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Abstract. This paper presents experiments which show how Multimedia Extensions found
in the modern computer architectures can be used to speedup common image processing algo-
rithms. This approach can be very useful in the development of efficient algorithms for pro-
cessing of large images like the ones acquired with satellites. The experiments were performed
with satellite images from the Amazonas Forest in Brazil.
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1 Introduction

Remote sensing involves the use of instruments
or sensors to acquire the spectral and spatial rela-
tions of objects and materials observable at a given
distance [15]. Multitemporal images collected by
digital multispectral imaging systems have been
available for more than 25 years and have been used
for various Earth-science applications [12] like de-
tection of land cover changes driven by seasonal
and interannual climate variations, long-term cli-
mate shifts, vegetation succession, and human or
natural disturbances [14]. The Landsat series of
satellites provides the longest running continuous
data set of high spatial-resolution imagery dating
back to the launch of Landsat 1 in 1972 , using
the TM (Thematic Mapper) Multispectral Scan-
ner [19]. The TM has 8-bit radiometric resolution
and seven bands in a 185Km

�
area, with 30m spa-

tial resolution, except band 6 (120m). Each band
has an specific spectral range, appropriate to ap-
plications, i.e., band 4 (near infrared) to biomass
surveys, water-body delineation, and band 5 (short-
wave infrared) mainly to vegetation moisture and
snow-cloud differentiation [17].

This work presents the use of instruction level
parallelism based on the MMX instruction set,
available in several modern processors, to speedup
the processing of images, in particular the process-
ing of large images like the ones acquired with
satellites. An important advantage is that it is
not necessary to transmit data among different ma-
chines in a computer network. The communication
among processors is the greatest bottleneck in per-
formance degradation of parallel programs [18]. In
a previous work [13] it is shown that it is possible
to implement functions in MMX Assembly and use
them inline with C code to improve digital image
processing in a single machine. Another approach
made by a major microprocessor manufacturer is
a free library for image processing using its own
technology [10]. In a workshop organized by IEEE
in 1999 [9], many authors acknowledged the use
of this technology as being very useful in real time
image processing.

As the processing of satellite images can be very
time consuming, this situation has motivated the in-
troduction of a level of parallelism to improve the
processing. This paper presents results of several



experiments using satellite images that show how
the use of MMX instructions can speed up the al-
gorithms for image processing.

The remaining of this text is organized as fol-
lows: Section 2 makes a brief introduction to the
satellite image processing; Section 3 focuses on the
parallel processing in a single processor, describ-
ing the MMX features; Section 4 shows the results
of several experiments indicating that the instruc-
tion level parallelism can be a good alternative to
be used for processing a large amount of data. Fi-
nally, the main points of the work are summarized
in Section 5.

2 Satellite Image Processing

Prior to data analysis, a pre-processing of the
satellite raw data is usually carried out in order to
correct any distortion due to the characteristics of
the imaging system and imaging conditions. De-
pending on the user’s requirement, some standard
correction procedures may be carried out by the
ground station operators before the data is delivered
to the end-user. Those procedures include radio-
metric correction for uneven sensor response over
the whole image and geometric correction to min-
imize the geometric distortion due to Earth’s rota-
tion and other imaging conditions (such as oblique
viewing) [2, 6, 4, 8]. Different landcover types in
an image can be discriminated using image clas-
sification algorithms using spectral features, i.e.
the brightness and “color” information contained
in each pixel. The classification procedures needs
mathematical manipulations that has influence in
the efficiency of the algorithm, due to the large
number of pixels in a full scene image (185Km

�
)

with more than 64 million pixels, depending on the
spatial resolution. Figure 1 is an example of one of
the satellite images used in this work.

3 Parallel Programming in a single
processor

Parallel processing is a wide concept that can
refer to the improvement of the processing time

Figure 1: Images of the surroundings of Manaus
city in the Amazon region taken by the satellite
Landsat 5 in August, 1995.

of a program by subdividing it in multiple frag-
ments which can be processed concurrently, each
one in its own processor. Under another point of
view, parallel processing can be seen as sharing
a large amount of data among several processors
that run the same program in different parts of the
data [18]. This second kind of parallelism, know as
SIMD (Single Instruction Multiple Data) [5] con-
sists the base of modern processors to improve pro-
cessing time of programs that use a large amount
of data such as multimedia applications. The basic
idea is to use SIMD type of parallelism in a sin-
gle processor to allow simultaneous processing of
single instruction on several small registers, which
actually are part of a single large register. This con-
cept has been called SWAR (SIMD Within A Reg-
ister) [3] and it means that a single instruction of a
machine with registers, buses and function units of
k bits can be used to process n parallel operations
SIMD on the n slots of k/n bits that subdivide the
registers.

Although SWAR parallelism can be imple-
mented in all machines using integer registers and
operations [3], most of modern processors have
been designed with special instructions to improve



this technique in multimedia tasks. Several tech-
nologies have been created for MMX (MultiMedia
eXtensions) [11, 1]. A complete list of the pro-
cessors that have extensions for the SWAR paral-
lelism can be found in [3]. In spite of the fact that
this technology is present in commercial processors
since 1997 with the introduction of the first Pen-
tium MMX, today it is still difficult to find com-
pilers that automatically use this technology. The
small number of commercial compilers that gen-
erate MMX code are in most cases expensive and
the results are unsatisfactory. On the other hand,
some new compilers like the Microsoft Visual C++,
Powersoft Watcon and the GNU GCC, that is open-
source, provide inline assembly support for MMX
instructions which allow programmers to develop
applications using this technology. Such technique
that consists in using a high level language mixed
with MMX assembly code is discussed in the next
section.

3.1 SWAR Programming with MMX

MMX technology was developed by the In-
tel Corp. in 1996 to improve multimedia and
telecommunication applications. This technology
was implemented in a architecture that includes
instructions and data types that allow a high level of
performance. It explores the inherent parallelism of
multimedia algorithms, including image process-
ing, where processing happens on a single pixel or
region independent of its neighborhood.

As mentioned before, the key to MMX technol-
ogy is the hardware implementation of SWAR. To
do this, four new data types were created. These
data types that are called packed fixed-point and are
implemented in eight 64-bit registers are: packed
bytes (8 bits), packed words (16 bits), packed dou-
blewords (32 bits) and packed quadwords (64 bits).
Figure 2 shows how these data types are imple-
mented in a 64-bit register.

These types allow to understand how powerful
is the SWAR implementation. As an example, con-
sider that a pixel in a gray level image is repre-
sented by 8 bits. With the MMX operations it is
possible to encapsulate in a single vector 8 pixels

Packed Byte: 8 bytes in 64 bits
64 32 31 16 15 8 7 0

64 32 31 0

64 0

64 32 31 16 15 0
Packed Word: 4 words in 64 bits

Packed DobleWord: 2 double words in 64 bits

Packed QuadWord: 1 quad word in 64 bits

Figure 2: Data types in a single register of MMX
architecture.

of the image and then load this vector in a 64-bit
MMX register. Afterwards any of the 57 MMX
arithmetic or logic operations can be executed on
all of the 8 elements concurrently. This operation
can also be carried out among two or more registers
each one with eight pixels.

Another important characteristic of the MMX
instruction set is that some of its instructions are
able to deal with saturation, that is, if the result of
an operation is a number greater (smaller) than the
maximum (minimum) supported by the type, this
number will be saturated in this maximum (mini-
mum). This feature is very useful in image process-
ing since in many applications an extra instruction
is necessary to provide this saturation level and to
avoid data overflow or underflow.

To explain the previous characteristics, a bina-
rization algorithm will be presented. In C language,
once the image is in the main memory in a region
pointed by the variable data, the binarization with
a threshold of 127 is accomplished by:

for (i=0;i<size;i++)
data[i] = (data[i] >= 127) ? 255 : 0;

Each pixel of the image is loaded from memory to a
processor register and then compared to the thresh-
old. This operation is repeated size times where
size is the number of image lines multiplied by
the number of image columns. With SWAR pro-
graming, the key idea is to reduce the number of



load and compare operations by loading and com-
paring at the same time and with a single instruc-
tion or group of instructions 8 pixels of the image.
Consequently, the commands in the loop are re-
peated only size/8 times. For the binarization,
a solution is shown graphically in Figure 3 where
the binarization is made only with 4 basic MMX
instructions.

0xFF - Threshold

80 80 80 80 80 80 80 80 0F 71 80 7E 7F 35 FF FE

Image

8F F1 FF FE FF B5 FF FF

Saturation0xFF[Image + (0xFF - Threshold)]

00 00 FF 00 FF 00 FF FF

Comparison to 0xFF

Figure 3: Binarization of 8 pixels using SWAR.
The threshold used in this example is 127 or 0x7F.

The first instruction loads 8 pixels from memory
to a single register. The second adds with satura-
tion these 8 pixels to a previous filled register that
contains 255 (0 � FF) minus the threshold. After
this, the resultant register is compared with 255 an
finally the binarized vector of 8 pixels is stored in
memory. A complete MMX code to make a image
binarization can be seen in Figure 4.

Due to the lack of compilers that are able to gen-
erate a complete MMX Assembly from a C pro-
gram, the most efficient way to use the MMX fea-
tures is writing functions directly in the Assem-
bly language, like the one shown in Figure 4, and
include then in-line in a main program written in
C. Furthermore, the programmer must follow some
“rules” that consider the processor architecture, its
pipeline and the dynamic characteristic of program
execution. Among these rules, one of the most im-
portant is related to the alignment between the data
and stack. When the data access produce cache
miss, an entire line of the cache is fetched from
main memory. In the Pentium architecture, data ar-
rives in 4 or 8-byte blocks to fill the 32 bytes of the
cache line. Thus, aligning the data in blocks of 32
bytes at main memory, it is possible to explore the
line size to avoid multiple memory transfers. The
delay of a cache miss in the Pentium is 8 clock cy-

void Binarize(unsigned char *Img, int Size,
unsigned char Threshold){

asm volatile(

"pcmpeqb %%mm1, %%mm1 \n\t" // generate 0xFF in mm1

// Put Threshold in 8 bytes of MM3
"pcmpeqb %%mm2, %%mm2 \n\t" // generate 0xFF in mm2
"mov %2, %%al \n\t" // load Threshold into al
"mov %%al, %%ah \n\t" // copy al into ah
"mov %%ax, %%bx \n\t" // copy ax into bx
"shl $16, %%eax \n\t" // shift 2 bytes of eax
"mov %%bx, %%ax \n\t" // copy bx into ax
"movd %%eax, %%mm3 \n\t" // copy eax into mm3
"movd %%eax, %%mm4 \n\t" // copy eax into mm4
"punpckldq %%mm4, %%mm3 \n\t" // fill higher bytes of

// mm3 with Threshold

"psubusb %%mm3, %%mm2 \n\t" // mm2=0xFF-Threshold

"mov %0, %%edi \n\t" // edi = Img address
"mov %1, %%ecx \n\t" // ecx = Size
"shr $3, %%ecx \n\t" // Size/8 (MMX loads

// 8 bytes at a time)

// Main Loop
".Loop: \n\t"
"movq (%%edi), %%mm0 \n\t" // mm0=8 bytes of Img
"paddusb %%mm2, %%mm0 \n\t" // mm0=Img+0xFF-Threshold
"pcmpeqb %%mm1, %%mm0 \n\t" // binarize, comp. to 255
"movq %%mm0, (%%edi) \n\t" // store result in Img
"add $8, %%edi \n\t" // Img pointer += 8
"dec %%ecx \n\t" // decrease loop counter
"jnz .Loop \n\t" // check loop termination

"emms \n\t" // exit MMX state

: "=m" (Img) // %0
: "m" (Size), // %1

"m" (Threshold) // %2
);

}

Figure 4: A binarization function written in MMX
assembly.

cles and for some P6 processors can be as large as
10 cycles. If in a MMX routine uses an argument
two or more times, it is better that this argument is
aligned to avoid cache misses. A simple C code for
stack alignment shown in [13] is:

im=(unsigned char *)malloc(size*sizeof(unsigned char)+31);
data=(unsigned char *)((((unsigned int) im1)+31) & (˜31));

where data is the position used to load the image.
This code is very important when comparing the
performance of different codes because it put the
memory hierarchy in the same initial condition. It
is used in the experiments of next section when the
execution time of a MMX code is compared with
both the code generated by a C compiler with and
without optimization.

4 Experiments

Seven operations commonly present in many
digital image processing algorithms were imple-



mented in both MMX Assembly and C. Most of
the MMX implemented operations were based on
the algorithms proposed in [13] to work with small
images. Those operations were chosen due to their
frequent usage in satellite image processing pro-
grams. The seven operations are:

1. Sub: performs the subtraction of two im-
ages. It uses instructions that are able to deal
with saturation. Normally, a subtraction op-
eration among a reference and test multitem-
poral satellite images is used to find changes
in a coarse analysis.���������
	���
��
	������������������������ �

;

2. Bin1: performs binarization on an image
when a threshold is supplied.�!�"�$#&%('������*)
+

;

3. And: performs the logical AND operation
between two images.

���,�"���.-(���
;

4. Neg: performs the complement of the origi-
nal image.

�!�0/ �
;

5. Bin2: performs image binarization when two
different thresholds are supplied. Using one
or two thresholds, the binarization operation
can be used as a basic operation to pattern
recognition, or to find pseudoinvariants fea-
tures in order to select control points used in
a geometric correction of satellite images.�!�1���$#&%3254768�9-$���;:&%32=<?>
�@'������!)
+

;

6. Sob: implements the Sobel’s edge detection
method. In satellite images this method is an
essential algorithm to find specific features
like rivers and roads. This routine calculates
only the x component of the gradient for each
pixel in the image. It uses instructions that
are able to deal with saturation;

7. Lin: performs the function:
���!�A�0B����DCFE

that is used in some algorithms to make rel-
ative radiometric normalization using linear
regression [4].

The conditions in which the tests were performed
are presented below:

• Hardware: two machines were used,
namely a Pentium II 233 MHz and a AMD
K6 233 MHz, both with a main memory
of 96MB. The AMD K6 memory is around
40% faster than the one of the Pentium ma-
chine;

• Software: Linux operating system [16] - ver-
sion 2.2.14-14cl, GCC compiler [7] - version
egcs-2.91.6619990314/Linux (egcs-1.1.2 re-
lease);

• Images: gray level satellite images with res-
olution of 6120x6176 pixels;

• Measurements: the running times are aver-
age values given in seconds. They were mea-
sured using the function clock(). This func-
tion returns the time a process uses the CPU.
Each routine was executed five times and the
average value is presented.;

The measured running times are presented in Ta-
bles 1 and 2. In these Tables, the numbers in the
first column correspond to operations described be-
fore. G=H�IKJ corresponds to the execution time of the
C program which had its object code optimized by
the compiler using the -O2 GCC option. L�MONP=PRQ
refers to the speedup of the MMX over C codes and
L�MSN�T�U@VP=PRQ refers to the speedup of the MMX over the

optimized C codes.

In order to better visualize the results of the ex-
periments, two graphics were obtained for the data
in the Tables 1 and 2. Figure 5 corresponds to the

Table 1 - Pentium II 233 MHz Processor

Op. WXWAY
(s)

G
(s)

G=H�IKJ
(s)

Z\[^]_`_�a Z\[;].bdc�e_`_�a
1 Sub 10.42 17.87 13.38 1.72 1.28
2 Bin1 0.54 2.50 0.94 4.63 1.74
3 And 11.60 16.97 13.60 1.46 1.17
4 Neg 0.53 2.29 1.08 4.32 2.04
5 Bin2 0.64 2.48 0.94 3.88 1.47
6 Sob 0.71 4.26 1.25 6.00 1.76
7 Lin 1.32 10.80 5.01 8.18 3.80



Table 2 - AMD K6 233 MHz Processor

Op. WXWAY
(s)

G
(s)

G=H�IKJ
(s)

Z\[ ]_`_�a Z\[;].bdc�e_`_�a
1 Sub 1.10 4.90 2.98 4.45 2.71
2 Bin1 0.65 2.48 1.19 3.80 1.82
3 And 1.09 3.76 1.92 3.44 1.76
4 Neg 0.65 2.34 1.27 3.57 1.94
5 Bin2 0.66 2.48 1.34 3.73 2.02
6 Sob 1.83 16.03 6.35 8.74 3.46
7 Lin 0.67 4.07 1.98 6.11 2.97

speedup data of Table 1 and Figure 6 to the data in
Table 2.

The analysis of Figures 5 and 6 and their respec-
tive Tables shows that routines in Assembly MMX
can bring substantial improvements in the perfor-
mance of the algorithms for processing of large im-
ages. The running times must be analyzed carefully
since their values are intimately related to issues
like memory hierarchies and clock frequency of the
machine. Despite the two processors have the same
clock frequency in most of experiments the AMD
K6 was faster than the Pentium II. The biggest dif-
ference occurs when two images are used like Sub
and And. A reason for this fact is related to the dif-
ference between the memory technologies of both
machines. As the use of two images causes fre-
quent cache misses and the AMD K6 machine has
a newer and faster main memory it have advantage
during the transfer from memory to the cache.

The memory access time is also responsible for
the variation in the speedup among the operations.
The best results in both machines were obtained
for the operations 6 (Sobel) and 7 (Linear correc-
tion) that is the most complex executed. It oc-
curs because in both operations more instructions
are executed with a single vector of data previously
load. It turns lower the relation between the num-
ber of loads and stores (instructions that effectively
causes cache misses) and the number of the other
instruction. This lower relation favor the power of
the MMX instructions since the number of cache
misses are supposed to be the same for the C and
MMX codes. To show that this observation is cor-
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Figure 5: Speedup in the Pentium II 233 MHz pro-
cessor.

rect, the same operations applied in satellites im-
ages were executed for other image sizes. Fig-
ure 7 shows the results of the speedup between a
C program (without the -O2 option) and the MMX
code as a function of the image size. Those results
were obtained in the AMD K6 processor. Notice
that the speedups are higher for the small images
than for the large ones. It also can be noticed that
the speedup variation is higher when the amount of
data is about the same magnitude of the cache size,
due to the lower number of cache misses.

5 Conclusions and Future Work

This paper showed how the multimedia exten-
sions, available in most of the modern computers,
can be used to improve the time processing of large
satellite images. Despite the large number of cache
misses caused by this kind of image the MMX tech-
nology, a hardware implementation of the SWAR
parallelism, proved to be useful for it time process-
ing. The results suggest that the routines in MMX
as being a good alternative in the construction of
image processing systems. In spite of the appar-
ently difficulty in construct this routines, once they
are written as a library their use can bring a great
improvement.

Next steps for this research will be first to use
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Figure 6: Speedup in the AMD K6 233 MHz pro-
cessor.

the MMX technology in order to improve the al-
gorithms used to radiometric and geometrical cor-
rection of satellite images. The final goal will be
to apply the technique to construct a library and an
application program to manipulate this kind of im-
age.
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