Development of Solar-powered Thermochemical Production of Hydrogen from Water Al Weimer for the Solar Thermochemical Hydrogen (STCH) Team 25 May 2005 This presentation does not contain any proprietary or confidential information #### **Overview** #### **Timeline** - 6-25-2003 - 12-31-2005 - 40% #### **Budget** Total Project Funding \$4,869,976 DOE \$871,634 Cost share •Funds received in FY04 \$2,943,232 #### **Barriers** - J. Rate of Hydrogen Production - M. Materials Durability - N. Materials and systems Engineering - P. Diurnal Operation Limitation - Q. Cost - R. System Efficiency - T. Renewable Integration - V. High and Ultrahigh Temperature Thermochemical Technology - W. High Temperature Materials - Y. Solar Capital Cost #### **Partners** The University of Nevada, Las Vegas The University of Colorado The University of Hawaii Sandia National Laboratories The National Renewable Energy Laboratory General Atomics Arizona Public Service General Electric General Motors ETH-Zurich ### **Objectives** - Identify a cost competitive solar-powered water splitting process for hydrogen production - Complete analytical down select to most cost effective cycles and identify and implement experiments needed for quantitative final selection ### **Approach** - Design and implement a quantitative comparative assessment methodology to screen all known thermochemical cycles and select the top several performers - Perform literature surveys and laboratory experiments to acquire essential evaluation and design data for the top several concepts - Develop validated designs for collector/receiver/reactor components for integrated system analysis - Analyze cost and efficiency metrics for integrated cycle performance - Develop demonstration plant concept design(s) for surviving competitive cycle(s) and provide recommended path forward # Technical Accomplishments/ Progress/Results - Cycle database and scoring - Solar receiver concepts evaluated - Thermochemical H₂ cycles screened - Preliminary flowsheets developed for promising cycles - Preliminary cycle thermal efficiency calculated - Preliminary heliostat field design - Experimental work identified & started - CFD modeling and simulation carried out to develop understanding of reactor transport mechanisms #### **Database Management and Scoring -1** - More than 500 references in database. - More than 700 authors have been cross-referenced in database. - Open to the public through the project domain name (shgr.unlv.edu) ### **Database Management and Scoring -2** - 16 criteria with corresponding weighting factor, based on solar collector type - -Flexible threshold option - -weighting factor can be customized and saved for each individual user - Feedback search engine - web-based decision making system - The module can be used for addition of new cycles. - The module can be used to modify all the entered data, from cycle, and reaction to references and authors. references and reaction codes. ### Cycle Screening Sensitivity Analysis - Analyzed Phase One screening methodology - Wanted to avoid omitting "good" cycles - Created probability density function for all weights - Used Monte Carlo, stepwise regression and rank correlation - Result: selected cycles are not highly dependant on criteria weights. Hence, - Process is robust - Generally accurate in determining best cycles for further analysis # Solar Receiver Concepts for the Top Cycles Receiver concepts recommended for the top cycles None of the top cycles were compatible with parabolic troughs - Sandia invented Rotating Disk Reactor - only concept suitable for dishes - Only ANL Copper Chloride cycle compatible with conventional molten salt power towers - Numerous concepts evaluated for high temp power tower cycles - Solid Particle Receiver and Fluid Wall Reactor selected for most power tower cycles ## Thermochemical Hydrogen Cycles were Screened 182 cycles were subjected to a "practicality screening" relative to 4 solar energy collector technologies, each with an applicable temperature range and "sweet spot" Retained cycles were combined into a single list of 67 cycles for efficiency analysis ### Cycle Screening Sensitivity Analysis - Phase One screening methodology analyzed - Reduce vulnerability of omitting "good" cycles - Used stepwise regression and rank correlation methods - Results indicate the selected cycles are not highly dependant on criteria weights - Process is robust - Generally accurate in determining best cycles for further analysis # Advanced flowsheet work done on promising cycles # Thermal efficiency of hydrogen production was evaluated for 67 cycles - Free energy evaluated for each reaction of a cycle - Standard free energy evaluated, as a function of temperature, for reaction as written - Minimum free energy calculated considering alternative products - Carrier flows determined where necessary to shift equilibrium in solid/gas processes - Electrochemical step defined free energy is too positive - Temperature chosen for each reaction based on free energy and processing considerations - Enthalpy change determined for each step of the cycle - Process flow diagram developed for the cycle - Heat recuperation specified where possible - Shaft work determined when gas compression is involved - Electrical requirements for electrochemical steps - Efficiency calculated from mass and energy balance for process # 14 Cycles had calculated efficiencies greater than 33% | | LHV Efficiency | T(°C) | Device | |-------------------------------|----------------|-------|-----------------------| | Sulfuric Acid cycles | · | , , | | | Hybrid Sulfur | 43% | 900 | Dish/Advanced Tower | | Sulfur lodine | 38% | 900 | Dish/Advanced Tower | | Multivalent sulfur | 35% | 1570 | Dish/Advanced Tower | | Metal Sulfate cycles | | | | | Cadmium sulfate | 46% | 1000 | Dish/Advanced Tower | | Barium sulfate | 39% | 1000 | Dish/Advanced Tower | | Manganese sulfate | 35% | 1100 | Dish/Advanced Tower | | Volatile Metal Oxide cycles | | | | | Zinc Oxide | 44% | 2000 | Dish/Advanced Tower | | Hybrid Cadmium | 42% | 1600 | Dish/Advanced Tower | | Cadmium Carbonate | 43% | 1600 | Dish/Advanced Tower | | Non-volatile Metal Oxide Cycl | es | | | | Iron Oxide | 42% | 2200 | Dish | | Sodium Manganese | 49% | 1560 | Dish/Advanced Tower | | Nickel Manganese Ferrit | e 43% | 1800 | Dish/Advanced Tower | | Zinc Manganese Ferrite | 43% | 1800 | Dish/Advanced Tower | | Other | | | | | Hybrid Copper Chloride | 41% | 550 | Trough/Standard Tower | # Preliminary Field Design Concepts Investigated ### Multiple Field, Single Reactor Concept # Experimental studies have begun for some cycles - Basic feasibility is an issue for some potentially efficient cycles - Metal sulfate cycles may not produce hydrogen - Sulfur or sulfide will be formed in aqueous systems unless rate of hydrogen generation is fast. Studies underway to investigate interaction of hydrogen and SO₂ in aqueous solutions - Flow system assembled to study elevated temperature gas-solid hydrogen production - The hydrogen generation step of the cadmium carbonate cycle was reported to be slow - Study of hydrogen generation at high pressure in the presence of mechanical abrasion of the cadmium metal surface has begun - Flow system assembled to study elevated temperature gas-solid hydrogen production **ZnO Dissociation Demonstration and** Kinetics Experimentation •Demonstration of efficacy of rapid aerosol metal oxide (ZnO and Mn₂O₃) decomposition •High conversion (70-85%) to small particles (20-400 nm) observed Experimentation to determine kinetic rate law for MO, thermal dissociation in progress Collected product spectrum matches Zn standard spectrum almost exactly (+1- 5%) UNLV Research Foundation ## ZnO Dissociation Experiments in High Flux Solar Furnace Solar Reactor at 1700 °C Start of Feeding UNLV Research Foundation STCH SOLAR THERMOCHEMICAL HYDROGEN GENERATION PROJECT Spensered by U.S. Department of Energy - •Reaction demonstrated at temperatures as low as 1700 °C - •Thermal dissociation demonstrated at short residence time (20 ms -200 ms) - •Reactor temperatures as high as 2050 °C reached #### **CFD Fluid Wall Reactor Simulation** Temperature Distribution (K) Mole fraction contours ## Responses to Previous Year Reviewers' Comments #### Questions 2 and 5 - "appears to be very high-cost paper study with limited experimental effort" - "too much paper study and not enough experimental verification" - Nearly 200 identified TCH cycles warrants paper study to reduce competitive options to manageable number of experimental efforts - Feasibility experiments are proceeding for four reaction classes identified as most competitive ## Responses to Previous Year Reviewers' Comments #### Weaknesses – "Why the analysis study if ZnO and Mn₂O₃ already chosen?" #### ZnO and Mn₂O₃ not already chosen - ZnO work already underway and STCH volunteered to continue that effort according to its plan; ZnO project capabilities enable feasibility work for the other competitive metal oxides with resource savings - Mn₂O₃ study undertaken at the request of the Department of Energy #### **Future Work** - Experimentally resolve the uncertainties of the down selected cycles - Update the process thermal efficiency - Develop and validate the transport mechanisms and the design of the solid particle receiver - Update the system efficiency and H₂ gate costs - Design bench scale/pilot model for selected cycle(s) ### ZnO/Mn₂O₃ Cycles •Completion of kinetic experimentation for ZnO and Mn₂O₃ aerosol dissociation in SiC tubes •Allows enhanced reactor design and improves cycle efficiency estimates Main Gas Feed - Porous material qualification and permeability determination - •Enables design, modeling, and optimization of fluid-wall for material protection and product cooling - •On-sun demonstration of high temperature, high efficiency solar reactor - •Ultra-high temperature reactor material qualification with and without fluid-wall (C, SiC, Hf) # Experimental studies have begun for some other cycles - Basic feasibility is an issue for some potentially efficient cycles - Metal sulfate cycles may not produce hydrogen - Sulfur or sulfide will be formed in aqueous systems unless rate of hydrogen generation is fast. Studies underway to investigate interaction of hydrogen and SO₂ in aqueous solutions - Flow system assembled to study elevated temperature gas-solid hydrogen production - The hydrogen generation step of the cadmium carbonate cycle was reported to be slow - Study of hydrogen generation at high pressure in the presence of mechanical abrasion of the cadmium metal surface has begun - Flow system assembled to study elevated temperature gas-solid hydrogen production - Cyclic thermal reduction/water oxidation (redox) studies of candidate mixed-metal ferrites to assess reactivity and kinetics initiated #### **Solid Particle Receiver** - Solid particle receiver uses sintered bauxite proppants for heat collection and storage - Directly illuminated curtain of falling particles - Low cost thermal storage - Non-corrosive - High heat flux capability - Extensive development by Sandia Livermore in mid 1980s - Sintered bauxite suitable to 1000°C - Zircon suitable to 1200°C - Flow stability is a potential issue - Analytical/experimental investigations proposed ### **Hydrogen Safety** - At this stage of the project, H₂ quantities involved in the experiments are so minimal as to pose no H₂ safety risks - The most significant current hazard is associated with ultra-high temperature (> 1500°C) operations - Hazards mitigated with personnel training, well documented SOPs, and internal safety reviews at each institution