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ABSTRACT
Ternary Content Addressable Memory (TCAM), although
widely used for general packet classification, is an expensive
and high power-consuming device. Algorithmic solutions
which rely on commodity memory chips are relatively inex-
pensive and power-efficient but have not been able to match
the generality and performance of TCAMs. Therefore, the
development of fast and power-efficient algorithmic packet
classification techniques continues to be a research subject.

In this paper we propose a new approach to packet classi-
fication which combines architectural and algorithmic tech-
niques. Our starting point is the well-known crossproduct
algorithm which is fast but has significant memory overhead
due to the extra rules needed to represent the crossproducts.
We show how to modify the crossproduct method in a way
that drastically reduces the memory requirement without
compromising on performance. Unnecessary accesses to the
off-chip memory are avoided by filtering them through on-
chip Bloom filters. For packets that match p rules in a rule
set, our algorithm requires just 4+p+ǫ independent memory
accesses to return all matching rules, where ǫ≪ 1 is a small
constant that depends on the false positive rate of the Bloom
filters. Using two commodity SRAM chips, a throughput of
38 Million packets per second can be achieved. For rule set
sizes ranging from a few hundred to several thousand filters,
the average rule set expansion factor attributable to the al-
gorithm is just 1.2 to 1.4. The average memory consumption
per rule is 32 to 45 bytes.
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1. INTRODUCTION
The general packet classification problem has received a

great deal of attention over the last decade. The ability to
classify packets into flows based on their packet headers is
important for QoS, security, virtual private networks (VPN)
and packet filtering applications. Conceptually, a packet
classification system must compare each packet header re-
ceived on a link against a large set of rules, and return the
identity of the highest priority rule that matches the packet
header (or in some cases, all matching rules). Each rule can
match a large number of packet headers, since the rule spec-
ification supports address prefixes, wild cards and port num-
ber ranges. Much of the research to date has concentrated
on the algorithmic techniques which use hardware or soft-
ware lookup engines, which access data structures stored in
commodity memory. However none of the algorithms devel-
oped to date has been able to displace TCAMs, in practical
applications.

TCAMs offer consistently high performance, which is in-
dependent of the characteristics of the rule set, but they
are relatively expensive and use large amounts of power. A
TCAM requires a deterministic time for each lookup, and
recent devices can classify more than 100 million packets
per second. Although TCAMs are a favorite choice of net-
work equipment vendors, alternative solutions are still being
sought, primarily due to the high cost of the TCAM devices
and their high power consumption. The cost per bit of a
high performance TCAM is about 15 times larger than a
comparable SRAM [2], [1] and they consume more than 50
times as much power, per access [14], [11]. This gap between
SRAM and TCAM cost and power consumption makes it
worthwhile to continue to explore better algorithmic solu-
tions.

We propose a memory efficient and fast algorithm based
on Bloom filters. Our starting point is the naive crossprod-
uct algorithm [9]. Naive crossproduct suffers the exorbitant
memory overhead due to the extra crossproduct rules intro-
duced. To reduce memory consumption, we divide the rules
into multiple subsets and then construct a crossproduct ta-
ble for each subset. This reduces the overall crossproduct
overhead drastically. Since the rules are divided into mul-
tiple subsets, we need to perform a lookup in each subset.
However, we can use Bloom filters to avoid lookups in sub-
sets that contain no matching rules, making it possible to
sustain high throughput. In particular, we demonstrate a
method, based on Bloom filters and hash tables, that can
classify a packet in 4 + p + ǫ memory accesses where ǫ is a
small constant ≪ 1 determined by the false positive proba-



bility of the Bloom filters. The first four memory accesses
are required to perform a Longest Prefix Matching (LPM) on
the source/destination addresses and the source/destination
ports. The next p memory accesses are requires to lookup
the p matching rules for a given packet. Furthermore, the
LPM phase and the rule lookup phase can be pipelined with
two independent memory chips such that the memory ac-
cesses per packet can be reduced to max{4, p}. We leverage
some of the existing work on Bloom filters and hardware
implementation to design our packet classification system.
Our results show that our architecture can handle large rule
sets, containing hundreds of thousands of rules, efficiently
with an average memory consumption of 32 to 45 bytes per
rule.

The rest of the paper is organized as follows. In the next
section we discuss the related work. We describe the naive
crossproduct algorithm in more details in Section 3. In
Section 4, we discuss our Multi-Subset Crossproduct Algo-
rithm. In Section 5 we describe our heuristics for intelligent
partitioning of the rules into subsets to reduce the overall
crossproducts. Finally, in Section 6, we evaluate and dis-
cuss the performance of our algorithm in terms of memory
requirement and throughput. Section 7 concludes the paper.

2. RELATED WORK
There is a vast body of literature on packet classification.

An excellent survey and taxonomy of the existing algorithms
and architectures can be found in [11]. Here, we discuss only
the algorithms that are closely related to our work. Algo-
rithms that can provide deterministic lookup throughput
is somewhat akin to the basic crossproduct algorithm [9].
The basic idea of the crossproduct algorithm is to perform
a lookup on each field first and then combine the results to
form a key to index a crossproduct table. The best-matched
rule can be retrieved from the crossproduct table in only one
memory access. The single field lookup can be performed by
direct table lookup as in the RFC algorithm [5] or by using
any range searching or LPM algorithms. The BV [6] and
ABV [3] algorithms use bit vector intersections to replace
the crossproduct table lookup. However, the width of a bit
vector equals to the number of rules and each unique value
on each field needs to store such a bit vector. Hence, the
storage requirement is significant, which limits its scalabil-
ity.

Using a similar reduction tree as in RFC, the DCFL [10]
algorithm uses hash tables rather than direct lookup ta-
bles to implement the crossproduct tables at each tree level.
However, depending on the lookup results from the previ-
ous level, each hash table needs to be queried multiple times
and multiple results are retrieved. For example, at the first
level, if a packet matches m nested source IP address pre-
fixes and n nested destination IP address prefixes, we need
m × n hash queries to the hash table with the keys that
combine these two fields and the lookups typically result in
multiple valid outputs that require further lookups. For a
multi-dimensional packet classification, this incurs a large
performance penalty.

TCAMs are widely used for packet classification. Latest
TCAM devices also include the banking mechanism to re-
duce the power consumption by selectively turning off the
unused banks. Traditionally, TCAM devices needed to ex-
pand the range values into prefixes for storing a rule with
range specifications. The recently introduced algorithm,

DIRPE [7], uses a clever technique to encode ranges differ-
ently which results in overall lesser rule expansion compared
to the traditional method. The authors also recognized that
in modern security applications, it is not sufficient to stop
the matching process after the first match is found but all
the matching rules for a packet must be reported. They
devised a multi-match scheme with TCAMs which involves
multiple TCAM accesses.

Yu et. al. described a different algorithm for multi-
match packet classification based on geometric intersection
of rules [13]. A packet can match multiple rules because
the rules overlap. However, if the rules are broken into
smaller sub-rules such that all the rules are mutually ex-
clusive then the packet can match only one rule at a time.
This overlap-free rule set is obtained through geometric in-
tersection. Unfortunately, the rule set expansion due to the
newly introduced rules by the intersection can be very large.
In [14], they describe a modified algorithm called SSA which
reduces the overall expansion. They observe that if the rules
are partitioned into multiple subsets in order to reduce the
overlap then the resulting expansion will be small. At the
same time one would need to probe each subset indepen-
dently to search a matching rule. Our algorithm is similar
to SSA in that we also try to reduce the overlap between
the rules by partitioning them into multiple subsets and
thus reduce the overall expansion. However, while SSA only
cares about an overlap in all the dimensions, our algorithm
considers the overlap in any dimension for the purpose of
partitioning. Hence the partitioning technique are different.
Moreover, SSA is a TCAM based algorithm whereas ours is
memory based. Finally, SSA requires to probe all the sub-
sets formed, one by one, requiring as many TCAM accesses
whereas our algorithm needs only p memory accesses, just
as many matching rules as there are per packet.

3. NAIVE CROSSPRODUCT ALGORITHM
Before we explain out multi-subset crossproduct algorithm,

we explain the basic crossproduct algorithm. The basic
crossproduct algorithm first performs a longest prefix match
(LPM) on each field. Let vi be the longest matching prefix
of field fi. It then looks up the key 〈v1, v2, . . . , vk〉 into a
crossproduct rule table (implemented as a hash table). If
there is a matching key, then the associated rule IDs are
returned. For this algorithm to work, the rule table needs
to be modified. It can be explained through the following
example. We will assume only two fields, f1 and f2, for the
purpose of illustration. Let each field be 4-bit wide. Con-
sider a rule set with three rules r1 : 〈1∗, ∗〉, r2 : 〈1∗, 00∗〉,
r3 : 〈101∗, 100∗〉. We can represent these rules with a trie
built for each field as shown in Figure 1. In this figure, the
nodes corresponding to the valid prefixes of a field are col-
ored black. A connection between the nodes of two fields
represents a rule. It is important to note that a match for
r2 : 〈1∗, 00∗〉 also means a match for r1 : 〈1∗, ∗〉 because the
prefix ∗ of the second field is a prefix of 00*. Hence, r2 is
more specific than r1 or put it differently, r2 is contained in
r1. Therefore, when r2 matches, both r2 and r1 should be
returned as the matching rule IDs. With the similar argu-
ment, the matching rule IDs associated with r3 are r3 and
r1.

Suppose a packet arrives whose field f1 has a longest
matching prefix 101* and field f2 has 00*. There is no
original rule 〈101*, 00*〉. However, note that 1* is a pre-
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Figure 1: Illustration of the basic crossproduct algo-

rithm

fix of 101*. Therefore, a match for more specific prefix
101* automatically implies a match for less specific prefix
1*. Hence, if we try to look for the key 〈101*, 00*〉, then
we should get a match for the rule r2 : 〈1∗, 00∗〉. To main-
tain the correctness of the search, we add a pseudo rule to
the rule table, p1 : 〈101∗, 00∗〉 and associate the rule ID r2

with it. Similarly, if 1* is the longest matching prefix for
f1 and 100* for f2, then although there is no original rule
〈1*, 100*〉, it implies a match for r1 : 〈1∗, ∗〉. Hence, we
need to add a pseudo-rule p2 : 〈1∗, 100∗〉 to the table and
associate rule ID r1 with it. To summarize, a match for
a prefix is also a match for its shorter prefixes. When the
search on individual fields stops after longest matching pre-
fix has been found, these prefixes must also account for the
rules formed by their sub-prefixes. If a rule formed by the
longest matching prefixes does not exist in the table, it must
be artificially added to the set and the original rule IDs that
should match are associated with this new pseudo rule. It
is not hard to see that if we build such a rule table then the
only additional pseudo-rules required are p1, p2, and p3 as
shown in Figure 1.

Let P.fi denote the value of field i in packet P . The
packet classification process can be summarized in the fol-
lowing pseudo-code.

ClassifyPacket(P )
1. for each field i
2. vi ← LPM(P.fi)
3. {match, {Id}} ← HashLookup(〈v1, . . . , vk〉)

As the algorithm describes, we first execute LPM on each
field value. Then we look up the key formed by all the
longest matching prefixes in the hash table. The result of
this lookup indicates if the rule matched or not and also out-
puts a set of matching rule IDs associated with a matching
rule.

It is evident that the crossproduct algorithm is efficient in
terms of memory accesses: the memory accesses are required
for only LPM on each field and the final hash table lookup to
search the rule in the crossproduct table. For 5-tuple classi-
fication, we don’t need to perform the LPM for the protocol

field; it can be a direct lookup in a small on-chip table.
Moreover, if we use the Bloom filter based LPM technique
described in [4], we need approximately one memory access
per LPM. Therefore, the entire classification process takes
five memory accesses with very high probability to classify a
packet. However, the overhead of pseudo-rules can be very
large. We consider another example rule set as shown in
Figure 2(A) and add pseudo-rules to it. As can be seen, this
rule set with six rules requires seven more pseudo-rules. If
each field has 100 unique prefixes in the rule set (ignoring the
protocol field) then the expanded rule set can be potentially
as large as 1004 making it impractical to scale for larger rule
sets. We analyzed several real and synthetic rule sets and
found that the naive crossproduct expands the rule set by
a factor of 200 to 5.7 × 106! Clearly, due to a very large
overhead of pseudo-rules, this algorithm is impractical. We
modify this algorithm to reduce this expansion overhead to
just a factor of 1.2 on an average while retaining the speed.

r4

r5

r1

r2

r6

r3

p1

p2

p3

p4

p5

p6

p7

(A)

r1 :  1*          *

(B)

r2 :  1*         00*

r5 :  101*      11*

r3 :  01*       100*

r4 :  101*      100*

r6 :  00*        *

r3

r4

r5

r1

r2

r6
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rule set and its trie-based representation. (B) Rule set

after adding the pseudo-rules.

4. MULTI-SUBSET CROSSPRODUCT
ALGORITHM

In the naive scheme we require just one hash table ac-
cess to get the list of matching rules. However, if we allow
ourselves to use multiple hash table accesses then we can
split the rule set into multiple smaller subsets and take the
crossproduct within each of them. With this arrangement,
the total number of pseudo-rules can be reduced significantly
compared to the naive scheme. This is illustrated in Fig-
ure 3. We divide the rule set into three subsets. How to
form these subsets is discussed in Section 5. For now, let’s
assume an arbitrary partitioning. Within each subset, we
take a crossproduct, This results in inserting pseudo-rules
p7 in subset 1 (G1) and p2 in subset 2 (G2). All the other
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pseudo-rules shown in Figure 2(B) vanish and the overhead
is significantly reduced. Why does the number of pseudo-
rules reduce drastically? This is because the crossproduct
is inherently multiplicative in nature. Due to the rule set
partitioning, the number of overlapping prefixes of a field i
get reduced by a factor of xi, the resulting reduction in the
crossproduct rules is of the order Πxi and hence large. Now,
an independent hash table can be maintained for each rule
subset and an independent rule lookup can be performed
in each. The splitting introduces two extra memory access
overheads: 1) The entire LPM process on all the fields needs
to be repeated for each subset 2) a separate hash table ac-
cess per subset is needed to look up the final rule. We now
describe how to avoid the first overhead and reduce second
overhead.

With reference to our example in Figure 3, due to the par-
titioning of rules in subsets G1, G2 and G3, the sets of valid
prefixes of the first field are {1*, 101*} for G1, {1*, 01*} for
G2 and {00*} for G3. Hence, the longest prefix in one sub-
set might not be the longest prefix in other subset requiring
a separate LPM for each subset. However, an independent
LPM for each subset can be easily avoided by modifying the
LPM data structure. For each field, we maintain only one
global prefix table which contains the unique prefixes of that
field from all the subsets. When we perform the LPM on
a field, the matching prefix is the longest one across all the
subsets. Therefore, the longest prefix for any subset is either
the prefix that matches or its sub-prefix. With each prefix
in the LPM table, we maintain a list of sub-prefixes, each is
the longest prefix within a subset. For instance, consider the
field 1 of our example. If we find that the longest matching
prefix for this field is 101* then we know that the longest
matching prefixes within each group must be either this pre-
fix or its sub-prefix. In G1, the longest matching prefix is
101*, in G2 it is 1* and in G3 it is NULL. Let’s denote by

ti an arbitrary entry in the LPM table of field i. ti is a
record that consists of a prefix ti.v which is the lookup key
portion of that entry and the corresponding sub-prefix for g
subsets, ti.u[1] . . . ti.u[g]. Each ti.u[j] is a prefix of ti.v and
ti.u[j] is the longest matching prefix of field i in subset j If
ti.u[j] == NULL then there isn’t any prefix of ti.v which
is the longest prefix in that subset.

After a global LPM on the field, we have all the informa-
tion we need about the matching prefixes in individual sub-
sets. Secondly, since ti.u[j] is a prefix of ti.v, we do not need
to maintain the complete prefix ti.u[j] but just its length.
The prefix ti.u[j] can always be obtained by considering the
correct number of bits of ti.v.

The LPM table corresponding to the example shown in
Figure 3 is also shown. In this example, since we have three
subsets, with each prefix we have three entries. For instance,
the table for field 1 tells that if the longest matching prefix
on this field in the packet is 101* then there is a sub prefix
of 101* of length 3 (which is 101* itself) that is the longest
prefix in G1; there is a sub prefix of length 1 (which is 1*)
that is the longest prefix in G2 and there is no sub prefix (in-
dicated by —) of 101* that is the longest prefix in G3. Thus,
after finding the longest prefix of a field, we can read the list
of longest prefixes for all the subsets and use it to probe the
hash tables. For example if 101 is the longest matching pre-
fix for field 1 and 100 for the field 2 then we will probe G1

rule hash table with the key 〈101, 100〉, G2 rule hash table
with the key〈1, 100〉 and we don’t need to probe G3 hash
table. The classification algorithm is described below.

ClassifyPacket(P )

1. for each field i

2. ti ← LPM(P.fi)

3. for each subset j

4. for each field i

5. if(ti.u[j] == NULL) skip this subset

6. {match, {Id}} ← HashLookupj(t1.u[j], . . . , tk.u[j])

Thus, even after splitting the rule set into multiple sub-
sets, only one LPM is required for each field (line 1-2). Hence
we maintain a similar performance as the naive crossprod-
uct algorithm as far as LPM is concerned. After the LPM
phase, individual rule subset tables are probed one by one
with the keys formed from the longest matching prefixes
within that subset (line 3-6). A probe is not required for
a subset if there is no sub-prefix corresponding at least one
field within that subset. In this case, we simply move to the
next subset (line 4-5). However, for the purpose of analysis,
we will stick to a conservative assumption that all the fields
have some sub-prefix available for each subset and hence all
the g subsets need to be probed. We will now explain how
we can avoid probing all these subsets by using Bloom fil-
ters. If a packet can match at the most p rules and if all
these rules reside in distinct hash tables then only p of these
g hash table probes will be successful and return a match-
ing rule. Other memory accesses are unnecessary which can
be avoided using on-chip Bloom filters. We maintain one
Bloom filter in the on-chip memory corresponding to each
off-chip rule subset hash table. We first query the Bloom
filters with the keys to be looked up in the subsets. If the
filter shows a match, we look up the key in the off-chip hash
table. With a very high probability, only those Bloom filters
containing a matching rule show a match. The flow of our



algorithm is illustrated in the Figure 4.
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The average memory accesses for LPM on field i using the
LPM technique discussed in [4] can be expressed as

ti = 1 + (Wi − 1)f (1)

where Wi is the width of field i in bits and f is the false
positive probability of each Bloom filter (assuming that they
have been tuned to exhibit the same false positive probabil-
ity). For IPv4, we need to perform LPM on the source and
destination IP address (32 bits each) and the source and
destination ports (16 bits each). The protocol field can be
looked up in a 256 entry direct lookup array kept in the on-
chip registers. We don’t need memory accesses for protocol
field lookup. We can use a set of 32 Bloom filters to store
the source and destination IP address prefixes of different
lengths. While storing a prefix, we tag it with its type to
create a unique key (for instance, source IP type = 1, desti-
nation IP type = 2 etc.). While querying a Bloom filter with
a prefix, we create the key by combining the prefix with its
type. Similarly the same set of Bloom filters can be used to
store the source and destination port prefixes as well. The
Bloom filters 1 to 16 can be used to store the source port
prefixes and 17 to 32 can be used for destination port pre-
fixes. Hence the total number of hash table accesses required
for LPM on all of these four fields can be expressed as

Tlpm = (1 + 31f) + (1 + 31f) + (1 + 15f) + (1 + 15f)

= 4 + 92f (2)

We need g more Bloom filters for storing the rules of each
subset. During the rule lookup phase, when we query the

Bloom filters of all the g subsets, we will have up to p true
matches and the remaining g − p Bloom filters can show a
match, each with false positive probability of f . Hence the
hash probes required in the rule matching are

Tg = p + (g − p)f (3)

The total number of hash table probes required in the
entire process of packet classification is

T = Tg + Tlpm = 4 + p + (92 + g − p)f = 4 + p + ǫ (4)

where ǫ = (92 + g − p)f . By keeping the value of f small
(e.g. 0.0005), the ǫ can be made negligibly small, giving
us the total accesses ≈ 4 + p. It should be noted that so
far we have dealt with the number of hash table accesses
and not the memory accesses. A carefully constructed hash
table requires close to one memory access for a single hash
table lookup. Secondly, our algorithm is a “multi-match”
algorithm as opposed to the priority rule match. For our
algorithm, priorities associated with all the matching rules
need to be explicitly compared to pick the highest priority
match.

As the equation 4 shows, the efficiency of the algorithm
depends on how small g and f are. In the next section, we
explore the trade-off involved in minimizing the values of
these two system parameters.

5. INTELLIGENT GROUPING
If we try to create fewer subsets with a given rule set then

it is possible that within each subset there is still a signif-
icant number of crossproducts. On the other hand, we do
not want a very large number of subsets because it will need
a large number of Bloom filters requiring more hardware
resources. Hence we would like to limit g to a moderately
small value. The key to reducing overhead of pseudo-rules
is to divide the rule set into subsets intelligently to mini-
mize the crossproducts. The pseudo-rules are required only
when rules within the same subset have overlapping prefixes.
So, is there an overlap-free decomposition into subsets such
that we don’t need to insert any pseudo-rules at all? Alter-
natively, we would also like to know: given a fixed number
of subsets, how can we create them with minimum pseudo-
rules? We address these questions in this section.

5.1 Overlap-free Grouping
We illustrate a simple technique based on the concept

of Nested Level Tuple which gives a partition of rules into
subsets such that no subset needs to generate crossproduct
rules. We call the resulting algorithm Nested Level Tuple
Space Search (NLTSS). We then illustrate a technique to
reduce the number of subsets formed using NLTs to a pre-
determined fixed number by merging some of the subsets
and producing crossproduct for them.

Nested Level Tuple Space Search (NLTSS) Algo-
rithm We begin by constructing an independent binary
prefix-trie with the prefixes of each field in the given rule
set just as shown in Figure 1(B). We will use some formal
definitions given below.

Nested Level: The nested level of a marked node in a
binary trie is the number of ancestors of this node which
are also marked. We always assume that the root node is



marked. For example, the nested level of node m2 and m3

is 1 and the nested level of node m4 is 2.

Nested Level Tree: Given a binary trie with marked nodes,
we construct a Nested Level tree by removing the unmarked
nodes and connecting each marked node to its nearest ances-
tor. Figure 5 illustrates a nested level tree for field f1 in our
example rule set.

Nested Level = 2

m3

m1

m4

m2
m2 m1m3

m4

Nested Level = 0

Nested Level = 1

Figure 5: Illustration of Nested Level Tree

Nested Level Tuple (NLT): For each field involved in
the rule set, we create a Nested Level Tree (See Figure 6).
The Nested Level Tuple (NLT) associated with a rule r is
the tuple of nested levels associated with each field prefix of
that rule. For instance, in Figure 6, the NLT for r6 is [1,0]
and for r4 is [2,1].

From the definition of the nested level, it is clear that
among the nodes at the same nested level, no one is the
ancestor of the other. Therefore, the prefixes represented by
the nodes at the same nested level in a tree do not overlap
with each other. Hence the set of rules contained in the same
Nested Level Tuple do not need any crossproduct rules. This
is illustrated in Figure 6. For instance, in NLT [1,0] there
are two rules r1 and r6. Their prefixes for field 1 are 1* and
00*, none of which is more specific than the other (hence
overlap-free). Likewise, they share the same prefix, that is
*, for field 2. Therefore, no crossproduct is required.

The number of NLTs gives us one bound on the number
of subsets such that each subset contains overlap-free rules.
We experimented with our rule sets to obtain the number
of NLTs in each of them. The numbers are presented in the
Table 1. While a consistent relationship can not be derived
between the number of rules and the number of NLTs, it is
clear that even a large rule set containing several thousand
rules can map to less than 200 NLTs. The maximum NLTs
were found to be 151 for about 25,000 rules.

A property of the NLT rule subset is that a prefix does
not have any sub-prefix within the same subset. Using this
property, the LPM entry data structure shown in Figure 4
can be compressed further. Associated with each prefix, we
can maintain a bit-map with as many bits as there are NLTs.
A bit corresponding to a NLT in this bit-map is set if the
prefix or its sub-prefixes belongs to a rule that is contained
in this NLT. We can take an intersection of the bit-maps
associated with the longest matching prefix of each field for
pruning the rule subsets to look up.

However, given an NLT, we just know the nested level as-
sociated with each prefix. We don’t know the exact prefix
length to form our query key for that NLT rule set. There-
fore, we need to maintain another bit map with each prefix
which gives a prefix length to nested level mapping. We call
this bit-map a PL/NL bit-map. For instance, for an IP ad-
dress prefix, we would maintain PL/NL bit-map of 32 bits
in which a bit set at a position indicates that the prefix of
the corresponding length is present in the rule set. Given
a particular bit that is set in the PL/NL bit-map, we can
calculate the nested level of the corresponding prefix just by

summing up all the number of bits set before the given bit.
We illustrate this with an example. Consider an 8-bit IP ad-
dress and the PL/NL bit-map associated with it as follows:

IP address : 10110110
PL/NL bit-map : 10010101

Thus, the prefixes of this IP address available in the rule
set are: 1* (nested level 1), 1011* (nested level 2), 101101*
(nested level 3) and 10110110 (nested level 4). To get the
nested level of the prefix 101101* we just need to sum up
all he bits set in the bit map up to the bit corresponding
to this prefix. If we are interested in knowing the prefix
length at a particular nested level then we can keep adding
the bits in the PL/NL bit-map until it matches the specified
nested level and return the bit position of the set bit as the
prefix length. Thus, we can construct the prefix length tuple
from a NLT using the PL/NL bit-maps associated with the
involved prefixes. The prefix length tuple tells us which bits
to use to construct the key while probing the associated rule
set (or Bloom filter). The modified data structures and the
flow of the algorithm is shown in the Figure 7. As the figure
shows, each prefix entry in the LPM tables has a PL/NL
bit-map and a NLT bit-map. For instance, prefix 101* of
field 1 has a PL/NL bit map of 1010 which indicates that
the sub-prefixes associated with the prefix are of length 1
(i.e. prefix 1*) and 3 (i.e. prefix 101* itself). Therefore, the
nested level associated with the prefix 1* is 1 and with 101*
is 2. Another bit-map, i.e. the NLT bit-map, contains as
many bits as the number of NLTs. The bits corresponding
to the NLTs to which the prefix and sub-prefixes belong are
set. Thus 101* belongs to all the three NLTs whereas 1*
belongs to NLT 1 and 2. After the longest matching prefixes
are read out, the associated NLT bit-maps are intersected
to find the common set of NLTs that all the prefixes belong
to. As the figure shows, since the prefixes belong to all the
NLTs, the intersection contains all the NLTs. From this
intersection bit-map we obtain the indices of the NLTs to
check. From the NLT table, we obtain the actual NLTs.
Combining the knowledge from the PL/NL bit maps of each
field, we convert the nested level to the prefix length and
obtain the list of prefix length tuples. This list tells us how
many bits to consider to form the probe key. The probe is
first filtered through the on-chip Bloom filters and only the
successful ones are used to query the off-chip rule tables.
As the example shows, the key 〈1, 100〉 gets filtered out and
doesn’t need the off-chip memory access.

Note that the bit-map technique can be used instead of
the prefix length array only because there is a unique nested
level or prefix length associated with a subset for a particular
field. For a generic multi-subset crossproduct, we can not
use the bit-map technique since there can be multiple sub-
prefixes of the same prefix associated with the same sub-set.
Therefore, we need to list the individual prefix lengths, just
as shown in Figure 4.

5.2 Limiting the Number of Subsets
While the NLT based grouping works fine in practice, we

might ask, is there still room for improvement? Can the
number of subsets be reduced further? This brings us back
to our second question that we set to explore in the begin-
ning of this section: how can we limit the number of sub-
sets to a desired value? While the NLT technique gives us
crossproduct-free subsets of rules, we can still improve upon
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it by merging some of the NLTs and applying crossproduct
technique to them in order to limit the number of subsets.
Fewer subsets also means fewer Bloom filters and hence a
resource efficient architecture. In the next subsection, we
describe our NLT merging technique and the results after
applying the crossproduct algorithm.

NLT Merging and Crossproduct (NLTMC) Algo-
rithm In order to reduce the subsets to a given threshold,
we need to find the NLTs that can be merged. We exploit an
observation that holds across all the rule sets we analyzed:
the distribution of rules across NLTs is highly skewed. Most
of the rules are contained within just a few NLTs. Figure 8
shows the plot of the cumulative distribution of rules across

the number of NLTs.
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This indicates that we can take care of a large fraction of
rules with just a few subsets. Hence we design an NLT merg-
ing algorithm such that we start with the overlap-free NLT
set, retain the most dense (i.e. containing a large number
of rules) NLTs equal to the specified subset limit and then
merge the rules in the remaining NLTs to these fixed subsets
with the objective of minimizing the pseudo-rule overhead.
It is possible to devise clever heuristics to meet this objec-
tive. Here, we provide a simple heuristic that proved very
effective in our experiments. Our NLT merging algorithm
works as follows.
1. Sort the NLTs according to the number of rules in them.
2. Pick the most dense g NLTs where g is the given limit on
the number of subsets. Merge the remaining NLTs to these
g NLTs.
3. While any of the remaining NLTs can be merged with
any one among the fixed g NLTs, a blind merging will not
be effective. To optimize the merging process, we choose



the most appropriate NLT to merge with as follows. Take
the “distance” between the NLT i and each of the fixed g
NLTs. We merge the NLT i with the “closest” NLT. In
case of a tie, choose the NLT with minimum rules to merge
with. We define the distance between the two NLTs to be
the sum of differences between individual field nested levels.
For instance, the NLT [4, 3, 1, 2, 1] and [4, 1, 0, 2, 1] have
a distance of |3− 1|+ |1− 0| = 3. The intuition behind the
concept of distance is that when the distance between the
NLTs is large, it is likely that one NLT will have several de-
scendant nodes corresponding to the nodes in another NLTs
thereby potentially creating a large crossproduct. Shorter
distance will potentially generate fewer crossproducts.
4. Although, merging helps us reduce the number of NLTs,
it can still result in a large number of crossproducts. At
this point, while merging a NLT with another, we try to
insert a rule and see how many pseudo-rules it generates. If
the number exceeds a threshold then we don’t insert it. We
consider it to be a “spoiler”. We denote by t this threshold
on pseudo-rules to consider a rule spoiler. All the spoilers
can be taken care of by some other efficient technique such
as a tiny on-chip TCAM. We emphasize that such an ar-
chitecture will be significantly cheaper and power efficient
compared to using a TCAM for all the rules. As we will
see, our experiments show that the spoilers are typically
less than 1% to 2% and hence the required TCAM is not a
significant overhead.

This proves to be an effective technique to meet the objec-
tive of containing the tuples as well as reducing the spoilers,
as indicated by the results presented in Table 1. We denote
by α the ratio of the size of new rule set after executing our
algorithm to the size of the original rule set (after range to
prefix expansion). We experimented with different values of
g, i.e. the desired limit on NLTs. The pseudo-rule threshold
was arbitrarily fixed to t = 20.

g=16 g=32
set rules NLT prefixes α β α β

acl1 1247 31 610 1.03 0.00 1.00 0.00
acl2 1216 57 437 1.93 4.19 1.17 0.00
acl3 4405 63 1211 1.29 4.45 1.14 0.25
acl4 5358 107 1445 1.74 7.95 1.20 0.62
acl5 4668 14 304 1.00 0.00 1.00 0.00
acl1s 12507 45 1524 1.03 0.28 1.00 0.00
acl2s 18589 107 626 1.12 2.32 1.14 0.39
acl3s 17395 81 947 3.99 0.71 2.26 0.21
acl4s 16291 130 1090 1.46 2.22 1.42 0.42
acl5s 13545 31 2401 1.03 0.00 1.00 0.00
fw1 914 37 205 1.37 0.11 1.03 0.00
fw2 543 21 132 1.06 0.00 1.00 0.00
fw3 409 29 147 1.25 0.00 1.00 0.00
fw1s 32135 50 337 1.92 0.80 1.09 0.006
fw2s 26234 95 271 1.60 2.81 1.46 0.42
fw3s 24990 151 460 1.53 6.45 1.80 0.94
ipc1 2179 83 396 1.73 5.69 1.41 0.73
ipc2 134 8 72 1.00 0.00 1.00 0.00
ipc1s 12725 65 519 1.86 1.09 1.03 0.09
ipc2s 9529 11 4596 1.00 0.00 1.00 0.00

avg 1.43 1.95 1.20 0.34

Table 1: Results with different rule sets. α denotes

the expansion factor on the original rule set after Multi-

subset crossproduct. β denotes the percentage of the orig-

inal rules which are treated as spoilers.

From the results it is clear that even with the number of
subsets as small as 16, the rule set can be partitioned with-
out much expansion overhead. The average expansion factor
for g = 16 is just 1.43. Among the 20 rule sets considered
above, the maximum expansion was observed to be almost
four times (acl3s) for 16 subsets. For all the other rule sets,
the expansion is less than two times. Furthermore, it can
also be observed that as we increase the number of subsets,
the expansion decreases as expected. However this trend has
an exception for fw3s where g = 32 shows a larger expansion
compared to g = 16. This is because the g = 16 configu-
ration throws out more number of spoilers compared to the
g = 32 configuration. Thus, our algorithm in this particular
case trades off more spoilers for less expansion. Overall, it
can also be observed that the spoilers are very few, on an
average β < 2% As we increase the number of subsets, the
spoilers are reduced significantly. Clearly, g = 32 is the most
attractive choice for the number of subsets due to very few
spoilers and a small expansion factor. At the same time,
g = 32 needs to use wider LPM entries since the informa-
tion regarding all the 32 subsets needs to be kept with each
prefix. The wider entry also implies more cycles spent in
memory accesses and hence lesser throughput.

6. PERFORMANCE
in this section we evaluate the performance of NLTSS and

NLTMC algorithms in terms of the memory requirement and
throughput.

6.1 Memory Requirement
The two data structures that consume memory in our

algorithm are: (1) On-chip Bloom filters (2) off-chip item
memory. For an efficient implementation of on-chip Bloom
filter and off-chip hash tables, we use the Fast Hash Table
(FHT) architecture proposed in [8]. If we use 12 hash func-
tions for 128K items and a ratio of 16 buckets per item then
it can be shown that the number of colliding items is less
than 75. This is an acceptably small collision. All the col-
liding items can be kept in an on-chip memory. Therefore,
it is reasonable to assume that we need just one memory
access to look up an item in FHT. With the aforementioned
tuning, it can be shown that the Bloom filters’ false posi-
tive probability is 0.00046, low enough for our purpose. To
achieve this performance, the required on-chip memory per
item, where an item can be either a rule or a prefix, is 64
bits. Therefore, the average number of on-chip bits per rule
is given as:

mo =
64× (αg ×#rules + #prefixes)

#rules× 8
(5)

where αg × #rules is the size of the new rule set after
expansion by using g subsets. In case of NLTMC, the #
prefixes and αg can be obtained from Table 1 for each rule
set. For NLTSS, the number of prefixes are the same, how-
ever there is no rule set expansion and hence αg = 1.

To evaluate the off-chip item memory requirement, we
need to consider two types of items: the actual rules and
the prefix entries in the LPM tables. In order to specify
an arbitrary length prefix of a W -bit field, W + 1 bits are
enough [12]. Hence, the actual rule can be specified using
33 bits for each source and destination IP prefix, 17 bits for
each source and destination port prefix, and 9 bits for proto-
col (totally 126 bits). We round it up to the nearest multiple



of 36 ( i.e. 144) since the commodity off-chip SRAM is avail-
able in this words size. On the other hand, the number of
bits required to specify the prefix entry in the LPM tables
depends on the algorithm used. For NLTSS, as shown in
Figure 7, each prefix entry contains a W -bit prefix value, a
W -bit PL/NL bit map, a g-bit NLT bit-map, and two more
bits for distinguishing the type of prefix – source/destination
IP or source/destination port (not shown in the figure). To-
tally, each entry requires bNLTSS = ⌈(2W + 2 + g)/36⌉× 36
bits. For NLTMCg , as shown in Figure 4, we require a
W -bit prefix, two more bits to specify prefix type, and g
entries to specify the sub-prefix in each of the g subsets.
Each of these g entries consumes 6 bits, totally requiring
bNLTMCg

= ⌈(34 + 6g)/36⌉ × 36 bits. After taking into ac-
count the overall expansion (specified by αg), the off-chip
memory per item can be given as

mf =
#rules× αg × 144 + #prefixes× b

#rules× 8
(6)

Again, αg = 1 for NLTSS. The resulting on-chip and off-
chip memory consumption is shown in Table 2. We consider
only the NLTMC16 configuration because the configuration
with more number of subsets results in wider LPM entries
which degrades the throughput (to be discussed next). Ta-
ble 1 shows that the difference in the average rule set expan-
sion is not significant with 16 subsets and 32 subsets (1.42
vs. 1.2). However, the g = 16 configuration results in a
larger throughput due to shorter LPM entries.

It can be observed that NLTMC consumes more on-chip
and off-chip memory compared to NLTSS because NLTMC
expands the rule set due to crossproducts and NLTSS doesn’t.
The average memory consumption for NLTMC16 is 45 bytes
(on-chip + off-chip) and for NLTSS it is 32 bytes.

6.2 Throughput
The speed of the classification depends on multiple param-

eters, including the implementation choice (pipelined/non-
pipelined), the number of memory chips used for off-chip
tables, the memory technology used, and the number of
matching rules per packet (i.e. the value of p). We will
make the following assumptions.

Memory technology: We will assume the availability of
300 MHz DDR SRAM chips with 36-bit wide data bus which
are available commercially. Such SRAM can allow reading
two 36-bit words in each clock cycle of 300 MHz clock. The
smallest burst length is two words (72 bits).

Pipelining: We will use a pipelined implementation of
the algorithm. The first stage of pipeline executes the LPM
on all the fields and the second stage executes the rule
lookup. In order to pipeline them, we will need two separate
memory chips, the first containing the LPM tables and the
second containing rules. Here, we will also need two sepa-
rate sets of Bloom filters, the first for LPM and the second
for rule lookup. Let τlpm denote the time to perform a single
LPM lookup in the off-chip memory in terms of the number
of clock cycles of the system clock. Since a single rule fits in
144 bits (four 36-bit words), two clock cycles are required to
lookup a rule into the SRAM. If a packet matches p rules in
a rule set then, with a pipelined implementation, a packet
can be classified in time max{4τlpm, 2p}. Typically, p is
≤ 6 as noted in [7] [5]. We will evaluate the throughput for
different values of p.

Choice of algorithm: With the 300 MHz, 36-bit wide
DDR-SRAM, the throughput can be expressed as

R =
300× 106

max{4τlpm, 2p}
packets/second (7)

where τlpm is either ⌈bNLTSS/72⌉ or ⌈bNLTMCg
/72⌉, de-

pending upon which algorithm is chosen. The throughput
is shown in the Table 2.

NLTSS NLTMC16

Memory Throughput Memory Throughput
mo mf ≤ 4 6 8 mo mf ≤ 4 6 8

acl1 12 25 38 25 19 12 28 38 25 19
acl2 11 25 38 25 19 18 42 38 25 19
acl3 10 23 38 25 19 12 29 38 25 19
acl4 10 25 25 25 19 16 37 38 25 19
acl5 8 19 38 25 19 8 20 38 25 19
acl1s 9 21 38 25 19 9 21 38 25 19
acl2s 8 19 25 25 19 9 21 38 25 19
acl3s 8 20 25 25 19 33 73 38 25 19
acl4s 8 20 25 25 19 12 28 38 25 19
acl5s 9 21 38 25 19 9 22 38 25 19
fw1 10 22 38 25 19 13 29 38 25 19
fw2 10 22 38 25 19 10 24 38 25 19
fw3 11 23 38 25 19 13 29 38 25 19
fw1s 8 19 38 25 19 15 35 38 25 19
fw2s 8 19 25 25 19 13 29 38 25 19
fw3s 8 19 19 19 19 12 28 38 25 19
ipc1 9 23 25 25 19 15 35 38 25 19
ipc2 12 26 38 25 19 12 28 38 25 19
ipc1s 8 19 38 25 19 15 35 38 25 19
ipc2s 12 25 38 25 19 12 27 38 25 19

avg 10 22 34 25 19 14 31 38 25 19

Table 2: The performance algorithms. mo and mf de-

note the average on-chip and off-chip memory in bytes

per rule. The throughput is in Million Packets per sec-

ond. Throughput was computed for different number of

matching rules per packets, p ≤ 4, p = 6, p = 8. When

p ≤ 4, LPM is the bottleneck and throughput is decided

by how wide the LPM entry is.

Let’s consider the case of NLTSS. When p ≤ 4, the
max{4τlpm, 2p} = 4τlpm due to which the LPM phase be-
comes the bottleneck in the pipeline. Hence throughput
depends on how wide the LPM entry is. It can be seen that
a throughput of 38 million packets per second (Mpps) can
be achieved for some rule sets having fewer NLTs and hence
shorter LPM entry. When the matching rules per packet
increases, rule matching phase becomes the bottleneck and
limits the throughput. With p = 6, the throughput is 25
Mpps and with p = 8, it is 19 Mpps. In some cases, such
as fw3s, the LPM entry is so wide that the LPM phase con-
tinues to be the bottleneck and limits the throughput to 19
Mpps even if the matching rules per packet is 8.

Now, let’s consider the NLTMC16 algorithm. As men-
tioned before, for each value of g the LPM entry has a fixed
width across all the rule sets. Therefore throughput is con-
stant for all the rule sets. For g = 16 and p ≤ 4, LPM is bot-
tleneck but since the LPM word is short due to smaller num-
ber of subsets, the throughput can be as high as 38 Mpps.
As p increases, throughput decreases since rule matching be-



comes the bottleneck. While NLTMC shows better through-
put for all configurations compared to NLTSS, it also in-
curs the associated rule expansion cost as discussed before.
Therefore, there is a trade-off between the throughput and
memory consumption. Depending upon the requirement,
appropriate algorithm and configuration can be chosen.

Secondly, a packet can match p rules when there are p
overlapping rules that cover the common region in the 5-
dimensional space. Although [7] and [5] report that the
number of matching rules can be as high as 8, the instances
of such overlaps are usually very few. A simple solution to
improve throughput in such cases is to simply take out the
overlapping rules and keep it in the on-chip memory so that
p stays below a given threshold. In each rule set we ex-
perimented with, we encountered only one to two instances
where there was an overlap beyond four. Therefore, it is
very easy to achieve the throughput of p ≤ 4 by removing
this overlap.

7. CONCLUSIONS
Due to the excessive power consumption and the high

cost of TCAM devices, algorithmic solutions that are cost-
effective, fast and power-efficient are still of great interest.
In this paper, we propose an efficient solution that meets
all of the above criteria to a great extent. Our solution
combines Bloom filters implemented in high-speed on-chip
memories with our Multi-Subset Crossproduct Algorithm.
Our algorithm can classify a single packet in only 4 + p
memory accesses on an average where p is the number of
rules a given packet can match. The classification reports
all the p matching rules. Hence, our solution is naturally a
multi-match algorithm. Furthermore, the pipelined imple-
mentation of our algorithm can classify packets in max{4, p}
memory accesses.

Due to its primary reliance on memory, our algorithm is
power-efficient. It consumes an average 32 to 45 bytes per
rule of memory (on-chip and off-chip combined). Hence rule
sets as large as 128K can be easily supported in less than
5MB of SRAM. Using two 300MHz 36-bit wide SRAM chips,
packets can be classified at the rate of 38 Million packets
per second (OC-192 is equivalent to 31 Mpps with 40-byte
packets).
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