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SUMMARY

In Cobol, procedures can be programmed in ways that lead to unexpected behaviour and reduced
portability. This behaviour is recognized as so-called ‘mines’: programming practices containing hidden
dangers and requiring extreme caution. Cobol mines can be created intentionally or by a programming
error, and can be tripped at an unforeseen moment. This leads to minefields in source code with unseen
hazards, which complicate understanding and maintenance, and which can lead to costly breakdowns of
business critical software systems. We discuss Cobol mines and the dangers that come with them, having
implemented a mine detector for Cobol. Our detector was deployed in an industrial situation, and a number
of minefields were found in production systems. By restructuring a complex legacy application, we argue
that code restructuring can be used to combat minefields. Copyright © 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Programming errors are present in every software system, and are very often a source of trouble.
Errors can lay dormant in an application, ready to show up at any moment in time. When a dormant
error arises during production, the system can suddenly break down. The origin of the error is often
hard to find, causing great expense. Sometimes, a programmer uses an awkward programming style
intentionally to implement certain logic. Reasons for this can be, for instance, the absence of a proper
language construct, or a preferred programming style. Such programming practice can eventually lead
to problems when another programmer, who is not familiar with such logic, has to modify the code;
or when the code is migrated to a different environment and the behaviour of the application becomes
entirely different.
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The use of coding standards can aid the prevention of awkward programming styles. For example,
a common coding standard in Cobol requires that dependencies between procedures are indicated by
an alphabetic and numeric hierarchy of their names. All procedures appearing at the same level start
with the same letter. This means that the main procedure in a program starts with A1_MAIN and all
procedures that are directly referenced from that procedure start with BO1_. ., BO2_. ., and so on.
Procedures that are approached from several different levels often fulfil common tasks such as error
handling, and start, therefore, with a letter from the end of the alphabet (e.g. YO1_LOG_ERROR).
A coding standard is often developed at the initial stage of the coding process, and is therefore
hardwired into the code; it is part of the applications’ architecture [ 1,2]. Consequently, coding standards
can be regarded as source code level architectural decisions, guarding the quality of the source code.
A violation of a standard may indicate a programming error, or potential programming malpractice
causing error-prone code. With the help of analysis tools, one can detect intentional and unintentional
violations of a standard, which can then be tracked down, mapped, and possibly repaired before a crash
appears during a production run.

In this paper, we investigate the phenomenon ‘mines’ in Cobol. Mines represent potential hazardous
programming constructs. In an industrial setting, we implemented a mine detector for Cobol and
applied it to several systems. Furthermore, we show how code restructuring can demarcate Cobol
minefields and other complicated code in a program.

1.1. Contributions

First, we discuss different implementations of the Cobol perform statement (Cobol procedure call),
and we illustrate the variation in compilers by example programs. This confirms that there is no single
semantics for Cobol, and that problems can arise when code must be migrated. Second, we present
definitions for potential hazardous, error-prone, and incompatible programming practices in Cobol:
Cobol mines. These mines can pose severe threats to the proper operation of a system. Third, we present
a case study on Cobol minefield detection, which includes an analysis of five industrial Cobol systems
from different companies and an evaluation of the results. Finally, we discuss the demarcation of
minefields, which is illustrated by the restructuring and visualization of an evolved legacy application.

1.2. Related work

The notion of mines in Cobol is mentioned in [3]. In that paper, an approach is described to
identify procedural structures in Cobol programs. An elaborate treatment on the behaviour of perform
statements is given, and an algorithm is presented to identify non-structured ranges of perform
statements; that is, ranges containing a mine. In our work, we elaborate on different types of mines,
the (possible) consequences of a mine, and how one can counteract minefields. Although the authors
of [3] recognize that the semantics of the perform statement is not precisely defined, they believe that
the implementation of the perform statement in the IBM Cobol compiler [4] is similar to other modern
Cobol compilers. According to our findings, this is not the case. We show that the semantics of a
perform statement is not fully defined and we demonstrate differences between various compilers.

In [5], a formal semantic description of control constructs of Cobol is given. Because the semantics
of a perform statement is not completely defined by the latest Cobol standard, the description holds
only for a certain compiler, configuration and environment. In our analysis, we also chose a certain
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semantics for the perform statement, and elaborate on its consequences for the detection of Cobol
mines.

In [6], a case study on the analysis and visualization of the control-flow of Cobol is presented.
Although they elaborate on the flow of control in Cobol, they do not deal with the goto statement
or the so-called fallthrough logic. These language features are very prominent characteristics for the
control-flow in Cobol and the creation of error-prone code, such as mines. In our work, we do take
these control-flow features into account while detecting hazardous code.

There are a number of commercial tools for analysing Cobol programs, but we could not find one that
suited our projects’ needs. In particular, an analysis of the fallthrough logic between Cobol paragraphs
is not available in many tools. IBM’s Cobol structuring facility has capabilities to detect intricate code,
including several of the mines we define in this paper, but the tool appears to be no longer in service,
and we could not find any case studies that used it for mine detection.

The classification we use for certain hazardous programming practices are quite specific for the
Cobol language. Similar problems appear in other languages. For example, the existence of side-effects
in the C language that have implementer-defined semantics [7] can cause portability problems. Another
related topic is code smells [8]. Code smells are a kind of anti-pattern for programming [9], indicating
that the structure and comprehension of a particular piece of code may be improved by refactoring.
A number of code smells are proposed in [8]; some smells are specific to object-oriented programming,
but there are also smells that can be applied to other paradigms. The relation to Cobol mines is that
both smells and mines can be an indication of error-prone code.

2. COBOL CONTROL-FLOW AND COBOL MINES
2.1. Control-flow revisited

In order to understand the control-flow in Cobol, a few things need to be explained first. A Cobol
program consists of four divisions: one for a description of the program, one for external dependencies,
one for variable declarations, and one for the programming logic. The division for the logic is called
the PROCEDURE DIVISION and is ordered similar to a text in natural language, using sections,
paragraphs and sentences. A section is divided into paragraphs, and a paragraph consists of sentences.
A sentence is a sequence of statements, ended by a period. Sections and paragraphs usually start with
a label, which can be used to reference them from elsewhere in the program.

When a program is executed, control-flow starts with the first statement in the PROCEDURE
DIVISION. As soon as the control-flow reaches the end of the last statement in the program,
the execution ends. There are also a number of statements that end a program immediately: the
STOP RUN, GOBACK and EXIT PROGRAM statements. The precise operation of these statements
depends on whether they are executed in a main program or in a subprogram. The EXIT PROGRAM
statement should not be confused with the plain EXIT statement, which has no effect on the execution
of a program.

There are a number of constructs that control the program flow. The most famous control-flow
construct in Cobol is probably the unconditional GO TO statement [10,11], which jumps to a location
indicated by a label. In addition, there is a conditional GO TO statement, which jumps to a certain
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PROCEDURE DIVISION.
MAIN SECTION.
LABEL1.
PERFORM LABEL2 THRU LABEL-EXIT
STOP RUN.
LABEL2.
DISPLAY ’'EXECUTING LABEL2'
IF FLAG
GO TO LABEL-EXIT
ELSE
DISPLAY ’'FLAG NOT SET’
END-IF.
LABEL-EXIT.
EXIT.

Figure 1. A Cobol procedure division.

label depending on a condition. This construct is used to simulate a case-like structure. A GO TO-
related statement is the ALTER statement, which modifies the destination of a special GO TO statement
at run-time. Because the ALTER statement can lead to very incomprehensive programs, it has been
removed from the Cobol standard. Nevertheless, the ALTER statement still occurs in production code.
Furthermore, a GO TO-like statement is the NEXT SENTENCE statement, which transfers control
to the next sentence in the code; because a period indicates the end of the current sentence, the
NEXT SENTENCE statement can lead to programming errors when a period is removed or added
without proper care. An example of this problem is shown in [12, p. 232]. The NEXT SENTENCE
statement is commonly used in production systems, but is considered archaic in the latest Cobol
standard.

A procedure call in Cobol can be made using a PERFORM statement, which is used to execute
a sequence of paragraphs or sections. In Figure 1, a PERFORM statement in LABEL1 executes a
sequence of paragraphs. From LABEL2, the control-flow can jump to LABEL-EXIT by the explicit
GO TO LABEL-EXIT statement, or control can continue to LABEL-EXIT at the end of LABEL2
by implicit fallthrough. The EXIT statement is purely for the programmer to indicate the end of a
sequence; it does not affect the execution of the program. After LABEL-EXIT, the control-flow is
transferred to the STOP RUN statement in LABEL1, and the program is terminated. We emphasize
here that implicit fallthrough between paragraphs and sections can severely complicate program
understanding, as such behaviour cannot be seen from a paragraph or section itself; it depends on the
way a paragraph is reached. Furthermore, control-flow can be affected by Cobol’s exception handling
mechanism for files and the possibility to execute statements from a SORT statement or a MERGE
statement; the operation of these mechanisms resembles a PERFORM statement, but we do not consider
them in this paper. Hence, there are basically three ways to transfer the control-flow in a program: by
a GO TO statement, by a PERFORM statement, and by the implicit fallthrough logic.

There are several statements, then, that can contain other statements, such as the IF, EVALUATE
(a case-like construct), and the in-line PERFORM (a while-like construct). In addition to these well-
known types of branching statement, there are several other statements that allow conditional execution
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of statements. This can be when an error arises from an operation, or, conversely, when no error arises.
For instance, an arithmetic error can arise from an addition or division. A simple example of this
mechanism is the following ADD statement:

ADD A TO B
ON SIZE ERROR PERFORM OVERFLOW-ERROR
NOT ON SIZE ERROR PERFORM COMPUTATION
END-ADD

In case of variable B being unable to store the value of variable A (e.g. the value of A is too big for B),
an error routine is performed. If no error occurs, a computation routine is executed. Such structured
statements are very similar to an IF statement: a condition is evaluated and then one of the branches is
executed.

The Cobol 2002 standard [13] extended the Cobol language with a number of constructs that are also
available in several newer languages. Important extensions for the flow of control are the new variants
of the EXIT statement, which transfer control to the beginning or the end of a loop (EXIT PERFORM),
the end of a paragraph (EXIT PARAGRAPH), or to the end of a section (EXIT SECTION).
These variants resemble statements like the continue, break and return statements which are common in
languages like C and Java. In addition, object orientation [14] is supported and exception handling has
been improved, but we do not consider those extensions in this paper. The majority of the production
code does not make use of these new features, and, since this paper is about minefield detection in
existing systems, this restriction does not limit the applicability of our approach.

2.2. Some semantics of perform statements

The semantics of perform statements differs between Cobol dialects. In particular, the Cobol 2002
standard [13, p. 494] is undefined on nested perform statements:

Cobol 2002 Standard

The results of executing the following sequence of PERFORM statements are undefined
and no exception condition is set to exist when the sequence is executed:

e a PERFORM statement is executed and has not yet terminated, then

e within the range of that PERFORM statement another PERFORM statement is executed,
then

e the execution of the second PERFORM statement passes through the exit of the first
PERFORM statement.

NOTE Because this is undefined, the user should avoid such an execution sequence. On some
implementations it causes stack overflows, on some it causes returns to unlikely places, and on
others other actions can occur. Therefore, the results are unpredictable and are unlikely to be
portable.

So, the behaviour of multiple active overlapping perform statements is undefined by the latest Cobol
standard, and it does not forbid the use of recursive perform statements. We consulted a few reference
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manuals from several Cobol dialects on these issues. We summarize our findings here, illustrated by
text snippets from the manuals.

e Micro Focus Cobol [15]:
‘... an active PERFORM statement, whose execution point begins within the range of another
active PERFORM statement should not allow control to pass to the exit of the other active
PERFORM statement; furthermore, two or more such active PERFORM statements should not
have a common exit.
These restrictions are not enforced. PERFORM statements can be freely nested, and recursion
(a PERFORM statement performing a procedure containing it) is allowed. Only the exit point of
the innermost PERFORM statement currently being executed is recognized. These rules can be
changed by use of the PERFORM-TYPE Compiler directive.’

e IBM Cobol [16,17]:
‘As an IBM extension, two or more active PERFORM statements can have a common exit.’
‘A PERFORM statement must not cause itself to be executed. A recursive PERFORM statement
can cause unpredictable results.’

e Compaq Cobol [18] (formerly DEC Cobol) and DEC Cobol [19]:
“Two or more active PERFORM statements cannot have a common exit.
Use the check compiler option with the perform keyword to verify at run time that there is no
recursive activation of a PERFORM.’

e AcuCorp Cobol [20]:
‘When this (compiler) switch is used, the PERFORM verb is modified so that return addresses
are stored on a stack. Only the most recent PERFORM statement has an active return address.
When this option is used, a paragraph under the control of a PERFORM statement may (directly
or indirectly) PERFORM itself. See the configuration option PERFORM-STACK.’

e PERCobol [21]:
‘PERCobol supports a return-stack implementation of PERFORM.’

e Fujitsu Cobol [22]:
‘PERFORM statements within the range of containing statements cannot have a common exit.
In this compiler, however, one or more PERFORM statements within the range of containing
statements can have the common exit.’

e Siemens Nixdorf Cobol [23]:
‘... two or more active PERFORM statements must not have a common exit.’

e RM Cobol [24]:
‘... two or more active PERFORM statements may not have a common exit.’

These reference manuals have no uniform semantics of a nested perform statement, and its behaviour
can often be changed by setting compiler switches. To examine the behaviour of perform statements
in practice, we compiled and ran three small test programs using different compilers and examined the
output. The three test programs are shown in Figures 2, 3 and 4. Display statements are used to track
the control-flow when a program runs. We briefly explain the programs here.

e Program P1. This program has a nested overlapping perform statement. In LABEL1, a perform
statement performs LABEL2 through LABEL3. Then in LABEL2, a second perform statement
references LABEL3 through LABEL4, thereby passing control through the exit of the first
perform statement.
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LABEL1.
DISPLAY '1’
PERFORM LABEL2 THRU LABEL3
STOP RUN.
LABEL2.
DISPLAY ’'2'
PERFORM LABEL3 THRU LABEL4.
LABEL3.
DISPLAY '3'.
LABEL4 .
DISPLAY '4'.

Figure 2. Program P1, with nested overlapping perform statements.

LABEL1.
DISPLAY '1°’
MOVE 1 TO A
PERFORM LABEL3
DISPLAY 'END’
STOP RUN.
LABEL2.
DISPLAY '2’.
LABEL3.
DISPLAY '3’
IF A =1
MOVE 0 TO A
GO TO LABEL2
END-IF.

Figure 3. Program P2, where a goto statement jumps out of a performed paragraph.

LABEL1.
MOVE 1 TO A
PERFORM LABEL2

STOP RUN.
LABEL2.
DISPLAY A
IF A <3
ADD 1 TO A
PERFORM LABEL2
END-IF

DISPLAY ’'END’.

Figure 4. Program P3, with a recursive perform statement.

Copyright © 2006 John Wiley & Sons, Ltd.
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e Program P2. In this program, LABEL3 is performed. The first time this paragraph is entered,
variable A has value 1 and thus a goto statement jumps to LABEL2 before the end is reached.
After LABEL?2, the control-flow can fall through to LABEL3. The second time this paragraph is
entered, variable A has value 0 and thus the end of the paragraph is reached. When the perform
statement in LABEL1 terminates, the program displays ‘END’.

e Program P3. This program has a recursive perform statement. In LABEL1, variable A is
initialised with value 1 and LABEL?2 is performed. In LABEL2, the value of A is displayed.
Then, if the value of A is less than 3, it is incremented and a recursive perform of LABEL?2 is
made. If A is greater than or equal to 3, the program prints ‘END’.

We compiled these three programs with a number of different compilers on different platforms.
We used AcuCobol [25], Compaq Cobol [26], Fujitsu Cobol [27], IBM Cobol [28], Micro Focus
Cobol [29], and TinyCobol [30] (an open-source Cobol compiler), the platforms were Windows,
OpenVMS, 0S/400, Unix and Linux. The compilers were initiated with no additional directives,
except for the Micro Focus compiler, which we used also with the directive PERFORM-TYPE=0SVS.
This directive provides compatibility with the mainframe behaviour of OS/VS Cobol. The directive
PERFORM-TYPE=RM provides compatibility with the behaviour of RM Cobol and the directive
STICKY-PERFORM also influences the behaviour; we have not tried these options in the experiment.
We mention that none of the compilers issued any warning during the compilation of the test programs.

The output of the three test programs is shown in Table I. The output of Program P1, with the nested
perform statements, differs between compilers. In AcuCobol, Micro Focus Cobol and TinyCobol, the
perform statements do not interfere with each other. First, LABEL2 is performed, which performs
LABEL3 and LABEL4. Then, after the perform statement in LABEL2 terminates, LABEL3 is executed
once more before the program ends. In Compaq Cobol, Fujitsu Cobol, IBM Cobol, and Micro Focus
Cobol with the OS/VS directive, the nested perform statements do interfere. The first perform statement
modifies the continuation point of LABEL3, and as soon as control-flow reaches that point, control-flow
is transferred to the stop run statement after the first perform statement; LABEL4 is not reached.

The output of Program P2 also illustrates the use of the perform continuation point. All compilers
except TinyCobol produce similar results for this program. The perform statement sets the continuation
point of LABEL3 to DISPLAY ‘END’ in LABEL1. As long as the end of that paragraph is not reached,
the continuation point remains active. If the program flow reaches that point at a later moment, the
flow is transferred to DISPLAY ‘END’ in LABEL1. Therefore, the continuation point is preserved,
even though the control-flow has left the performed paragraph. This can make comprehension and
modification of programs difficult.

The output of Program P3 shows that Fujitsu Cobol and IBM Cobol do not support recursion
by default, as well as Micro Focus Cobol with the OS/VS directive. The programs printed ‘END’
continuously and did not terminate. Compilers supporting recursion yielded programs that printed
‘END’ three times. The Compaq Cobol compiler also does not support recursion, but the test program
terminated after it printed ‘END’ twice. We briefly discuss the IBM and Compaq implementations of
the perform statement in more detail.

The implementation of the IBM Cobol compiler is discussed in [3], stating that each perform
statement can save exactly one pending continuation point, i.e. a continuation that was set by an
earlier perform statement and is still active. This works as follows: when a perform statement is
executed, the pending continuation point of the performed paragraph is stored in an area specific for
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Table I. Output of the three test programs.

Micro  Micro  Tiny
AcuCobol®  Compaq®  Fujitsu® IBMY  focus® focust  Cobol®

Pl 1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 4
3 3 3

P2 1 1 1 1 1 1 1
3 3 3 3 3 3 3
2 2 2 2 2 2 2
3 3 3 3 3 3 END
END END END END END END

P3 1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
END END END.. END.. END END.. END
END END loop loop END loop END
END END END

2 AcuCobol development suite 4.3 for Windows and Development System 6.2 for Linux.

bCompaq Cobol V2.7 for OpenVMS.

€Fujitsu NetCobol V7.0 & Cobol 85 V3.0 for Windows.

dIBM Cobol/400 & ILE Cobol/400 for 0S/400.

€Micro Focus ObjectCobol 4.1 for Unix.

fMicro Focus ObjectCobol 4.1 for Unix, with compiler directive PERFORM-TYPE=0SVS.
€TinyCobol V0.61 for Linux.

that perform statement, and a new continuation point of the performed paragraph is set to the current
perform statement’s successor. When control is returned after the current perform statement terminates,
the stored pending continuation point is restored and control continues with the perform statement’s
successor. However, when a perform statement is executed for a second time before its first execution
has terminated, the pending continuation point is overwritten before it is restored. So, to see what
happened in our test Program P3 we reconstructed its execution. The PERFORM LABEL2 statement
in LABEL1 set the continuation of LABEL?2 to the stop run statement in LABEL1. Then, the first time
PERFORM LABEL2 in LABEL2 was executed, the pending continuation of LABEL2 to the stop run
statement was saved and the new continuation of LABEL2 was set to DISPLAY ‘END’. However,
when PERFORM LABEL2 in LABEL2 was executed for the second time, the pending continuation
point to the stop run statement was overwritten before it was restored. Then, each time the end of
LABEL2 was reached, its continuation was restored from PERFORM LABEL2 in LABEL?2, but that
was always the DISPLAY ‘END’ statement; hence the program did not terminate.

The Compaq Cobol compiler also does not support recursion, but uses a different model than the
other compilers. It produced a program that printed ‘END’ only twice before it terminated, whereas
the other compilers either did not terminate or printed it three times because LABEL2 was recursively
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executed three times. We examined the output of the debugger and it turned out that recursive calls can
be made, but a problem occurs as soon as the end of LABEL? is reached for the second time. At the end
of LABEL?2, first the continuation to LABEL1 was stored, and then overwritten twice by continuations
to the DISPLAY ‘END’ statement, before the end of LABEL2 paragraph was reached for the first
time. When the end was finally reached, there was one continuation, referring to DISPLAY ‘END’.
After the execution of that statement, it seemed that another continuation was expected at the end of
LABEL2 but not found, and the program was terminated. The Compaq compiler can detect recursive
calls by using a compiler option, but that option was not enabled and thus the problem was skipped
without a warning. We assume that when using the Compaq compiler, precisely one continuation can
be stored for each paragraph, whereas with the IBM compiler precisely one pending continuation can
be stored for each perform statement. This means that in Compaq Cobol, one cannot have two or more
active perform statements with the same exit, whereas in IBM Cobol one cannot have two or more
simultaneous activations of the same perform statement. This is in line with the manuals we consulted.
The subtle difference was exposed by the recursion in the test program, but could also be exposed by a
program containing two active performs with a common exit.

Hence, by using three small test programs, we demonstrated that there are at least three different
implementations to store the continuations for perform statements.

2.3. Hazardous control-flow: Cobol minefields

The test programs in the previous section illustrate that seemingly simple procedure calls in Cobol
can cause non-intuitive behaviour and portability problems. We demonstrated that there exist different
implementations to store the continuations of performed paragraphs (or sections).

Some of our findings are also discussed in [3], where a Cobol mine is considered to be an active
continuation of a perform statement that is skipped owing to a goto statement. The mine can be tripped
unexpectedly at a later moment. However, whether a mine can be tripped at a later moment depends
on the Cobol compiler. For instance, if the mine is reached at a later moment during the execution
of a second perform statement, the mine does not have to be active as some compilers have only
one active continuation at a time. In the example program in Figure 5, which we adopted from [3],
a mine can be activated and subsequently tripped. The first perform statement sets the continuation
of paragraph E to B. If ERROR evaluates to true, control-flow is transferred to B by a goto statement
but the continuation to B at the end of E remains active. Then, in B, paragraphs C-F are performed.
Subsequently, if the error in D does not occur for the second time, the mine at the end of E can be
tripped; however, this depends on the compiler. If the code is compiled with a compiler with only one
active continuation at a time (e.g. AcuCobol, Micro Focus, Tiny Cobol), the mine cannot be tripped.
If the code is compiled with a compiler with multiple active continuations, the mine can be tripped
(e.g. Compaq, IBM, Fujitsu). On the other hand, if the mine is reached by means of a goto statement or
fallthrough logic, (e.g. in B there is a goto statement to C instead of the perform statement) it is tripped
regardless of the used compiler; we illustrated such behaviour with test program P2 in Figure 3.

In this paper, we consider a number of potential hazardous programming practices such as Cobol
mines; code containing these structures is regarded as a Cobol minefield. A mine involves a range of
performed labels combined with one of the three main ways to transfer control-flow in Cobol: perform,
goto and fallthrough. Potential mines are performed ranges that can be entered or exited by goto or
fallthrough logic, or performed ranges that overlap with other performed ranges. Hence, we identify
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A. PERFORM D THRU E.
B. PERFORM C THRU F.
STOP RUN.
C.
D. IF ERROR GO TO B.
E J
F.

Figure 5. This code example was adopted from [3]. In case of error in paragraph D, the first perform statement
leaves a mine at the end of paragraph E, which the subsequent perform can trip. However, this can only happen in
IBM-like implementations of the perform statement.

three main types of mine, classified as a perform mine, a goto mine or a fallthrough mine. For the
goto and fallthrough mines there are two distinct subtypes, indicated by Into (e.g. a goto jumps into a
range) and Out (e.g. a goto jumps out of a range). The description and definition of mines is shown
below. Each mine involves a performed range R combined with one or more labels denoted by L;..L;,
a single label denoted by L, or a statement denoted by S.

e perform mine

one or more labels Lj..L, that appear in two dissimilar performed ranges R; and R;
(overlapping ranges, multiple entry and exit points)
Li.Ly:Li.L,e Ry AL1.L,e Ry AR #R>

e goto mine

Into: a goto statement S that is not contained in a performed range R, which references a label L
contained in R (jump into a range, multiple entry points) S: S =gotoLAS¢ RAL € R
Out: agoto statement S contained in a performed range R, which references a label L that is not
contained in R (jump out of a range, multiple exit points) S: S =gotoL A S€ RAL ¢ R

o fallthrough mine

Into: the first label L in a range of performed labels R that can be entered by fallthrough logic
from its syntactic predecessor (multiple entry types)
L : L =first(R) A fallthrough(predecessor(L), L)

Out: the last label L in a range of performed labels R, which can be exited by fallthrough logic
to its syntactic successor (multiple exit types)
L : L =last(R) A fallthrough(L, successor(L))

Some paragraph labels may be classified as several types of mine, which can be an indication of
very intricate control-flow. For example, a label can be classified as both a perform mine and a
fallthrough mine. Note that the above definitions for fallthrough mines are not complete, but they
are sufficient to describe mines. The predicates successor() and predecessor() can be determined with

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1605-1642
DOI: 10.1002/spe



1616 N. VEERMAN AND E.-J. VERHOEVEN SP E

little effort. The predicate fallthrough() requires more effort, since it cannot be seen from a paragraph
itself. In fact, it is required to track the control-flow paths from the beginning of a program to the
specified paragraphs. Therefore, the use of automatic tools to carry out large-scale minefield detection
is inevitable.

The mines we defined can cause unexpected behaviour and portability problems, and complicate
program understanding and modification; code with mines leads to multiple entry and exit points in a
segment of code. Although the use of multiple and single entry and exit points in programming can be
subject to debate, in Cobol one has to be especially careful with different types of entry point because
these influence the way the control continues. One also has to be careful with multiple exit points
because of the peculiar preservation of continuation points. Moreover, when we read the fine prints
of the Cobol standard [13, p. 491] we found for a perform statement referencing ‘procedure-name-1’
through ‘procedure-name-2’ that: ‘the flow of execution should eventually pass to the end of procedure-
name-2’. Hence, if a program has a path that jumps out of a performed range and does not reach the
end of the last paragraph or section before it terminates, it is not in line with the Cobol standard.

Therefore, we believe it is good practice to disallow mines in a coding standard because mines
violate best practices and can be harmful to the operation and maintenance of a system. By detecting
mines in advance, one can prevent a system from high costs for error correction, updates, migration
and system failure.

3. COBOL MINEFIELD DETECTION

We implemented a mine detector to identify Cobol minefields and applied it in a case study on minefield
detection. The case study contained five business-critical Cobol systems from different companies,
covering 830000 lines of code in total. We present our tools, some implementation details, and then
our case study.

3.1. Tools and implementation
3.1.1. Mine detection and control-flow analysis

In order to detect Cobol mines, control-flow analysis is required. We implemented a control-flow
analysis tool for Cobol. Using the output of the analysis tool, we implemented a mine detector.
The control-flow analysis tool visits and collects all possible control-flow paths in a program.
For proper control-flow analysis, one needs to have precise semantics of the control statements. As the
semantics for the perform statement differ among implementations, we chose a semantics: when
several perform statements are active at the same time, only the continuation of the innermost perform
statement is recognized. If the continuation of the innermost perform is reached, control is returned
and the continuation of the outer perform becomes active again. Our semantics therefore resembles the
behaviour we encountered with the Micro Focus, AcuCorp, and Tiny Cobol compilers. We believe that
this semantics is easier to understand and more in line with the concepts of structured programming
than a semantics with multiple active continuations, which we found in the Compagq, Fujitsu and IBM
Cobol compilers.
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LABEL1. PERFORM LABEL4 THRU LABELS.

LABEL2. DISPLAY ‘THIS CAN BE DEADCODE’.

LABEL3. STOP RUN.

LABEL4. PERFORM LABEL5 THRU LABEL6.

LABELS. ..

LABEL6. DISPLAY 'THIS CAN BE DEADCODE’.
GO TO LABEL3.

Figure 6. Different perform statement semantics can cause different program points to be reachable.

Different semantics can yield different reachable points in a program. In some rare cases, code can
be reachable when one continuation is active, whereas it is unreachable when multiple continuations
are active, and vice versa. This means that we can miss a mine with our mine detector because the
mine occurs in code that is considered not to be reachable. We illustrate this with a code sample in
Figure 6. In the code, if only a single continuation can be active at a time, the code in LABEL?2 is
not reachable. If multiple continuations can be active at the same time, the code in LABEL6 is not
reachable. The code sample shows that we may miss mines that are located in code that is unreachable
according to the semantics we use for the control-flow analysis. The differences in reachable code under
different semantics are caused by the existence of mines (e.g. the code in Figure 6 has overlapping
perform ranges and a jump out of a perform range). Clearly, this is precisely the idea of minefield
detection: the discovery of code that behaves differently when it is compiled with different compilers.
Hence, in the cases where we miss a mine owing to the above circumstances, there is at least one other
mine in the program that is responsible, and that mine is detected.

3.1.2. Visualization tool

We implemented a visualization tool that translates the output of the control-flow analysis to graphs
in Dot format. Dot is part of the Graphviz package [31] and can be used to draw directed graphs.
A directed graph is convenient for visualization of the control-flow in a program. Our visualization
tool generates control-flow graphs that provide a comprehensive overview of the control-flow among
paragraphs and sections in a program. This way, minefields can be visualized. In Figure 7, an example
program with its generated graph is shown. The blocks represent sections and the ellipses represent
paragraphs. The dashed arrow represents a perform statement and thick arrows goto statements*.
The number next to an arrow indicates in which order the control statements appear in a paragraph;
in this case there are two goto statements in the paragraph SUBPAR, the first one jumps to the exit
paragraph and the second one is a local loop. The thinner arrows represent fallthrough. Since PERFORM
SUBROUTINE in MAINPAR can return control at the end of SUBROUT INE, there exists a fallthrough
arrow from MAINPAR to ENDPAR.

#The online electronic version of this article uses green arrows for perform statements and red arrows for goto statements.
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IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE.
PROCEDURE DIVISION.
MAIN SECTION.
MAINPAR.
PERFORM SUBROUTINE. MAINPAR
ENDPAR.
STOP RUN.
SUBROUTINE SECTION.
SUBPAR.
IF FLAG
GO TO SUB-EXIT
ELSE
DISPLAY ‘FLAG NOT SET’
END-IF
GO TO SUBPAR.
SUB-EXIT.
EXIT.

ENDPAR SUBROUTINE

SUBPAR
1

Figure 7. Example program and its generated control-flow graph. Dashed arrow: perform; thick arrow: goto; thin
arrow: fallthrough; number: order of appearance in the code.

3.1.3. Implementation details

To carry out source code analyses fast and reliably, one can use automatic tools [32-34]. In our
case, we used the ASF+SDF Meta-Environment [35-37] to implement the control-flow analysis tool
and the mine detector, as well as the tool to visualize graphs. The ASF+SDF Meta-Environment
is a development environment for the automatic generation of interactive systems for manipulating
programs, specifications or other texts written in a formal language. Its development has been
stimulated by research on industrial software renovation [38—40]. Syntax Definition Formalism
(SDF) [41] supports the definition of both lexical and context-free syntax (production rules). In our case
study, we used a Cobol grammar in SDF for parsing the Cobol programs. The grammar was derived
from the online IBM VS Cobol II grammar [42-44] and modified [45] to be able to parse the Cobol
dialects in the case study. To aid the adaptation of the grammar, we used the grammar deployment
kit [46]. We employed a preprocessor for the Cobol programs that was adopted from [47], and the
architecture we used for carrying out automated analysis and transformation of the Cobol programs is
described in [33,34,39]. Furthermore, we constructed a Dot grammar in SDF using the grammar from
the Dot manual [48, p. 34]. The Dot grammar was used for our visualization tool.

For a grammar in SDF, the ASF+SDF meta-environment generates a GLR parser [49]. The parser
parses a program and yields a parsetree, which can be manipulated by transformations specified in ASF.
Algebraic Specification Formalism (ASF) [50] supports the definition of equations (conditional rewrite
rules). ASF has sufficient expressive power to describe typechecking, program translation and program
execution. The control-flow analysis, the mine detector and the visualization tool were implemented
using ASF rewrite rules. In Figure 8, an overview of the tools is given. We briefly describe the operation
of the tools, using the program in Figure 7 as a running example.
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Control-flow graph
Identified minefields

Cobol program Control-flow data

Mine detector

Figure 8. Overview of the tools.

The control-flow analysis explores all possible paths in a program, starting at the first statement in the
procedure division. Only control statements are considered (i.e. goto statements, perform statements
and statements terminating the execution of the program, and branching statements containing a control
statement); all other statements are ignored. During the traversal of the program, each visited statement
is stored in a list, representing the current path. In addition, a list of active perform statements is
maintained. At the end of a paragraph, the list is queried to see if the paragraph is the current active
continuation. If it is, control continues with the statement after the active perform statement. Otherwise,
control falls through to the next paragraph and continues with its first statement. If there is no next
paragraph (i.e. the end of the program is reached), the traversing stops and the current path is returned.
A branching statement splits the current path, resulting in two or more possible paths. If a loop is
encountered, the traversing stops and the path so far is returned. A loop occurs if a statement has
already been visited within the scope of the current active continuation (i.e. a goto transfers control to a
previously visited statement), or if a perform statement is already in the list of active perform statements
(i.e. a recursive perform). The example program from Figure 7 has the following two possible paths
(the scope of an active continuation is indicated by the curly brackets):

1. PERFORM SUBROUTINE { BRANCH GO TO SUB-EXIT } STOP RUN
2. PERFORM SUBROUTINE { BRANCH GO TO SUB-PAR BRANCH }

Each path starts at the first statement in the program, which is PERFORM SUBROUTINE. When the
if statement is encountered (indicated in the path by BRANCH), the first path takes the if-branch
containing the GO TO SUB-EXIT statement. At the end of SUB-EXIT (the exit statement is
ignored), the active continuation of PERFORM SUBROUTINE returns control, and the next executable
control statement is the STOP RUN statement, which ends program execution and thus the analysis of
the first path. The second path takes the else-branch and encounters the GO TO SUBPAR statement
(the display statement is ignored). Control is again directed to SUBPAR, and the if statement is visited
for the second time within the scope of the same active continuation. That indicates a loop, and the
analysis of the second path ends and the path that has been constructed so far is returned. The algorithm
always terminates because the number of statements in a program is finite. Note that our control-flow
analysis must use a little more information than that shown in the two example paths. In order to detect
a loop, each statement is qualified by a unique identifier. We left this out in order to provide a concise
example.

The retrieved control-flow data is used by the visualization tool to draw a control-flow graph,
depicting the dependencies between the paragraphs. For example, according to the first path, there is
fallthrough from the PERFORM SUBROUTINE statement in MAINPAR to the STOP RUN statement
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in ENDPAR. We implemented a transformation to construct a graph in Dot format from the retrieved
information. Each edge is represented by a left-hand side and a right-hand side, and a number
of attributes. Attributes are used to manipulate edges; for instance, attributes can specify styles,
colours and labels. To draw a labelled bold red line representing the goto statement from SUBPAR
to SUB-EXIT, the following Dot statement is sufficient:

"SUBPAR" -> "SUB-EXIT" [label = "1", style = bold, color = red]

Similarly, edges for fallthrough and perform statements are drawn, as well as the structures for
the sections and paragraphs. Using Dot, we were able to specify the graphs concisely; the entire Dot
specification for the example program from Figure 7 has less than 15 lines of code.

The main goal of this paper is, of course, to detect minefields. The mine detector uses the control-
flow data to detect mines in a program. In order to detect perform mines, we gather all perform
ranges (i.e. a list of paragraph labels) from the control-flow data and search for overlapping ranges.
According to our definition, this means that we detect paragraph labels that occur in dissimilar ranges.
In the example program, there is only one perform range, containing labels SUBPAR and SUB-EXIT.
To detect goto mines, we proceed in a similar way. For the goto Into mines, for each perform range,
we detect goto statements that occur outside the range, which refer to a label in the range. For goto Out
mines, for each perform range, we search goto statements that occur in the range, which refer to a label
outside the range. For the fallthrough mines, we look for the first label in a perform range that can also
be reached by fallthrough from its predecessing label, and the last label in a perform range that has an
outgoing fallthrough edge to its successor. The example program from Figure 7, which we used as a
running example so far, has no mines. In the next section, we present several real programs containing
harmful mines.

3.2. Case study: minefield detection

We applied our minefield detection to five industrial Cobol systems that are in production and being
maintained by different companies. In total, the systems covered approximately 830000 lines of
Cobol code in nearly 1900 programs. We show some statistics in Table II to illustrate the diversity
of the systems in terms of lines of Cobol code, number of programs, sections, paragraphs and control
statements perform and goto. Consider, for instance, the amount of goto statements and the number of
lines of code in System 3 compared to System 4. We started with System 1, a medium-sized system of
nearly 80000 lines of code, and evaluated the results with a system expert of that system. After that,
we deployed our minefield detector on the rest of the systems. In Table III, the results are summarized.
An interesting finding is that in System 4, which is almost 200000 lines of code, there are only
four mines. We assume that this has to do with the low number of goto statements in that system,
which can be an indication that the chances on mines are lower in a system with less goto statements.
Another characteristic that appears from the data in the tables is that the detected mines are not equally
distributed over a system. In fact, a relatively small number of programs in a system are responsible
for mines. This characteristic is in line with the findings of others [51-53]: a small number of modules
in a system are responsible for the majority of the errors. Such a characteristic is known as a Pareto
distribution, or the 80:20 rule: 80% of consequences originate from 20% of the causes. In our case,
if we sum up all program of the systems, 93 of the 1886 programs are responsible for mines, which
corresponds to 5% of the programs. We will now discuss our findings with System 1 in more detail.
After that, we present the results of the other four systems.
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Table II. Statistics of the systems in the case study.

System Loc Cobol Programs Sections Paragraphs Performs  Gotos

1 78253 92 1406 2892 2308 872
2 17 168 31 434 940 825 105
3 79 867 85 1286 3723 2040 2633
4 198 384 833 3089 6311 5079 12
5 457310 845 9979 21124 17513 7724
Total 830982 1886 16 194 34990 27765 11346

Table III. Results of the minefield detection.

Goto Fallthrough

Reported  Total  Perform
System programs mines mines Into Out Into Out

1 14 491 — 30 35 213 213
2 9 19 18 - - 1 —
3 6 43 8 — 1 18 16
4 3 4 2 - — 2 —
5 61 413 153 26 42 9% 9
Total 93 970 181 56 78 330 325

3.2.1. System 1

In the first system, we detected 491 mines in 14 programs. Most mines were fallthrough mines: a
performed range that can also be entered or exited by fallthrough logic. In all detected cases, each
range that can be entered by fallthrough was preceded by a range that can be exited by fallthrough.
Therefore, the number of fallthrough Into mines is equivalent to the number of fallthrough Out mines.
The cause of all the fallthrough mines was the presence of goto mines: a jump into or out of a
range. We illustrate this with the control-flow graph of one of the reported programs in Figure 9,
which also illustrates the problems associated with these mines. The program reads records from a
file and updates the database if necessary. Section B11_INIT uses X01_READ_FILE to read the first
record and establishes a connection with the database. Then, B12_PROCESS is executed until there
are no more records in the file or an error occurs; C121_PROCESS_AGR is used to determine if the
database must be updated. If all records are processed, B13_CLOSE closes the file, prints the number
of read records, and commits the changes to the database. If an error occurs, B13_CLOSE performs a
rollback operation and a subprogram is called. The subprogram handles and logs the error, and, when it
terminates, control is returned to B13_CLOSE. After B13_CLOSE terminates, the program is ended by
a stop run statement in A1_MAIN. However, in this program, there is a goto statement from paragraph
B11.01 to paragraph B12_99 in section B12_PROCESS. This jump creates fallthrough between all
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A1_MAIN
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B11_INIT

BI13_CLOSE

B13_01

B13_99

Figure 9. A Cobol minefield in System 1. The erroneous goto statement from section B11_INIT
to section B12_PROCESS violates the corporate coding standard and causes unintended
fallthrough between all subsequent sections.
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subsequent sections until the end of the program. In total, this program contains eight mines: two goto
mines and six fallthrough mines.

An interesting finding in System 1 was the following one: since a jump out of a range will often
result in a jump into another range, one would expect that the number of goto Into mines (jump into of
arange) is equivalent to the number of goto Out mines (jump out of a range). However, we detected 35
goto Out mines but only 30 goto Into mines. A closer examination of the code revealed that some of
the reported goto mines jumped to a label inside a section, which was not reachable otherwise. Hence,
if the jump was programmed by mistake, it accidentally revived some dead code. This results in zombie
code: code that used to be dead but which has been revived.

As we suspected that the mines in this system were not implemented intentionally, they created
possible execution paths that were never intended to exist and may result in severe errors. For instance,
incorrect data can be stored or displayed, or the program can terminate abnormally. Also it can be very
difficult to trace the error, the system may be down for a while after such errors occur. We wanted
to know how many of the detected mines were implemented intentionally and how many where
implemented unintentionally. However, that may be difficult to determine without proper knowledge of
the system. All we saw from the code was that there were jumps out of a performed section, which can
be intentional as well as unintentional. Therefore, we consulted one of the system experts of System 1,
and asked him his opinion about the 14 reported programs. It transpired that jumps between sections
were not allowed in the corporate coding standard, and the system expert was confident that all cases
were programming errors. Often, this was due to a sloppy copy-paste of code. Hence, in System 1,
all mines were implemented unintentionally and thus the fallthrough execution paths and zombie code
were also created unintentionally.

To have a better sense of the degree to which a minefield causes errors, we tried to asses the severity
of the mine from Figure 9 in more detail. In B11_INIT, the input file is opened, and if something is
wrong with the file, an error routine is called and an error switch is set. After this switch is set, the
erroneous goto statement is executed and transfers control to B12_99 unintentionally. This paragraph
has only an exit statement, and control continues with B13_CLOSE because the continuation of
B12_PROCESS is not active. In B13_CLOSE, the input file is not closed because it was not properly
opened, and no committing to the database is done because no connection was established. The number
of read records is displayed, which is zero, and, because the error switch was set, a subprogram is
called to handle the error. After that, control falls through to C121_PROCESS_AGR. In that section, it
is attempted to retrieve data from the database but that fails because no connection exists. This results in
an error which is handled by the error routine for the database connection. The error switch, which was
already set, is set again, and after the error routine terminates, control is transferred to C121_99, which
contains only an exit statement. At the end of C121_PROCESS_AGR, there is no active continuation
and control falls through to X01_READ_FILE. In that section, a record is read from the input file, and
after that the end of the program is reached, which terminates the execution.

To summarize, the program in Figure 9 has a valid execution path that is clearly erroneous.
If something is wrong with the input file in this program, control-flow proceeds in an unintended
way through the program. Along the way, several subprograms are called and error logs are created
that are not relevant to the actual error. This can obstruct proper maintenance and operation of the
system severely. The error has either shown up already or not yet. We suspect that, in case this error
has shown up already, the maintainers have been confused by the output and the error logs. At first
sight, it appeared that something is wrong with the database. After several error logs are examined
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and some tests are run, it transpires that there was an error with the input file. The maintainer fixes
the problem with the file, reruns the program, and the error has disappeared. In either case, the mines
remain dormant in the program until they show up, threatening the operation of the system and causing
unnecessary maintenance expenses.

Hence, the errors associated with the minefields in this system either have not yet occurred or a
system expert knows what to do when these errors arise. The example illustrated that mines can cause
code to be executed in an unintended order, resulting in unexpected output that is difficult to debug.
A dormant error can also be activated when the program is modified. Errors, such as those found in
this system, can be fixed in advance if the erroneous labels are corrected. We illustrate this in Figure 10,
which depicts the graph of the repaired program from Figure 9. The jump from B11_01 to B12_99
was replaced by a jump from B11_01 to B11_99. This way, the fallthrough mines in the subsequent
sections are also removed. Hence, if the erroneous jump is repaired in this program, all mines are
cleared. Nevertheless, a mine should always be cleared with care. For example, there can already be a
work-around for a mine, and by removing the mine we can actually introduce a new error.

We delivered a report to the company with the detected mines in the system and the control-flow
graphs. Some of the system experts were especially interested in the fallthrough analysis between
sections because they had been confused by this behaviour during maintenance. This indicates that
they had already suffered from minefields. After we reported the mines in System 1 and evaluated
the results, we also analysed four other systems. For each system, we discuss the results separately,
illustrated with some appealing examples.

3.2.2. System 2

System 2 is a small system of only 31 programs, covering about 17 000 lines of code. In total, 19 mines
were detected in 9 programs; 18 were classified as perform mines and one as a fallthrough Into mine
(fallthrough into a performed range). The fallthrough mine appeared in a small program of only two
sections, which is shown in Figure 11. The first section performs the second one, but after that the
control-flow executes the second one again by fallthrough; this was an error. The first section should
have been terminated with an exit program statement but, instead, there was just an exit statement
(which has no effect on the execution of a program). Consequently the code in the second section is
unintentionally executed twice instead of once.

The 18 overlapping perform ranges were caused in a performed section, which performs some of its
own inner paragraphs. Although this is perfectly legal in Cobol, this way of programming may lead
to errors. If an internal range of performed paragraphs must only be reached by perform statements,
a goto statement is required to skip the range when reached by fallthrough inside the section. If the
inner range can also be reached by fallthrough (e.g. under different input conditions), we have a
fallthrough mine: the flow of control after the inner range is determined by the way the range was
reached. This complicates comprehension of the code, and we found an example of such a situation in
System 3. In addition, a performed range inside a performed section can pose portability problems, as
there is more than one active perform range inside the same section; a programmer might be tempted
to implement a jump from the inner range to the outer range because the inner range is directly
contained within a section. We will show examples of such code later. Furthermore, we read in one
of the compiler manuals [54, p. 28] that when an end of a perform range lies within another range, the
compiler produces very inefficient code. To summarize, the overlapping perform ranges in this system
are programmed intentionally and cause no error at the moment, the coding style is prone to errors.

Copyright © 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1605-1642
DOI: 10.1002/spe



SP E COBOL MINEFIELD DETECTION 1625
2

Al1_MAIN

B13_CLOSE
A
| C121_PROCESS_AGR | B13_99

~3

Figure 10. The repaired System 1 program from Figure 9.

We reported our findings to the company that maintained the system. The results were handed to the
application manager of the system. The manager told us that she was eager to investigate our findings
with the system experts, but that maintenance of the system was frozen at that moment, and thus no
further preventive maintenance could be carried out at the time of writing this paper.

3.2.3. System 3

In System 3, also a medium-sized system of about 80000 lines of code, 43 mines were reported.
The perform mines and many of the fallthrough mines were caused by a performed section that
performs some of its own paragraphs. Similar practice was also found in System 2, discussed above,
but now the inner ranges are also reachable by fallthrough logic, and there were jumps from the inner
range to the outer range. This means that the first paragraph of the inner range is classified as both a
perform mine and a fallthrough mine, which results in very intricate code. We show a simplified code
snippet from System 3 together with its visualization in Figure 12. The code implements a loop in
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Figure 11. A Cobol fallthrough mine in System 2. The A01_PROCESS section is reachable by both a perform
statement and by fallthrough logic.

which a table is searched; the entire section was about 150 lines of code, containing 31 goto statements
and 21 paragraphs. The actual searching is done in paragraph C11, but that paragraph can be reached
in two ways: by direct fallthrough from paragraph C09 and by a perform statement in paragraph C17.
This results in several mines that complicate the code: an overlapping range (C11 THRU C15), a
jump out of a range (in C11 GO TO C99), and a range that can be entered and exited by fallthrough
(C09 into C11 THRU C15 to C17). In addition, this code has portability problems as it behaves
differently on some compilers. On a compiler with a single active perform continuation, if C11 is
reached by the perform statement in C17, the continuation of the outer perform statement (PERFORM
C-DAT) is not active. Then, if in C11 the goto statement to C99 is executed, control-flow falls through
from C99 to the next section in the program and control is not returned to PERFORM C-DAT; hence,
there is an additional fallthrough mine at the end of C99 which occurs when certain compilers or
compiler flags are used.

It would be interesting to interview the original developer of this code, but he was no longer
maintaining this system. Hence, we were unable to receive proper feedback on this particular minefield.
We assume that the complexity of the program has evolved over time, causing a tangled structure.
For a new programmer, the code is difficult to understand and modify, it is prone to errors, and it has
portability problems. One could untangle the code by restructuring it; however, if this particular piece
of code is untangled fully automatically, it will result in code that is still difficult to grasp. In addition, to
clear this minefield automatically, an automatic tool has to be tailored to some semantics for a perform
statement, because the code is not in line with the Cobol standard. A more appropriate solution to such
minefields is to detect, record and report such code, and let a system expert restructure the code by
hand.
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PERFORM C-DAT.

C-DAT SECTION.

C09. IF COUNT-BT > COUNT-1
GO TO C99.
IF P-CODE = ZERO
GO TO C09.
c11. ... o
SEARCH TAB-LK ,
AT END GO TO C99 ) \
WHEN T-CODE = LK-1 | @ 2
GO TO C13. /
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IF AK-1 =ZERO !
GO TO C15. | @ |
c15. ... \
c17. ...
PERFORM C11 THRU C15
GO TO CO9. @
c99. !

EXIT.

Figure 12. A Cobol minefield in System 3.

3.24. System4

System 4 is a larger system with nearly 200 000 lines of code in 833 programs. A striking statistic is the
low number of goto statements: only 12. The system was initiated in the early 1990s, and, apparently,
the use of goto statements was restricted during implementation and maintenance. The result is hardly
any goto statements, but in return there are some complex loops with deeply nested if statements
and flag variables. Our mine detector reported four mines in this system: two perform mines, and
two fallthrough Into mines. One of the fallthrough mines was similar to that found in System 2,
where a section can first execute a subsequent section by a perform statement and then executes the
subsequent section again by fallthrough. In this case, the mine was less dangerous because the perform
statement referencing the second section was located in an if statement and thus can only be executed
conditionally. The second section contained an unconditional program terminating statement, ending
the execution of the program; hence, the second section never returned control and thus cannot be
executed two times in a row in a single program execution. Nevertheless, the program contained an
error that can cause problems sooner or later.
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PERFORM X01 COMMIT CHECK Q

X0 l_COMMIT_CHECK SECTION.
X01_00.

IF ASPS REC = ZERO

PERFORM X11_ CONT_ CHANGED G
ELSE SEERNG
PERFORM X12_ASP_CHANGED '
END-IF. Go)
X01_99. .

g —— = -

X11 CONT CHANGED.
X1 1_0 0. @
X11_99.

EXIT. @

X12 ASP CHANGED SECTION.

Figure 13. In System 4, an overlapping perform range was created unintentionally by an omitted a SECTION
keyword after label X11_CONT_CHANGED.

-

The two perform mines and the other fallthrough mine in the system were caused by a programming
error. We show a code sample in Figure 13 containing this error. In the code, it can be seen from
the naming convention and section structure that the original intention was to create two subsequent
sections; however, in the second section label X11_CONT_CHANGED, the keyword ‘SECTION’ was
omitted. The compiler now assumes the label X11_CONT_CHANGED is just an empty paragraph in
X01_COMMIT_CHECK. If the conditionin X01_00 is true, PERFORM X11_CONT_CHANGED executes
no statements. When that statement terminates, control-flow continues to X01_99 and then falls
through to X11_CONT_CHANGED. Then the statements in X11_00 are executed and thus the behaviour
is equivalent to the intended situation (i.e. the ‘SECTION’ keyword after X11_CONT_CHANGED
is not omitted). The real error occurs when the condition in X01_00 is not true, and PERFORM
X12_ASP_CHANGED is executed. After that statement terminates, the control-flow also reaches the
statements in X11_00 but this time these are executed unintentionally. Our findings were handed to
the application manager of this system; he was particularly interested in the sections with a missing
key word, as he was surprised that such mistakes were not found earlier.

Although there were only four mines in this large system, the mines represent hazardous
programming practices and errors that are a potential threat to the proper operation of the system.
The low number of mines can be due to the low number of goto statements: only 12 in nearly 200 000
lines of code. Although mines are not always caused by goto statements, the figures on this system can
be an indication that programming with less goto statements reduces the chances on mines significantly.
In the next section, we show how the elimination of goto statements can help to fight minefields.
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PERFORM RTC AC

RTC_AC SECTION.
10_01.

0

IF PRS = 99

RTC_AC

GO TO 101_99.

10 _10. ...
IF PRS = 99

GO TO 101 99.

PERFORM 101 20 UNTIL PRS = 02.

GO TO 101 99.
10 20. ...
IF PRS = 99
GO TO 101 99
IF PRS = 99

GO TO 101 99.

<+ -
T (S}
o

10 _99.
EXIT.

Figure 14. A Cobol minefield in System 5.

3.2.5. System 5

In System 5, we detected 413 mines in 61 programs. Most of the mines were fallthrough mines and
these were all caused by unintended goto mines except for one; that fallthrough mine was caused
by an omitted exit program statement, just like one of the mines in System 2. The number of goto
Into and goto Out mines are not the same, because there were five jumps into the first section of the
program, which was not performed itself, and there were 11 jumps from an inner range to a label
in the outer range; hence, the jump originates in both the inner and outer range and its target is also
located in the outer range. This is illustrated by the minefield in Figure 14. Such minefields cause
portability problems, as observed in System 3: as soon as the jump is made out of the inner range,
the continuation of the outer range is not active when certain compilers are used. The rest of the goto
mines were unintentional programming errors. The perform mines were explained as follows: two of
them were caused by forgotten SECTION key words (see the similar mines in System 4), and the other
151 were performed sections that perform some of its paragraphs as an internal subroutine.
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3.2.6. Summary

We applied our analysis to five industrial Cobol systems and we were able to determine potential error-
prone programming constructs: Cobol minefields. We observed that a mine hardly comes alone, as in
almost all cases one mine introduced a number of other mines, creating a minefield. Hence, clearance
of one mine often results in clearance of other mines as well. Minefield clearance should always be
done with care because a new error can be introduced. It is difficult to determine automatically whether
a mine is programmed intentionally or unintentionally; therefore, one needs the help of a system expert
to decide. The majority of the mines was caused by unintentional programming errors, and can cause
code to be executed in an unintended order. This leads to problems ranging from invalid output to a
sudden breakdown of the system during production. In general, unintentional mines can be cleared but
this should be done with care.

Nevertheless, a minority of the mines was programmed intentionally, and can hinder maintenance of
the code. Although it can be difficult to deal with this type of mine, it is valuable for a system expert
to map the minefields of a system and to be aware of their presence. We also observed that in a large
system with only a few goto statements, the number of mines can be significantly lower. Although we
have little empirical data on this, it can indicate a relation between the number of goto statements and
the number of mines in a system. In the next section, we show how we can deal with minefields by
eliminating goto statements and other restructuring techniques.

4. DEMARCATION OF COBOL MINEFIELDS

We detected and evaluated intentional and unintentional mines in five industrial systems. Due to
problems that can arise from minefields, it can be desirable to clear them. However, mines usually
cannot be cleared that easily, owing to the imprecise semantics of the perform statement and
the subjective meaning of the code. After all, it can be difficult to determine what the intention of the
original programmer was, and the behaviour of a mine can be compiler-dependent. Nevertheless,
we showed that a tool can detect and report minefields. In this section, we want to argue that the
power of tools lies beyond the detection of minefields. We show how restructuring tools can help to
fight minefields. A tool can simplify a complex minefield by demarcation of its perimeter, i.e. a tool
can identify, mark and separate areas that are considered save. That way, a programmer is made aware
of the code that should be approached with care.

4.1. Styles, standards and structures

In our definitions of mines, mines involve the perform statement. Nevertheless, we believe that
the primary sources of programming problems, such as mines, are the use of fallthrough logic and
the employment of numerous goto statements to express programming logic. This may not be a novel
thought, but we know from experience that there is a great deal of Cobol code in production that makes
extensive use of this ‘classic’ style. We also believe that there are valid reasons for that, and we will
explain the most common reasons here.

Many Cobol programs were initiated decades ago. At that time, Cobol lacked support for certain
ways of programming that are nowadays considered as structured. With the establishment of a new
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Cobol standard in 1985, new features for structured programming were added. Support for local
loops was added by the in-line perform statement, replacing the need for a simulated loop by goto
statements, and the explicit scoping of nested statements was another contribution that can improve
the structure of programs. Furthermore, it was advised not to use certain language constructs, as these
easily complicate the flow of control (e.g. self-modifying code using the alter statement). Then, as
discussed earlier, the 2002 standard added more features for structured control-flow, common in several
newer programming languages. These included constructs for breaking out of local loops, and to end
prematurely the execution of paragraphs and sections. The idea is that these features restrict the use of
the goto statement to exceptional cases.

However, extension of the standard does not mean that the extensions are immediately incorporated
in existing and new code, and that existing compilers provide proper support. Fortunately, many Cobol
compilers now have support for the 1985 standard, and a number of compiler vendors have started
to implement the 2002 standard. Nevertheless, one can think of several reasons why a great deal of
code is developed and maintained using a classic style with goto statements and fallthrough logic.
One reason may be the common conception not to touch code that works. This is because a change
means immediate costs and, more importantly, a change can introduce or reveal errors. Unless it is
imminent to apply a change (e.g. owing to keeping in line with changing requirements or to correcting
an error), the modification of a program to keep up with the latest standard or to improve its internal
structure has usually a low priority. Another reason may be that, when a programmer modifies code,
it is common practice to adhere to the original coding style. To avoid a mixture of styles, one may be
forced, then, to program using fallthrough logic and goto statements. In addition, experienced Cobol
programmers may be more familiar, skilled and productive when using the classic Cobol style; hence
they are not tempted to program with newer constructs. Therefore, although there are ways in Cobol
to reduce the need for fallthrough logic and goto statements, how to employ them effectively is not a
trivial matter.

One approach to obtaining structured programs in a consistent, reliable and cost-effective way is
the use of automatic restructuring tools and the establishment and enforcement of coding standards.
Tools can detect violations of coding standards, and tools for restructuring Cobol code have existed for
decades. These tools can automatically replace complex code by structured alternatives, resulting in a
normalized control-flow without goto statements. However, there are several objections to the use of
automatic tools. Because a restructured program can be very different from the original program, it is
likely that the main objections to the use of restructuring tools come from the original maintainers.
Restructured code can become non-intuitive due to the normalization of simulated constructs, the
duplication of code, and the creation of meaningless flag variables and paragraph names [55]. In the
maintainers’ view, their precious code is mutilated by some automatic process, operating beyond their
powers. They are not eager to accept and maintain the result. Also, the argument not to change code
that works can still be valid. For example, a program with goto mines may behave differently after
all goto statements have been removed. This is because the restructuring tool was tailored towards a
specific semantics for the perform statement, which can be different from the implementation in the
used compiler. Nevertheless, for many programs, some form of restructuring is inevitable sooner or
later. The key to successful restructuring is to know what, how, and when to restructure. We summarize
some findings here.

e The need for restructuring can become evident when the code or its environment must
change [56]. For example, business requirements force the code to be changed, migrated
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or reused. Then, restructuring is done to enable a system to change. In addition, restructuring
is then often accepted as part of the process as the code has to be changed anyway.

e The chances on acceptance of (automatically) changed code can be higher when the original
maintainers are involved in the change effort, or when they are replaced [57] (e.g. retirement,
outsourcing).

Although the internal quality of code is rarely a reason to modify code, we will illustrate how
restructuring can aid combatting Cobol minefields; this adds another rationale for code restructuring.
To do this, we present a restructuring approach in more detail. We do not state that this is the best way
to deal with minefields; careful programming and other restructuring approaches can serve as well.

4.2. Restructuring of Cobol

Sellink et al. [56] developed a method to restructure Cobol code which eliminates fallthrough logic
by transformation of paragraphs into subroutines. The restructured program is divided into a main
part and a subroutines part. The main part can contain goto statements and fallthrough logic, whereas
the subroutines part contains only paragraphs that are free of fallthrough logic and goto statements.
The primary goal is to move as many paragraphs to the subroutines section as possible, which means
that a large part of the program is free of fallthrough logic and goto statements. It is then more obvious
to add new code that does not interfere with the existing control-flow, which is in-line with common
ideas on structured programming. In addition, it is the intention to alter the existing paragraphs as
little as possible. Although the approach moves a great amount of code around, changes to the existing
paragraphs are kept as small as possible. As there are no flag variables or labels generated to normalize
the control-flow, it is not always possible to remove all goto statements. The rationale is that some
types of goto statement simulate constructs that were not available in Cobol at the time the code was
written. This means that some of the goto statements that remain after the restructuring can be replaced
by variants of the extended exit statement, which was introduced in the Cobol 2002 standard. However,
the restructuring approach does not introduce features of the 2002 standard as these are not supported
by all compilers. Sellink et al. [56] presented an industrial Cobol program to illustrate the approach.

We continued their work to see whether the ideas are sufficient for restructuring large Cobol
systems [12]. In our case studies, the restructuring approach was able to transform up to 80% of the
code of a large system into subroutines (>2 million lines of code). This can be further increased if
Cobol 2002 features are introduced. Thus, only 20% of the code remained in the main part, containing
goto statements and fallthrough logic. To illustrate what this means, we discuss some of the production
code that we restructured.

Figure 15 shows a small code snippet from [12], before and after the restructuring effort.
The accompanying control-flow graphs are depicted in Figure 16. First, a goback statement ensures
that there is no fallthrough logic beyond paragraph 7299. Then, the paragraphs are moved one by
one. A moved paragraph is replaced by a perform statement that references the moved paragraph.
The perform statement is added to the preceding paragraph. Existing perform ranges are taken into
account during restructuring to make sure that the behaviour of the program is not modified. This
means that not every paragraph can be moved (e.g. owing to the existence of mines or complex
perform ranges). Each existing goto statement that references the moved paragraph is replaced by
a perform statement and a goto statement. The perform statement references the moved paragraph
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and the goto statement jumps to the paragraph label after the performed paragraph. This way, the
existing logic is preserved. Before a paragraph can be moved, it must be untangled from its surrounding
paragraphs, which may require elimination of some goto statements. For example, when paragraph
7209 is moved to the subroutines section, PERFORM 7209 is added to the end of paragraph 7207.
When the condition in the if statement in 7207 is complemented, the PERFORM 7209 is placed in
the if branch. Then, GO TO 7299 can be removed. That way, 7207 has no external goto statements
and can be isolated as well. This process continues until no more code can be moved or goto statements
can be eliminated.

Hence, in this example, about 80% of the code is restructured into subroutines, which are performed
from a main part that contains about 20% of the code. Paragraphs in the subroutines part have become
loosely coupled blocks of code. One can rearrange, reuse or modify the separate blocks more easily as
they are no longer tangled with each other. Moreover, one can safely add new paragraphs to the created
subroutines part without interfering with the fallthrough logic between existing paragraphs.

4.3. Minefield demarcation

We showed that a Cobol program can be divided into a main part and a subroutines part by
restructuring. We now explain what such an approach can do to fight minefields.

With the above restructuring approach, in a restructured program, all remaining fallthrough logic
and goto statements are located in the main part, and the subroutines part consists solely of performed
paragraphs. Mines are not moved; they are recognized by the restructuring algorithm and left alone
(we already explained that perform ranges are taken into account during the restructuring, see [12] for
more details). Hence, existing minefields remain in the main part of the program and the subroutines
part is a save area without mines. Minefields are therefore automatically demarcated. Moreover, by
moving the code surrounding a minefield to the save area, we can shift its perimeter and reduce its size.
We demonstrate this with one of the minefields we encountered in our case studies.

The minefield in System 3 that we presented in Figure 12 contains several mines. Although it is
a complicated piece of code with perform, goto and fallthrough mines, we can restructure some of
its paragraphs into subroutines. This is shown in Figure 17. Two paragraphs are isolated from the
minefield, and the perimeter of the minefield is shifted. This way, the size of the minefield is reduced
and the size of the intricate code has been reduced to one paragraph. So, by restructuring a program,
we can demarcate a minefield. To illustrate the demarcation of minefields and complex code in a large
program, we present a case in which we restructured a Cobol legacy application for an IT-service
company.

4.4. Demarcation of a legacy application

An IT-service company was requested to improve the maintainability of a large Cobol program, as part
of a legacy portfolio modernization project. It concerned a 15 000 lines mainframe program which was
initiated more than 25 years ago. The company restructured the program by hand, reducing it to 10 000
lines. The reduction of 5000 lines was due mainly to the removal of code that was considered no longer
necessary. However, they wanted to restructure it further and realized that the use of automatic tools was
inevitable for a fast and accurate result. They asked us to apply our restructuring tools to their program.
The program we received contained only one section with 236 paragraphs, 4690 statements, 501 goto
statements, and 173 perform statements. It turned out that the program was initially developed with
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72-PT-MS SECTION. 72-PT-MS SECTION.

7201. RESTRUCTURE-PAR.
MOVE M-PT IN TRA-NUM TO M-ACC. PERFORM 7201
MOVE 0 TO PT-M-TABLE-R. PERFORM 7203

7203. PERFORM 7205
IF M-ACC < 01 PERFORM 7207.

ADD PERIOD-ACC TO M-ACC 7299.

MOVE 1 TO M-TABLE (M-ACC) EXIT.

GO TO 7205. ... GOBACK.

IF M-ACC < PERIOD-ACC 72-PT-MS-SUBROUTINES SECTION.

MOVE 1 TO M-TABLE (M-ACC) 7201.

GO TO 7205. MOVE M-PT IN TRA-NUM TO M-ACC
IF M-ACC = PERIOD-ACC MOVE 0 TO PT-M-TABLE-R.

MOVE 1 TO M-TABLE (M-ACC) 7203.

GO TO 7205. PERFORM TEST BEFORE UNTIL ( M-ACC < 01 )
SUBTRACT PERIOD-ACC FROM M-ACC. OR ( M-ACC < PERIOD-ACC )
GO TO 7203. OR ( M-ACC = PERIOD-ACC )

7205. SUBTRACT PERIOD-ACC FROM M-ACC
ADD PERIOD-ACC TO M-ACC. END-PERFORM
IF M-ACC > 72 IF M-ACC < 01

GO TO 7207. ADD PERIOD-ACC TO M-ACC
MOVE 1 TO M-TABLE (M-ACC) . END-IF
GO TO 7205. MOVE 1 TO M-TABLE (M-ACC) .

7207. 7205.
MOVE PT-M-TABLE-R TO PT-MS. ADD PERIOD-ACC TO M-ACC
MOVE 0 TO DEP-DATA IN TRA-NUM. PERFORM TEST BEFORE UNTIL ( M-ACC > 72 )
IF P-TYPE MOVE 1 TO M-TABLE (M-ACC)
GO TO 7299. ADD PERIOD-ACC TO M-ACC
7209. END-PERFORM.
MOVE 0 TO MIN-AMOUNT IN TRA-NUM 7207.
MAX-AMOUNT IN TRA-NUM MOVE PT-M-TABLE-R TO PT-MS
REMAIN-PERC IN TRA-NUM. MOVE 0 TO DEP-DATA IN TRA-NUM
7299. IF NOT ( P-TYPE )
EXIT. PERFORM 7209
END-IF.
7209.

MOVE 0 TO MIN-AMOUNT IN TRA-NUM
MAX-AMOUNT IN TRA-NUM
REMAIN-PERC IN TRA-NUM.

Figure 15. Code before and after restructuring, taken from [12].
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Figure 16. Control-flow graphs of the code from Figure 15 before and after restructuring.

many goto statements, and later on people started adding perform statements. This resulted in about 30
paragraphs near the end of the program that were only reachable by perform statements, resembling a
subroutines structure. Still, more than 200 paragraphs were tangled with intertwined logic, and we also
detected two intentional goto mines. To obtain an impression of the complexity of the application, we
generated a control-flow graph, depicted in Figure 18. We mention that the online electronic version of
this article provides insight into the distribution of the perform and goto statements by using coloured
lines. In addition, one can read the paragraph labels by enlarging the graph.

At first sight, it may appear to be difficult to draw conclusions from the graph, but this is not
true. We explain the graph here. There are 236 nodes, representing the paragraphs in the program.
The location of a paragraph in the graph is influenced by its position in the source file and by the
attached edges. This means that paragraphs at the top of the graph appear in the beginning of the
file and that an edge between two nodes decreases the distance between them. Identical edges have
been merged by our visualization tool. From the top of the graph, about two-thirds of the graph is
dominated by goto edges and some fallthrough edges. This red majority of the graph represents more
than 200 paragraphs that are intertwined with unstructured goto and fallthrough logic. At the bottom
of the graph, on the left-hand side, about one-third is covered with green perform edges, representing
about 30 paragraphs with a subroutines structure. The conclusion that we can draw from this graph is
that we are dealing with a complex and evolved program, containing a mixture of goto, fallthrough and
perform logic.
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PERFORM C-DAT.

C-DAT SECTION.

C09. IF COUNT-BT > COUNT-1
GO TO C99
END-IF

IF P-CODE = ZERO

GO TO CO09
END-IF

C1i1. SUB

SEARCH TAB-LK
AT END GO TO C99
WHEN T-CODE = LK-1
PERFORM C13
PERFORM C15
END-SEARCH.
c17. ...
PERFORM C11

GO TO CO09.

& @

C99.

EXIT.

GOBACK
C-DAT-SUBROUTINES SECTION.
C13.

IF NOT ( AK-1 = ZERO )
END-IF.
C15.

Figure 17. Demarcation of the minefield from Figure 12.

We applied our restructuring tools to the program to increase the number of subroutine paragraphs
and to demarcate a save area from the intertwined goto logic. Some statistics of the original and
restructured program are given in Table IV. We reduced the number of goto statements to 215 and we
increased the number of perform statements to 454. The main part consists of 43 paragraphs and the
subroutines part consists of 124 paragraphs. The total number of paragraphs was decreased because
dead code was removed and some of the paragraphs were merged when the labels were no longer
necessary. We generated a control-flow graph of the restructured program, shown in Figure 19.

Although it is not possible to distinguish the flow of the edges in the graph, the figure clearly shows
that the program has been restructured into a main part on the left-hand side and a subroutines part on
the right-hand side. The remaining goto statements and the two mines are clustered together in the small
main part, and the majority of the paragraphs can be reached only by means of perform statements in the
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Figure 19. Automatic restructuring of the program from Figure 18.
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Table IV. Statistics of the restructuring effort.

Original  Restructured  Percentage

Statements 4690 4119 —-12
Goto statements 501 215 —57
Perform statements 173 454 +162
Paragraphs 236 167 -29
Subroutine paragraphs 0 124 n/a

Main paragraphs 236 43 —82

subroutines part. The code in the subroutines part can still contain interrelated structures, but there are
no goto statements and fallthrough logic among the paragraphs. Hence, there is a clear demarcation line
between code containing the intertwined logic (fallthrough and goto statements) and code containing
only (non-overlapping) perform statements.

The performance of the restructuring can probably be improved by adjusting the tools. This means
that we must add specific goto elimination patterns that occur in the program. Our restructuring effort
was a pro bono activity, so our time was limited and we did not adjust our tools to this particular
application. Nevertheless, we were able to achieve a significant result and help the programmers with
their modernization project. After we restructured the program, we sent the code and the control-
flow graphs to the company. They were pleased with the result and compiled and tested the program
successfully.

4.5. Summary

We argued that restructuring can help to fight minefields and other intricate code. We illustrated this
with several examples, including an evolved legacy application. By using automatic restructuring tools,
we divided a large program into two parts: a small main part that contains complex code, such as
minefields, and a larger subroutines part that consists solely of loosely coupled blocks of code. The code
in the main part should be approached with care, but the code in subroutines part can be moved,
modified and reused more easily. This way, a clear demarcation line has been established between
potentially error-prone code and code that is considered to be secure.

5. CONCLUSIONS

We investigated the behaviour of the Cobol perform statement in theory and practice, and we presented
definitions for potentially dangerous programming constructs in Cobol: mines. We analysed five
industrial Cobol systems for minefields. We found that one mine often induces other mines, and
that a mine can be programmed intentionally or unintentionally. Mines can cause sudden system
failure, and can be hard to debug by hand. Fortunately, automatic tools can detect mines. Unintentional
mines, representing programming errors that may not yet have occurred, can be repaired by a system
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expert before they do damage. Intentional mines, representing intentional programming logic, are more
difficult to deal with, as they often represent certain complex logic in a program. One can implement
a tool for automatic removal of mines, but such a tool should be tailored towards specific semantics.
Instead, we argued that it is better to detect mines, as they can be an indication of intricate code
that requires human inspection. Furthermore, we argued that code restructuring can assist fighting
minefields, and we showed that a Cobol program can be restructured into a relatively small area with
potentially error-prone code and a larger area containing only loosely coupled blocks of code. This way,
a clear demarcation line is established between a save zone and the dangerous minefields.
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