of this note is to examine the univariate T distribution in a way that makes its application to
current financial applications straightforward. The idea is to present several options for how to sample from
a T distribution in a way that may be useful for

• Managing the simulation of T-distributed marginals in a copula framework for credit or other applica-
tions;

• Simulation of fat-tailed equity returns;

• Simulation of anything with a power-law tail behavior
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We should note in connection with the first item that the “T” has a clear canonical multivariate distribution
only when all marginals have the same degrees of freedom (see Section 2.3, but also [8]). Throughout this
paper we shall use the abbreviation “PDF” for the probability density function, “CDF” for the cumulative
distribution function and “iCDF” for its inverse. Historically the iCDF has also been known as the “quantile
function”.

1.1 Plan of this article

The plan of this work is as follows:

• In Section 2 we define the PDF and give some basic results, establishing two ways of simulation without
the iCDF, for n an integer, and summarize Bailey’s method [3] for sampling without the iCDF. In order
to be self-contained, we also explain the link between iCDFs and copula theory;

• In Section 3 we establish exact formulae for the CDF and iCDF for general real n, and explore these
functions;

• In Section 4 we show that the calculation of the iCDF for even integer n is done by solving a sparse
polynomial of degree n− 1, give exact solutions for n = 2, 4 and iterative solutions for even n ≥ 6;

• In Section 5 we develop the central power series for the iCDF valid for general real n ≥ 1 i.e. n is not
necessarily an integer;

• In Section 6 we develop the tail power series for the iCDF;

• In Section 7 we explore the use of Cornish-Fisher expansions;

• In Section 8 we present some case studies and error data, and in particular information for when to
switch methods;

• In Section 9 we give a pricing example that may be useful as an elementary benchmark.

We summarize our results in Section 10. This work is supplemented by on-line supplementary material
available from the links at

www.mth.kcl.ac.uk/~shaww/web_page/papers/Tsupp/

A catalogue of the contents is given at the end of this paper.

2 Definitions and observations related to the T

We shall begin by defining the Student’s T distribution in a way that makes manifest one method of its
simulation. We let Z0, Z1, . . . Zn be standard Normal random variables and set

χ2
n = Z2

1 + · · ·+ Z2
n (1)

The density function of χ2
n is easily worked out, using moment generating functions (see e.g. Sections 7.2

and 8.5 of Stirzaker [22], and a summary of the calculation in the on-line supplement), and is

qn(z) =
1

2Γ(n
2 )

e−z/2

(
z

2

)n
2−1

(2)

χ2
n is a random variable with a mean of n and a variance of 2n. We now define a “normal variable with a

randomized variance”1 in the form:
T =

Z0√
χ2

n/n
(3)

1This view of the T is a useful and extensible concept developed by Embrechts.
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To obtain the density f(t) of T we note that

f(t|χ2
n = ν) =

√
ν

2πn
e−

t2ν
2n (4)

Then to get the joint density of T and χ2
n we need to multiply by qn(ν). Finally, to extract the univariate

density for T , which we shall call fn(t), we integrate out ν. The density fn(t) is then given by∫ ∞

0

f(t|χn = ν)qn(ν)dν ≡
∫ ∞

0

dν

2Γ(n
2 )

√
ν

2πn

(
ν

2

)( n
2−1)

e−( ν
2 + t2ν

2n ) (5)

and by the use of the following standard integral, which is just a rescaling of the variables in the integral
defining the Γ-function (see formula 6.1.1 of [1, 2]):∫ ∞

0

xae−bx = b−a−1Γ(a + 1) (6)

with the choices a = n
2 −

1
2 , b = 1

2 (1 + t2

n ), x = ν, we obtain the formula

fn(t) =
1√
nπ

Γ(n+1
2 )

Γ(n
2 )

1

(1 + t2/n)
n+1

2

(7)

The number n, which is often, and especially in the case of small-sample statistics, regarded as an integer,
is called the “degrees of freedom” of the distribution. It is evident that a sample from this distribution can
easily be obtained by using n + 1 samples from the standard Normal distribution, provided n is an integer.
This is well known, as is the use of a Normal variate divided by the square root of a scaled sample from the
χ2 distribution, that itself being obtained by other methods. For example, when n is an even integer the
χ2 distribution, then regarded as a gamma distribution with parameter n/2 can itself be sampled efficiently
based on taking logs of the product of n/2 uniform deviates. See for example Chapter 7 of [20]. In this paper
we shall not treat n as necessarily being an integer, though we shall also develop special and highly efficient
methods for treating the T distribution directly in the case of n an even integer. An excellent survey of the
classical methods for simulation is given by Devroye’s 1986 text [5] in Section IX.5.

General non-integer low values of n may well be of interest in financial analysis for short time-scales.
Work cited in [10] suggests that very short term returns exhibit power law decay in the PDF. For a T
distribution the decay of the PDF is

O(t−n−1) (8)

and the decay of the CDF is
O(t−n) (9)

so that if the power decay index in the CDF is q we take a value of n = q. The values of q reported in [10]
take values in the range 2 to 6. So this leads us to consider not only small integer values of n : 2 ≤ n ≤ 6
but also non-integer n.

2.1 Optimal simulation without the iCDF - Bailey’s method

The use of the obvious sampling techniques described above was essentially rendered obsolete by the discovery
by Bailey in 1994 [3] that the T distribution could be sampled by a very elegant modification to the well-
known Box-Muller method, and its polar variant, for the Normal distribution (see e.g. Section 7.2 of [20]).
Although Bailey’s method does not supply a pair of independent T deviates, it otherwise works in the same
way for the Student T case, and moreover is fine with non-integer degrees of freedom. The “Box-Muller”
version of the algorithm is given as Theorem 2 of [3], but the more interesting polar algorithm is perhaps
more pertinent and may be summarized as follows:

1. Sample two uniform variates u and v from [0, 1] and let U = 2u− 1, V = 2v − 1;

2. Let W = U2 + V 2. If W > 1 return to step 1 and resample;



New Methods for Managing “Student’s” T Distribution 4

3. T = U
√

n(W−2/n − 1)/W .

This wonderful algorithm also has the manifest limit that step 3 produces the result T = U
√

(−2 log W )/W
as n →∞, which is the well known polar formula for the Normal case.

Bailey’s method is very useful for certain types of finance calculations. In particular, if one is using a
polar method for generating Normal deviates for use in a VaR calculation, the same underlying random
variables may simultaneously be used to compute the VaR with Normal replaced by Student T with one or
more values of n, so that the difference is less subject to Monte Carlo noise. This is the same simple idea
of using the same sample to compute Greeks by simple differencing in a Monte Carlo derivative valuation
exercise, except here the “Greeks” would represent distributional risk.

2.2 Moments

The T distribution has the property that, by its symmetry, the odd moments all vanish, provided n is large
enough so that they are defined. In general we can calculate the absolute moments E[|T |k] by evaluating the
integral

E[|T |k] ≡ 2√
nπ

Γ(n+1
2 )

Γ(n
2 )

∫ ∞

0

tk(
1 + t2

n

)(n+1)/2
(10)

Counting powers shows that this integral converges provided n > k and yields, in general, (see the definitions
and results on the beta function given in Section 6.2 of [1, 2])

E[|T |k] =
n

k
2 Γ
(

k+1
2

)
Γ
(

n−k
2

)
√

πΓ
(

n
2

) (11)

For example, the variance exists provided n > 2 and Eq. (11) simplifies to

Var[T] = E[T 2] =
n

n− 2
(12)

The fourth moment exists for n > 4 and Eq. (11) simplifies to

E[T 4] =
3n2

(n− 2)(n− 4)
(13)

The leptokurtic behavior of the distribution is characterized by the excess kurtosis, γ2, relative to that of a
Normal distribution by the formula

γ2 =
E[T 4]

Var[T ]2
− 3 =

6
n− 4

(14)

These results and values for higher moments are used in Section 7.

2.3 The role of the iCDF in financial modelling

The main idea of this paper is to get a grip on the use of the basic result:

T = F−1
n (U) (15)

to define a sample from the T distribution directly, where U is uniform and Fn is the CDF for the T
distribution with n degrees of freedom. Throughout this paper we use the F−1 notation to denote the
functional inverse and not the arithmetical reciprocal, and we shall refer to it as the iCDF.

There are several good reasons for wanting to do this. First - can we be more efficient? We shall
answer this question very directly for the case of low even n, for which cases we can find fast iterative
algorithms relying on purely arithmetical operations and square roots, and for n = 2, 4 exact closed form
solutions needing at most the evaluation of trigonometric functions. These are of particular interest both in
themselves and for seeding iterative schemes.

Second, if instead of Monte-Carlo techniques we wish to use quasi-Monte-Carlo (QMC) methods, for
example to simulate a basket of size m, then it is useful to have a direct mapping from a hypercube of
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dimension m (on which the QMC method is often defined), rather than, e.g. as in the case of Box-Muller or
Polar-Marsaglia methods for the Normal case, one of dimension 2m, or with the default sampling implied
by our definition, m ∗ (n + 1). There may be a clear efficiency gain to be made by having an explicit
representation of F−1

n (U), provided F−1
n is not expensive to calculate. This is one of the motivations for the

work by Moro [18] on an approximate method for N−1(u) (where N(x) ≡ F∞(x) is the Normal CDF), and
although the methods presented here are different, the motivations are closely related. There are various
schools of thought on how accurate such approximations need to be. Given the many uncertainties elsewhere
in financial problems, some may feel (this author does not) that it is perhaps inappropriate to dwell too
much on the number of significant figures obtained – to quote J. von Neumann:
There’s no sense in being precise when you don’t even know what you’re talking about.
We will instead take the view that one should at least try to eliminate uncertainty due to one’s purely
numerical considerations, and to characterize the errors involved. As far as this author has been able to
ascertain, the main numerical analysis of the problem of finding the iCDF for the T has so far been given
by Hill [12] in 1970.

2.4 Copulas and comments

There is currently considerable interest in the use of non-Normal marginal distributions combined to give
exotic multivariate distributions. For continuous distributions, there are very few tractable cases where one
can write down a useful distribution. The clear examples are the “natural” forms for the multivariate Normal
and “multivariate T”, where in the latter case all the marginals have the same degrees of freedom (i.e. same
n). The problem is now routinely treated by the use of a copula function to characterize the links between
the marginal distributions, with the marginals themselves specified independently. In a completely general
setting, with arbitrary choices of copula and marginal distributions, a natural route is to first generate a
correlated sample from a unit hypercube of dimension m based on the copula (working sequentially from the
first to the m’th value using conditional distributions), and then to apply the iCDFs for each marginal. In
such an approach it is clearly helpful to have a grip on F−1. Copula simulation based on this “conditional
sampling” is explained in detail in [17] and also Section 6.3 of [4], with applications to Clayton, Gumbel and
Frank copulas.

The same need for the iCDF of the marginals occurs does not go away when the choice of copula is
such that the simulation of a correlated sample from the hypercube becomes very straightforward. When
we model the correlations via the Normal copula we have the following elementary algorithm, as given by
[4, 17] (see also the presentation by Duffie [6]):

1. Simulate correlated Normal variables (X1, . . . , Xn) using Cholesky or diagonalization method;

2. Let Ui = N(Xi), where N is the Normal CDF;

3. Feed Ui to the marginal iCDFs to get the sample Yi = F−1(Ui).

Steps one and two simulate the Normal copula directly. It is clear that in such an approach we can use
whatever iCDFs we choose at step three, in particular T distributions with many different degrees of freedom
are straightforward provided we have the iCDF! There is a further major drop in complexity if we can
furthermore filter the iCDF as the composition of the iCDF for the Normal case followed by a further map
G. That is, if we can write

Yi = F−1(Ui) = G(N−1(Ui)) (16)

then steps two and three can be coalesced into the single step

Yi = G(Xi) (17)

The map G can sometimes be computed quickly and approximately using Cornish-Fisher methods and this
will be discussed in Section 7, where G is given by the mapping of Eq. (75), or, with explicit maintenance
of a unit variance, Eq. (76). So with the Normal copula and T marginals the simulation may become
particularly straightforward.

If one prefers instead to try to work with a “canonical” multivariate distribution rather than some
arbitrary copula one faces the issue of simply trying to write down the appropriate structure. The issue with
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the multivariate T and the degrees of freedom having to be the same for all marginals is readily appreciated
by writing down the canonical result that does exist when all k marginals have the same degrees of freedom
n. If the correlation matrix of the marginals is given by R, then a canonical density function is given as a
function of the vector t of possible values by (see e.g. the work by Genz et al. [11], the references contained
therein, and also [24])

Γ(n+k
2 )

Γ(n
2 )
√
|R|(nπ)k

(
1 +

tT R−1t

n

)−( n+k
2 )

(18)

It is clear that in this case the generalization from univariate to multivariate proceeds just as in the Normal
case. The difficulty is that in the general case with marginals of differing degrees of freedom (i.e. different n
for different elements of t) it is far from clear what to write down. As well, there is the issue that Eq. (18)
is not in fact the only possible choice when all degrees of freedom are the same! Some of the possibilities
are discussed in the book devoted to the matter by Kotz and Nadarajah [15], who also cite recent work [8]
suggesting a distribution that copes with differing marginal degrees of freedom.

The other thing we must make clear is that this paper is about using T distributed marginals, potentially
with any choice of copula, and potentially many different values for the degrees of freedom in the marginals, in
a simulation process. We are not discussing the so-called T-copula, based on the multivariate T distribution
above and where all marginals have the same degrees of freedom. This is an entirely different matter. The
T-copula and its simulation are discussed in [4, 17], and the simulation is as above for the Normal case except
that (a) between steps one and two one applies Eq. (3) with the same χ2 sample for all the components,
and, (b), the CDF applied in step two is then the T CDF.

3 The CDF for Student’s T distribution

The relevant CDF may be characterized in various different ways. Our universal starting point is the formula

Fn(x) =
∫ x

−∞
fn(t)dt =

1√
nπ

Γ(n+1
2 )

Γ(n
2 )

∫ x

−∞

1

(1 + t2/n)
n+1

2

dt (19)

To evaluate this and try to think about inversion, one of the most obvious things to do is to make a
trigonometric substitution of the obvious form, t =

√
n tan θ. We can then obtain the integral as a collection

of powers of trigonometric functions. The resulting trigonometric expressions are well known and given by
expressions 26.7.3 and 26.7.4 of Abramowitz and Stegun [1] (on-line at [2]). This author at least has not
found such representations helpful in considering direct analytical inversion.

Can we get “closed-form” expressions? If we avoid the trigonometric representations we start to make
progress. Fn(x) can be written in “closed form”, albeit in terms of hypergeometric functions, for general n.
For example, integration in Mathematica [25] leads to the formula

Fn(x) =
1
2

+
Γ
(

n+1
2

)
√

nπΓ
(

n
2

)x 2F1

(
1
2
,
n + 1

2
;
3
2
;−x2

n
)
)

(20)

This is fine, but as x appears in two places it does not make inversion at all obvious! The CDF may also
be thought of, in a way that makes it both more obvious how to do the inversion, and also more accessible
to more computer environments, in terms of β-functions, for we can rewrite the hypergeometric function to
obtain (see Section 26.7.1 of [1, 2], bearing in mind the conversion from one- to two-sided results):

Fn(x) =
1
2

(
1 + sgn(x)(1− I( n

x2+n
)

(
n

2
,
1
2

))
(21)

giving an expression in terms of regularized β-functions. As usual sgn(x) is +1 if x > 0 and −1 if x < 0.
The regularized beta function Ix(a, b) employed here is given by

Ix(a, b) =
Bx(a, b)
B(a, b)

(22)
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where B(a, b) is the ordinary β-function and Bx(a, b) is the incomplete form

Bx(a, b) =
∫ x

0

t(a−1)(1− t)(b−1)dt (23)

Having got such a representation, this may be formally inverted to give the formula for the iCDF:

F−1
n (u) = sgn

(
u− 1

2

)√√√√√n

 1
I−1

If[u< 1
2 ,2u,2(1−u)]

(
n
2 , 1

2

) − 1

 (24)

This last result may indeed be useful in computer environments where internal representations of inverse
beta functions are available. Alternatively, if only the (forward) β-function is available, one can make the
inversion by employing a stepping or bisection approach. The use of direct Newton-Raphson methods is
awkward, because of the fact that the derivative of CDF is the PDF, which clearly becomes very small in
the tails. This causes the iteration produced by such methods to be highly unstable.

If one can access an accurate representation of the inverse β-function then one can work directly with
the formal inverse as given by Eq. (24). As an example, we can use a representation in Mathematica
[25] to visualize the inverse for various values of n. In Figure 2.1 we show the iCDF for the cases n =
1, 2, 3, 4, 5, 6, 7, 8,∞ on the same plot. The uppermost plot in the region u > 0.5 is that for n = 1, a.k.a. the
Cauchy distribution with inverse CDF also given by

t = F−1
1 (u) = tan(π(u− 1

2
)) (25)

The lowest plot in the region u > 0.5 is the special case of the Normal distribution, n = ∞, where we have

t = F−1
∞ (u) =

√
2erf−1(2(y − 1

2
)) (26)

The plots are constrained to the range −5 ≤ t ≤ +5. The plots show what we hope to see - as n decreases

0.2 0.4 0.6 0.8 1

-4

-2

2

4

Figure 1: iCDFs for the T distribution for n = 1 to 8 and n = ∞.

from infinity the image distribution becomes more fat-tailed, and the behavior is monotone in n. The
general formula for the inverse is also useful, but not that fast (cf using representations of erf−1 to do the
Normal distribution), but may be useful to generate one-off large and accurate look-up tables. The on-line
supplement contains an implementation of the inverse beta representation and shows how the graphic above
was generated. It also shows how to generate lookup tables for the quantiles of the T distribution. One such
table has been created using values of n in the range 1 ≤ n ≤ 25 in steps of 0.1, for values of U in the range
0 < U < 1 in steps of 0.001, with more detail in the tails. It is available as a standard comma-separated
variable (CSV) file at
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www.mth.kcl.ac.uk/~shaww/web_page/papers/Tsupp/tquantiles.csv

However, the generation of lookup tables aside, this representation does not give us much insight into
the structure of the iCDF. Nor does it tell us whether there are any simpler representations, perhaps for
particular values of n. Nor is it much use in computing environments where relatively exotic special functions
are not provided. A raw version of C/C++ without function libraries comes to mind. So for our immediate
purposes it will be useful to look at some cases of Fn(x) for small n very explicitly. We tabulate the cases
n = 1 to n = 6 explicitly in terms of rational and trigonometric functions.

n Fn(x)

1 1
2 + 1

π tan−1(x)

2 1
2 + x

2
√

x2+2

3 1
2 + 1

π tan−1
(

x√
3

)
+

√
3x

π(x2+3)

4 1
2 +

x(x2+6)
2(x2+4)3/2

5 1
2 + 1

π tan−1
(

x√
5

)
+
√

5x(3x2+25)
3π(x2+5)2

6 1
2 +

x(2x4+30x2+135)
4(x2+6)5/2

(27)

This establishes the general pattern. We can see that odd n contains a mixture of algebraic and trigonometric
functions, but the case of n even is always algebraic. We now turn to this case to explore in more detail.

4 The case of even n

We have seen some simple examples above. The CDF for the case of any even n can be written in the form:

1
2

+ x

(
x2

n
+ 1
) 1−n

2

n
2−1∑
k=0

x2ka(k, n)

 (28)

where the coefficients are defined recursively by the relations

a(0, n) =
Γ
(

n+1
2

)
√

nπΓ
(

n
2

) (29)

a(k, n) =
(n− 2k)a(k − 1, n)

(2k + 1)n
(30)

This may be proved by elementary differentiation and noting the the recurrence relation causes cancellations
of all non-zero powers of x in the numerator of the resulting expression. The equation that we have to solve
is, given 0 < u < 1:

x

(
x2

n
+ 1
) 1−n

2

n
2−1∑
k=0

x2ka(k, n)

 = u− 1
2

(31)

To treat this problem we set p = n + x2. This allows us to multiply up by the denominator and by then
squaring both sides we obtain a polynomial equation in p that now has to be solved. We call this, with
a minor abuse of historical terminology, the resolvent polynomial equation. The resolvent polynomials all
involve a characterization of u in the form

α = 4u(1− u) (32)
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and have an intriguing structure, as we shall now see. Given the solution, p, of the resolvent polynomial
equation, the solution for x is given by

x = sign(u− 1
2
)
√

p− n (33)

While it is difficult to characterize the case of general even n, and indeed it does not appear to be helpful to
do so, the first few yield interesting results:

n = 2 : αp− 2 = 0

n = 4 : αp3 − 12p− 16 = 0

n = 6 : αp5 − 135p2 − 1215
4

p− 2187
2

= 0

n = 8 : αp7 − 2240p3 − 7168p2 − 35840p− 204800 = 0

n = 10 : αp9 − 196875p4

4
− 1640625p3

8
− 10546875p2

8

− 615234375p

64
− 2392578125

32
= 0

(34)

The on-line supplement shows how to generate, and exhibits, the resolvent polynomial equations for even
n ≤ 20. We now look at their solutions.

4.1 Some Simple Exact Solutions for the iCDF

The cases when n = 1 and n = ∞ are well known as the Cauchy distribution and Normal distribution. It
should be clear from the table of resolvent polynomial equations that n = 2, 4 can be solved exactly and we
also have a new way of investigating the cases n = 6, 8, 10, . . . . As a simple reminder, the inverse CDF for
the n = 1 case, the standard Cauchy distribution, is

x = tan(π(u− 1
2
)) (35)

4.1.1 n = 2

This is now trivial as the resolvent polynomial is linear. After some simplification we obtain

x =
2u− 1√
2u(1− u)

(36)

This result was certainly known by Hill by 1970 [12]. Hill noted the invertibility of the case n = 2 (but
not, apparently, the general polynomial structure this was part of) and also started the development of the
tail series discussed later in this paper (though to rather fewer terms). Hill’s paper is also available on-line
at [13]. The invertibility of this case is also given as Theorem 3.3 of [5]. The n = 2 Student distribution
has also very recently been promoted as a pedagogical tool by Jones [14], who also noted the simple iCDF
formula, but its financial applications are perhaps limited due to the problem of infinite variance. Further
interesting properties of this distribution have been discussed by Nevzorov et al [19].

4.1.2 n = 4

The resolvent polynomial equation is now a cubic in reduced form (no quadratic term). A cubic in reduced
form may be solved by exploiting the identity

(p−A−B) ∗ (p−Aω −Bω2) ∗ ((p−Aω2 −Bω) ≡ p3 − 3ABp−A3 −B3 (37)

where ω = e
2πi
3 is the standard cube root of unity. We just have to solve some auxiliary equations for A

and B. This is just a modern formulation of the solution due to Tartaglia (see [21]). After some work along
these lines and some simplification we obtain the solution in the form:

p =
4√
α

cos
(

1
3

arccos(
√

α)
)

(38)



New Methods for Managing “Student’s” T Distribution 10

and where, as before,

x = sign(u− 1
2
)
√

p− 4 , α = 4u(1− u) (39)

Once one has the solution in the form of Eq. (38) it is possible to give an easier justification of it. If we let
p = 4√

α
cos y, then the n = 4 part of Eq. (34) becomes the condition

4 cos3 y − 3 cos y ≡ cos(3y) =
√

α (40)

and the result of Eq. (38) is immediate!
The exact solution for F−1

4 presented above for the case n = 4 is easily applied to random samples from
the uniform distribution to produce a simulation of the n = 4 distribution. But there is more reason to
consider this case than the mere “doability” of the inversion. The case n = 4 corresponds to a case of finite
variance and infinite kurtosis. In fact, as we decrease n from ∞ and consider it as a real number, it is the
point at which the kurtosis becomes infinite. It is therefore an interesting case from a risk management
point of view, in that it represents a good alternative base case to consider other than the Normal case. So
perhaps VaR simulations might be tested in the log-Student-(n = 4) case as well as in the log-Normal case.
As discussed in the introduction, recent work by Ferguson and Platen [9] also suggests that n = 4 is an
accurate representation of index returns in a global setting.

4.1.3 n ≥ 6

In this case we obtain a quintic, septic, nonic equation and so on, that in general cannot be solved in closed
form by elementary methods. However, now we are armed with simple polynomial equations, we can employ
efficient iterations schemes such as Newton-Raphson (note that this was not a good idea for the original
distribution function due to the smallness of its derivative, i.e. the density, especially in the tails). This
author has not investigated the Galois groups of these polynomials for further analytical insight2. The
solution of the quintic example, given that it is in principal quintic form, can be carried out in terms of
hypergeometric functions, but this turns out to be slower than the iterative methods discussed below. By
the principal quintic form we mean a quintic with no terms in p4, p3. Similarly, the polynomial of degree
7 has no terms in p6, p5, p4, and so on. In the case of the cubic this allows us to proceed straight to the
solution. In the higher order cases the author does not know in general what interesting simplifications
might be obtained from the fact that the resolvent polynomials are rather sparse, and depending only on u
through the highest order term and then through the factor α. But what we can say is that this sparseness
in the polynomial coefficients allows a Newton-Raphson iterative scheme to proceed very efficiently, as there
are fewer operations to be carried out than in the case of a general polynomial problem.

Elementary algebra makes it easy to define the associated iteration schemes. In the case n = 6 the
relevant Newton-Raphson iteration takes the form

pk+1 =
2
(
8αp5

k − 270p2
k + 2187

)
5 (4αp4

k − 216pk − 243)
(41)

For n = 8 we have

pk+1 =
2
7

(
3pk +

640 (pk (pk (pk + 4) + 24) + 160)
pk (αp5

k − 960pk − 2048)− 5120

)
(42)

For n = 10 we have

pk+1 =
8pk

9
+

218750 (4pk (pk (2pk (pk + 5) + 75) + 625) + 21875)
9 (8pk (pk (8αp6

k − 175000pk − 546875)− 2343750)− 68359375)
(43)

The relevant expressions for the cases n = 12, 14, 16, 18, 20 are given in the on-line supplement together with
code to generate them for any even n.

2The author would be grateful to receive enlightenment from Galois theory experts.
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4.1.4 Seeding the iterations

These iteration schemes need to be supplemented by a choice of starting value. A straightforward choice is
to use the exact solution for n = 2, for which the value of x2 will be slightly higher than than for a higher
value of n. In this case, unwinding the transformation, the starting value of the iteration may be taken to
be:

p0 = 2(
1
α
− 1) + n (44)

and the result is extracted via
x = sign(u− 1

2
)
√

p− n (45)

and α = 1 − 4(u − 1
2 )2 as before. More exotic seeding schemes that lead to faster evaluation are available

in the on-line supplement. We will only summarize the idea here. These all exploit the fact that the form
of the cubic problem for n = 4 gives a clue how the solution to the other cases scales. Some numerical
experimentation shows that in general one can write p = n

α2/n × x, and while this author cannot determine
a nice formula for x for even n ≥ 6, the solution for x is always a slowly varying and bounded function of
α of order unity. When n = 2 we have x = 1 and when x = 4 it is as given by Eq. (38). When n = 6 the
equation for x becomes, with b = α1/3 and 0 ≤ b ≤ 1,

x5 − 5
8
x2 − 15b

64
x− 9b2

64
= 0 (46)

The solution to this equation3 varies smoothly and monotonically from x = 1 when b = 1 down to 51/3

2 when
b = 0, and a good seed can be built from interpolation on this basis. Similar methods apply for higher n as
discussed in the supplement.

The combination of exact solutions and iterative Newton-Raphson methods has been compared with the
inverse beta function method in Mathematica, and in the on-line supplement it is checked that the two
methods agree for n = 2, 4, 6, 8, 10 with a difference of less than 10−11 with a default termination criteria for
the iteration where needed.

4.2 Low odd n

We now turn to the more awkward case of low odd n. There is no problem with n = 1, but the general
issues involved are well exemplified by the first few cases n = 3, 5, 7. We have:

F3(x) =
1
2

+
1
π

tan−1

(
x√
3

)
+

√
3x

π (x2 + 3)
(47)

F5(x) =
1
2

+
1
π

tan−1

(
x√
5

)
+
√

5x(3x2 + 25)
3π (x2 + 5)2

(48)

F7(x) =
1
2

+
1
π

tan−1

(
x√
7

)
+
√

7x(15x4 + 280x2 + 1617)
15π (x2 + 7)3

(49)

If we consider n = 3, we wish to solve the equation

π(u− 1
2
) = tan−1

(
x√
3

)
+

√
3x

(x2 + 3)
(50)

for x in terms of u. Equivalently, we can take the trigonometric form

π(u− 1
2
) = θ + sin θ cos θ (51)

where x =
√

3 tan θ. Neither of these representations offer any immediate analytical insight nor are they
helpful for Newton-Raphson solution. However, it does suggest that a simpler numerical scheme may be
helpful. The latter representation may be written in the form

θ = G(θ) = π(u− 1
2
)− 1

2
sin(2θ) (52)

3It would be interesting to know the Galois group of Eq. (46) in particular as b varies.
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This may be made the basis of an elementary “cobwebbing” scheme based on the iteration

θk = G(θk−1) (53)

with a suitable choice of starting point. As before, this can be based on the n = 2 case, and we take

θ0 = tan−1

(
1√
6

(
u− 1

2

)
u(1− u)

)
(54)

This can be coded up rapidly with a suitable termination criteria and it works reasonably well. We also note
that the convergence condition |G′(θ)| < 1 within the range of interest is satisfied except at θ = 0,±π/2
but the iteration at zero terminates immediately in any case. The convergence is slowest in a punctured
neighbourhood of θ = 0, u = 1/2, and there are also issues in the far tails. The remedy is a better choice of
starting value with good behavior near the slow-convergence points but we shall defer the discussion of this
until after we have discussed the power and asymptotic series. The power series we shall derive provides a
much better starting value for any iteration scheme in the neighborhood of u = 1/2. We shall also have to
confront the fact that when we go to n = 5 the cobwebbing idea breaks down as the derivative exceeds unity
in magnitude in a significant range of x. So we do not proceed further with the discussion of special methods
for odd integer n. Devroye’s book [5] has an interesting discussion of the n = 3 case in Exercise II.2.4.

5 The central power series for the iCDF

We now turn attention to the case of general (and not necessarily integer) n. We need to solve the following
equation for x, where we note that it is easier to work from the mid-point u = 1/2:

u− 1
2

=
1√
nπ

Γ(n+1
2 )

Γ(n
2 )

∫ x

0

1

(1 + s2/n)
n+1

2

ds (55)

This tells us that x is manifestly an odd function of u−1/2. Absorbing the normalizing factor and exploiting
the oddness, we work with the problem in the power series form:

x = F−1
n (u) = v +

∞∑
k=1

ckv2k+1 , v = (u− 1/2)
√

nπ
Γ[n

2 ]
Γ[n+1

2 ]
(56)

The integrand may be worked out as a power series, integrated term by term, and then we substitute our
power series assumption for x. This results in an increasingly unpleasant non-linear iteration but is one that
is easily managed in a symbolic computation environment such as Mathematica [25]. The code for doing this
is available in the on-line supplement. The first nine values of the coefficients are:

c1 =
1
6

+
1
6n

c2 =
7

120
+

1
15n

+
1

120n2

c3 =
127
5040

+
3

112n
+

1
560n2

+
1

5040n3

c4 =
4369

362880
+

479
45360n

− 67
60480n2

+
17

45360n3
+

1
362880n4

c5 =
34807

5702400
+

153161
39916800n

− 1285
798336n2

+
11867

19958400n3
− 2503

39916800n4
+

1
39916800n5

c6 =
20036983

6227020800
+

70691
64864800n

− 870341
691891200n2

+
67217

97297200n3
− 339929

2075673600n4
+

37
2402400n5

+
1

6227020800 n6

(57)



New Methods for Managing “Student’s” T Distribution 13

c7 =
2280356863

1307674368000
+

43847599
1307674368000n

− 332346031
435891456000n2

+
843620579

1307674368000n3
− 326228899

1307674368000n4

+
21470159

435891456000n5
− 1042243

261534873600n6
+

1
1307674368000n7

c8 =
49020204823

50812489728000
− 531839683

1710035712000n
− 32285445833

88921857024000n2
+

91423417
177843714048n3

− 51811946317
177843714048000n4

+
404003599

4446092851200n5
− 123706507

8083805184000n6
+

24262727
22230464256000n7

+
1

355687428096000n8

c9 =
65967241200001

121645100408832000
− 14979648446341

40548366802944000n
− 26591354017

259925428224000n2
+

73989712601
206879422464000 n3

− 5816850595639
20274183401472000n4

+
44978231873

355687428096000n5
− 176126809

5304600576000n6

+
49573465457

10137091700736000n7
− 4222378423

13516122267648000n8
+

1
121645100408832000n9

and so on. The coefficients c10 through c30 are given in the on-line supplement, together with the code to
generate them. C/C++ programmers should note that the supplement contains both exact and numerical
representations - the latter being more suitable for coding up in such a language. It is easy to check that
this series works in the case of the known exact solutions. For example, letting n →∞ we obtain the series
for the inverse error function with scaling of the arguments implied by the definition of v:

√
2erf−1

(
x
√

2√
π

)
= x +

x3

6
+

7x5

120
+

127x7

5040
+

4369x9

362880
+ . . . (58)

Less obvious (and best checked symbolically) is the emergence of the series for the tangent function to deal
with the Cauchy distribution in the case n = 1, as well as the exact cases n = 2, 4.

How good are these expansions considered truncated to give simple polynomials? Given that we have
dealt with cases of low n, let’s consider the case n = 11. It turns out that the error gets smaller as n gets
larger, as well as decreasing the more terms one takes in the series. Let us also consider a rather modest
truncation using only the terms given above, so that we go as far as v19. The results are shown in Figure 2.
This is reasonably pleasing. One can easily build in more terms and get fast results in compiled code - we
are only working out polynomials and the Gamma functions can be tabulated in advance for a large range
of n and then Stirling’s formula applied for large n.

v = (u− 1/2)
√

nπ
Γ(n

2 )
Γ(n+1

2 )
= (u− 1/2)

√
2π

(
1 +

1
4n

+
1
32

(
1
n

)2

− 5
128n3

− 21
2048n4

+ . . .

)
(59)

But this result does give a power series about u = 1
2 whose radius of convergence is 1/2. We know that

there will be a divergence as we approach u = 0, 1 so a polynomial approximation can only take us so far.
We need to look separately at the tails, and will now proceed to do so.

6 The tail power series for the iCDF

We have considered several approaches so far. We have a small number of exact solutions and some fast
iterative methods that work over the whole range for small to moderate n. We have a power series that
works for all n but needs many terms to work well in the approximate region |u− 1

2 | > 0.4. To complete the
power series analysis we need to understand the tails better. We proceed as before, but work from u = 1 as
a base point. All results can by symmetry be applied to the series about u = 0. We let

(1− u)
√

nπ
Γ(n

2 )
Γ(n+1

2 )
= w =

∫ ∞

x

1

(1 + s2

n )
n+1

2

ds (60)

The integral may be evaluated in terms of a series of inverse powers of x, the first few terms of the resulting
equation being

w =
(

1
x

)n

n
n
2−

1
2 −

(n + 1)
(

1
x

)n+2
n

n
2 + 3

2

2(n + 2)
+

(n + 1)(n + 3)
(

1
x

)n+4
n

n
2 + 5

2

8(n + 4)
+ . . . (61)
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Figure 2: Top: Exact & central series to c9 (dashed) iCDF, n = 11. Bottom: absolute error.

We now proceed as before, postulating an appropriate series for x as a function of w. This time a little
experimentation is needed to get the right form for evaluation. After some trial and error, we find that the
right ansatz for the series is given by

x =
√

n
(√

nw
)−1/n

(
1 +

∞∑
k=1

(
√

nw)
2k
n d(k)

)
(62)

We now substitute this expression into our equation relating x to w and proceed as before, extracting each
term through an increasingly non-linear recursion using symbolic computation methods. The first few terms
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in the series are

d1 = − (n + 1)
2(n + 2)

d2 = − n(n + 1)(n + 3)
8(n + 2)2(n + 4)

d3 = −
n(n + 1)(n + 5)

(
3n2 + 7n− 2

)
48(n + 2)3(n + 4)(n + 6)

d4 = −
n(n + 1)(n + 7)

(
15n5 + 154n4 + 465n3 + 286n2 − 336n + 64

)
384(n + 2)4(n + 4)2(n + 6)(n + 8)

d5 = −
n(n + 1)(n + 3)(n + 9)

(
35n6 + 452n5 + 1573n4 + 600n3 − 2020n2 + 928n− 128

)
1280(n + 2)5(n + 4)2(n + 6)(n + 8)(n + 10)

d6 = − n(n + 1)(n + 11)P6(n)
46080(n + 2)6(n + 4)3(n + 6)2(n + 8)(n + 10)(n + 12)

P6(n) = 945n11 + 31506n10 + 425858n9 + 2980236n8 + 11266745n7 + 20675018n6 + 7747124n5

− 22574632n4 − 8565600n3 + 18108416n2 − 7099392n + 884736

Further terms are given in the on-line supplement. Before analyzing the error characteristics of the tail
series, and its combination with the central power series, we explore another approach that will also turn
out to make a useful combination with the tail series.

7 Large n and Cornish-Fisher expansions

For a distribution that is asymptotically Normal with respect to a parameter (here we consider n →∞) we
can make use of the Cornish-Fisher (“CF”) expansion. Indeed, this can be generalized to non-Normal target
distributions but here we explicitly consider the purely Normal case. Results for the basic Cornish-Fisher
expansion are of course well known and are quoted in sections 26.2.49-51 of Abramowitz and Stegun [1, 2],
who also quote direct asymptotic expansions for the T distribution in section 26.7.5. Our purpose here is
first to explain the relationship between (a), the CF expansions quoted in [1, 2]; (b), the T expansion also
quoted in [1, 2]; (c) our power series quoted above. At first sight they can all be written in terms in powers
of n−1, but they all look different! As well as this reconciliation it may be helpful to be more explicit about
the details given in [1, 2] as the CF expansion is given there rather non-explicitly in terms of a slightly
unusual representation of the Hermite polynomials. Finally we need to take account of some issues raised
by asymptotic expansions in the tails of the distribution.

In order to make the discussion self-contained we begin by defining the central moments and cumulants.
In the introduction we already wrote down expressions for the mean (zero) and variance and noted that all
the odd moments are zero. The even moments, µk = E[T k] are then given by simplifying Eq. (11) and the
first few are

µ2 =
n

n− 2
(63)

µ4 =
1.3 n2

(n− 2)(n− 4)
(64)

µ6 =
1.3.5 n3

(n− 2)(n− 4)(n− 6)
(65)

and the form of these expressions indicates the general pattern. These moments get folded into the associated
moment generating function (MGF)

φ(t) = 1 +
1
2!

t2µ2 +
1
4!

t4µ4 +
1
6!

t6µ6 + . . . (66)
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The associated cumulant generating function is given by the series expansion of the log of the MGF:

log φ(t) =
∞∑

m=0

1
m!

κmtm (67)

and we can deduce quickly that

κ2 = µ2

κ4 = µ4 − 3µ2
2

κ6 = µ6 − 15µ2µ4 + 30µ3
2

and so on. For the first terms of the CF expansion we need the quantities

γ2 =
κ4

κ2
2

=
µ4

µ2
2

− 3 =
6

(n− 4)
(68)

γ4 =
κ6

κ3
2

=
µ6

µ3
2

− 15
µ4

µ2
2

+ 30 =
240

(n− 4)(n− 6)
(69)

and so on.
For a distribution associated with a random variable S that is asymptotically Normal, and with zero

mean and unit variance, and with vanishing odd moments, the CF expansion takes the simplified form [1]

s = z + [γ2h2(z)] + [γ4h4(z) + γ2
2h22(z)] + . . . (70)

where z is a standard Normal variable, the γi are as above, and

h2(z) =
1
24

He3(z) =
1
24

z(z2 − 3)

h4(z) =
1

720
He5(z) =

1
720

z(z4 − 10z2 + 15)

h22(z) = − 1
384

(3He5(z) + 6He3(z) + 2He1(z)) = − 1
384

z(3z4 − 24z2 + 29)

defines the first few terms in the expansion in terms of Hermite polynomials Hen(z). These are related to
the standard Hermite “H” functions by Hen(z) = 2(−n/2)H(z/

√
2).

We can now write down the Cornish-Fisher expansion for our case of interest (where we work with a unit
variance variable). To the order we have calculated, it becomes

s = z +

(
z2 − 3

)
z

4(n− 4)
+

(
z4 − 10z2 + 15

)
z

3 ((n− 4)(n− 6))
−

3
(
3z4 − 24z2 + 29

)
z

32(n− 4)2
+ . . . (71)

We should now expand this in inverse powers of n to get the right asymptotic result:

s = z +
1
4n

z(z2 − 3) +
1

96n2
z(5z4 − 8z2 − 69) + . . . (72)

Note carefully what we have calculated: this is the asymptotic relationship between a Normal variable z
and a T-like variable s that has a T distribution scaled to unit variance. To get the asymptotic relationship
between a Normal variable z and a variable t that has a T distribution with variance n/(n− 2) we need to
multiply this last asymptotic expansion by the expansion of the standard deviation:√

n

n− 2
=

√
1

1− 2/n
= 1 +

1
n

+
3

2n2
+ . . . (73)

and this gives us the desired asymptotic series for a T-distributed variable t in terms of a Normal variable z:

t = z +
1
4n

z(z2 + 1) +
1

96n2
z(5z4 + 16z2 + 3) + . . . (74)
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This can now be recognized as the first three terms of the expression given in section 26.7.5 of [1, 2], which
goes to order n−4:

t = z +
1
4n

z(z2 + 1) +
1

96n2
z(5z4 + 16z2 + 3) +

1
384n3

z(3z7 + 19z5 + 17z3 − 15z)

+
1

92160n4
z(79z9 + 776z7 + 1482z5 − 1920z3 − 945z) + . . .

(75)

However, in practice it is the corresponding formula for s that is likely to be more useful as we can directly
multiply this series by the standard deviation Σ we wish to use, and then add back the appropriate mean
parameter m. Borrowing the above high order form from [1] and taking out the series expansion of the
standard deviation gives us the unit-variance expansion:

s = z +
1
4n

z(z2 − 3) +
1

96n2
z(5z4 − 8z2 − 69) +

1
384n3

z(3z6 − z4 − 95z2 − 267)

+
1

92160n4
z(79z8 + 56z6 − 5478z4 − 25200z2 − 67905) + . . .

(76)

Whichever representation is to be used, we note that these expansions suggest for large n that we merely
need to sample a Normal distribution, for example by a good approximation to N−1 applied to a uniform
distribution, and then “stretch” the sample by these asymptotic formulae, that are just simple polynomials.
In other words, we build F−1

n (u) as
u → z = N−1(u) → s or t. (77)

In practice, how well does this work? Armed with a good implementation of the exact result for all n
and of N−1 via the inverse error function we can plot the errors with ease. It turns out that the errors
are small except in the tails. In fact, no matter how large n is, the asymptotic series does eventually draw
away from the exact solution. The effect is mitigated by taking more powers of n−1, in that the problematic
region is confined more to the far tail. The effects are shown in Figure 3. Note that these are drawn using a
high-precision formula for N−1 based on the arbitrary precision implementation of the inverse error function
in Mathematica [25]. If one use an approximation that is poor in the tails matters will be much worse.
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Figure 3: Errors in Large n expansion for n = 10, 20, . . . , 100 with (top left), terms to n−1; (top right), terms
to n−2; (bottom left), terms to n−4; (bottom right) n−4 expanded plot.

What should we take from this? Clearly, it is desirable to use the fourth order result. The error in the
CDF for n = 10 becomes or order 10−3 as we pass through the 99.9 per cent quantile, and improves as n
increases so this might be considered acceptable by some. One could also take the view that we introduced
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the use of the T distribution precisely so we could get power-law behavior in the tails, so the fact the far-tail
misbehaves with these asymptotic expansions might be deemed unacceptable. One could also take the view
that one wants power-law behavior for a while but that it should eventually die off faster. Within this
framework there is no difficulty with using such asymptotic results for n > 10.

So to summarize, these asymptotic results based on Cornish-Fisher expansions are good for larger n
except in the far tail. Care needs to be taken to scale for the appropriate variance. The N−1 used needs to
be good in the tails otherwise the tail errors will be made worse still.

How are these asymptotic results related to our power series, where we have exact values for the coefficients
of powers of u − 1

2? This is actually a rather messy calculation. To match up the series we have to take
the asymptotic results discussed here (i.e. the results from [1]) and expand z in terms of u − 1

2 . Then we
must take the power series coefficients and correct them by the expansion for v in inverse powers of n. The
relevant scaling is given by

v = (u− 1/2)
√

nπ
Γ(n

2 )
Γ(n+1

2 )
= (u− 1/2)

√
2π

(
1 +

1
4n

+
1
32

(
1
n

)2

− 5
128n3

− 21
2048n4

+ . . .

)
(78)

The detailed calculations are laborious and not given.

8 Case studies

In order to understand the methods we have presented a couple of examples will be presented. Note that
there is now nothing special about the use of integer n - we pick n = 3, 11 as examples of small and “modest”
n. In the examples that we consider only the series as far as given explicitly in this paper will be used. The
on-line supplement allows many more terms to be generated with correspondingly better accuracy, and a
detailed study of the errors for a high order combination of central and tail power series and CF expansions
will be given in Section 8.3.

8.1 n = 3 revisited

Prior to the development of both our power series, the case n = 3 had been left in a slightly unsatisfactory
state. Given that we had exact and simple solutions for n = 2, 4 this needs to sorted out! The power series
about u = 1/2 is given by

x = v

(
1 +

2v2

9
+

11v4

135
+

292v6

8505
+

3548v8

229635
+

273766v10

37889775
+

15360178v12

4433103675
+

214706776v14

126947968875

+
59574521252v16

71217810538875
+

15270220299064v18

36534736806442875
+ O(v20)

)
where

v =
√

3
2

π(u− 1
2
) = 2.720699046(u− 1

2
) (79)

The corresponding tail series truncated at six terms is given by

x =
√

3
(√

3w
)−1/3

(
1 +

6∑
k=1

(
√

3w)
2k
3 d(k)

)
(80)

where

w =
√

3
2

π(1− u) = 2.720699046(1− u) (81)

and the vector of coefficients d(k) is given by the list{
−2

5
,− 9

175
,− 92

7875
,− 1894

606375
,− 19758

21896875
,− 2418092

8868234375

}
(82)
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We now take a look at the results, using the method based on the inverse beta function as our benchmark.
In Figure 4 we show the absolute errors associated with the power series and tail series based on just 9 and 6
terms in the power and tail series. It is quite clear that acceptable results for many purposes can be obtained
with a crossover at about u = 0.84, when the absolute error is O(10−4). These results can be improved by

0.5 0.6 0.7 0.8 0.9

0.0002

0.0004

0.0006

0.0008

0.001

Figure 4: Absolute Errors in 9-term central (solid) and 6-term tail (dashed) n = 3 series.

taking more terms or perhaps refining by applying the cobwebbing method for n = 3 discussed previously.

8.2 n = 11 - a case of “modest” n

We repeat the above analysis with n → 11. So for the power series

v =
63
√

11
256

π(u− 1
2
) = 2.564169909(u− 1

2
) (83)

x = v

(
1 +

2v2

11
+

39v4

605
+

184v6

6655
+

951v8

73205
+

285216v10

44289025
+

20943909v12

6333330575
+

606462424v14

348333181625

+
4679034804v16

5010638843375
+

6917399415188v18

13613905737449875
+ O(v20)

)
The tail series is now

w =
63
√

11
256

π(1− u) = 2.564169909(1− u) (84)

and then

x =
√

11
(√

11w
)−1/11

(
1 +

6∑
k=1

(
√

11w)
2k
11 d(k)

)
(85)

where the vector of coefficients d(k) is given by the list{
− 6

13
,− 77

845
,− 6424

186745
,− 3657753

230630075
,− 4839824

599638195
,− 331986068799

76199023629625

}
(86)

The results for the errors in the series and the tail are shown in Figure 5 and indicate a cross-over at about
0.94. This is a case where more terms might be desirable. Alternatively, let’s revisit the Cornish-Fisher
expansion. With n = 11, we plot in Figure 6 the absolute error in the fourth-order Cornish-Fisher expansion
(solid line) in the region 0.995 < u < 1, together with the absolute error (dashed line). The range of the
plot is capped at 0.005. It is quite clear that the CF method starts to go wrong in this last half percentile
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Figure 5: Absolute Errors in 9-term central (solid) and 6-term tail (dashed) n = 11 series.
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Figure 6: Absolute Errors in CF (solid) and tail (dashed) series for n = 11 and last half percent.
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- the tails do go wrong. We should also be clear about the nature of the effect. Rather like the Gibbs
effect in Fourier Analysis, the problem never really goes away. Rather, it just moves to the edges of the
interval. A careful calculation shows that the error in the Cornish-Fisher fourth order expansion is about 3
at u = 1− 10−13. It is a matter of judgement as to whether one wishes to get things that right at that level
of unlikelihood!

8.3 Error analysis and crossover

Here we look carefully at the errors in the various approaches we have investigated, grouped by method.
In all cases the benchmark is the inverse beta function solution for the iCDF and its implementation in
Mathematica.

8.3.1 Errors for exact solutions

In the special cases n = 1, 2, 4 where we have an exact analytical result, the errors are mathematically zero
but in practice are given by the machine-precision errors arising from the use of the trigonometric and square
root functions employed. In practice these can be ignored.

8.3.2 Errors for Newton-Raphson methods

As discussed in Section 4.2, these were found to be less than 10−11, based on a comparison with an im-
plementation in Mathematica of both the iterative methods and the inverse beta function also available in
Mathematica. One can trade error for speed by having a looser termination criteria for the Newton-Raphson
iteration.

8.3.3 Errors and crossover for combined central and tail series approach

The fine details of the errors and the resulting optimal crossover point between the central and tail power
series are quite subtle, in that they will depend on how many terms are taken in each series. For serious
applications the following table may be useful, and is based on a 24-term central power series and a 12-
term tail series. In each case the absolute errors are measured by reference to the exact inverse β-function
representation, computed using high-precision routines in Mathematica. Sensible interpolation can be applied
for real intermediate values. For each value of n we give the crossover (the point at which the absolute errors
of the central and tail series coincide and are at a maximum), the absolute error at the crossover, and the
value of the iCDF at the crossover.

n crossover max error iCDF(co)
1 0.750 < 10−14 1.0
1.5 0.794 < 10−12 1.115
2 0.823 6× 10−11 1.197
3 0.860 8× 10−9 1.315
4 0.883 1.4× 10−7 1.400
5 0.8985 1.0× 10−6 1.464
6 0.9103 4× 10−6 1.520
7 0.9195 1.2× 10−5 1.567
8 0.9268 2.7× 10−5 1.567
9 0.9328 5.5× 10−5 1.645
10 0.9379 ∼ 10−4 1.678
15 0.9548 7.5× 10−4 1.810
20 0.9644 2.4× 10−3 1.905

This table shows that the combination of the central and tail power series can be used very effectively for
the low values of n that appear to be most relevant to mathematical finance applications. This combination
of methods becomes rather less accurate as n increases through 10 and is probably not appropriate for
n > 20, depending on accuracy criteria.
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8.3.4 Errors and crossover for combined Cornish-Fisher expansion and tail series approach

The last combination of methods for which we analysis the errors is the use of a fourth-order Cornish-Fisher
expansion combined with the tail power series as before. In assessing this approach, we emphasize that we are
using a high-precision implementation of the iCDF for the Normal distribution, in the form of Mathematica’s
inverse error function. One must also consider errors introduced by the use of a further approximation of
the Normal iCDF in any given implementation. In the following table we start at n = 5 and work up.

n crossover max error iCDF(co)
5 0.829 1.5× 10−5 1.050
6 0.8913 9× 10−6 1.378
7 0.9286 7.2× 10−6 1.651
8 0.9511 7.0× 10−6 1.874
9 0.9656 7.5× 10−6 2.066
10 0.9755 8.2× 10−6 2.240
15 0.99523 1.25× 10−5 2.97
20 0.999051 1.62× 10−5 3.574
30 0.999961 2.24× 10−5 4.57
40 0.9999984 2.8× 10−5 5.408
50 0.99999993 3.2× 10−5 6.1248
60 0.999999997 4.0× 10−5 6.777

This interesting table reminds us that no matter how large the value of n, the CF expansion eventually
breaks down in the tails. Nevertheless, it also suggests says that for n > 60 one might consider using the
CF expansion everywhere, unless one is using very large sample sizes, since the tail region where the CF
expansion breaks down is unlikely to be probed. It also suggest that the double power series method should
be switched to the CF-tail series method for n & 7.

These analyses support the view that between the various methods, we have good accuracy over a wide
range of n.

9 A simple benchmark calculation with T marginals

In order to provide an implementation benchmark, we give a very simple example that can be computed
very quickly. The example chosen has the merit that although it is not completely trivial it still has a
semi-analytical solution for the zero-correlation case, so we have some check on the calculation as well. We
will also be able to illustrate the use, for the correlated case, of both a Normal copula with T marginals
(with a variation using a Cornish-Fisher expansion) and a Frank 2-copula with T marginals, illustrating the
freedom afforded by having explicit functions for the iCDF. We consider two assets Si, i = 1, 2, with zero
risk-neutral drift whose terminal distribution at a future time T is given by

Si(T ) = Si(0) exp
{√

TσiXi

}
(87)

where Xi both have a zero mean, unit variance T distribution with degrees of freedom ni. The contract to
be priced has a payoff at time T that is to be some function of the maximum of the asset returns from time
zero to time T , i.e., a function of:

MT = Max[exp
{√

Tσ1X1

}
, exp

{√
Tσ2X2

}
] (88)

To keep the number of parameters down and focus purely on the distributional effects we shall set
√

Tσi = 1.
The maximum at T is then just

MT = Max[exp
{
X1

}
, exp

{
X2

}
] = exp

{
Max[X1, X2]

}
(89)

So to keep matters simple, we shall focus on the computation of the valuation of a contract that is the log
of the maximum, whose payoff is:

PT = log MT = Max[X1, X2] (90)
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Although this may seem rather a contrived example, the construction of payoffs from such order statistics is
in general a common financial calculation, and in general we may be interested in, e.g. the kth of m sorted
values or other quantities associated with financial entities. With any such contract, it is easy to construct
an analytical formula for E[PT ] in the case where the components are independent. We do this explicitly for
our two-dimensional example. First note if X1 has CDF G(x) and X2 CDF H(x) then the CDF, F (x) of
PT is, assuming independence.

F (x) = P (Max[X1, X2] ≤ x) = P (X1 ≤ x ∩X2 ≤ x) = P (X1 ≤ x)P (X2 ≤ x) = G(x)H(x) (91)

Second, the expectation of PT can be written entirely in terms of its distribution function F (x) as

E[PT ] =
∫ ∞

−∞
yf(y)dy =

∫ ∞

0

−y(1− F (y))′dy +
∫ 0

−∞
yF ′(y)dy

=
∫ ∞

0

(1− F (y))dy −
∫ 0

−∞
F (y)dy

(92)

where the last step is a simple integration by parts, assuming good behaviour of F at ±∞. Now if we
combine Eq. (91) and Eq. (92), and further note that G(−y) = 1−G(y), similarly for H, we are lead after
some simplification to the desired result, that

E[PT ] =
∫ ∞

0

[G(y) + H(y)− 2G(y)H(y)]dy (93)

Finally, given that Xi ∼
√

ni−2
ni

Ti, we have

G(y) = Fn1

(
y

√
n1

n1 − 2

)
H(y) = Fn2

(
y

√
n2

n2 − 2

)
(94)

It is rather amusing to note that the integral in Eq. (93), when combined with the assumptions of Eq. (94),
can often be done in closed form in terms of standard elliptic E and K functions, and further simplifies
to a multiple of π when n1 = n2. We have the following table of results from exact integration within
Mathematica, for the zero-correlation results:

ni exact integral numerical value

4, 4 15π
64
√

2
0.520650

6, 6 2835π
16384 0.543604

8, 8 75075
√

3π
524288

√
2

0.550961

4, 6 1
8 (21E(1/2)− 13K(1/2)) 0.532569

4, 8 1
128

√
3
2 (178E(2/3)− 83K(2/3)) 0.536663

6, 8 NA 0.547352

These results are perhaps slightly surprising in that the trend is for the expected value of the maximum to
decrease as the distribution gets more fat-tailed. We need to note that we are rescaling to ensure that the
distributions have unit variance always, even as the tails decay more slowly. These results may be useful in
testing any implementation of a method for sampling from the T , and we now look at some of the methods
we have discussed.



New Methods for Managing “Student’s” T Distribution 24

9.1 Simulated results - zero correlation

The integrals above can be calculated by Monte Carlo methods using several of the methods discussed here.
In the zero correlation case there is no need to introduce a copula, so that we may make a choice to use
Bailey’s method, or any of the representations of the iCDFs. First of all, picking the latter, so as to illustrate
the more novel techniques developed here, we calculate Monte-Carlo estimates of the expectation in the form
(note the allowance for getting the variance to unity):

E[PT ] ∼ 1
NMC

NMC∑
k=1

Max
[√

n1 − 2
n1

F−1
n1

(uk),
√

n2 − 2
n2

F−1
n2

(vk)
]

(95)

where the (uk, vk) are random uniform samples from [0, 1]. For example, in the interesting case n1 = n2 = 4,
this estimate simplifies to

E[PT ] ∼ 1
NMC

√
2

NMC∑
k=1

Max
[
F−1

4 (uk), F−1
4 (vk)

]
(96)

A simulation of this with NMC = 107 pairs of uniform deviates yielded the result 0.5204 with a standard
error of 0.00027, based on a compiled implementation of the exact solution of Eq. (38). So the exact and
Monte Carlo solution differ by less than one standard error, which is very satisfactory.

Going back to Bailey’s method, we can work with the algorithm discussed in Section 2.1. Let us denote
the result of applying the algorithm with uniform deviate inputs u, v as Baileyn(u, v). Then, for example,
simulating the n1 = n2 = 6 case, the corresponding Bailey Monte Carlo estimate is given by

E[PT ] ∼
√

2
NMC

√
3

NMC∑
k=1

Max
[
Bailey6(uk,1, vk,1),Bailey6(uk,2, vk,2)

]
(97)

Using NMC = 107 quadruples of uniform deviates yielded the result of 0.54361 with a standard error of
0.00027, which is also consistent with our exact solution.

9.2 Simulated results - Normal copula and T8 marginals

It might seem rather odd to use T marginals with a Normal copula rather than just a T copula. However,
our idea is to illustrate the fact that the T iCDFs can be used with any copula, and also to give an example
of what happens when the full machinery is replaced with a Cornish-Fisher (CF) method. We shall work
with the n1 = n2 = 8 case in order to give the CF method a hope of providing reasonable results, but will
be able to see the impact, if any, of the tail error in the raw CF method. With just two assets the sampling
with the Normal copula method with n = 8 T unit variance marginals and correlation ρ can be simplified
to the following sampling scheme, where the Zi are independent samples from N(0, 1), and N is the Normal
CDF:

Y1 = Z1 , Y2 = ρZ1 +
√

1− ρ2Z2 (98)

X1 =
√

3
2

F−1
8 [N(Y1)] , X2 =

√
3

2
F−1

8 [N(Y2)] (99)

We do the calculation first (the “Full version”) with (a) polar sampling of the Zi, (b) a high-precision
implementation of N in Mathematica, (c) our polynomial Newton-Raphson implementation of F−1

8 . Then
we shall do the CF approximation, where the function

√
3

2 F−1
8 (N(z)) is approximated by the unit variance

CF expansion of Eq. (76) with n = 8. We shall use samples of ρ between −1 and +1 in steps of 0.25, and
use the same random seed for the full simulation and the CF approximation.

Note that we expect to recover the exact solution given above when ρ = 0, and in the case ρ = 1 expect to
get zero, since the Xi are then identical and have zero expectation. The case ρ = −1 can also be calculated
analytically, since in this case the simulated variables will be pairs of samples of opposite sign, so that the
maximum is just the absolute value. The value of the expectation should therefore be

√
3/2 times E[|T |]

with n = 8. From Eq. (11) we can work out that the final answer should be 5/8
√

3/2 ∼ 0.7655. In the
following table the results are shown are a function of ρ with 106 estimates. The maximum standard error
over all cases is about 0.001. Values comparable with exact solutions are shown in bold.
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ρ Full version CF method
−1.0 0.7658 0.7659
−0.75 0.7197 0.7198
−0.5 0.6700 0.6701
−0.25 0.6115 0.6116
0.0 0.5490 0.5491
+0.25 0.4789 0.4789
+0.5 0.3934 0.3934
+0.75 0.2797 0.2797
+1.0 −0.0015 −0.0015

This table indicates that all is behaving as expected, and gives us confidence in the simulation methods.
We also note that for this particular example, the “maximum product” is rather more prone to correlation
risk than distributional risk. In particular, as expected, we get rather higher values for strongly negatively
correlated assets.

9.3 Simulated results - Frank 2-copula and T8 marginals

Finally, in order to assess “copula risk” we reprice this log-maximum once more using the Frank 2-copula
with parameter α, and marginals with n = 8 as before. This illustrates the flexibility in the choice of copula
when one has the iCDF for the marginals. The Frank m-copula is discussed in detail in [4], where methods
for the estimation of the parameter α are given in Section 5.3.1, and the use of such a copula with major
indices is also argued for in Section 2.3.4 of [4].

Another reason for picking the Frank copula for study is that with just two assets we can take α to
have either sign and furthermore a simple explicit formula can be given for the correlated samples from the
uniform distribution. We shall regard α just as some form of proxy for correlation. In [4] it is also shown that
the general conditional sampling approach can be reduced to a simple iterative scheme. When m = 2 the
simulation of a pair of correlated uniform deviates under the Frank copula reduces to the following algorithm.
Let (v1, v2) be pair of independent samples from a uniform distribution on [0, 1]. Then set u1 = v1 and

u2 = − 1
α

log
{

1 +
v2(1− e−α)

v2(e−αu1 − 1)− e−αu1

}
(100)

Then the Monte Carlo estimate for the value is

E[PT ] ∼ 1
NMC

√
3

2

NMC∑
k=1

Max
[
F−1

8 (u1,k), F−1
8 (u2,k)

]
(101)

In the following table we present the results from this formula with −12 ≤ α ≤ +12 in steps of 4, with
NMC = 106 samples. The maximum standard error is again about 0.001.

α Frank value
−12 0.7653
−8 0.7374
−4 0.6878
0 0.5510
+4 0.3753
+8 0.2654
+12 0.2057

Again we achieve plausible results in the appropriate range. This simple example is consistent with the
view that the choice of parameters associated with any given copula is at least as important as the choice of
copula itself, or indeed the marginals. This toy contract is indeed a correlation-dominated entity, however
the correlation is defined.
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10 Conclusions and further work

We have explored the inverse CDF (iCDF) for the Student T distribution and presented the following:

• A clear description of the iCDF in terms of inverse β-functions, suitable for benchmark one-off com-
putations;

• Exact solutions for the iCDF in terms of elementary functions for n = 1, 2, 4, which are themselves of
interest to “fat-tailed finance” applications;

• Fast iterative Newton-Raphson techniques the iCDF for even integer n, with details for n ≤ 20;

• A power series for the iCDF valid for general real n accurate except in the tails;

• A generalized power series for the tails that is good for low to modest n;

• A summary of known results on the Cornish-Fisher expansions valid for modest to infinite n;

• The limitations of Cornish-Fisher expansions in the far tails, which is where the power-law behavior
should exist and will fail with CF;

• An example of using the iCDFs to price a simple contract under various assumptions for the correlation
structure.

Between them these results allow either slow and very precise or fast and reasonably accurate methods for
the iCDF for all n and u. Although this is something of a patch-work of methods the best methods would
appear to be:

• If n is a low even integer use one of the exact or iterative polynomial methods developed here;

• If n is real and less than about 7 to use the power series and tail series developed here;

• If n is real and greater than about 7 to use the known Cornish-Fisher expansion given in [1, 2], with
the generalized power series for the tail developed here above the crossover point until n ∼ 60, at which
point, except for very large simulations, the CF method alone will suffice.

The author is emphatically not claiming that these suggestions are the last word on the matter - indeed it is
hoped that the methods shown here stimulate discussion and improvements. In practice if it is a matter of
just have indicative results for a variety of fat-tailed distributions with a finite variance, the exact or iterative
solutions for n = 4, 6, 8, 10 may often suffice. Applications to “high-frequency finance” requiring a specific
value of n ≤ 7 are well catered for by the pair of power series. If one does not need to use the iCDF at all,
then Bailey’s method will suffice.

It should also be clear that the power series methods employed here can be applied to any pdf that can
be characterized by a series in neighborhoods of u = 1/2 and u = 0, 1. A novel feature of the analysis given
here is the use of symbolic computation to do the nasty inversion of a general power series, term by term,
that would otherwise be intractable beyond a handful of terms. This is easily generalized. A case of interest
would be a generalized skew-T distribution with a pdf

fm,n,α(x) = fm(x)Fn(αx). (102)

The central power series for this can clearly be computed - further work on this case will be reported
elsewhere.

A guide to the on-line supplements

This paper is supported by various material downloadable from the author’s web site in the directory

www.mth.kcl.ac.uk/~shaww/web_page/papers/Tsupp/

and there are four documents to download at the time of finalizing this paper:
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1. A Mathematica notebook showing how many of the calculations were done and the graphics generated.
Note that much of what is in this file can be regarded as pseudo-code for other languages and there
are some sections specifically for C/C++ applications. The file is at

www.mth.kcl.ac.uk/~shaww/web_page/papers/Tsupp/InverseT.nb

and can be read using the free MathReader application.

2. I have also posted a PDF of the above notebook available from the link

www.mth.kcl.ac.uk/~shaww/web_page/papers/Tsupp/InverseT.pdf

3. A lookup table of quantiles of the T distribution (i.e. values of F−1
n (u)) for 1 ≤ n ≤ 25 in steps of 0.1

is provided in CSV form at:

www.mth.kcl.ac.uk/~shaww/web_page/papers/Tsupp/tquantiles.csv

4. A note on the ExcelTM spreadsheet function TINV, including its limitations and how to make sense
of it is available at

www.mth.kcl.ac.uk/~shaww/web_page/papers/Tsupp/TINV.pdf
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