Contracted Persistent Object Programming

Stephanie Balzer

Swiss Federal Institute of Technology Ziirich,
CH-8092 Ziirich, Switzerland
stephanie.balzer@inf.ethz.ch
http://se.inf.ethz.ch/people/balzer/index.html

Abstract. Enterprise applications, that is large and long-lived applica-
tions, require persistence. Conventional approaches to persistence suffer
from various deficiencies since they pass a considerable amount of the
persistence workload on the programmer. Programmers have to transfer
data to and from storage devices and have to provide mappings from
the programming data structures to the storage device data structures.
Thus, programmers are distracted from modeling the application logic.
The invention of orthogonal persistence has provided substantial rem-
edy: the automation of persistence-related operations lets programmers
focus on application logic and facilitates reuse. In this paper we introduce
contracted persistent object programming, a new approach to persistent
programming, that is based on orthogonal persistence, but constrained
to the object-oriented case. Contracted persistent object programming
further extends orthogonal persistence by Design by Contract and the
uniform handling of transient and persistent objects.

1 Introduction

The fundamental artifacts of object-orientation are classes and objects. Objects,
the run-time counterparts of classes, are inherently transient. They are created
during program execution and vanish after program termination. Enterprise ap-
plications [1], that is large and long-lived applications, require persistent objects.
Since they access the same objects in different program executions, they need ob-
jects that survive individual program termination. Persistence support requires
thus preserving objects for later retrieval.

As already mentioned in [2] conventional persistence approaches, such as the
usage of files or database management systems for storing application data, have
many disadvantages. The main problem of those approaches is that programmers
are completely aware of the underlying storage devices and have to explicitly
deal with them. Thus, a considerable portion of enterprise application code is
concerned with transferring data to and from storage devices and, due to the
different data models used, with mapping programming language data structures
to the storage device data structures.

In conventional persistence approaches, programmers cannot focus on the
application logic alone, but are distracted by the persistence-related operations



2 Stephanie Balzer

they have to carry out. Moreover, the coexistence of persistence-related code and
application code hinders reuse: it is difficult to reuse existing application code
in a different system without modification, and the smooth transition from one
storage device to another is utterly impossible.

The concept of orthogonal persistence (OP), originally introduced in [2] for
procedural programming and then applied to object-oriented programming in
[3], has defined a fundamentally different approach to persistent programming.
The crucial idea of orthogonal persistence is to automate the management of
long-term storage in order that programmers can focus on the application logic.

In this paper we describe the main ideas of our research, namely contracted
persistent object programming (CPOP). CPOP is based on object-oriented, or-
thogonal persistence, but pairs it with Design by Contract (DBC) [4]. Moreover,
CPOP is an attempt to unify the handling of transient and persistent objects
by providing the same mechanisms for both of them.

The remainder of this paper is organized as follows: Section 2 provides a short
introduction to Design by Contract and an overview of conventional persistence
approaches. Section 3 defines orthogonal persistence. Section 4 describes our
research area, contracted persistent object programming, and section 5, finally,
provides our conclusions.

2 Background

2.1 Design by Contract

Design by Contract (DBC) [4] is a design methodology that enables the speci-
fication of mutual obligations between client and supplier classes. Preconditions
are conditions the client has to fulfill in order that the supplier carries out the
required operation properly. Postconditions are warranties by the supplier on
the quality of the operation execution, provided that the preconditions are met.
In addition to preconditions and postconditions, DBC also supports invariants.
Invariants capture the deeper semantic properties and integrity constraints char-
acterizing the instances of a class.!

Contracts capture consistency conditions. In Eiffel, an object-oriented pro-
gramming language based on DBC (see [5]), contracts are monitored at run-time.
Any contract violation signals a constraint violation and consequently results in
throwing an exception.

2.2 Conventional Persistence Approaches

Based on [1] we categorize the conventional persistence approaches for object-
oriented programming as follows:

! To be practical invariants have to hold only at “stable” times, i.e. after object cre-
ation and before and after every remote method call.



Contracted Persistent Object Programming 3

— Object Serialization: Mechanism for encoding respectively decoding object
graphs into and from binary representations. The mechanism serializes the
root of the graph as well as all objects transitively referenced by the root ob-
ject. Object serialization does not preserve previously common sub-structures,
does only provide navigational access to the serialized objects starting from
the root object, and does not scale very well. It is consequently only suited
for a limited number of cases, such as remote method invocation, where shar-
ing of sub-structures is undesired. Object serialization is a valid complement
to a persistence mechanism, but not a replacement thereof.

— Relational Database Interface: Two-tiered architecture consisting of an object-
oriented programming language and a relational database management sys-
tem. Programmers access the underlying database using a well-defined Ap-
plication Programming Interface (API). The API offers methods for connect-
ing to databases and methods for storing, updating, and retrieving objects.
Java provides two complementary APIs: JDBC (Java Database Connectiv-
ity) for dynamic SQL operations and SQLJ for statically checked embedded
SQL statements (see [6]). Although relational database interfaces provide the
persistence facilities an enterprise application needs, they inherently suffer
from the impedance mismatch between the object model of the programming
language and the relational model of the database. The impedance mismatch
will force the programmer to maintain a complex mapping between the two
incompatible data structures.

— Object Database Interface: Object database interfaces do not suffer from the
impedance mismatch as relational interfaces do. Apart from the easy map-
ping, however, object database interfaces provide persistence-related opera-
tions, such as for deletion or transaction control, that rather defeat persis-
tence independence (see section 3).

— Persistence Frameworks: Persistence frameworks provide a huge selection
of persistence facilities, such as access to a wide variety of heterogeneous
data sources in case of Java Data Objects (JDO) or distributed persistence
in case of Enterprise Java Beans (EJB). Unfortunately, they both do not
comply with persistence independence (see section 3) [1].

3 Orthogonal Persistence

As defined in [2], [7], [3], [8], [1] persistent programming languages foster pro-
grammer productivity by unbanning them from dealing with persistence issues
and by promoting reuse. Persistent programming languages comply with the
following orthogonal persistence (OP) principles:

— Orthogonality: All data must have the same rights to persistence, irrespec-
tive of their type, size, or any other property. This principle keeps the pro-
grammer from providing persistence support by hand for those data types
the language lacks persistence support. Such handwork is undesirable since
it distract the programmer from his actual task, namely implementing the
application logic.



4 Stephanie Balzer

— Transitivity: Whenever data is stored everything that is needed to use that
data correctly has to be stored as well. This principle prevents dangling ref-
erences. Moreover, it assures that stored objects can be correctly interpreted
upon retrieval since the principle applies to objects and their classes likewise.

— Persistence Independence: The semantics of a programming language must
not change when introducing persistence except for the fact that data may
outlive a single program execution. This principle promotes reuse; code writ-
ten for a transient context can be easily reused for a persistent context and
vice versa.

4 Contracted Persistent Object Programming

4.1 Definition
For the remainder of this paper we provide the following definitions:

Definition 1. Object persistence is the ability to make run-time objects of an
object-oriented program survive program termination?.

Definition 2. Contracted persistent object programming (CPOP) achieves ob-
ject persistence. CPOP complies with the principles of orthogonal persistence
(see section 3) and uses Design by Contract (DBC) as its driving force. CPOP
also unifies the handling of transient and persistent objects by providing the same
mechanisms for both of them.

4.2 Consequences of Orthogonality

The orthogonality of contracted persistent object programming has the following
consequences:

— Language Completeness: The programming language must provide the full
range of persistence mechanisms enterprise applications need. Those mecha-
nisms have to be based on object-orientation and have to be consistent with
the concepts of the programming language.

— Transparency: The persistence mechanisms of the object-oriented program-
ming language must not reveal by what means persistence is achieved. This
obviously requires a lot of automation in mapping the persistence mecha-
nisms of the programming language to those provided by the actual under-
lying storage devices.

? This definition slightly differs from the persistence definition provided in [3] in that
we define persistence in relation to the program execution and restrict it to the
object-oriented case.



Contracted Persistent Object Programming 5

4.3 Contracts

Database management systems provide, in addition to type checking, consistency
constraint checking. Conventional programming languages, however, only pro-
vide type checking. We believe that enterprise applications need the provision of
consistency constraint definition and checking at the language level. Since Design
by Contract enables the specification and checking of consistency conditions, we
require a persistent programming language to support DBC.

The usage of a contract-based, object-oriented programming language such as
Eiffel [5] would further facilitate run-time consistency constraint checking, which
persistent programming obviously requires [7]. Thus, contracted persistent object
programming unites the power of statically typing with run-time consistency
checking.

4.4 Uniformity

We believe that persistent programming should strive for as much uniformity as
possible in the handling of transient and persistent objects. Consequently, for
every mechanism persistent objects require we should ask ourselves whether that
mechanism might make sense for transient objects too.

We have found that property-based querying as well as transaction handling
have to be available for both transient and persistent objects.

Property-Based Querying Persistent programming typically encompasses
not only the storing of data but also their retrieval. We believe, that to be
practical, retrieval mechanisms have to be property-based. Consequently, CPOP
has to provide property-based querying facilities that enable programmers to
specify object sets by indicating the properties all objects within that set have
to meet.

Property-based querying makes also sense for transient objects. The provision
of such a mechanism would relieve programmers from maintaining references to
objects they keep accessing®. Property-based querying facilities further could
replace existing container data structures such as arrays or hash tables.

Transaction and Recovery As mentioned in [7] the database and program-
ming language communities have different approaches to concurrency control:
Whereas the programming languages predominantly use synchronization mech-
anisms, the database management systems concentrate on parallel mechanisms
based on transactions, which are aborted in case of conflicts.

Transactions exhibit the so called ACID properties, that is atomicity, consis-
tency preservation, isolation, and durability [9]. We believe that transient con-
current programming basically needs the same properties, except for the last one,

3 It must be noted that such an approach requires adapting garbage collection: not
being referenced does no longer imply “garbage”.



6 Stephanie Balzer

namely durability. Thus, the provision of a transactional framework would not
only foster the handling of persistent objects but also the handling of transient
concurrent objects (see [10]). Contracted persistent object programming conse-
quently has to provide a transactional framework that exhibits ACID properties
with the option to switch durability on or off.

5 Conclusions

In this paper we have introduced the main ideas of our research, namely con-
tracted persistent object programming (CPOP). CPOP is based on orthogonal
persistence (OP) constrained to the object-oriented case and extends OP by
Design by Contract (DBC) and the uniform handling of transient and persis-
tent objects. We expect the introduction of DBC and the uniform provision of
property-based querying and transaction facilities to be the main contributions
to the field of persistent programming.

References

1. Atkinson, M.P.: Persistence and java - a balancing act. In Dittrich, K., Guerrini,
G., Merlo, 1., Oliva, M., Rodrguez, M., eds.: Objects and Databases. Volume 1944
of Lecture Notes in Computer Science., Springer-Verlag GmbH (2000) 1-31

2. Atkinson, M.P.; Bailey, P.J., Chisholm, K., Cockshott, W.P., Morrison, R.: An
approach to persistent programming. Comput. J. 26 (1983) 360-365

3. Atkinson, M.P., Daynes, L., Jordan, M.J., Printezis, T., Spence, S.: An orthogo-
nally persistent Java. SIGMOD Record 25 (1996) 68-75

4. Meyer, B.: Object-Oriented Software Construction. Second edn. Prentice Hall
Professional Technical Reference (1997)

5. Meyer, B.: Eiffel: The Language. Prentice Hall Professional Technical Reference
(1991)

6. Clossman, G., Shaw, P., Hapner, M., Klein, J., Pledereder, R., Becker, B.: Java
and relational databases: SQLJ (tutorial). In: SIGMOD Conference. Volume 27.,
ACM Press (1998) 500

7. Atkinson, M.P., Morrison, R.: Orthogonally persistent object systems. VLDB J.
4 (1995) 319-401

8. Atkinson, M.P., Jordan, M.J.: Providing orthogonal persistence for Java (extended
abstract). In Jul, E.; ed.: ECOOP. Volume 1445 of Lecture Notes in Computer
Science., Springer-Verlag GmbH (1998) 383-395

9. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 2nd Edition.
Second edn. Benjamin/Cummings (1994)

10. Chair of Software Engineering of ETH Zurich: Simple Concurrent Object-Oriented
Programming (SCOOP). http://se.inf.ethz.ch/research/scoop.html (2005)



