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Reproduction of a Plane-Wave Sound Field Using
an Array of Loudspeakers

Darren B. WardMember, IEEEand Thushara D. Abhayapalatudent Member, IEEE

Abstract—Reproduction of a sound field is a fundamental loudspeakers [6]. Least squares techniques were used in [7] and
problem in acoustic signal processing. In this paper, we use a [8] to reproduce a sound field locally using only a few loud-
spherical harmonics analysis to derive performance bounds on speakers. The two-dimensional (2-D) Fourier transform has re-

how well an array of loudspeakers can recreate a three-dimen- tiv b dtof lat t for both th di
sional (3-D) plane-wave sound field within a spherical region of cently been used to formulate a system Tor bo € recording

space. Specifically, we develop a relationship between the numberand reproduction of 2-D sound fields [9].
of loudspeakers, the size of the reproduction sphere, the frequency Here we seek to develop some fundamental performance

range, and the desired accuracy. We also provide analogous results|imits for the specific problem of reproducing a plane-wave
for the special case of reproduction of a two-dimensional (2-D) sound field in free space.Specifically, we develop a rela-
sound field. Results are verified through computer simulations. . . ’ .
o _ tionship between the number of loudspeakers, the size of the
Index Terms—Acoustic signal processing, loudspeaker arrays, reproduction area, the frequency range, and the desired repro-
sound field reproduction, spherical harmonics, 3-D audio. duction accuracy. Since we only deal with the free field case
(i.e., we ignore the effect of reverberation) the relationships we
|. INTRODUCTION derive effectively provide an upper bound on the performance

. . _ ._that one could expect to achieve in a real room.
FUNDAMENTAL signal processing problem in acoustics The paper is organized as follows. In Section Il we outline the

Is to g:ontrol the_sound field wi_thin a given region of spac roblem addressed. Spherical harmonics analysis is described in
Reproducing a particular sound field using an array of louds

Kers h lication in three-di ional (3-D) audi ection Il and used to derive the two main theoretical results of
fpea (:aLrs ss aptE cation '? ree-dimensiona I'( t- ) au”:O S¥te paper: 1) conditions for exact reproduction of a sound field
ems [ lw ere the aim IS 1o give one or more ISIEners the (Pz,,;, a sphere (which would require an infinite number of loud-
pression of being immersed in a realistic, yet virtual, sound e,

. . i §lr5eakers to achieve); and 2) consideration of the error involved
vironment. In this paper, we derive performance bounds on h

I floud K tea3.D 4 fiel h using an approximation to the ideal reproduction. Practical
:‘I:I:e 2Bair(;ay otloudspeakers can recreate a 5-L sound fie dié'%ues relating to design of the loudspeaker array are considered

There h b . tudies of d field ducti in Section V. Analogous results for the more specific case of
ere have been various stucies ot sound NIeld reproaucligy ¢ g fig|q reproduction are presented in Section V. Finally,

One O.f the first was by Gerzon [3], in which he proposes us'%gresent simulations to verify the theoretical results derived.
spherical harmonics as a means to represent and reproduce

sound field. The outcome of Gerzon’s work was #imebisonics Notation

system, probably the best known of sound field reproduction

systems. Ambisonics effectively recreates a first-order sphericail hroughout this paper, we use the following notational con-
harmonics representation of a sound field at a single point\Vgntions: matrices and vectors are represented by upper and
space. Higher order ambisonics representations have also He@er case bold face, respectively, eX.andx. A unit vector
considered [3]. More recently, ambisonics has been relatediighe directionx is denoted by, i.e.,x = x/|x|. The symbol

the Kirchhoff-Helmholtz theorem [4] and shown to be equivd- = v/—1 is used to denote the imaginary part of a complex
lentto a Taylor series expansion of the sound field [5]. In anoth@¢#mber.

approach to sound field reproduction, knownasvefield syn-

thesis holographic techniques are used to reproduce a desired II. PROBLEM FORMULATION

sound field over a relatively large area using a large number OfConsider a plane-wave incident from the arbitrary direction

¥ = [sin® cos ¢, sin¥sin ¢, cos ¥]*, as shown in Fig. 1. The
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tackle the reproduction problem by using spherical harmonics

Incident analysis.
Observation plane wave We will define the reproduction regiog as being bounded

point v by a sphere of some specified radius, centered on the origin.
/\/\ Through our analysis, we primarily seek to answer the following

s fundamental questionVhat is the minimum number of loud-

speakers that can reproduce, up to a given accuracy, the 3-D
sound field generated within a sphere of given radius due to a
plane-wave source of given frequency?
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¢ ¢ I1l. SPHERICAL HARMONICS ANALYSIS OF SOUND FIELDS

A. Background
Fig. 1. Three-dimensional geometry. . . A . .
At the physical level, the sound field within a given region of
i ind d £t imolving that th b space is characterized by the classical wave equation. The gen-
¢ls Independent of frequency, Implying that the wavenumber i3, sqution to the wave equation in the spherical coordinate

ac':of)nstant n;]ultlple of frequency.d his incid | system can be decomposed irgpherical harmonicswhich
ssume that we want to reproduce this incident plane-wayg., o, orthogonal basis set for the representation of an arbi-

field within some specified regiog using an array o loud- trary wave field. Specifically, any arbitrary sound field at a point

speakers. Let thi#gh loudspeaker be a point source thatproduce)z(sand wavenumbetk can be represented as

a sound field
o miklyi—x] NV . A
Tl(x; k) = |yl|czk|}’l| 6|y —lx| , l=1,..., L (2) g(X7 ]%) = z:o Z Gnm(l'7 ]%)Ynm(x) 4)
l p— n= m=—n

at the observation point, wherey, is the loudspeaker location. whereG...(z; k) are a set of harmonic coefficients, which do
Observe that in order to relate the point-source field to tH@t depend on angular information of the paintNotice that
plane-wave field, we have included a normalization tertine representation (4) is similar in spirit to the Fourier series
lvi| exp(ik|y|), chosen such thaf(x; k) — exp(ikz(y¥%)) expansion.
as ly;] — oo, i.e., the point-source field becomes the The spherical harmonics are defined as [10, p. 194]
plane-wave field as the source distance goes to infinity. In the ) ime
ambisonics formulation, it is assumed that the loudspeakers are Yo (%) = Ay P (c0s 0)c (®)
far enough away that they may be considered to be plane-wq\yﬁere
sources. Here we keep the more general point-source form.

Applying a complex-valued frequency-dependent weighting (2n +1) (n— |m|)!
function a; (k) to thelth loudspeaket,the total field at the ob- Apm = ir (n+|m))!
servation poink due to the loudspeaker array is given by

(6)

wheref and¢ are the elevation and azimuth angleskofespec-
a(k)T3(x; k) tively, and P,,,,,() is the associated Legendre function (which
' reduces to the Legendre function far= 0). The subscript is
referred to as therder of the spherical harmonic, and is re-
< kg €Myl ferred to as thenode For each orden, there are2n + 1 modes
= Z a(k)[yile Ti—x ®) (corresponding ten = —n, ..., n).
=1 Spherical harmonics exhibit the following orthogonality
One way to find the array weights is to minimize the leasproperty [10, p. 191]:
squares error between the incident field and the reproduced field

™M)=

T(x; k) =

=1

~

within the regiony, i.e., /erm(ﬁ)y})q(ﬁ) dX = bppbimg ()
min 1S(x; k) — T(x; k). wheres,,,, denotes the Kronecker delta function, and integration

is over the unit sphere. Hence, the harmonic coefficients in (4)

This can be formulated as a standard numerical optimizatigan be found by
problem by choosing a set of sampling points within the region
x, and then minimizing the least-squares error at these points. Gm (3 k) = /erm(ﬁ)g(x; k) dx. (8)
Such an approach was considered in [8]. Although this approach
is a useful design technique in specific cases, as with any nuj, the sequel, we will investigate the sound field reproduc-
merical method it provides little insight into fundamental istion problem by representing each of the plane-wave field (1)
sues of feasibility. To address such issues, in this paper we Vil the loudspeaker array field (3) using a spherical harmonics

2In the audio engineering literature; (k) is often referred to as panning expansion of the form (4). Such a decomposition of sound fields
function. provides insight into the sound reproduction problem.
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B. Spherical Harmonics Expansion (9) and (11), respectively. In the following sections, however,
we will show that this spherical harmonics expansion allows us

The sound field (1) at an arbitrary observation peint zx, X -
fHerive bounds on the performance of sound field reproduc-

produced by a plane-wave source can be represented in the fH?

of (4) using [10, p. 227] as tion.
oo n X X C. Exact Reproduction
S(x; k) = Z:O ; 4m X (k)Y (V)Yam(®) ) he0rem 1: Consider a plane-wave with wavenumtagin-
nem e cident from an arbitrary directiofi. An array ofL point-source
in which we define loudspeakers, located on a sphere of radjusn exactly repro-
N duce this plane-wave field at all points< r if the loudspeaker
X (kx) =" jp (k) (10) weightsa;(k) satisfy
wherey,, (-) is thenth order spherical Bessel function of the first P, |m)(cos 9)e™"?
kind. The spherical Bessel function is related to the ordinary L
Bessel function by [10, p. 194] — R (kr) Z 1) Py (cOS 6))e—ime
‘ e =1
Jn(2) = V%Jn-l-l/?(x)' n=0...00, Mm=-n,...,n (13)

To obtain a valid spherical harmonics expansion for the soundhered; and¢;, respectively, are the elevation and azimuth an-
field produced by the loudspeakers requires the following agles of the loudspeaker directign, and? andy, respectively,

sumptions. are the elevation and azimuth angles of the source diregtion
Assumption 1:The observation point = zx satisfiesr < Proof: EquatingS in (9) with 7" in (11), multiplying each
lyi|, VI, wherey; is the location of théth loudspeaker. side byY ;. (%), and integrating over the unit sphere with respect

Assumption 2:All loudspeakers are located on a sphere @b x, gives
radiusr, i.e., |y;| = », VLI

Under these mild restrictions, and using [11, p. 30], the sound dn X, (k)Y (3)
field (3) due to the loudspeaker array can be written in the form I
of (4) as = dn X (k) Ra(kr) Y ar(R)Y, 5,50 (14)
o n =1
T(x; k) = Z Z A Xon (hr) B () where we have used the orthogonality property (7). Noting that
n=0m=-n the4nr X,,(kz) term is common to both sides of (14), substitu-
L tion of (5) completes the proof. [ |
X Z ar (k)Y (F1) Yam (%) (11)  We will refer to (13) as the condition for exact reproduction.
=1 Notice that the observation poigtdoes not appear in this re-
where production equation; in other words, if (13) is satisfied forrall
andm, then the plane-wave field will be reproduced exactly by
Ro(kr) 2 —ikre™ iy, (kr) (12) the Iouds_,peaker array all observation poi_ntg <. _
To satisfy (13) exactly for every term in the spherical har-
and [10, p. 194] monics expansion, however, would require an infinite number

of loudspeakers (one for eaghandm term). We therefore con-

T sider the following approximate reproduction problem.

ha(z) =4/ 5 [Jnt1/2(2) = iNpg1/2(2)]

D. Approximate Reproduction
is thenth order spherical Hankel function of the second kind, . i .
; . ) . Exact reproduction of the plane-wave sound field requires
J,(+) is the nth order Bessel function of the first kind, and . -
. . . that (13) is satisfied for all orders and all modesr. If, how-
N,.(-) is thenth order Bessel function of the second kind (als@ . -
er, most of the power of the sound field within the chosen

: . A e
known as the Neumann function). The practical significance P%roduction region is contained in the firstorders, then the
a

Assumptions 1 and 2 is that the representation we derive is vali ) .
. I ne-wave field (9) could be accurately reproduced by equating
for points located within the convex hull spanned by the loud- : ) X
i . C only the terms fom = 0, ..., NV in (13). We will refer to this
speaker array; this is a situation which is almost always assure :
in practice as anNth order reproduction systemm.

An important practical question naturally arises as to the

Thus, the spherical harmonics expansion shows that to %)ﬁjer of expansion/V, required to sufficiently characterize

actly reproduce a plane-wave field by a loudspeaker array (5 . )
. ! d e plane-wave field. Assume the plane-wave figltk; &
quires one to find the loudspeaker weight&k) that equate (9) is aSproximated by a field?(x- k) opbtained by trurcljzati)ng

with (.11)' It WOUId. appear th_at we have gained little in using fhe infinite series (9) at ordeW¥, i.e., the outer summation in
spherical harmonics expansion, since we have only succeededn

transforming (1) and (3) into the more formidable expressionsin effect, the ambisonics system uses only first-order reproduction.
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NORMALISED ERROR

Fig. 2. Normalized truncation error (16) as a functiorkeffor various reproduction orders.

(9) is only taken oven = 0, ..., N. Define thenormalized would like to know whetheey (kz) < en(kzo) Yo < zo. In
truncation erroras other words, if the field is accurately produced on the surface
of a sphere, is it accurately produced for all points within the
/ |1S(x; k) — S(x; k)| dx sphere?
en(kz) = (15) To answer this question qualitatively, we show in Fig. 2 the
15(x; k)| dx normalized truncation error (16) as a functionfaf for var-

ious order expansions. We note that for any givénthe error

where integration is taken over the unit sphere. This is the ngrgcreases monotonically below a certaun In all cases, it is

. . . . ) .~ _oply for very high errors (above about 50%) that the error is not
malized error associated with using a finite order truncation Q . . .

P . ; monotonically decreasing. We therefore assert that in cases of
the infinite series (9). We then have the following result.

Theorem 2:Let S(x;k) be the field produced by o Practical interestey (kx) < ex(hzo) ¥ < o. Thus, if an

NNth order expansion is sufficient to accurately represent the de-
plane-wave source of wavenumbeas measured on a sphere .

of radiusz, and IetS‘(x; k) be the corresponding field produceqSlred plane-wave field on a sphere of radiusthen the field is

by truncating the spherical harmonics expansiors 6f: k) at also accuratel_y reproduced at all points W|_th|n the sphere.
. : o This assertion also follows from the Kirchhoff-Helmholtz
orderN. The normalized truncation error (15) is given by

theorem, which states that the sound field at any point within

N a source-free volume is fully defined by the sound pressure
en(kz) =1— Z (2n + 1) (jn (kz))2. (16) and pressure gradient on the continuous surface enclosing the
fogr volume [12]. The sound pressure $5 and the pressure gra-
dient is given by taking the derivative ¢ with respect tox
Proof: The proof is given in the Appendix. B atr = z, wherex, is the radius of the reproduction sphere.

We make the following comments regarding this result.  Observe from (9) that the only term # that depends om is
1) Normalized truncation error is independent of the sourc€, (kx) = ¢"j,(kz), and note that [10, p. 197]

directiony. d "1
2) Normalized truncation error depends only on the product — Q) = jn-1(Q) — n(Q)-

of the wavenumberk, and the radius of the sphere, d¢ S

Thus, for a given ordelV, a higher operating frequencylt follows that satisfying (13) up to th&'th order equates both

will result in a smaller reproduction sphere. the sound pressure and the pressure gradient on the sphere
Observe that the normalized truncation error is specified éor n = 0, ..., N. Thus, accurately reproducing the pressure

a sphere of particular radius Since the problem we address idield on the surface of the sphere using spherical harmonics
to reproduce the field within a sphere of given radiys(i.e., also accurately reproduces the pressure gradient. From the
not just on the surface of the sphere) one must ask what iechhoff-Helmholtz theorem, this thereby ensures that the
error is for all spheres of smaller radius. More specifically, orgressure field within the sphere is also accurately reproduced.
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In practice, the required expansion ordérfor a given situ- is the L vector of array weights, and
ation can be found from Fig. 2. For example, assume we wish

to reproduce a 1 kHz plane-wave field within a sphere of radius Poo(cos)e™™ 7

0.5 m with a 1% error. In this casézo = 9.24 (assuming a Py1(cosd)ct®?

wave propagation speed of 340 m/s), and the curve in Fig. 2 in- Pro(cos )=

dicates that an expansion order of at lest= 10 is required -

for an error of 0.01. A straightforward method for determining Pri(cosd)e™?

the required ordeN is as follows. b= : (21)
Rule of Thumb:From Fig. 2, we observe that using a repro- : ‘

duction orderV equal to the produdtz gives an error of around Py (cosd)etNe

4% for all values ofkz. Such an error should be sufficient for
most practical applications. Thus, given the wavenunibgr :
equivalently the frequency) and the radius of the reproduction | Py (cosd)e™ Ve |

spherexy, the following simple rule of thumb can be used to
determine the reproduction order: is aK vector. Note that for each order there ar&n +1 modes
(corresponding tan = —n, ..., n), giving a total of

N
K=> (2n+1)=(N+1)
where[-] denotes rounding up to the nearest integer. =0

rows in each oP andb. We thus have a system &f equations

A. Loudspeaker Weights B. Determining the Number of Loudspeakers

In the previous section we showed that a loudspeaker arrayThe number of loudspeakefs specifies whether the linear
can reproduce a plane-wave sound field with a normalized eregfstem (18) can be solved exactly or not. There are three cases
of around 4%, if the array weights are chosen to satisfy (13) fof interest.

n =20, ..., N,whereN is chosen according to (17). For an over-determined system (i.E.,> L), in general there

Let will be no exact solution to (18), and the array weights would

typically be found to solve the least squares problem

Prm = [Pn|m|(COS 91) . Pn|m|(COS QL)] min ||Pa _ b||2
and a

e, = [eTMmeL . gTimér] where|| - || represents the vector 2-norm. This is a well studied
problem [13, p. 236]. Note that this least squares approach at-
be L-vectors. tempts to find the set of loudspeaker weights that can best re-
To satisfy (13) for the firstV orders therefore requires produce all of the spherical harmonics for= 0, ..., N. As
we saw in the previous section, however, the lower order har-
monics carry the most energy for small reproduction spheres,
with higher order modes contributing more energy to larger re-
production spheres. This suggests that for an over-determined
system it may be preferable to exactly reproduce as many low-
- Ro(kr)[poo @ eo] order harmonics as possible, and then use a least squares ap-

Pa=b (18)

where

proach for the higher orders (that cannot be exactly reproduced
Pu©e anyway). This would ensure that reproduction was accurate for
Ri(kr) | Pro®@eo the largest reproduction sphere possible using the given number
P11 Oel of loudspeakers.
P= (19) If P is a square nonsingular matrix, then a unique solution
: to (18) exists, given by = P~1b. Although this solution will
PANN @e_n satisfy (18) exactly, it is somewhat of a moot poirPiis poorly
conditioned. The conditioning @ is determined primarily by
R (kr) : the loudspeaker geometry, which we consider below.
L pyy @en | Finally, when the linear system is under-determined (i.e.,

K < L), there may either be no solution or an infinite number
is a K x L matrix (where® denotes an element-by-elemenof solutions. In the latter case it would be most appropriate to
product) find the array weights to satisfy

a=la(k), ..., ar(k)]" (20) min [|a|* subject toPa = b.
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Again, this least squares problem has a well-known solution [1i8ferest to reproduce a sound field in two dimensions only, typ-

p. 271]. ically using an array of loudspeakers placed on a ring around a
In general the system (18) can only be satisfied exactly listener. Hence, we now consider the special case of reproducing

L > K. Therefore, the number of loudspeakers required far2-D sound field in a plane. Without loss of generality we de-

exact reproduction of the plane-wave field is fine the reproduction region as being bounded by a circle in the
) planeé = = /2, centered on the origin and with radiug.
L>(N+1). (22)  In the 2-D case, the spherical harmonics expansion for the

. . ._plane-wave field becomes
We note that this is also the number of independent modes mpan

Nth order ambisonics representation [2], [5]. In the ambisonics e = o o

formulation, however, no relationship has been established be- S =dn Z Z ‘Xn(kx)AnmPnlml(O)

tween the number of modes, the accuracy of the reproduction, m==00 n=|m|

or the frequency. « ime —ime (23)

C. Loudspeaker Geometry where we have exchanged the order of the summations, substi-

Although (22) provides an expression for the minimuriHted (5), and noted thabs(r/2) = 0 in the plane. Similarly,
number of loudspeakers required, it says nothing about whée field produced by the array is
the loudspeakers should be placed. We know, however, that 00 00
the applicability of the solution obtained for (18) will depend T =4z Y > X, (kz)R.(kr)A2, P2, (0)

nm- n
on the condition number of thE matrix, i.e., the ratio of its m=—00 n=|m|
largest and smallest eigenvalues. Because of the structure of L
P, fmdm_g_ the opt|mu_m Ioud_speaker positions to minimize % ei,m,qbz ag(k)e= Mo, (24)
the condition number is nontrivial. We do not attempt to find —

such an optimum geometry here, rather we appeal to heuristics. ‘
Specifically, a well-conditione® matrix should result from Equating (23) with (24), multiplying both sides k§?*, and
a geometry in which the loudspeaker locations are maximallytegrating over the unit circle with respectdayives
distributed in some sense. One way to approach this is through I

a problem in mathematics know as sghere packing problem Op(kx)e™ ™ = Oy (kar, ki) Z ar(k)e=ime
defined as [14]: “Place points on a sphere id dimensions

so as to maximize the minimal distance (or equivalently the
minimal angle) between them.” The solution to this problem in
three-dimensions can be found in the library of 3-D packings @here we have used the orthogonality property of complex ex-
[14], which contains the coordinates of packings for up to 13Qynentials, i.e.,

points. In all cases that we have tried, we have found that using

=1

M= —00, ..., 00 (25)

. . . . 27
these coordinates results in a well-conditiod®dhatrix. / o—ime iad ] ¢ = 26, (26)
D. Summary of Results ) 0
} and defined
The design procedure for the loudspeaker array can be sum- -
marized as follows. _ Qm(ka?, r) 2 4n Z Xn(kﬂﬁ)Rn(kT)Aimwa(0) (27)
1) The number of loudspeakers required to accurately repro- Sy
duce a plane-wave with wavenumbewithin a sphere of
radiusz, is and
2 A i
Lz (Tkxo] +1)7. Qu(kx) Sdn Y Kn(kx) AL, Py (0)
n=|m|

This number of loudspeakers guarantees that the .
normalized reproduction error within the sphere is = i""Jm (k) (28)

approximately 4%. g¥here the proof of the final equality is given in the Appendix.

2) Each loudspeaker must be placed at a distance gre . g i , i
thanzo from the center of the sphere. If the Ioudspeakersefhus’ for the special case of a 2-D plane-wave fieftle re

; . . guirement for exact reproduction is given by (25). Itis important
are placed on a sphere of radius- x, their locations . N .
to note that, unlike the 3-D case, the resulting linear system is
can be found from [14].

. . dependent on the radial distance to the observation poirtis
3) The loudspeaker weights are chosen to satisfy (18). suggests that there is no single set of array weights that can give
exact reproduction for all points within the reproduction circle.
However, the Kirchhoff~Helmholtz theorem again tells us that,

The spherical harmonics expansion used in the previous seg-
P P P qure we have adapted our general result to the 2-D case. One would obtain

tion is appropriate for the reproduction of a 3-D sound field similar expression, however, by starting with an orthogonal expansion that is
within a sphere. In many practical situations, however, it is @btter suited to the specific 2-D case, e.g., a cylindrical expansion.

V. APPLICATION TO 2-D REPRODUCTION
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Fig. 3. Normalized truncation error (29) for a 2-D field as a functiott offor various reproduction order/.

as long as we can satisfy (25) on the circle bounding the repro-
duction region, then the reproduction will also be accurate for
points within this region. Thus, in solving for the array weights

itis only necessary to solve (25) ;at; Zo. ' N 1 !:::§\
As in the 3-D case, we must consider reproduction by a finite ,//1?;{4\1?§\ A

. : : XTI
series expansion, and we have the following results. .

0.5
Proposition 1: Let S be the field produced by a 2-D

plane-wave source, and Il be the corresponding field
produced by truncating the series expansiot¥ @t modei/,
i.e., using modesn = —M, ..., M. Then the normalized
truncation error is

JER R
[1sPas
M

=1- Y Jn(k)’. (29)

m=—M

6]\4(/61’) é

. . Fig. 4. Loudspeaker locations used for the examples shown in Figs. 5-7.
Proposition 2: For exact reproduction of a 2-D plane-wave 9 P P 9

field up to thedM th mode, i.e., using modes = — M, ..., M,
the number of loudspeakers required is that for an error less than around 10%, the curve for a gMen
in Fig. 3 is essentially identical to that fa¥ = A in Fig. 2.
Thus, the rule of thumb for determining the required reproduc-
L>2M+1. (30) tion order for 2-D is the same as for 3-D, i.e.,

The proofs parallel those given in Section Ill and are not re-

peated here. M = [kaxo) (31)
The normalized truncation error (29) is shown in Fig. 3 as a

function of £« for various reproduction orded® . Comparing wherek is the wavenumber ang, is the radius of the reproduc-

this with the truncation error for the general 3-D case, we natien circle.
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Fig. 5. Reproduction at a height ef= —0.1 m. Normalized reproduction error within the circle is 0.0322.
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Fig. 6. Reproduction at a height ef= 0 m. Normalized reproduction error within the circle is 0.0359.

VI. SIMULATION EXAMPLES placed on a sphere of radius= 1 m, at points specified by
the set “pack.3.25” in [14]. Loudspeaker locations are shown
in Fig. 4. The loudspeaker weights were found from (18), and
In the first example, we considered a monochromatic platige resulting reproduced pressure fields within the sphere are
wave of frequency 1 kHz, incident frof#, ¢] = [45°, 30°] shown in Figs. 5-7, displayed as slices through the sphere at
within a reproduction sphere of radiug = 0.2 m. This gave heights of—0.1, 0, and 0.1 m, respectively. These figures are
kxo = 3.7, and the rule of thumb (17) suggested usivig= 4, displayed as density plots, where acoustic pressures greater than
thus requiringl. = 25 loudspeakers. The loudspeakers werk are white, pressures less thaft are black, and pressures in

A. Three-Dimensional Example
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Fig. 7. Reproduction at a height ef= 0.1 m. Normalized reproduction error within the circle is 0.0468.
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Fig. 8. Reproduction of a 2-D plane wave for various maximum modes.

between are appropriately shaded. In each figure, the top t®&0o Two-Dimensional Example

plots show the real and imaginary parts of the ideal plane-wave, the second example we considered a monochromatic 2-D
field, and the bottom two plots show the field produced by th§ane wave of frequency 1 kHz, incident fram= 30°. Here we
loudspeaker array. The circle indicates the boundary of the ggamined the effect of changing the expansion ofderFig. 8
production sphere at the particular height shown. The normahows the real part of the reproduced field far = 2 (top

ized reproduction error (within the sphere) in each slice rangRgt), A7 = 4 (top right), A/ = 8 (bottom left), andd/ = 16
from 3% to 5%. These values agree very well with the expect@sbttom right). In each case we used an array. ef (2M +1)
error of 4% and thus validate our rule of thumb for choosing theudspeakers equally spaced on a circle of radius 2 m.
required expansion order. Observe that a3/ increases, the size of the reproduction region
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(in which the plane wave is accurately reproduced) increasgberey denotes the angle betwegrandx. Using this addition

proportionally. theorem withx = y [noting thatP,,(cos0) = 1 Vn], gives
In closing, we briefly consider the expected performance of
a five-loudspeaker array, a system that is commonly found in
practice. Our results indicate that within a regiongf= 0.1 m / |S — S|2dk = 4r Z (2n + 1)(jn(kx))?
(which is only slightly larger than the average adult human n=N+1
head), accurate reproduction of a 2-D plane-wave sound field
will only be accurate up to around 1100 Hz. after substituting (10).
It can similarly be shown that

VIl. CONCLUSIONS

Spherical harmonics are a powerful tool that can be used to / |S|? dx = 4r 2(271 + 1)(jn(kz))?.
analyze the propagation of wave fields. Here we have used a —
spherical harmonics expansion of the acoustic field produced
by a plane-wave source to derive performance bounds on thelience,
production of this sound field within a sphere. We have shown
that for a wavenumbet, the field within a sphere of radiug, N
can be accurately reproduced usingya= [kxo] order expan- / |5 — 57 d& = / |S|2d% — 4 Z (2n 4+ 1)(gn(kz))?.
sion, requiringL > (N + 1)? loudspeakers for a 3-D field, or
L > (2N + 1) loudspeakers for a 2-D field.
Substitution of (1) forS shows that

APPENDIX

27 '
/ |S|? dx = / / e R) =ik gin ¢ df dgp
Proof of Theorem 2 0 0

Let S denote the field produced by truncating the series ex- =dm
pansion (9) ofS at orderN. By definition,
thus completing the proof.

S —d4n Z Z n (k)Y (§)Ynm(X), Proof of (28)
n=0 m=—n Here we show tha€),,(kz) = i™.J,,(kx), as in (28). The
and Bessel function can be written as [15, p. 210]
S— 8 =4x Z Z n (k)Y E (§)Ynm(X). L
n=N+1 m=—n ]'rn(kx) — : / eikx cos z;Beirnqb d(/)
2mwim 0

The squared error over the unit sphere is

Using a spherical harmonics expansion, we can write [10, p.

227]

/ S — S|? dx
cikmcosd _ Z Ln(27’L + 1)1n(kx)Pn(COS (/))

=@m)” Y D > Y X(ka) X (k) n=0

. . oo and using (32) and (5)7,(cos ¢) can be expressed in a series
K)om0V % as
=(m? Y Xak)? Y Nam(3)P ; 2 ((yein(—6+0)
n:zl\;-l—l n;n COS d) Z 27’L —|— 1 inn|p|( ) ’

which follows from the orthogonality property (7) of the spherSupstitution gives
ical harmonics.

The addition theorem of Legendre functions states that [11,
p. 27] Im(kx)

mZLJnkaZ

X 2n+1 o m —1
Z o (F)Ym (X) = i P, (cos~) (32) X Z Anp nlpl /0 cime —ipd dg.

m=-—n p=—n
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From the orthogonality property of complex exponentials (26)12] P. A. Nelson and S. J. Elliofctive Control of Sound New York: Aca-

this becomes demic, 1992. _ _
[13] G. H. Golub and C. F. Van LoanMatrix Computations 3rd
ed. Baltimore, MD: The Johns Hopkins Univ. Press, 1996.
dn & ) ) ) [14] N.a]. A.[Solo?ne], RA H_.I Hk;alrdin, and W. D. im'&hal.. T/abl_es lof spkheric;al
= — g codes. [Online]. Available: www.research.att.com/~njas/packings/.
I (k) §m Z ‘ Jn(kx)AnmPn|m|(0) [15] P. M. Morse and K. U. Ingardfheoretical Acoustics Njew pYork: l\%c-
n=lm| Graw-Hill, 1968.

thus completing the proof.
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