
Generalized Algebraic Data Types
and Object-Oriented Programming

Andrew Kennedy
akenn@microsoft.com

Claudio V. Russo
crusso@microsoft.com

Microsoft Research Ltd, 7JJ Thomson Ave, Cambridge, United Kingdom

ABSTRACT
Generalized algebraic data types (GADTs) have received
much attention recently in the functional programming com-
munity. They generalize the (type) parameterized algebraic
datatypes (PADTs) of ML and Haskell by permitting value
constructors to return specific, rather than parametric, type-
instantiations of their own datatype. GADTs have a number
of applications, including strongly-typed evaluators, generic
pretty-printing, generic traversals and queries, and typed
LR parsing. We show that existing object-oriented program-
ming languages such as Java and C] can express GADT defi-
nitions, and a large class of GADT-manipulating programs,
through the use of generics, subclassing, and virtual dis-
patch. However, some programs can be written only through
the use of redundant runtime casts. Moreover, instantiation-
specific, yet safe, operations on ordinary PADTs only admit
indirect cast-free implementations, via higher-order encod-
ings. We propose a generalization of the type constraint
mechanisms of C] and Java to both avoid the need for casts
in GADT programs and higher-order contortions in PADT
programs; we present a Visitor pattern for GADTs, and de-
scribe a refined switch construct as an alternative to virtual
dispatch on datatypes. We formalize both extensions and
prove type soundness.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features— constraints, data types and structures, poly-
morphism, classes and objects, inheritance; F.3.3 [Logic
and Meanings of Programs]: Studies of Program Con-
structs—type structure, object-oriented constructs

General Terms
Languages, Theory

Keywords
Generalized algebraic data types, generics, constraints

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/0010 ...$5.00.

1. INTRODUCTION
Consider implementing a little language using an object-

oriented programming language such as Java or C]. Ab-
stract syntax trees in the language would typically be repre-
sented using an abstract class of expressions, with a concrete
subclass for each node type. An interpreter for the language
can be implemented by an abstract ‘evaluator’ method in the
expression class, overridden for each node type. This is an
instance of the Interpreter design pattern [6].

For example, take a language of integer, boolean and bi-
nary tuple expressions:

exp ::= con | exp + exp | exp - exp | exp == exp
| exp && exp | exp || exp | exp ? exp : exp
| (exp, exp) | fst(exp) | snd(exp)

C] code to implement this abstract syntax and its interpreter
is shown in Figure 1. Note in particular two points. First,
the result of the eval method has the universal type object,
as expressions can evaluate to integers, booleans or pairs.
Second, evaluation can fail due to type errors: adding an
integer to a boolean throws InvalidCastException.

Now suppose that we decide to add static type-checking
to the language, for example checking that arithmetic op-
erations are applied only to integer expressions and that
conditional expressions take a boolean expression as condi-
tion and two expressions of the same type for the branches.
We could easily add a method that checks the type of an
expression. This would then assure us that evaluation can-
not fail with a type error; however, the runtime casts in the
evaluator code (e.g. (int) in Plus.Eval) are still necessary
to convince C] of the safety of the evaluator.

Now consider building types into the AST representation
itself, using the generics feature recently added to C] and
Java to parameterize the Exp class by the type of expressions
that it represents. Then we can:

• define Exp<T> and its subclasses to represent expres-
sions of type T that are type correct by construction;

• give Eval the result type T and guarantee absence of
type errors during evaluation.

Figure 2 lists C] code that does just this. Observe how the
type parameter of Exp is refined in subclasses; moreover,
this refinement is reflected in the signature and code of the
overridden Eval methods. For example, Plus.Eval has re-
sult type int and requires no runtime casts in its calls to
e1.Eval() and e2.Eval(). Not only is this a clever use of
static typing, it is also more efficient than the dynamically-

namespace U { // Untyped expressions
public class Pair {
public object fst, snd;
public Pair(object fst, object snd)

{ this.fst=fst; this.snd=snd; }
}
public abstract class Exp
{ public abstract object Eval(); }

public class Lit : Exp {
int value;
public Lit(int value) { this.value=value; }
public override object Eval() { return value; }

}
public class Plus : Exp { // Likewise for Minus, etc
Exp e1, e2;
public Plus(Exp e1, Exp e2)

{ this.e1=e1; this.e2=e2; }
public override object Eval()

{ return (int)e1.Eval()+(int)e2.Eval(); }
}
public class Equals : Exp { // Likewise for Or, etc
Exp e1, e2;
public Equals(Exp e1, Exp e2)

{ this.e1=e1; this.e2=e2; }
public override object Eval()

{ return (int)e1.Eval()==(int)e2.Eval(); }
}
public class Cond : Exp {
Exp e1, e2, e3;
public Cond(Exp e1, Exp e2, Exp e3)

{ this.e1=e1; this.e2=e2; this.e3=e3; }
public override object Eval()

{ return ((bool)e1.Eval() ? e2 : e3).Eval(); }
}
public class Tuple : Exp {
Exp e1, e2;
public Tuple(Exp e1, Exp e2)

{ this.e1=e1; this.e2=e2; }
public override object Eval()

{ return new Pair(e1.Eval(),e2.Eval()); }
}
public class Fst : Exp { // Likewise for Snd
Exp e;
public Fst(Exp e) { this.e=e; }
public override object Eval()

{ return ((Pair)e.Eval()).fst; }
} }

Figure 1: Untyped expressions with evaluator

typed version, particularly in an implementation that per-
forms code specialization to avoid the cost of boxing integers
and booleans [11].

The central observation of this paper is that the coding
pattern used for Exp above has a strong connection with gen-
eralized algebraic data types (also called guarded recursive
datatype constructors [25], or first-class phantom types [3,
8]). GADTs generalize the existing parameterized algebraic
datatypes (PADTs) found in functional languages with sup-
port for constructors whose result is an instantiation of the
datatype at types other than its formal type parameters.
This corresponds to the subclass refinement feature used
above. Case analysis over GADTs propagates information
about the datatype instantiation into the branches. This
corresponds, in part, to the refinement of signatures in over-
riding methods used above.

However, all is not rosy. As we shall see, many sophis-
ticated GADT programs are easy to express, but some-
times even the simplest functions on ordinary parametric

namespace T { // Typed expressions
public class Pair<A,B> {

public A fst; public B snd;
public Pair(A fst, B snd)

{ this.fst=fst; this.snd=snd; }
}
public abstract class Exp<T>

{ public abstract T Eval(); }
public class Lit : Exp<int> {

int value;
public Lit(int value) { this.value=value; }
public override int Eval() { return value; }

}
public class Plus : Exp<int> {

Exp<int> e1, e2;
public Plus(Exp<int> e1, Exp<int> e2)

{ this.e1=e1; this.e2=e2; }
public override int Eval()

{ return e1.Eval() + e2.Eval(); }
}
public class Equals : Exp<bool> {

Exp<int> e1, e2;
public Equals(Exp<int> e1, Exp<int> e2)

{ this.e1=e1; this.e2=e2; }
public override bool Eval()

{ return e1.Eval() == e2.Eval(); }
}
public class Cond<T> : Exp<T> {

Exp<bool> e1; Exp<T> e2, e3;
public Cond(Exp<bool> e1, Exp<T> e2, Exp<T> e3)

{ this.e1=e1; this.e2=e2; this.e3=e3; }
public override T Eval()

{ return e1.Eval() ? e2.Eval() : e3.Eval(); }
}
public class Tuple<A,B> : Exp<Pair<A,B>> {

Exp<A> e1; Exp e2;
public Tuple(Exp<A> e1, Exp e2)

{ this.e1=e1; this.e2=e2; }
public override Pair<A,B> Eval()

{ return new Pair<A,B>(e1.Eval(), e2.Eval()); }
}
public class Fst<A,B> : Exp<A> { //Likewise for Snd

Exp<Pair<A,B>> e;
public Fst(Exp<Pair<A,B>> e) { this.e=e; }
public override A Eval()

{ return e.Eval().fst; }
} }

Figure 2: Typed expressions with evaluator

datatypes require either redundant runtime-checked casts
or awkward higher-order workarounds. To illustrate the
problem, take the presumably simpler task of coding up
linked lists as an abstract generic class List<T> with Nil<A>

and Cons<A> subclasses. Assuming the obvious definition
of Append, a direct implementation of appending a lists of
lists, the virtual method Flatten, requires an ugly cast (Fig-
ure 3). The root of the problem is that a virtual method
must assume that the type of its receiver (this) is a generic
instance of its class: it cannot impose nor make use of any
pre-conditions on the class instantiation. Luckily, for func-
tions over parameterized ADTs, such casts can always be
avoided: we can re-code Flatten as a static method that
uses a cast-free implementation of the Visitor pattern [6] to
traverse its list, this time at a more specific instantiation.

Unfortunately, this limitation of virtual methods, which
makes programming with parameterized datatypes merely
inconvenient, means that some natural and safe GADTs pro-
grams can only be expressed by inserting redundant runtime-

public abstract class List<T> {...
public abstract List<T> Append(List<T> that);
public abstract List<U> Flatten<U>();

}
public class Nil<A> : List<A> {...

public override List<U> Flatten<U>()
{ return new Nil<U>(); }

}
public class Cons<A> : List<A> {...

A head; List<A> tail;
public override List<U> Flatten<U>()
{ Cons<List<U>> This = (Cons<List<U>>) (object) this;
return This.head.Append(This.tail.Flatten<U>()); }

}

Figure 3: Flatten on Lists, using casts

public abstract class Exp<T> { ...
public virtual bool Eq(Exp<T> that)
{ return false; }

public virtual bool TupleEq<C,D>(Tuple<C,D> that)
{ return false; }

public virtual bool LitEq(Lit that)
{ return false; }

}
public class Lit : Exp<int> { ...

public override bool Eq(Exp<int> that)
{ return that.LitEq(this); }

public override bool LitEq(Lit that)
{ return value == that.value; }

}
public class Tuple<A,B> : Exp<Pair<A,B>> { ...

public override bool Eq(Exp<Pair<A,B>> that)
{ return that.TupleEq<A,B>(this); }

public override bool TupleEq<C,D>(Tuple<C,D> that)
{ Tuple<A,B> That = (Tuple<A,B>) (object) that;

return That.e1.Eq(e1) && That.e2.Eq(e2); }
}

Figure 4: Equality on values, using casts

checked casts. Returning to the typed expression exam-
ple, consider implementing an equality method on fully-
evaluated expressions (literals and tuples)1. We add a vir-
tual method Eq to Exp<T>, taking a single argument that

of type Exp<T> and by default returning false. As is usual
with a binary method such as Eq, we can implement it
by dispatching twice, first on this, to the code that over-
rides Eq, and then on that, to code specific to the types
of both this and that (see Figure 4). This is clumsy and
non-modular [2]. But there is another, more fundamental
problem. Consider equality for instances of Tuple: the spe-
cialized code for equality on pairs in TupleEq cannot de-
clare and make use of the fact that both that (of declared
type Tuple<C,D>) and this will both actually have type
Tuple<A,B> except through the use of a runtime-checked
cast. The crux of the problem is that although information
about a type instantiation is propagated through subclass
refinement, there is still no way to constrain the type of
the receiver. Here, the only caller of method TupleEq<C,D>

uses the particular method instantiation C=A,D=B on a re-
ceiver of type Exp<T>=Exp<Pair<A,B>>. But, the override
for TupleEq<C,D> cannot assume this callsite invariant and
must assert it using a cast.

Now suppose that C] were extended to support equa-

1It’s not sensible to define equality between unevaluated
typed Exp<T> (consider the case for Fst).

public abstract class Exp<T> { ...
public virtual bool TupleEq<C,D>(Tuple<C,D> that)

where T=Pair<C,D> { return false; }
}
public class Tuple<A,B> : Exp<Pair<A,B>> { ...
public override bool Eq(Exp<Pair<A,B>> that)

{ return that.TupleEq<A,B>(this); }
public override bool TupleEq<C,D>(Tuple<C,D> that)

{ return that.e1.Eq(e1) && that.e2.Eq(e2); }
}

Figure 5: Equality on values, using constraints

tional type constraints on methods, as statically checked pre-
conditions. Then adding the constraint where T=Pair<C,D>

to the signature of TupleEq would allow us to restrict its
callers, and so avoid the cast (Figure 5).

This approach also works for Flatten, allowing a direct,
cast-free implementation (Figure 6), and demonstrating that
our extension has more mundane applications than GADTs
alone. For GADTs the situation is actually more dire than
for PADTs: one cannot, in current C] or Java, define a
type safe visitor pattern for certain GADTs, so the higher-
order workaround no longer applies. In the absence of our
extension, the GADT programmer must use casts.

public abstract class List<T> {...
public abstract List<T> Append(List<T> that);
public abstract List<U> Flatten<U>() where T=List<U>;
}
public class Nil<A> : List<A> {...
public override List<U> Flatten<U>()

{ return new Nil<U>(); }
}
public class Cons<A> : List<A> {...
A head; List<A> tail;
public override List<U> Flatten<U>()// where A=List<U>

{ return this.head.Append(this.tail.Flatten<U>()); }
}

Figure 6: Flatten, using constraints

The contribution of this paper is threefold:

• We present a series of examples in C], demonstrating
the utility of the GADT pattern for object-oriented
programming languages that support generics, such
as C], Java, C++, and Eiffel. We make the impor-
tant observation that whilst all GADT definitions can
be expressed, there are programs manipulating GADT
values that cannot be written in current versions of C]

and Java without the use of run-time casts.

• We identify a surprising expressivity gap compared to
functional programming with parameterized algebraic
datatypes (PADTs): operations with natural defini-
tions in ML and Haskell require unnatural and non-
extensible object-oriented encodings to ensure safety.
With the introduction of generics, virtual dispatch is
no longer as expressive as functional case analysis.

• To remedy these expressivity problems, we propose a
generalization of C]’s type parameter constraint mech-
anism. We also describe a generalization of switch

to provide similar functionality to case for datatypes
found in functional languages. Although a type based
switch construct is present in Pizza and Scala[14, 13],

our typing rule is more expressive and accommodates
GADTs. Both constructs are formalized as extensions
to C] minor, a tiny subset subset of C] similar in style
to FGJ [9]. We also prove a type soundness result.

The structure of the paper is as follows. Section 2 in-
troduces the notion of GADT as proposed for functional
languages. Section 3 describes informally the connection
with object-oriented programming as exemplified by Exp,
presents the two proposed extensions and discusses a Visi-
tor pattern for GADTs. Section 4 presents a series of further
examples in C]. Section 5 presents the formalization. Sec-
tion 6 discusses related work and Section 7 concludes.

2. GADTS IN FUNCTIONAL LANGUAGES

2.1 Datatypes
Functional programming languages such as Haskell and

ML support user-defined datatypes. A datatype declara-
tion simultaneously defines a named type, parameterized by
other types, and the means of constructing values of that
type. For example, here is Haskell code that defines a bi-
nary tree parameterized on the type d of data and type k
of keys stored in the nodes:

data Tree k d = Leaf | Node k d (Tree k d) (Tree k d)

This definition implicitly defines two value constructors Leaf
and Node with polymorphic types:

Leaf :: Tree k d
Node :: k → d → Tree k d → Tree k d → Tree k d

Notice how both term constructors have the fully generic
result type Tree k d ; there is no specialization of the type
parameters to Tree .2 Conversely, any value of type Tree τ σ,
for some concrete τ and σ, can either be a leaf or a node —
the static type does not reveal which. Observe that all recur-
sive uses of the datatype within its definition also have type
Tree k d ; this characteristic makes it a regular datatype.

Here is a lookup function for trees keyed on integers, de-
fined by case analysis on a value of type Tree Int d , using
Haskell’s pattern-matching feature to switch on the datatype
constructor and at the same time bind constructor argu-
ments to variables:

find :: Int → Tree Int d → Maybe d
find i t = case t of

Leaf → Nothing
Node key item left right →

if i = key then Just item else
if i < key then find i left else find i right

It is easy to type-check a function defined by case analy-
sis such as this. Bound variables in patterns are assigned
the formal types specified for constructor arguments in the
datatype declaration, the type of each pattern is unified with
the type of the scrutinee (here, revealing that formal type
argument k of both Node and Leaf is Int), the branches
are type-checked under this refined assumption, and then it
is just necessary to check that each branch is assigned the
same type, by unifying those types.

2The common, generic result types are forced by the Haskell
syntax for PADT declarations — in GADT Haskell, every
constructor declaration has its own explicit result type.

2.2 GADTs
Datatypes can be generalized in three ways:

1. The restriction that constructors all return ‘generic’
instances of the datatype can be removed. This is the
defining feature of a GADT.

2. The regularity restriction can be removed, permitting
datatypes to be used at different types within their
own definition. In practice, to write useful functions
over such types it is also necessary to support poly-
morphic recursion: the ability to use a polymorphic
function at different types within its own definition.
C], Java and Haskell allow this, ML does not.

3. A constructor can be allowed to mention additional
type variables that may appear in its argument types
but do not appear in its result type. The actual types
at which such parameters are instantiated is not re-
vealed by the type of the constructed term. This hid-
ing of type arguments is, formally speaking, equivalent
to adding existential quantification to the type system.

Most useful examples of GADTs make use of all three
abilities. Consider the following implementation of the Exp

type from Figure 2, written in a recent extension of Haskell
with GADTs [17, 16]:

data Exp t where
Lit :: Int → Exp Int
Plus :: Exp Int → Exp Int → Exp Int
Equals :: Exp Int → Exp Int → Exp Bool
Cond :: Exp Bool → Exp a → Exp a → Exp a
Tuple :: Exp a → Exp b → Exp (a, b)
Fst :: Exp (a, b) → Exp a
. . .

All constructors except for Cond make use of feature (1), as
their result types refine the type arguments of Exp: for ex-
ample, Lit has result type Exp Int . All constructors except
for Lit make use of feature (2), using the datatype at differ-
ent instantiations in arguments to the constructor. Finally,
Fst uses a hidden type b, thus making use of feature (3).

Now consider an evaluator for expressions, defined by case
analysis on a value of type Exp t :

eval :: Exp t → t
eval e = case e of

Lit i → i
Plus e1 e2 → eval e1 + eval e2
Equals e1 e2 → eval e1 == eval e2
Cond e1 e2 e3 →

if eval e1 then eval e2 else eval e3
Tuple e1 e2 → (eval e1, eval e2)
Fst e → fst (eval e)
. . .

Type checking of the case construct is not simply a mat-
ter of unifying the types of the branches, as was done for
ordinary datatypes. (Indeed, combining checking of case
on GADTs with full Haskell or ML type inference is much
harder still, and is the subject of active research [17, 23].)
The types of the branches in the case expression differ: for
Lit , the type is Int , for Equals , it is Bool , whilst for Tuple, it
is (a, b) for some type variables a and b. Fortunately, these
types can be related to the declared type of the result (here:

t) by type-checking the branches under equational assump-
tions, namely to equate the type of the scrutinee (Exp t)
to the result type of the constructors (Exp Int , Exp Bool ,
etc). These yield the equations shown below in comments
following each branch.

eval :: Exp t → t
eval e = case e of

Lit i → i
— i :: Int and t = Int

Plus e1 e2 → eval e1 + eval e2
— e1 :: Exp Int and e2 :: Exp Int and t = Int

Equals e1 e2 → eval e1 == eval e2
— e1 :: Exp Int and e2 :: Exp Int and t = Bool

Cond e1 e2 e3 → if eval e1 then eval e2 else eval e3
— e1 :: Exp Bool and e2, e3 :: Exp a and t = a

Tuple e1 e2 → (eval e1, eval e2)
— e1 :: Exp a and e2 :: Exp b and t = (a, b)

Fst e → fst (eval e)
— e :: Exp (a, b) and t = a

. . .

Now consider equality on values, written in GADT Haskell
rather than C] (cf. Figure 5). As above, we annotate the
branches with the equations that are assumed:

eq :: (Exp t , Exp t) → Bool
eq (this, that) = — this :: Exp t , that :: Exp t

case this of
Lit i → — i :: Int , t = Int

case that of
Lit j → i == j — j :: Int , t = Int
→ False

Tuple e1 e2 →
— e1 :: Exp a, e2 :: Exp b, t = (a, b)
case that of

Tuple f 1 f 2 →
— f 1 :: Exp c, f 2 :: Exp d , t = (c, d)
eq (e1, f 1) && eq (e2, f 2)
→ False

To type-check the outer branch for Tuple we assume the
type equation t = (a, b) and type assignment e1 :: Exp a ,
e2 :: Exp b. In the inner branch we assume t = (c, d) and
f 1 :: Exp c, f 2 :: Exp d (generating fresh names for the type
parameters to the Tuple constructor). Combining the equa-
tions on t we obtain (a, b) = (c, d). From this, we derive
a = c and b = d using the fact that the product type con-
structor (,) is injective. Hence Exp a = Exp c and simi-
larly Exp b = Exp d , which lets us type-check eq(e1, f 1) and
eq(e2, f 2). This use of equational decomposition, exploiting
the injectivity of type constructors, is crucial to the type-
checking of eq . Type checking eval was easier: all equations
were of the form t = τ and there was no need to decompose
constructed types.

3. GADTS IN C]

We have now presented the GADT for Exp and associated
operations Eval and Eq in C] (Section 1) and in Haskell (Sec-
tion 2). Its definition in Haskell made use of all three fea-
tures listed in Section 2.2 that characterize GADTs. We now
consider these features in the context of the C] implementa-
tion. Feature (1) was expressed by defining a subclass of a
generic type that did not just propagate the type parameters
through to the subclass. (For example, Plus is a non-generic

class that extends a generic class Exp at the particular in-
stantiation int.) Feature (2) corresponds to the existence
of fields in the subclass whose types are arbitrary instanti-
ations of the generic type of the superclass. (For example,
Tuple has fields of type Exp<A> and Exp but a superclass
of type Exp<Pair<A,B>>.) Feature (3) corresponds to the
declaration of type parameters on the subclass that are not
referenced in the superclass. (For example, Fst<A,B> has
superclass Exp<A> that does not mention, nor reveal, B).

Let us now turn to the evaluator code. The Haskell eval
function used case analysis; in C] (Figure 2) we used virtual
dispatch to select the implementation of Eval appropriate
to the constructor. The branches of Haskell’s case construct
were checked under assumptions equating types; in C] the
signature of Eval specified in the Exp class was refined by
substituting the actual type arguments specified for the su-
perclass in place of the formal type parameters declared for
Exp. This amounts to the same thing, when type equations
are in solved form, assigning a type variable on one side
of an equation to a type (its instantiation) on the other.
This is the case for eval . For example, the branch for Tuple
was checked under the assumption t = (a, b). In C] the
signature for the method Tuple<A,B>.Eval is obtained by
applying the substitution T 7→ Pair<A,B> to the signature
specified in the superclass.

Now consider the equality function. Both inner and outer
Lit branches of the Haskell eq function are type-checked un-
der the assumption t = Int , but this equation is not needed
to type-check the expression i == j . In C] (Figure 4), the
signature of Eq is refined in the Lit class to take an ar-
gument of type Exp<int>; this corresponds to applying the
equation T=int as a substitution on the signature from the
superclass; but, as in Haskell, this information is not needed
for type-checking the body. In contrast, type-checking the
Tuple branch does use the equational assumptions, as we
saw at the end of Section 2: namely the equations t = (a, b)
and t = (c, d). The C] code for Eq refines the signature with
T=Pair<A,B> but then dispatches to TupleEq, discarding this
information, which must be recovered with a redundant cast.

3.1 Equational constraints for C]

As we will demonstrate in Section 4, a surprising num-
ber of GADT-manipulating programs can be written in C]

and Java simply using the existing mechanisms of gener-
ics, subclassing and virtual dispatch. We have just seen
an example of a program that can only be written through
painful use of casts; moreover, we shall see in Section 3.2
that it is not possible to code a fully-general Visitor pat-
tern. In Section 3.3 we will see that some natural functions
over ordinary parameterized datatypes require contorted, or
unsafe, implementations.

To remedy matters, we propose a modest extension of the
existing type constraint mechanism supported by Java and
C]. In C], a type argument to a generic type or method
can be required to satisfy a set of constraints, namely that
the type extends some class or implements some interfaces.
These constraints are specified by a where clause attached
to the type or method declaration. For example:

class HashTable<K,D>
where K : IHashable<K>, IEquatable<K> { ... }

class Array {
static void Sort<T>(T[] a)
where T : IComparable<T> {...a[i].CompareTo(p)...}

}

The constraints are upper bounds with respect to subtyp-
ing: they state that a type argument must be a subtype
of the specified types. The first where clause above states
that HashTable<τ,σ> is a valid type only if τ supports both
IHashable<τ> and IEquatable<τ> interfaces; moreover, all
methods defined in HashTable can assume this property of
the type parameter. Similarly, an invocation Array.Sort<τ>
is valid only if τ supports the interface IComparable<τ>, and
code for Sort can rely on this. The language Scala [13] also
supports lower bounds: the requirement that a type argu-
ment be a supertype of the specified type.

Our proposal is to extend the constraint language with
equational constraints between types: the requirement that
two types be equal for a generic instantiation to be valid.
Unlike subtype constraints, there is no requirement that one
of the types be a parameter of the enclosing method: we
want the ability to impose additional constraints on class
type parameters when declaring a method in that class. We
saw this in the improved TupleEq method of Figure 5:

public abstract class Exp<T> {
public virtual bool TupleEq<C,D>(Tuple<C,D> that)
where T=Pair<C,D> { return false; }

}

Here the class type parameter T has been equated to a type
Pair<C,D> that involves the method type parameters C and
D. We will see more examples in the sections which follow.

In terms of language syntax, we propose simply to extend
the grammar for where:

type-parameter-constraints-clause :
where type-parameter : type-parameter-constraints

where type = type

The C] type-checking rules are then extended as follows:

• Use. To successfully type-check the invocation of a
method that has equational constraints, one must ver-
ify that the formal equations are satisfied when its
actual class and method type arguments are substi-
tuted in. For example, to type-check the invocation
e.TupleEq<int,bool>(e2) for receiver e of static type
Exp<Pair<int,bool>> we simply check that the equa-
tion T = Pair<C,D> holds under the instantiation T 7→
Pair<int,bool>, C 7→ int, D 7→ bool.

• Definition. To type-check a method body that has
equational constraints, we wish to take account of the
equations when resolving overloading, checking assign-
ment compatibility, performing method lookup, and so
on. Potentially this is a complicated process, but there
is a simpler approach: simply solve the constraints up-
front. We can do this because if there is any substitu-
tion of type parameters that validates the equations,
then there is a substitution – the most general unifier
– that captures all such substitutions. We apply this
substitution to the signature of the method, to the
type of this, and to types occurring in the method
body, and then type-check the body under those re-
fined assumptions. A similar approach is used by Pey-
ton Jones et al. to eliminate equations from the type
system for GADT Haskell [17].

• Overriding. Subtype constraints in C] are ‘inher-
ited’ by overriding methods and do not need to be

redeclared. We adopt the same rule for equational
constraints, but there is a new issue that we must ad-
dress. It is possible for equations that are satisfiable
at their virtual declaration to be unsatisfiable in their
inherited form at the override, i.e. no instantiation val-
idates the equations, and so the override is effectively
dead. For example, consider the Lit class in Figure 5.
If it were to override the TupleEq method described
above, then it would inherit the T=Pair<C,D> equa-
tional constraint, but with T instantiated at int as its
superclass is Exp<int>. There are no type arguments
for C and D which validate int=Pair<C,D>, and so the
method body can never be entered.

We adopt the following rules:

– We prohibit virtuals or overrides in which declared
or inherited equations are, or have become, unsat-
isfiable.

– We allow the concrete override of an abstract
method or concrete implementation of an inter-
face method to be omitted, but only when its in-
herited constraints would be unsatisfiable. Thus
an abstract method no longer has a definition in
all non-abstract subclasses, just in those with po-
tential callers.

Note that we are relaxing the C] rules that mandate im-
plementations for all interface methods and abstract virtuals
in (non-abstract) subclasses: if the TupleEq<A,B> method
had been declared abstract, the existing declaration of Lit,
that does not provide a concrete implementation of TupleEq,
would nevertheless be legal: unsatisfiability of the equation
ensures that the absent implementation will never be missed.

To illustrate the type-checking process, take the TupleEq

method overridden in the Tuple class (Figure 5). It inherits
the constraint T=Pair<C,D> from its superclass, which, after
substituting for T, is Pair<A,B>=Pair<C,D>. The most gen-
eral unifier of this equation is A 7→ C, B 7→ D, and applying
this substitution assigns this the type Tuple<C,D>, allowing
the body to be type-checked.

3.2 A Visitor pattern for GADTs
The Interpreter design pattern used to implement Exp has

the disadvantage that code for a particular operation such
as Eval is spread across the various node classes. A popular
alternative is to package the operations together in a visitor
object, and to define an acceptor method on the expression
class that takes a visitor object as argument and then dis-
patches to the appropriate operation as determined by the
node class [6]. Typically the visitor methods are packaged
as an interface type. For the untyped expression language
of Figure 1 this might be the following, shown here with an
illustrative acceptor method:3

public interface IExpVisitor<R> {
R VisitLit(Lit e);
R VisitPlus(Plus e);
R VisitEquals(Equals e);
R VisitCond(Cond e);
R VisitTuple(Tuple e);
R VisitFst(Fst e);

}

3It’s possible to utilize overloading and use the name Visit
for all methods but this would obscure the explanation.

public interface IExpVisitor<T,R> {
R VisitLit(Lit e) where T=int;
R VisitPlus(Plus e) where T=int;
R VisitEquals(Equals e) where T=bool;
R VisitCond<A>(Cond<A> e) where T=A;
R VisitTuple<A,B>(Tuple<A,B> e) where T=Pair<A,B>;
R VisitFst<A,B>(Fst<A,B> e) where T=A;

}
public abstract class Exp<T> { ...

public abstract R Accept<R>(IExpVisitor<T,R> v);
public T Eval(){return Accept(new EvalVisitor<T>();)}

}
public class Lit : Exp<int> { ...

public override R Accept<R>(IExpVisitor<int,R> v)
{ return v.VisitLit(this); }

}
public class Plus : Exp<int> { ...

public override R Accept<R>(IExpVisitor<int,R> v) {
{ return v.VisitPlus(this); }

}
public class Equals : Exp<int> { ...similar to Plus...}
public class Cond<T> : Exp<T> { ...

public override R Accept<R>(IExpVisitor<T,R> v) {
{ return v.VisitCond<T>(this); }

}
public class Tuple<A,B> : Exp<Pair<A,B>> { ...

public override R Accept<R>
(IExpVisitor<Pair<A,B>,R> v)
{ return v.VisitTuple(this); }

}
public class Fst<A,B> : Exp<A> { ...

public override R Accept<R>(IExpVisitor<A,R> v)
{ return v.VisitFst(this); }

}
public class EvalVisitor<T> : IExpVisitor<T,T> {

public T VisitLit(Lit e) { return e.value; }
public T VisitPlus(Plus e)
{ return e.e1.Eval() + e.e2.Eval(); }

public T VisitEquals(Equals e)
{ return e.e1.Eval() == e.e2.Eval(); }

public T VisitCond<A>(Cond<A> e)
{ return e.e1.Eval() ? e.e2.Eval() : e.e3.Eval(); }

public T VisitTuple<A,B>(Tuple<A,B> e)
{ return new Pair<A,B>(e.e1.Eval(), e.e2.Eval()); }

public T VisitFst<A,B>(Fst<A,B> e)
{ return e.e.Eval().fst; }

}

Figure 7: Typed visitor interface for expressions
with evaluator visitor

public abstract class Exp { ...
public abstract R Accept<R>(IExpVisitor<R> v);

}
public class Fst : Exp { ...

public override R Accept<R>(IExpVisitor<R> v)
{ return v.VisitFst(this); }

}

We have parameterized the visitor interface on the result
type of the visitor methods: for example, a type-checker
visitor might return a bool, whilst an evaluator visitor would
return an object. Here, for example, is part of the code for
an evaluator visitor:

public class EvalVisitor : IExpVisitor<object> {
static EvalVisitor evalVis = new EvalVisitor();
public static object Eval(Exp e)
{ return e.Accept(evalVis); }

public object VisitFst(Fst fstexp)
{ return ((Pair)Eval(fstexp.e)).fst; } ...

}

To adapt this to the typed, GADT variant of expressions
from Figure 2 we can abstract over the type parameters of
the constructors, as follows:

public interface IExpVisitor<R> {
R VisitLit(Lit e);
R VisitPlus(Plus e);
R VisitEquals(Equals e);
R VisitCond<A>(Cond<A> e);
R VisitTuple<A,B>(Tuple<A,B> e);
R VisitFst<A,B>(Fst<A,B> e);

}
public abstract class Exp<T> { ...
public abstract R Accept<R>(IExpVisitor<R> v);

}
public class Fst<A,B> : Exp<A> { ...
public override R Accept<R>(IExpVisitor<R> v)

{ return v.VisitFst(this); }
}

Unfortunately, this interface is not sufficiently refined to im-
plement statically-typed visitors: we are forced to use casts.
Consider part of the evaluator visitor:

public class EvalVisitor<T> : IExpVisitor<T> {
// We know that T=int but the compiler does not!
public T VisitLit(Lit e)

{ return (T) (object) e.value; }
...

}

The problem is that we have not expressed (a) the fact that
there is a relationship between the result type of the visitors
and the type argument of Exp (namely, they’re the same),
and (b) that the type argument is determined by the partic-
ular subclass of Exp passed to the visitor methods. Figure 7
presents the solution: parameterize the visitor interface on
the return type R and the expression type T, and express
the fact that T is related to the type parameters of the node
types through equational constraints. No casts required!

Observant readers may have noticed that there is some re-
dundancy in the interface: method type parameters that are
identified with the type parameter of Exp can be removed:

public interface IExpVisitor<T,R> {
...
R VisitCond(Cond<T> e);
R VisitFst(Fst<T,B> e);

}

We can obtain a visitor interface from any GADT using
the following recipe:

• For a class C<X1, . . . , Xn> declare a visitor interface

interface IVisC<X1, . . . , Xn, R>

and add an abstract Accept method to C:

abstract R Accept<R>(IVisC<X1, . . . , Xn, R> v);

• For each class D<Y1, . . . , Ym> extending C<T1, . . . , Tn>,
declare a visitor method on the interface

R VisitD<Y1, . . . , Ym>(D<Y1, . . . , Ym> arg)

where X1=T1, . . . , Xn=Tn;

and override the Accept method in D:

class D<Y1, . . . , Ym> : C<T1, . . . , Tn> {
override R Accept<R>(IVisC<T1, . . . , Tn, R> v) {
return v.VisitD(this);

}
}

public interface IListVis<T, R> {
R VisitNil(Nil<T> n);
R VisitCons(Cons<T> c);

}
public abstract class List<T> {

public abstract List<T> Append(List<T> l);
public abstract R Accept<R>(IListVis<T,R> v);
public static List<U> Flatten<U>(List<List<U>> l)
{ return l.Accept(new FlattenVis<U>()); }

}
public class Nil<A> : List<A> {

public override List<A> Append(List<A> l)
{ return l; }

public override R Accept<R>(IListVis<A,R> v)
{ return v.VisitNil(this); }

}
public class Cons<A> : List<A> {

public A head; public List<A> tail;
public Cons(A head, List<A> tail) {
this.head=head; this.tail=tail;

}
public override List<A> Append(List<A> l) {
return new Cons<A>(this.head, this.tail.Append(l));

}
public override R Accept<R>(IListVis<A,R> v)
{ return v.VisitCons(this); }

}
public class FlattenVis<U> : IListVis<List<U>,List<U>>{

public List<U> VisitNil(Nil<List<U>> n)
{ return new Nil<U>(); }

public List<U> VisitCons(Cons<List<U>> c)
{ return c.head.Append(c.tail.Accept(this)); }

}

Figure 8: Generic Lists

• Optionally, equations of the form Xi=Yj can be omitted,
along with type parameter Yj ; uses of Yj in the method
signature must then be replaced with Xi.

Observe that, for a parameterized datatype (PADT), this
optimization yields a visitor interface that makes no use of
constraints or of type parameters to methods.

3.3 Revisiting datatypes in C]

Given that we can express many, though not all, GADT
programs, can we justify extending C] just to capture a few
more exotic examples? It turns out that our inability to
express certain GADT programs is a symptom of a more
fundamental problem with the design of virtual methods in
generic classes, present in both C] and Java. To illustrate
the deficiency, we revisit the implementation of the list li-
brary sketched in Section 1.

Figure 8 shows a simple implementation of generic lists,
with a single abstract class List<T> and two concrete sub-
classes Nil<A> and Cons<A>. Observe that List<T> is not
a GADT per se, but an ordinary parameterized algebraic
datatype (PADT) (the subclasses are as generic as the super-
class and do not specialize it). This time, we present the full
definition of List<T> Append(List<T> l) that uses virtual
dispatch to do case analysis on the receiver, and a cast-free
implementation of Flatten. The safe Flatten method is ex-
tremely clumsy. To avoid casting, the programmer is forced
to introduce an (optimized) variant of the Visitor pattern
described in Section 3.2. Not only is this very verbose, but
it also has another drawback: the behavior of Flatten can-
not be extended to future subclasses without modifying the
code for the IVisitor interface. Contrast this with Append,

whose implementation is extensible by using method over-
ride in any future subclass of List<T>.

Of course, with dynamic casting we can give the more
direct implementation of Flatten that does use a virtual
method (Figure 3). This at least has the merit of being ex-
tensible, but is also unnecessarily expensive. Worse though,
it is potentially unsafe in the sense that there is no way
to prevent the cast from failing on some receivers: calling
l.Flatten<int>() on an object of the wrong static type,
say List<int> l;, is legal, but will result in a runtime ex-
ception on entry to the method. In the equivalent Java
program, the cast cannot be checked at runtime due to the
erasure semantics of Java generics (a Java compiler will is-
sues a warning): calling l.Flatten<string>() on a receiver
of the wrong static type, say List<List<Int>> l;, is legal,
but will not raise an exception until the elements of the flat-
tened list are accessed as strings (since they are integers).

Why is a safe implementation using virtual methods im-
possible? The root of the problem is that an override of a
virtual method can only assume that the type of its receiver
(this) is a generic instance of its class, it may not make any
additional assumptions about the instantiation of its class.
That is the crucial difference between Append and Flatten:
the overrides of Append happen to be completely generic in
the receiver’s formal type argument (A), so their bodies type
check. A virtual method implementation of Flatten, on the
other hand, would need to know that the instantiation of its
class is itself a list of elements, so that its head can be ap-
pended to its flattened tail. The virtual methods of C] and
Java are not flexible enough to express such refinements of
the class instantiation, requiring tedious workarounds. Of
course, the problem isn’t peculiar to Flatten: non-generic
functions like Sum, that adds the elements in a list of inte-
gers, generic functions like Unzip, that splits a list of pairs,
and indeed most instantiation specific functions on PADTs
are equally awkward to code.

Equational constraints allow us to write the cast-free, safe
and extensible implementation of Flatten in Figure 6. The
abstract Flatten method is qualified by an equational con-
straint relating the class type parameter T to the method
type parameter U. This precisely states the requirement that
any Flatten<U>-receiver of type List<T>, must satisfy
T = List<U>, constraining the type of the receiver to a sub-
type of List<List<U>>. Enforcing this restriction at method
call sites allows the type system to assume it holds within
the overrides of Flatten<U>. With a bit of equational rea-
soning, the type system can check the cast-free override of
Flatten<U> in Cons<A> is safe: assuming the type equality
A = List<U>, appending to the head of the cons cell is safe,
because the head not only has type A, but also List<U>;
flattening the tail of the cons cell is safe since the tail not
only has type List<A>, but also List<List<U>>.

3.4 Generalizing switch
Sometimes its just more convenient and clear to sacrifice

the extensibility provided by virtual methods and directly
dispatch on the type of an object using an inline switch

construct, analogous to Haskell’s case construct. The main
advantage of an inline dispatch is that it gathers all the pos-
sible continuations of the test into a single, shared scope.
Having direct access to any outer variables relieves the pro-
grammer from the tedious (and error-prone) chore of clos-
ing every continuation over its free variables, as required

when abstracting dispatch into separate overrides of a vir-
tual method or an implementation of the Visitor Pattern.

Although Pizza [14] (and now Scala [13]) contained a sim-
ilar construct, its typing rules were not formalized. Our
contribution is to present new typing rules for switch that
are more expressive, deriving and exploiting equational con-
straints between types particular to each branch.

For example, the Eval code of Figure 2 and Eq code of
Figure 5 can be re-written as static methods that switch on
their arguments:

public static T Eval<T>(Exp<T> exp) {
switch (exp) {
case Lit e :

return e.value;
case Plus e :

return Eval(e.e1) + Eval(e.e2);
case Equals e :

return Eval(e.e1) == Eval(e.e2);
case Cond<A> e :

return Eval(e.e1) ? Eval(e.e2) : Eval(e.e3);
case Tuple<A,B> e :

return new Pair<A,B>(Eval(e.e1), Eval(e.e2));
case Fst<A,B> e :

return Eval(e.e).fst;
}

}
public static bool Eq<T>(Exp<T> e1, Exp<T> e2) {

switch (e1, e2) {
case (Lit x, Lit y) :

return x.value == y.value;
case (Tuple<A,B> x, Tuple<C,D> y) :

return Eq(x.fst, y.fst) && Eq(x.snd, y.snd);
default :

return false;
}

}

In detail, our extension splits into two pieces: (1) support
for switching on multiple expressions, used in Eq above; and
(2) the ability to match against a class, bind its type pa-
rameters, and type-check the branch under equational as-
sumptions about of the type of the switch expression.

This is much more concise than spreading the code across
the classes, (Eq<T> would otherwise require 3 virtual meth-
ods with 4 overrides), though it shares with the Visitor pat-
tern [6] the lack of extensibility and loss of encapsulation
(we must either weaken access qualifiers on the fields of the
subclasses, or provide accessor methods).

The obvious Pizza (and Scala) translation of Eval<T> type
checks, but the translation of Eq<T> does not: checking the
branch comparing an instance of Tuple<A,B> with an in-
stance of Tuple<C,D> relies on our switch construct’s novel
use of type equations.

Syntactically, our switch construct extends the existing
C] grammar, as shown in Figure 9 (changes in grey).

A single case match has the typical form C<X1, . . . , Xn> x.
It both binds formal type parameters X1, . . . , Xn, and de-
clares a formal argument x of static type C<X1, . . . , Xn>:
both are scoped locally to the statement list of the enclosing
“switch-section” or branch. We call C<X1, . . . , Xn> the type
pattern of the match.

To type-check a switch statement, we first determine the
static type of each expression in the expression list. Let
D<T1, . . . , Tk> refer to the static type of the ith expression
in the expression list. The statement list of each branch
is checked in a scope determined as follows. For the ith
pattern in the branch, we check that the formal type pat-

switch-statement :

switch (expression) switch-block

switch (expression-list) switch-block

switch-block :

{ switch-sectionsopt }
switch-sections :

switch-section
switch-sections switch-section

switch-section :

switch-labels statement-list

case match-expression : statement-list

switch-labels :

switch-label
switch-labels switch-label

switch-label :

case constant-expression :
default :

match-expression :

match

(match-list)

match :

identifier type-parameter-listopt identifieropt

match-list :

match

match , match-list

Figure 9: Extensions to switch

tern, C<X1, . . . , Xn>, is derived from some (open) instantia-
tion of D<U1, . . . , Uk> (by chasing the inheritance hierarchy
upwards from C<X1, . . . , Xn> to some formal instantiation of
D). If it is not (because C does not derive from D), the match
is ill-formed and produces a compile-time error. Otherwise,
we add the equation D<T1, . . . , Tk> = D<U1, . . . , Uk> to the
set of equations for this branch. We add one equation per
corresponding expression and match in the expression and
match lists (which must have the same length). Once we
have gathered all the equations for the branch, we unify
them to see if they have any solution. If not, the branch
is dead, and the compiler could either issue an error (rul-
ing out dead code), or a warning (allowing dead code) and
skip type-checking the unreachable branch. If the equations
have a solution, they must also have a most-general one.
We type-check the statement-list of the branch assuming the
type equalities induced by that most-general solution as well
as the local declaration of the variable x from each match.
In practice, a compiler could either substitute the solutions
through the scope of the branch and its statement list, or
cache the substitution, applying it whenever required to test
type compatibility. Note that each branch must be checked
independently of the equations induced by other branches,
and that the outer scope as well as the return type of the
enclosing method may itself be specialized by the unifier of
each branch. In particular, this allows different branches to
return from the method with values of different types. The
default branch is checked in the scope of the entire switch
statement, with no additional refinement of the scope. Be-
cause matches are binding constructs that extend the outer
scope, it is illegal to jump directly into a branch, by-passing
the switch.

A switch statement with n expressions in its expression
list is executed as follows. The expressions are evaluated to

objects o1, ..., on. If any of the values is null, we immedi-
ately enter the default branch. Otherwise, the branches are
tested sequentially. The current branch is taken if, and only
if, for each i ≤ n, the runtime type of object oi is compatible
with the type pattern, C<X1, . . . , Xn>, of the ith match of the
branch, for some actual instantiation T1, . . . , Tn, of the for-
mal type parameters in X1, . . . , Xn. If all of the matches are
compatible, the actual instantiation of each type pattern is
bound to that pattern’s formal type parameters, the object
oi is bound to the variable of the ith match, and the case

block is entered. Otherwise, we proceed to the next branch,
falling through to the default case when no branch is taken.
For type safety, it is vital that a non-default branch is only
entered if all of the objects are non-null: it is precisely the
dynamic test against a non-null value that justifies the type
equations used to check each branch.

Interestingly, it is easier to compile our switch in the type-
erasing interpretation of generics found in Java: to compile
a match against C<X1, . . . , Xn> x one would simply generate
a test x instanceof C, as type arguments are erased at run-
time. For C], it is necessary to use reflective capabilities to
(a) test the class of the object, independent of its generic
instantiation, and (b) bind the instantiation to type para-
meters, probably by invoking a generic method whose body
contains code for the branch. Ideally, the Common Lan-
guage Runtime could be extended to support this match-
and-bind primitive directly. Adapting the techniques of [11]
would require code specialization at the level of branches,
not just methods, since existential type parameters may only
be discovered on branching.

4. EXAMPLES
In this section we present a number of examples, already

described in the literature on GADTs, but now presented as
programs in C].

4.1 Statically typed printf
The libraries supplied with C] and the most recent release

of Java provide methods similar to the printf function well-
known to C programmers, used for formatted output of a list
of arguments. For example, here is its simplest variant in
C] from the System.String class:

string Format(string format, params object[] args);

This approach to formatting is preferable to ad hoc append-
ing of strings, because style (the format string format) is
separated from content (the arguments args). The draw-
back is that static type safety is lost: it is not possible to
check statically that the number and types of placeholders
in format match the number and types of args.

But suppose we use a GADT for the format specifier in
place of a string [25, 8]. Figure 10 presents code in C].

The Format<A> generic class represents formatters that
produce a value of type A. Formatters for integers (Int),
characters (Char), and string literals (Lit) are presented.
Constructors for each of these take another formatter as
argument, representing the remainder of the format, and in
the case of literals, the literal in question. Formatters are
chained together, ending with a use of the Stop formatter.
For conciseness, some trivial helper functions I, C and S are
defined; type inference for generic methods then saves an
abundance of angle brackets. The expression

S("int i = ", I(S(" and char c = ", C(stop))))

delegate B Function<A,B>(A arg);
public abstract class Format<A> {
public abstract A Do(StringBuilder b);

}
public class Int<A> : Format<Function<int,A>> {
Format<A> f; public Int(Format<A> rest) { this.f=f; }
public override Function<int,A> Do(StringBuilder b)

{ return delegate(int i)
{ return f.Do(b.Append(i)); };

}
}
public class Char<A> : Format<Function<char,A>> {
Format<A> f; public Char(Format<A> f) { this.f=f; }
public override Function<char,A> Do(StringBuilder b)

{ return delegate(char c)
{ return f.Do(b.Append(c)); };

}
}
public class Lit<A> : Format<A> {
string s; Format<A> f;
public Lit(string s, Format<A> f)

{ this.s=s; this.f=f; }
public override A Do(StringBuilder b)

{ return f.Do(b.Append(s)); }
}
public class Stop : Format<string> {
public override string Do(StringBuilder b)

{ return b.ToString(); }
}
public class Helper {
static Int<A> I<A>(Format<A> f)

{ return new Int<A>(f); }
static Char<A> C<A>(Format<A> f)

{ return new Char<A>(f); }
static Lit<A> S<A>(string s, Format<A> f)

{ return new Lit<A>(s,f); }
static Stop stop = new Stop();
public static void Main() {

Format<Function<int,Function<char,string>>> fmt =
S("int i = ", I(S(" and char c = ", C(stop))));

string out = fmt.Do(new StringBuilder())(34)(’a’);
Console.WriteLine(out);

}
}

Figure 10: Printf

is the equivalent of the printf-style format string

"int i = %d and char c = %c".

The clever bit is its type:

Format<Function<int,Function<char,string>>>,

which describes a formatter that yields a function that ac-
cepts an integer, then a character, and returns a string.

4.2 Types as values
One motivation for some of the previous work on GADTs

was to obtain runtime representations of types as values [25].
These can then be used to mimic dynamic typing in fully-
statically-typed languages such as Haskell, without destroy-
ing existing properties of the language. They also pave the
way for writing so-called “polytypic” functions that analyze
the structure of types at runtime.

Many object-oriented languages support runtime types al-
ready. Despite this, it is instructive to study their encoding
as GADTs. The existing runtime type capability has some
drawbacks: it is intrusive (all objects carry runtime type in-
formation), and incomplete (in Java, generic type arguments

public abstract class Rep<T> {
public abstract bool Eq(T x, T y);
public abstract string Pretty(T x);

}
public class IntRep : Rep<int> {

public override bool Eq(int x, int y)
{ return x==y; }

public override string Pretty(int x)
{ return x.ToString(); }

}
public class BoolRep : Rep<bool> {

public override bool Eq(bool x, bool y)
{ return x==y; }

public override string Pretty(bool x)
{ return x ? "true" : "false"; }

}
public class PairRep<A,B> : Rep<Pair<A,B>> {

Rep<A> a; Rep b;
public PairRep(Rep<A> a, Rep b)
{ this.a = a; this.b = b; }

public override bool Eq(Pair<A,B> x, Pair<A,B> y)
{ return a.Eq(x.fst, y.fst) && b.Eq(x.snd,y.snd); }

public override string Pretty(Pair<A,B> p)
{ return "(" + a.Pretty(p.fst)

+ "," + b.Pretty(p.snd) + ")"; }
}
public class IEnumRep<T> : Rep<IEnumerable<T>> {

Rep<T> rep;
public IEnumRep(Rep<T> rep) { this.rep=rep; }
public override bool Eq(IEnumerable<T> x,

IEnumerable<T> y) {
IEnumerator<T> xenum = x.GetEnumerator();
IEnumerator<T> yenum = y.GetEnumerator();
while (xenum.MoveNext() && yenum.MoveNext())

if (!rep.Eq(xenum.Current, yenum.Current))
return false;

return !xenum.MoveNext() && !yenum.MoveNext();
}
public override string Pretty(IEnumerable<T> x) {
string sep = ""; string result = "";
foreach (T xitem in x)

{ result += sep + rep.Pretty(xitem); sep = ","; }
return result;

}
}

Figure 11: Types as values

are lost through type erasure; in C] they are preserved, but
it is not possible to deconstruct constructed types, binding
type arguments to type variables at runtime).

The idea behind types-as-values is to represent a type τ
as a value of type Rep<τ>. Figure 11 presents a generic
class Rep<T> whose subclasses represent a number of C]

types: int, bool, pairs and instantiations of IEnumerator.
Also illustrated are two polytypic functions: equality, and
a pretty-printer function. These functions dispatch on the
type representation to code specialized for that type. Note
that this is not possible using the existing runtime type fea-
tures of C] or Java: Pretty on Rep<IEnumerator<τ>> looks
at the representation of τ to determine how to pretty-print
enumerated items, and Eq expresses statically the fact that
its arguments have the same type, neither of which can be
captured by runtime types in Java and C].

There are three interesting facets to Rep:

• It is an example of a phantom type: its type parameter
is not used to type data, but is used to force type-
distinctions.

// Represent natural numbers using classes
public class Nat { }
public class Zero : Nat { }
public class Succ<T> : Nat { }
public delegate B Function<A,B>(A arg);
// Lists of A with length L
public abstract class List<A,L> {
public abstract A Head<K>() where L=Succ<K>;
public abstract List<A,K> Tail<K>() where L=Succ<K>;
public abstract List<B,L> Map(Function<A,B> f);
public abstract List<Pair<A,B>,L> Zip(List<B,L> l);

}
public class Nil<A> : List<A,Zero> {
public override List<B,Zero>

Map(Function<A,B> f) { return new Nil(); }
public override List<Pair<A,B>,Zero>

Zip(List<B,Zero> that)
{ return new Nil<Pair<A,B>>(); }

}
public class Cons<A,L> : List<A,Succ<L>> {
public A head; public List<A,L> tail;
public Cons(A head, List<A,L> tail)

{ this.head=head; this.tail=tail; }
public override A Head<K>() { return head; }
public override List<A,K> Tail<K>() { return tail; }
public override List<B,Succ<L>>

Map(Function<A,B> f)
{ return new Cons<B,L>(f(head), tail.Map(f)); }

public override List<Pair<A,B>,Succ<L>>
Zip(List<B,Succ<L>> that)
{ return new Cons<Pair<A,B>,L>(

new Pair<A,B>(head, that.Head<L>()),
Zip(that.Tail<L>())); }

}

Figure 12: Sized lists, using equational constraints

• It is an example of a type-indexed datatype, and Eq

and Pretty are examples of type-indexed functions.
Values of type Rep<τ> are determined by the structure
of τ , and the behavior of Eq and Pretty is likewise
determined by the structure of τ .

• Moreover, it is a singleton type: for each τ , there is (at
most) one value of type Rep<τ>, if we neglect object
identity and the existence of null.

In Section 4.5 we present an extended example that makes
use of Rep to type-check the little language of Section 1.

4.3 Sized lists
Our next example (Figure 12) uses a ‘phantom’ type pa-

rameter L to a list List datatype to encode the length of the
list in the type. Observe in particular how the equational
constraints on the Head and Tail methods force the list to
be non-empty; the Nil class need not override these meth-
ods because the constraint can never be satisfied in that
subclass. The method signatures of Map and Zip express an
invariant: the input and output lists have the same length.

It is even possible to assign a type to a size-correct Append
operation. However, the operation would need take a third
argument, an instance of an auxiliary Sum class that ‘wit-
nesses’ the fact that the length of the resulting list is the
sum of the lengths of the arguments lists and is used to
drive the computation.

More sophisticated invariants on various data structures
can be encoded using GADTs, for example, invariants as-
sociated with binomial heaps and red-black trees [22, 21].

However, it is probably too early to say whether these en-
codings are truly practical for large-scale programming.

4.4 Typed expressions with environments
Suppose that we wish to add variables and a local binding

construct to the little language of Section 1:

exp ::= . . . | var | let var = exp in exp

To implement an interpreter we now need to evaluate expres-
sions in the context of an environment that maps variables
to values. At first it would appear that we must abandon
static typing, as values in the environment will be of differ-
ent types. If we had only the types int and bool then we
could simply split the environment into two, but in general
we cannot do this. So instead, we parameterize expressions
by both the type denoted by the expression, and by the type
of environment in which it must be evaluated [22]. Figure 13
presents code that does just that, representing variables us-
ing a GADT encoding of the natural numbers in order to
index the environment.

4.5 Type checking
Our final example in Figure 14 brings everything together.

The TC virtual method type-checks an untyped Exp expres-
sion (Figure 1) to produce a typed expression Exp<T> (Fig-
ure 2) paired with a type representation Rep<T> (Figure 11)
encapsulated in a class AnyTypedExp that hides the type pa-
rameter T. TC just returns null if there is a type error. Type
checking proceeds by dispatch on the untyped expression but
uses our extended switch construct to inspect the result of
recursing on subexpressions and to inspect type representa-
tions. Note the cunning use of the Equal GADT, used to
‘witness’ equality of type representations. This example is
based on a Haskell implementation by Weirich [24].

5. FORMALIZATION
The aim of this section is provide evidence that our infor-

mally described extensions of C] are sound. We formalize
the extensions for a small, but representative, fragment of
C], and prove a type soundness theorem using standard op-
erational techniques. After presenting the type system and
operational semantics, we prove the usual Preservation and
Progress theorems (Theorems 2 and 3) that establish Type
Soundness (Theorem 4). Preservation tells us that program
evaluation preserves types. Progress tells us that well-typed
programs are either already fully evaluated, may be evalu-
ated further, or are stuck, but only at the evaluation of an
illegal cast (but not, say, at an undefined runtime member
lookup). The fact that we have to accommodate stuck pro-
grams has nothing to do with our extensions; it is just the
usual symptom of supporting runtime-checked down casts.

We formalize our proposed extensions in ‘C] minor’ [10],
a small, purely-functional subset of C] version 2.0 [20, 7].
Its syntax, typing rules and small-step reduction semantics
are presented in Figures 15 and 16. To aid the reader, we

emphasize the essential differences to (constraint-free) C]

minor using shading. This formalization is based on Feath-
erweight GJ [9] and has similar aims: it is just enough for
our purposes but does not “cheat” – valid (equation-free)
programs in C] minor really are valid C] programs. The
differences from Featherweight GJ are as follows:

• There are minor syntactic differences between Java

and C]: the use of ‘:’ in place of extends, and base

in place of super. Methods must be declared virtual

explicitly, and are overridden explicitly using the key-
word override. (In the full language, redeclaration
of an inherited method as virtual introduces a new
method without overriding the inherited one. Our sub-
set does not support this.)

• For simplicity, we omit bounds on type parameters. In-
stead, we extend the language with equations on types,
specified at virtual method definitions and implicitly
inherited at method overrides.

• We include a separate rule for subsumption instead of
including subtyping judgments in multiple rules.

• We fix the reduction order to be call-by-value.

Like Featherweight GJ, this language does not include ob-
ject identity and encapsulated state, which arguably are
defining features of the object-oriented programming par-
adigm. It does include dynamic dispatch, generic methods
and classes, and, for added drama, runtime casts.

For readers unfamiliar with the work on Featherweight GJ
we summaries the language here; for more details see [9].

A type (ranged over by T , U and V) is either a formal
type parameter (ranged over by X and Y) or the type in-
stantiation of a class (ranged over by C ,D) written C<T>

and ranged over by I . object abbreviates object<>.
A class definition cd consists of a class name C with

formal type parameters X , base class (superclass) I , con-
structor definition kd , typed instance fields T f and meth-
ods md . Method names in md must be distinct i.e. there is
no support for overloading.

A method qualifier Q is either public virtual, denot-
ing a publicly-accessible method that can be inherited or
overridden in subclasses, or public override, denoting a
method that overrides a method of the same name and type
signature in some superclass.

A method definition md consists of a method qualifier
Q , a return type T , name m, formal type parameters X ,
formal argument names x and types T , a (possibly empty)
sequence of type equations E, and a body consisting of a
single statement, return e;. The equation-less sugar

Q T m<X >(T x) {return e;}

abbreviates a declaration with an empty where clause (|E| =
0). By design, the typing rules only allow equations to be
placed on a virtual method definition: equations are inher-
ited, modulo base-class instantiation, by any overrides of
this virtual method. Implicitly inheriting equations matches
C]’s implicit inheritance of bounds on type parameters.4

A constructor kd simply initializes the fields declared by
the class and its superclass.

An expression e can be a method parameter x , a field
access e.f , the invocation of a virtual method at some type
instantiation e.m<T>(e) or the creation of an object with
initial field values new I (e). A value v is a fully-evaluated
expression and (always) has the form new I (v).

A class table D maps class names to class definitions.
The distinguished class object is not listed in the table and
is dealt with specially.

4An alternative would be to require the explicit re-
declaration of any inherited constraints.

// Environments are either empty,
// or pair a value of type T with the rest of the environment, of type E
public class EnvNil { }
public class EnvCons<T,E> {

public T t; public E e; public EnvCons(T t, E e) { this.t=t; this.e=e; }
}
// Expressions have type T in context of an environment of type E
public abstract class Exp<E,T> {

public abstract T Eval(E env);
}
public abstract class Var<E,T> : Exp<E,T> { }
public class VarZero<E,T> : Var<EnvCons<T,E>,T> {

public override T Eval(EnvCons<T,E> env) { return env.t; }
}
public class VarSucc<E,T,T2> : Var<EnvCons<T2,E>,T> {

Var<E,T> v; public VarSucc(Var<E,T> v) { this.v = v; }
public override T Eval(EnvCons<T2,E> env) { return v.Eval(env.e); }

}
public class Lit<E> : Exp<E,int> {

int value; public Lit(int value) { this.value=value; }
public override int Eval(E env) { return value; }

}
// Plus, Or etc similar
public class Cond<E,T> : Exp<E,T> {

Exp<E,bool> e1; Exp<E,T> e2, e3;
public Cond(Exp<E,bool> e1, Exp<E,T> e2, Exp<E,T> e3) { this.e1=e1; this.e2=e2; this.e3=e3; }
public override T Eval(E env) { return e1.Eval(env) ? e2.Eval(env) : e3.Eval(env); }

}
public class Let<E,A,B> : Exp<E,B> {

Exp<E,A> e1; Exp<EnvCons<A,E>,B> e2;
public Let(Exp<E,A> e1, Exp<EnvCons<A,E>,B> e2) { this.e1=e1; this.e2=e2; }
public override B Eval(E env) { return e2.Eval(new EnvCons<A,E>(e1.Eval(env), env)); }

}

Figure 13: Typed expressions in typed environments

A typing environment Γ has the form Γ = X , x :T , E
where free type variables in T and E are drawn from X .
We write · to denote the empty environment. Judgement
forms are as follows:

• The formation judgement Γ ` T ok states “in typing
environment Γ, the type T is well-formed with respect
to the class table and type variables declared in Γ”.

• The formation judgement ` Γ ok states that “the types
in the environment are individually well-formed with
respect to the class table and type variables in Γ”.

• The novel type equivalence judgement Γ ` E states
that “the type equation E is a consequence of the con-
joined equations in Γ”.

• The mostly standard subtype judgement Γ ` T <:
U states that “type T is a subtype of U , given the
equations in Γ”.

• A typing judgment Γ ` e : T states that “in the con-
text of a typing environment Γ, the expression e has
type T” with type variables in e and T drawn from Γ.

• A method well-formedness judgment ` md ok in C<X >

states that “method definition md is valid in class
C<X >”.

• A class well-formedness judgment ` cd ok states that
“class definition cd is valid”.

• The judgement e → e states that “(closed) expression
e reduces, in one step, to (closed) expression e ′.” As

usual, the reduction relation is defined by both primi-
tive reduction rules and contextual evaluation rules.

All of the judgment forms and helper definitions of Fig-
ures 15 and 16 assume a class table D. When we wish to be
more explicit, we annotate judgments and helpers with D.
We say that D is a valid class table if `D cd ok for each class
definition cd in D and the class hierarchy is a tree rooted at
object (which we could easily formalize but do not).

The operation mtype(T .m), given a statically known class
T ≡ C<T> and method name m, looks up the generic signa-
ture of method m, by traversing the class hierarchy from C
to find its virtual definition. The operation also computes
the inherited constraints of m so it cannot simply return
the syntactic signature of an intervening override but must
examine its virtual definition.

The operation mbody(T .m<T>), given a runtime class
T ≡ C<U >, method name m and method instantiation T ,
walks the class hierarchy from C to find the most specific
override of the virtual method, returning its body instanti-
ated at types T .

The method formation judgements make use of the fol-
lowing definition:

Definition 1 (Satisfiable Equations). An equation
set E ≡ T 1=T 2 , where X ` T 1,T 2 ok, is satisfiable, writ-
ten X ` E satisfiable, if, and only if, there is some substitu-
tion [U /X] such that [U /X]T 1 = [U /X]T 2 (syntactically).

By extension, a type environment Γ = X , x :T , E is satisfi-
able, written ` Γ satisfiable, if, and only if, X ` E satisfiable.

Note that it is possible to decide satisfiability using Robin-
son’s first-order unification algorithm [3, 1].

using T; // The typed expressions namespace
public abstract class AnyTypedExp { }
public class TypedExp<T> : AnyTypedExp {

Rep<T> rep; Exp<T> exp; public TypedExp(Rep<T> rep, Exp<T> exp) { this.rep = rep; this.exp = exp; }
}
namespace U { // Untyped expressions

public abstract class Exp { ...
public abstract AnyTypedExp TC();

}
public class Lit : Exp { ...
public override AnyTypedExp TC()

{ return new TypedExp<int>(new IntRep(), new T.Lit(value)); }
}
public class Plus : Exp { ...
public override AnyTypedExp TC() {

switch (e1.TC(), e2.TC()) {
case (TypedExp<A> te1, TypedExp te2) :

switch (te1.rep, te2.rep) {
case (IntRep, IntRep) : return new TypedExp<int>(new IntRep(), new T.Plus(te1.exp, te2.exp));
default : return null;

}
default : return null;

} } }
public class Cond : Exp { ...
public override AnyTypedExp TC() {

switch (e1.TC(), e2.TC(), e3.TC()) {
case (TypedExp<A> te1, TypedExp te2, TypedExp<C> te3) :

switch (te1.rep) {
case BoolRep :

switch (Helper.IsEqual(te2.rep, te3.rep)) {
case Identical<D> : return new TypedExp<D>(te3.rep, new T.Cond<D>(te1.exp, te2.exp, te3.exp));
default : return null;

}
default : return null;

}
default : return null;

} } }
public class Tuple : Exp { ...
public override AnyTypedExp TC() {

switch (e1.TC(), e2.TC()) {
case (TypedExp<A> te1, TypedExp te2) :

return new TypedExp<Pair<A,B>>(new PairRep<A,B>(te1.rep, te2.rep), new T.Tuple<A,B>(te1.exp, te2.exp));
default : return null;

} } }
public class Fst : Exp { ...
public override AnyTypedExp TC() {

switch (e.TC()) {
case (TypedExp<T> te) :

switch (te.rep) {
case PairRep<A,B> pairrep :return new TypedExp<A>(pairrep.fst, new T.Fst<A,B>(te.exp));
default : return null;

}
default : return null;

} } }
}
public abstract class Equal<A,B> { }
public class Identical<C> : Equal<C,C> { }
public class Helper {

public static Equal<A,B> IsEqual<A,B>(Rep<A> r1, Rep r2) {
switch (r1,r2) {

case (IntRep, IntRep) : return new Identical<int>();
case (BoolRep, BoolRep) : return new Identical<bool>();
case (PairRep<C,D> pairrep1, PairRep<E,F> pairrep2) :
switch (IsEqual(pairrep1.fst, pairrep2.fst), IsEqual(pairrep1.snd,pairrep2.snd)) {

case (Identical<G>, Identical<H>) : return new Identical<Pair<G,H>>();
default : return null;

}
}
return null;

}
}

Figure 14: A GADT type-checker, recovering strongly-typed from untyped expressions (using switch)

Syntax:

(class def) cd ::= class C<X > : I {T f ; kd md}
(constr def) kd ::= public C(T f) : base(f) {this.f = f ;}

(method qualifier) Q ::= public virtual | public override

(method def) md ::= Q T m<X >(T x) where E {return e;}
(expression) e ::= x | e.f | e.m<T>(e) | new I (e) | (T)e

(value) v , w ::= new I (v)
(type) T ,U ,V ::= X | I

(instantiated type) I ::= C<T>

(equational constraint) E ::= T=U

(typing environment) Γ ::= X , x : T , E

(method signature) ::= <X where E >T → T (X is bound in E,T ,T)
(simultaneous type and term substitutions) ::= [T/X], [e/x]

Well-formed contexts and types:

X ` T ,U ,V ok

` X , x : T ,U =V ok

X ∈ Γ

Γ ` X ok

class C<X > : I { . . . } Γ ` T ok |T | = |X |

Γ ` C<T> ok

Type Equivalence:

(eq-hyp)
T=U ∈ Γ

Γ ` T=U
(eq-con)

Γ ` T=U Γ ` C<T> ok

Γ ` C<T>=C<U>
(eq-decon)

Γ ` C<T>=C<U >

Γ ` Ti=Ui

(eq-refl)
Γ ` X ok

Γ ` X =X
(eq-sym)

Γ ` U =T

Γ ` T=U
(eq-tran)

Γ ` T=U Γ ` U =V

Γ ` T=V

Subtyping:

(sub-refl)
Γ ` T=U

Γ ` T <: U

Γ ` T <: U Γ ` U <: V

Γ ` T <: V

X ∈ Γ

Γ ` X <: object

D(C) = class C<X > : I { . . . } Γ ` T ok

Γ ` C<T> <: [T/X]I

Typing:

(ty-var)
Γ, x :T ` x : T

(ty-fld)
Γ ` e : I fields(I) = T f

Γ ` e.fi : Ti

(ty-cast)
Γ ` U ok Γ ` e : T

Γ ` (U)e : U

(ty-sub)
Γ ` e : T Γ ` T <: U

Γ ` e : U
(ty-new)

Γ ` I ok fields(I) = T f Γ ` e : T

Γ ` new I (e) : I

(ty-meth)
Γ ` e : I Γ ` T ok Γ ` e : [T/X]U mtype(I .m) = <X where E >U → U Γ ` [T/X]E

Γ ` e.m<T>(e) : [T/X]U

Method and Class Typing:

(ok-virtual)

class C<X > : I { . . . } mtype(I .m) not defined X ,Y ` T ,T , E ok

X ,Y ` E satisfiable X ,Y , E , x :T , this:C<X > ` e : T

` public virtual T m<Y >(T x) where E {return e;} ok in C<X >

(ok-override)

class C<X > : I { . . . } X ,Y ` T ,T ok mtype(I .m) = <Y where E >T → T

X ,Y ` E satisfiable X ,Y , E , x :T , this:C<X > ` e : T

` public override T m<Y >(T x) {return e;} ok in C<X >

X ` I ,T ok fields(I) = U g f and g disjoint

` md ok in C<X > kd = public C(U g ,T f) base(g) {this.f =f ; }

` class C<X> : I {T f ; kd md} ok

Figure 15: Syntax and typing rules for C] minor

Operational Semantics:
(reduction rules)

(r-fld)
fields(I) = T f

new I (v).fi → vi

(r-meth)
mbody(I .m<T>) = 〈x , e ′〉

new I (v).m<T>(w) → [w/x , new I (v)/this]e ′
(r-cast)

` I <: T

(T)new I (v) → new I (v)

(evaluation rules)

(c-new)
e → e ′

new I (v , e, e) → new I (v , e ′, e)
(c-fld)

e → e ′

e.fi → e ′
.fi

(c-cast)
e → e ′

(T)e → (T)e ′

(c-meth-rcv)
e → e ′

e.m<T>(e) → e ′
.m<T>(e)

(c-meth-arg)
e → e ′

v.m<T>(v , e, e) → v.m<T>(v , e ′, e)

Field lookup:

fields(object) = {}

D(C) = class C<X > : I {U1 f1; kd md}

fields([T/X]I) = U2 f2

fields(C<T>) = U2 f2, [T/X]U1 f1

Method lookup:

D(C) = class C<X1> : I { . . . md} m not defined public virtual in md

mtype(C<T1>.m) = mtype([T1/X1]I .m)

D(C) = class C<X1> : I { . . . md} public virtual U m<X2>(U x) where E {return e;} ∈ md

mtype(C<T1>.m) = [T1/X1](<X2 where E >U → U)

Method dispatch:

D(C) = class C<X1> : I { . . . md} m not defined in md

mbody(C<T1>.m<T2>) = mbody([T1/X1]I .m<T2>)

D(C) = class C<X1> : I { . . . md} Q U m<X2>(U x) where E {return e;} ∈ md

mbody(C<T1>.m<T2>) = 〈x , [T1/X1,T2/X2]e〉

Figure 16: Evaluation rules and helper definitions for C] minor

Now some comments on the differences in our rules. Apart
from the usual equivalence and congruence rules, the type
equivalence judgement includes the novel hypothesis and
decomposition rules, (eq-hyp) and (eq-decon), discussed at
length in [3]: rule (eq-decon) states that class names are in-
jective so that we can deduce the equivalence of correspond-
ing type arguments from the equivalence of two instantia-
tions of the same class. Full reflexivity is derivable from
reflexivity on variables and the congruence rules. It is easy
(and useful) to show that, in the context of no equations,
X ` T=U implies T = U (syntactically).

Cheney and Hinze also prove the following pragmatically
useful result that relates equational reasoning in a satisfiable
environment to unification (Proposition 1. of [3]):

Theorem 1. Assume ` X , E ok and let Θ ≡ [U /X] be
any most-general unifier of E, then X , E ` T1=T2 if, and
only if, Θ(T1) = Θ(T2) (syntactically).

If our hypothetical equations are satisfiable, then we can
decide whether an equation is derivable by applying a most

general unifier of the equational hypotheses and testing that
the equated types are identical.

Our subtyping judgement Γ ` T <: U is standard, except
that the usual reflexivity rule is generalized by rule (sub-refl)
to include equivalent (not just identical) types in the sub-
typing relation. Rule (ty-sub) can exploit these equations
to assign more than one type to an expression (even if these
types are otherwise unrelated by the class hierarchy).

Rule (ty-meth) imposes an additional premise: the ac-
tual, instantiated constraints of the method signature (if
any) must be derivable from the equations in the context.
In turn, rules (ok-virtual) and (ok-override) add the declared
or inherited formal method constraints to the environment,
before checking the method body: the body may assume the
constraints hold, thus allowing more code to type-check.

Our type checking rules are not algorithmic in their cur-
rent form. In particular, the rules do not give a strategy
for proving equations or subtyping judgements and the type
checking judgement for expressions is not syntax-directed
because of rule (ty-sub). As a concession to producing an

algorithm, rules (ok-virtual) and (ok-override) require that
the declared constraints in E are satisfiable. This ensures
that an algorithm will only have to type check the bodies
of methods that have (most general) solutions. This does
not rule out any useful programs: methods with unsatisfi-
able constraints are effectively dead, since the preconditions
for calling them can never be established. Rejecting un-
satisfiable methods means that it should be easy to adapt
an existing type checking algorithm for C] minor without
constraints: the modified algorithm first solves the equa-
tions to obtain a most general unifier, applies that unifier
to the context, body and return type, and then proceeds
with type checking as usual. Under the unifier, types that
are equivalent must be syntactically identical (by Theorem
1), which makes subtyping and equivalence simple to test.
At a method call, equational pre-conditions will either be
syntactically true (all equated types are identical), or syn-
tactically false (some equated types are distinct), signaling
a type error.

Nevertheless, our proof of Type Soundness does not rely
on the notion of satisfiability. Even if we define satisfiability
to be vacuously true, type soundness still holds.

We now return to the proof (eliding to state standard
lemmas like Well-formedness, Weakening and Inversion).

Lemma 1 (Sanity). Provided D is a valid class table:

• The relations mtype(T .m) = and fields(T) = de-
fine partial functions.

• If · ` T ok and fields(T) = T f then f are disjoint
and · ` T ok.

• If · ` T ok and mtype(T .m) = <X where U1=U2>V →
V , then X ` U1, U2,V ,V ok.

We prove the usual type and term substitution properties
that follow, but a key lemma for our system is Lemma 4,
that lets us discharge proven equational hypotheses from
various judgement forms (a similar lemma appears in [3]).

Lemma 2 (Substitution Property for Lookup). If
D is a valid class table,

• If fields(I) = T f then fields([U /Y]I) = [U /Y]T f .

• mtype(I .m) = <X where E>T → T implies
mtype(([U /Y]I).m) = [U /Y](<X where E>T → T).

• mtype(I .m) is undefined then mtype(([U /Y]I).m) is
undefined.

Lemma 3 (Substitution for types). Let J range
over all judgment forms, namely typing (e : T), type equiv-
alence (T=U), type well-formedness (T ok) and subtyping
(T <: U). If X , Y , x :T , E ` J and Y ` U ok then
Y , x :[U /X]T , [U /X]E ` [U /X]J .

Proof. Straightforward induction on the derivation of
J , using Lemma 2.

Lemma 4 (Equation Elimination). Let J range over
typing, type equivalence and subtyping judgment forms (e :
T, T=U and T <: U). If Γ, E ` J and Γ ` E then Γ ` J .

Proof. Induction on the derivation of J .

Lemma 5 (Substitution for terms). If Γ, x :T ` e :
T and Γ ` v : T then Γ ` [v/x]e : T.

Proof. By induction on the typing derivation.

To prove Preservation we also need the following proper-
ties of inheritance:

Lemma 6 (Field Preservation). Provided D is a valid
class table, · ` T ,U ok and · ` T <: U, then fields(U) =
U g and fields(T) = T f implies Ti = Ui and fi = gi for
all i ≤ |g |.

Lemma 7 (Signature Preservation). Provided D is
a valid class table, · ` T ,U ok and · ` T <: U then
mtype(U .m) = <X where E>V → V implies mtype(T .m) =
<X where E>V → V .

Lemma 8 (Soundness for Dispatch). If D is a valid
class table and mbody(T .m<T>) = 〈x , e〉 then, provided · `
T ,T ok and mtype(T .m) = <X where E>U → U and · `
[T/X]E, there must be some type V such that · ` V ok,
· ` T <: V and x :[T/X]U , this:V ` e : [T/X]U.

Proof. By induction on the relation mbody(T .m<T>) =
〈x , return e;〉 using Substitution Lemmas 3 and 4 and 2.

Theorem 2 (Preservation). If D is a valid class ta-
ble and · ` e : T then e → e ′ implies · ` e : T.

Proof. Assume D is a valid class table and prove

e → e ′ =⇒ ∀T . · ` e : T =⇒ · ` e ′ : T

by induction on the reduction relation using Lemmas 5, 6,
7 and 8.

The proof of Progress relies on Lemma 9. The lemma
guarantees the presence of a dynamically resolved field or
method body, given the existence of a member of the same
name in a statically known superclass.

Lemma 9 (Runtime Lookup). Provided D is a valid
class table, · ` T ,U ok and and · ` T <: U then

• fields(U) = U g implies fields(T) = T f , for some
T , f , with Ti = Ui and fi = gi for all i ≤ |g |.

• mtype(U .m) = <X where E>V → V implies
mbody(T .m<T>) = 〈x , e〉 for some x , e with |x | = |V |.

To state the Progress Theorem in the presence of casts,
as for FGJ, we first characterize the implicit evaluation con-
texts, E , defined by the evaluation rules:

E ::= []
| new I (v , E , e)
| E.f
| E.m<T>(e)
| v.m<T>(v , E , e)
| (T)E

We define E [e] to be the obvious expression obtained by
replacing the unique hole [] in E with e.

Theorem 3 (Progress). If D is a valid class table
and · ` e : T then:

• e = v for some value v (e is fully evaluated), or

• e → e ′ for some e ′ (e can make progress), or

• e = E [(U)new I (v)], for some evaluation context E,
types U and I and values v where ¬ ` I <: U (e is
stuck, but only at the evaluation of a failed cast).

Proof. We assume D is a valid class table and show

Γ ` e : T =⇒
Γ ` e : T ∧
Γ = · =⇒

(∃v .e = v) ∨
(∃e ′.e → e ′) ∨
(∃E ,U , I , v .e = E [(U)new I (v)] ∧ ¬ ` I <: U)

by induction on the typing relation, applying Lemma 9.

Theorem 4 (Type Soundness). Define e →? e ′ to be
the reflexive, transitive closure of e → e ′. If D is a valid
class table and · ` e : T, e →? e ′ with e ′ a normal form,
then either e ′ is a value with · ` e ′ : T, or a stuck expres-
sion of the form E [(U)new I (v)] where ¬ ` I <: U.

Proof. An easy induction over e →? e ′ using Theorems
3 and 2.

5.1 Formalizing switch
We now show how to formalize a simple variant of the

switch statement described informally in Section 3.4. Be-
cause C] minor only has expressions, it is more convenient
to formalize a switch expression, whose branches return a
value, but the principles are similar. For brevity, we formal-
ize a unary switch that dispatches on a single expression;
n-ary switches are an easy exercise.

Figure 17 summarizes the additions. In the switch expres-
sion switch (e1) {b default:e2}, we call e1 the scrutinee,
the possibly empty sequence b branches, and e2 the default
expression. A branch case C<X > x:e is a binding con-
struct: the formal type parameters X of the type pattern
C<X >, are bound in the branch expression e; x is the pat-
tern variable, of static type C<X >.

The typing rule (ty-switch) states that the type of the
scrutinee, D<T>, is an instantiation, T , of generic class
D . For each branch, we check that the type pattern C<X >

is well-formed and a generic subtype of some instantiation
U of the scrutinee’s generic class D , possibly mentioning
type variables from X . Since the environment is empty,
but for X , this amounts to walking the class-hierarchy from
C , checking whether one of its superclasses is defined by
specializing D at U . In the Haskell type system for case ex-
pressions, this step corresponds to looking up the declared,
formal result type of a constructor in a datatype: but in the
OO setting, we need to additionally traverse the class hier-
archy. We then equate the instantiations T and U adding
the (necessarily) fresh type parameters X to the environ-
ment. Provided the resulting environment is satisfiable, we
then check that the type of the branch under this assump-
tion and the binding of the scrutinee, as variable x at the
pattern type, is U . If the environment is unsatisfiable, the
branch is dead and need not be checked. All branch expres-
sions, including the default expression, must have the same

result type U , but this may vary with the different equa-
tional hypotheses established by each branch. The reduc-
tion semantics ensures that the branch expression will only
be evaluated when T and U are, in fact equal, for some in-
stantiation of X , i.e. when the runtime type of the scrutinee
derives from C . Because the type of the branch expression
must be generic in the hypothetical types X , what this in-
stantiation actually is, at runtime, cannot affect the type
of the branch, beyond what is provable from the equational
constraints. The type of the entire switch expression is U .
Since this coincides with the type of the default expression,
it must be well-formed in the original environment, Γ. In
particular, the result type cannot mention any “existential”
type variables introduced by the branches.

Fortunately, the reduction rules are much easier to ex-
plain. Rule (c-switch) steps the evaluation of the scrutinee,
if it is not a value. Rule (r-succeed) reduces the entire switch
to the first branch expression, provided the runtime type of
the scrutinee’s value derives from the pattern type. The
runtime instantiation T of C is used to instantiate the type
parameters of the branch; the scrutinee value replaces the
pattern variable. Rule (r-fail) discards the first branch of
the switch, when the type of the scrutinee does not derive
from C . Rule (r-default) returns the default value, when
the list of branches has been exhausted. So, if the scrutinee
evaluates at all, the branches are tested in sequence, until
either one is taken, or we proceed with the default.

Provided we extend the definition of evaluation contexts
of Section 5 to cater for switch expressions,

E ::= ... | switch (E) {b default:e}

then we can again re-establish:

Theorem 5 (Type Soundness). C] minor, extended
with equational constraints and switch expressions, remains
sound, in the sense of Theorem 4.

Again, the satisfiability requirement is only imposed as a
concession to producing a type checking algorithm that need
not attempt to type statically dead branches under nonsen-
sical equations. But why do we predicate the typeability of
a branch on satisfiability of the environment, rather than
requiring that the environment is satisfiable and the branch
expression typeable (i.e. is the implication necessary)? The
answer is that to do otherwise would break the type substi-
tution property required to prove Preservation. Although
satisfiability itself is closed under substitution, substituting
into a proper subset of a set of satisfiable equations can break
the satisfiability of the entire set. To accommodate the ef-
fects of reduction, in which branches that were previously
live (satisfiable), can become dead by type substitution, the
type system needs to tolerate dead branches. In turn, this
leniency ensures that intermediate stages of reduction re-
main typeable. A possible alternative, also discussed by
[3], might be to redefine type substitution on expressions to
prune dead branches, but that seems like a radical departure
from tradition. The problem does not arise for methods, be-
cause reduction does not inline the definition of a method
until it is reduced.

6. RELATED WORK
Generalized algebraic data types were introduced by Xi,

Chen and Chen under the name ‘guarded recursive datatype

Syntax:

(expression) e ::= . . . | switch (e) {b default:e ′}
(branch) b ::= case C<X > x:e

Typing:

(ty-switch)

Γ ` e1 : D<T> Γ ` e2 : U

∀(case C<X > x:e) ∈ b. X ` C<X > ok X ` C<X > <: D<U > X 6∈ Γ
(` Γ,X ,T=U satisfiable =⇒ Γ,X ,T=U , x :C<X > ` e : U)

Γ ` switch (e1) {b default:e2} : U

Operational Semantics:

(r-succeed)
` I <: C<T>

switch (new I (v)) {case C<X > x:e1b default:e2} → [new I (v)/x , T/X]e1

(r-fail)
6 ∃T . ` I <: C<T>

switch (new I (v)) {case C<X > x:e1b default:e2} → switch (new I (v)) {b default:e2}

(r-default)
|b| = 0

switch (v) {b default:e} → e
(c-switch)

e1 → e ′

1

switch (e1) {b default:e2} → switch (e ′

1) {b default:e2}

Figure 17: Extensions to C] minor for switch

constructors’ [25], and were conceived as a means of repre-
senting types at runtime [5]. Independently, Cheney and
Hinze formulated a very similar system, which they call
‘first-class phantom types’ [3]. Our formal characterization
of type equality is similar to theirs; in particular, the use of
a decomposition rule. In contrast, Xi, Chen and Chen use
a semantic notion of entailment, and then show that a rule-
based characterization of the mixed-prefix unification algo-
rithm is sound and complete with respect to the semantics.
Hinze’s subsequent tutorial article on phantom types [8] is
a rich source of examples.

Type inference for GADTs has received some attention re-
cently. Simonet and Pottier cast it in the framework of the
HM(X) constraint-based generalization of Hindley-Milner
type inference for ML [23], and show that when ‘X’ is type
equality, with suitable annotations on case constructs, type
inference reduces to a decidable constraint solving problem.
Peyton Jones, Washburn and Weirich take a different tack,
solving unification-like problems on-the-fly. Their type sys-
tem uses most general unifiers, avoiding equations [17].

GADTs can be seen as a step towards full-blown depen-
dent types in programming. Sheard explores this connection
with his recent programming language Omega [22, 21], us-
ing GADTs to express strong invariants over data structures
such as binomial heaps and red-black trees.

Until now there has been no work on GADTs in the con-
text of object-oriented programming. Sestoft noticed that
C] generics can be used to express typed expressions and
evaluation [19]; independently Meijer [12] presented a C]

translation of the typed expression example from [17].
There have been a number of proposals to extend OO lan-

guages like Java with (non-generalized) algebraic datatypes
[14, 26, 13]. Some of these proposals support the features
(2: non-regular recursion) and (3: existential type parame-
ters) identified in Section 2.2, but restrict ‘case’ classes to
take the same type parameters as their superclass.

In this paper we described how the existing generics ca-
pability of C] and Java can be used to write only a limited
class of functions expressed over GADTs, namely those that
are ‘generic’ in the type parameters of the GADT. A similar
restriction applied to inductive types in an early version of
the Coq proof assistant [15]. Its elimination rule for induc-
tive types used substitution on types, just as the rule for
subclassing and signature refinement does in C] and Java.
More recent versions of Coq support a more expressive pat-
tern matching construct that uses unification to solve type
equalities [4], providing similar power to our proposal for
equational constraints, but in a much richer setting.

7. CONCLUSION AND FUTURE WORK
We have shown how the combination of generics, sub-

classing, and virtual dispatch supports the definition and
limited use of generalized algebraic data types in object-
oriented programming languages. To achieve full expres-
sivity for GADTs in C] we have proposed the addition of
equational constraints to the language; this extension also
makes it much easier to code certain operations over ordi-
nary algebraic datatypes such as Flatten and Unzip on lists.
For complex examples, virtual dispatch is impractical, and
so for convenience we have proposed a generalization of the
switch statement. Although we have not discussed this, our
extensions have a natural erasure semantics, making them
compatible with the erasure-based generics of Java as well
as the runtime-type passing semantics of C].

We plan to implement our extensions in a compiler for C]

version 2.0; we do not foresee any difficult interactions with
features from the complete language.

Future work includes studying formal translations from
System F with GADTs, into C] minor, with and without
equational constraints, and extending the previous transla-
tion of Kennedy and Syme [10]. We have begun looking at

two variants of System F: one, with full support for GADTs,
in the style of [25, 18, 17, 3], and utilizing equational con-
straints in the elimination rule for case (strong-case); the
other, without equations, but with a case-elimination rule
based on substitution (weak-case). The latter system char-
acterizes precisely the GADT-manipulating programs which
can be written in unextended C] without the use of runtime
casts. Interestingly, the use of type-decomposition in deriv-
ing equation judgments turns out to be crucial: given a term
that makes use of equations and the strong-case rule, but
containing no use of decomposition, there exists an equiva-
lent term derivable in the weak-case system without the use
of equations at all.

We are also investigating generalizing constraints still fur-
ther, specifying arbitrary subtype constraints on methods.
This could subsume upper bounds, lower bounds, and equa-
tions. In particular, we would like the equivalence induced
by subtyping (T ∼= U iff T<:U and U<:T) to coincide
with our equivalence relation as axiomatized in Figure 15.
As here, the use of a decomposition rule is crucial: from
C<T><:C<U > we deduce that T<:U and U<:T , as classes
behave invariantly with respect to subtyping.

Acknowledgements
Thanks to Nick Benton, Brian Grunkemeyer, Gavin Bier-
man, Simon Peyton Jones and Don Syme for valuable dis-
cussions.

8. REFERENCES
[1] F. Baader and T. Nipkow. Term Rewriting and All

That. Cambridge University Press, 1998.

[2] K. B. Bruce, L. Cardelli, G. Castagna, J. Eifrig, S. F.
Smith, V. Trifonov, G. T. Leavens, and B. C. Pierce.
On binary methods. Theory and Practice of Object
Systems, 1(3):221–242, 1995.

[3] J. Cheney and R. Hinze. First-class phantom types.
Technical Report 1901, Cornell University, 2003.

[4] T. Coquand. Pattern matching with dependent types.
In Proceedings of the 1992 Workshop on Types for
Proofs and Programs, 1992.

[5] K. Crary, S. Weirich, and G. Morrisett. Intensional
polymorphism in type erasure semantics. In Journal of
Functional Programming, November 2002.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley
Publishing Company, New York, NY, 1995.

[7] A. Hejlsberg, S. Wiltamuth, and P. Golde. C# version
2.0 specification, 2005. Available from
http://msdn.microsoft.com/vcsharp/team/

language/default.aspx.

[8] R. Hinze. Fun with phantom types. In J. Gibbons and
O. de Moor, editors, The Fun of Programming, pages
245–262. Palgrave Macmillan, Mar. 2003.

[9] A. Igarashi, B. Pierce, and P. Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. In
Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA),
1999.

[10] A. Kennedy and D. Syme. Transposing F to C]:
Expressivity of parametric polymorphism in an

object-oriented language. Concurrency and
Computation: Practice and Experience, 16:707–733,
2004.

[11] A. J. Kennedy and D. Syme. Design and
implementation of generics for the .NET Common
Language Runtime. In Programming Language Design
and Implementation. ACM, 2001.

[12] E. Meijer, November 2004. Presentation to IFIP WG
2.8 (private communication).

[13] M. Odersky, P. Altherr, V. Cremet, B. Emir,
S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman,
and M. Zenger. The Scala language specification,
2005. Available from http://scala.epfl.ch/.

[14] M. Odersky and P. Wadler. Pizza into Java:
Translating Theory into Practice. In 24th ACM
Symposium on Principles of Programming Languages
(POPL), pages 146–159, 1997.

[15] C. Paulin-Mohring. Inductive definitions in the system
Coq: Rules and properties. Technical Report 92-49,
Laboratoire de l’Informatique du Parallélisme, Ecole
Normale Supérieure de Lyon, December 1992.

[16] S. Peyton Jones et al. The ghc compiler version 6.4,
March 2005. Download at http://haskell.org/ghc.

[17] S. Peyton Jones, G. Washburn, and S. Weirich.
Wobbly types: type inference for generalised algebraic
data types. Draft, July 2004.

[18] F. Pottier and N. Gauthier. Polymorphic typed
defunctionalization. In Proceedings of the 31st ACM
Symposium on Principles of Programming Languages
(POPL’04), pages 89–98, Venice, Italy, Jan. 2004.

[19] P. Sestoft. Representing typed expressions, December
2001. Code sample in
http://www.dina.kvl.dk/∼sestoft/gcsharp/#expr.

[20] P. Sestoft and H. I. Hansen. C# Precisely. MIT Press,
October 2004.

[21] T. Sheard. Languages of the future. In OOPSLA ’04:
Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems,
languages, and applications, pages 116–119. ACM
Press, 2004.

[22] T. Sheard and E. Pasalic. Meta-programming with
built-in type equality. In Fourth International
Workshop on Logical Frameworks and Meta-languages
(LFM’04), July 2004.

[23] V. Simonet and F. Pottier. Constraint-based type
inference for guarded algebraic data types. Research
Report 5462, INRIA, Jan. 2005.

[24] S. Weirich. Type-checker to generate typed term from
untyped source, September 2004. Response to
challenge at Dagstuhl’04 set by Lennart Augustsson.
In ghc regression suite (tc.hs).

[25] H. Xi, C. Chen, and G. Chen. Guarded recursive
datatype constructors. In POPL ’03: Proceedings of
the 30th ACM SIGPLAN-SIGACT symposium on
Principles of Programming Languages, pages 224–235.
ACM Press, 2003.

[26] M. Zenger and M. Odersky. Extensible algebraic
datatypes with defaults. In ICFP ’01: Proceedings of
the 6th ACM International Conference on Functional
Programming, pages 241–252. ACM Press, 2001.

