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Reproduction of a Plane-Wave Sound Field Using
an Array of Loudspeakers
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Abstract—Reproduction of a sound field is a fundamental
problem in acoustic signal processing. In this paper, we use a
spherical harmonics analysis to derive performance bounds on
how well an array of loudspeakers can recreate a three-dimen-
sional (3-D) plane-wave sound field within a spherical region of
space. Specifically, we develop a relationship between the number
of loudspeakers, the size of the reproduction sphere, the frequency
range, and the desired accuracy. We also provide analogous results
for the special case of reproduction of a two-dimensional (2-D)
sound field. Results are verified through computer simulations.

Index Terms—Acoustic signal processing, loudspeaker arrays,
sound field reproduction, spherical harmonics, 3-D audio.

I. INTRODUCTION

A FUNDAMENTAL signal processing problem in acoustics
is to control the sound field within a given region of space.

Reproducing a particular sound field using an array of loud-
speakers has application in three-dimensional (3-D) audio sys-
tems [1], where the aim is to give one or more listeners the im-
pression of being immersed in a realistic, yet virtual, sound en-
vironment. In this paper, we derive performance bounds on how
well an array of loudspeakers can recreate a 3-D sound field in
free space.

There have been various studies of sound field reproduction.
One of the first was by Gerzon [3], in which he proposes using
spherical harmonics as a means to represent and reproduce a
sound field. The outcome of Gerzon’s work was theambisonics
system, probably the best known of sound field reproduction
systems. Ambisonics effectively recreates a first-order spherical
harmonics representation of a sound field at a single point in
space. Higher order ambisonics representations have also been
considered [3]. More recently, ambisonics has been related to
the Kirchhoff–Helmholtz theorem [4] and shown to be equiva-
lent to a Taylor series expansion of the sound field [5]. In another
approach to sound field reproduction, known aswavefield syn-
thesis, holographic techniques are used to reproduce a desired
sound field over a relatively large area using a large number of
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loudspeakers [6]. Least squares techniques were used in [7] and
[8] to reproduce a sound field locally using only a few loud-
speakers. The two-dimensional (2-D) Fourier transform has re-
cently been used to formulate a system for both the recording
and reproduction of 2-D sound fields [9].

Here we seek to develop some fundamental performance
limits for the specific problem of reproducing a plane-wave
sound field in free space.1 Specifically, we develop a rela-
tionship between the number of loudspeakers, the size of the
reproduction area, the frequency range, and the desired repro-
duction accuracy. Since we only deal with the free field case
(i.e., we ignore the effect of reverberation) the relationships we
derive effectively provide an upper bound on the performance
that one could expect to achieve in a real room.

The paper is organized as follows. In Section II we outline the
problem addressed. Spherical harmonics analysis is described in
Section III and used to derive the two main theoretical results of
the paper: 1) conditions for exact reproduction of a sound field
within a sphere (which would require an infinite number of loud-
speakers to achieve); and 2) consideration of the error involved
with using an approximation to the ideal reproduction. Practical
issues relating to design of the loudspeaker array are considered
in Section IV. Analogous results for the more specific case of
2-D sound field reproduction are presented in Section V. Finally,
we present simulations to verify the theoretical results derived.

Notation

Throughout this paper, we use the following notational con-
ventions: matrices and vectors are represented by upper and
lower case bold face, respectively, e.g.,and . A unit vector
in the direction is denoted by , i.e., . The symbol

is used to denote the imaginary part of a complex
number.

II. PROBLEM FORMULATION

Consider a plane-wave incident from the arbitrary direction
, as shown in Fig. 1. The

sound field produced at an arbitrary observation point
is

(1)

where is the wavenumber (withthe speed of wave
propagation and the frequency), and . We assume that

1The use of a plane-wave field is justified by noting that any general sound
field can be represented as a superposition of plane waves.
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Fig. 1. Three-dimensional geometry.

is independent of frequency, implying that the wavenumber is
a constant multiple of frequency.

Assume that we want to reproduce this incident plane-wave
field within some specified region using an array of loud-
speakers. Let theth loudspeaker be a point source that produces
a sound field

(2)

at the observation point, where is the loudspeaker location.
Observe that in order to relate the point-source field to the
plane-wave field, we have included a normalization term

, chosen such that
as , i.e., the point-source field becomes the
plane-wave field as the source distance goes to infinity. In the
ambisonics formulation, it is assumed that the loudspeakers are
far enough away that they may be considered to be plane-wave
sources. Here we keep the more general point-source form.

Applying a complex-valued frequency-dependent weighting
function to the th loudspeaker,2 the total field at the ob-
servation point due to the loudspeaker array is given by

(3)

One way to find the array weights is to minimize the least-
squares error between the incident field and the reproduced field
within the region , i.e.,

This can be formulated as a standard numerical optimization
problem by choosing a set of sampling points within the region

, and then minimizing the least-squares error at these points.
Such an approach was considered in [8]. Although this approach
is a useful design technique in specific cases, as with any nu-
merical method it provides little insight into fundamental is-
sues of feasibility. To address such issues, in this paper we will

2In the audio engineering literature,a (k) is often referred to as apanning
function.

tackle the reproduction problem by using spherical harmonics
analysis.

We will define the reproduction region as being bounded
by a sphere of some specified radius, centered on the origin.
Through our analysis, we primarily seek to answer the following
fundamental question:What is the minimum number of loud-
speakers that can reproduce, up to a given accuracy, the 3-D
sound field generated within a sphere of given radius due to a
plane-wave source of given frequency?

III. SPHERICAL HARMONICS ANALYSIS OF SOUND FIELDS

A. Background

At the physical level, the sound field within a given region of
space is characterized by the classical wave equation. The gen-
eral solution to the wave equation in the spherical coordinate
system can be decomposed intospherical harmonics, which
form an orthogonal basis set for the representation of an arbi-
trary wave field. Specifically, any arbitrary sound field at a point

and wavenumber can be represented as

(4)

where are a set of harmonic coefficients, which do
not depend on angular information of the point. Notice that
the representation (4) is similar in spirit to the Fourier series
expansion.

The spherical harmonics are defined as [10, p. 194]

(5)

where

(6)

where and are the elevation and azimuth angles of, respec-
tively, and is the associated Legendre function (which
reduces to the Legendre function for ). The subscript is
referred to as theorder of the spherical harmonic, and is re-
ferred to as themode. For each order , there are modes
(corresponding to ).

Spherical harmonics exhibit the following orthogonality
property [10, p. 191]:

(7)

where denotes the Kronecker delta function, and integration
is over the unit sphere. Hence, the harmonic coefficients in (4)
can be found by

(8)

In the sequel, we will investigate the sound field reproduc-
tion problem by representing each of the plane-wave field (1)
and the loudspeaker array field (3) using a spherical harmonics
expansion of the form (4). Such a decomposition of sound fields
provides insight into the sound reproduction problem.



WARD AND ABHAYAPALA: REPRODUCTION OF PLANE-WAVE SOUND FIELD 699

B. Spherical Harmonics Expansion

The sound field (1) at an arbitrary observation point ,
produced by a plane-wave source can be represented in the form
of (4) using [10, p. 227] as

(9)

in which we define

(10)

where is the th order spherical Bessel function of the first
kind. The spherical Bessel function is related to the ordinary
Bessel function by [10, p. 194]

To obtain a valid spherical harmonics expansion for the sound
field produced by the loudspeakers requires the following as-
sumptions.

Assumption 1:The observation point satisfies
, where is the location of theth loudspeaker.

Assumption 2:All loudspeakers are located on a sphere of
radius , i.e., .

Under these mild restrictions, and using [11, p. 30], the sound
field (3) due to the loudspeaker array can be written in the form
of (4) as

(11)

where

(12)

and [10, p. 194]

is the th order spherical Hankel function of the second kind,
is the th order Bessel function of the first kind, and
is the th order Bessel function of the second kind (also

known as the Neumann function). The practical significance of
Assumptions 1 and 2 is that the representation we derive is valid
for points located within the convex hull spanned by the loud-
speaker array; this is a situation which is almost always assured
in practice.

Thus, the spherical harmonics expansion shows that to ex-
actly reproduce a plane-wave field by a loudspeaker array re-
quires one to find the loudspeaker weights that equate (9)
with (11). It would appear that we have gained little in using a
spherical harmonics expansion, since we have only succeeded in
transforming (1) and (3) into the more formidable expressions

(9) and (11), respectively. In the following sections, however,
we will show that this spherical harmonics expansion allows us
to derive bounds on the performance of sound field reproduc-
tion.

C. Exact Reproduction

Theorem 1: Consider a plane-wave with wavenumber, in-
cident from an arbitrary direction. An array of point-source
loudspeakers, located on a sphere of radius, can exactly repro-
duce this plane-wave field at all points if the loudspeaker
weights satisfy

(13)

where and , respectively, are the elevation and azimuth an-
gles of the loudspeaker direction, and and , respectively,
are the elevation and azimuth angles of the source direction.

Proof: Equating in (9) with in (11), multiplying each
side by , and integrating over the unit sphere with respect
to , gives

(14)

where we have used the orthogonality property (7). Noting that
the term is common to both sides of (14), substitu-
tion of (5) completes the proof.

We will refer to (13) as the condition for exact reproduction.
Notice that the observation pointdoes not appear in this re-
production equation; in other words, if (13) is satisfied for all
and , then the plane-wave field will be reproduced exactly by
the loudspeaker array atall observation points .

To satisfy (13) exactly for every term in the spherical har-
monics expansion, however, would require an infinite number
of loudspeakers (one for eachand term). We therefore con-
sider the following approximate reproduction problem.

D. Approximate Reproduction

Exact reproduction of the plane-wave sound field requires
that (13) is satisfied for all orders and all modes . If, how-
ever, most of the power of the sound field within the chosen
reproduction region is contained in the firstorders, then the
plane-wave field (9) could be accurately reproduced by equating
only the terms for in (13). We will refer to this
as an th order reproduction system.3

An important practical question naturally arises as to the
order of expansion, , required to sufficiently characterize
the plane-wave field. Assume the plane-wave field
is approximated by a field , obtained by truncating
the infinite series (9) at order , i.e., the outer summation in

3In effect, the ambisonics system uses only first-order reproduction.
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Fig. 2. Normalized truncation error (16) as a function ofkx for various reproduction ordersN .

(9) is only taken over . Define thenormalized
truncation erroras

(15)

where integration is taken over the unit sphere. This is the nor-
malized error associated with using a finite order truncation of
the infinite series (9). We then have the following result.

Theorem 2: Let be the field produced by a
plane-wave source of wavenumberas measured on a sphere
of radius , and let be the corresponding field produced
by truncating the spherical harmonics expansion of at
order . The normalized truncation error (15) is given by

(16)

Proof: The proof is given in the Appendix.
We make the following comments regarding this result.

1) Normalized truncation error is independent of the source
direction .

2) Normalized truncation error depends only on the product
of the wavenumber, , and the radius of the sphere,.
Thus, for a given order , a higher operating frequency
will result in a smaller reproduction sphere.

Observe that the normalized truncation error is specified on
a sphere of particular radius. Since the problem we address is
to reproduce the field within a sphere of given radius(i.e.,
not just on the surface of the sphere) one must ask what the
error is for all spheres of smaller radius. More specifically, one

would like to know whether . In
other words, if the field is accurately produced on the surface
of a sphere, is it accurately produced for all points within the
sphere?

To answer this question qualitatively, we show in Fig. 2 the
normalized truncation error (16) as a function of for var-
ious order expansions. We note that for any given, the error
decreases monotonically below a certain. In all cases, it is
only for very high errors (above about 50%) that the error is not
monotonically decreasing. We therefore assert that in cases of
practical interest, . Thus, if an

th order expansion is sufficient to accurately represent the de-
sired plane-wave field on a sphere of radius, then the field is
also accurately reproduced at all points within the sphere.

This assertion also follows from the Kirchhoff–Helmholtz
theorem, which states that the sound field at any point within
a source-free volume is fully defined by the sound pressure
and pressure gradient on the continuous surface enclosing the
volume [12]. The sound pressure is, and the pressure gra-
dient is given by taking the derivative of with respect to
at , where is the radius of the reproduction sphere.
Observe from (9) that the only term in that depends on is

, and note that [10, p. 197]

It follows that satisfying (13) up to the th order equates both
the sound pressure and the pressure gradient on the sphere
for . Thus, accurately reproducing the pressure
field on the surface of the sphere using spherical harmonics
also accurately reproduces the pressure gradient. From the
Kirchhoff–Helmholtz theorem, this thereby ensures that the
pressure field within the sphere is also accurately reproduced.
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In practice, the required expansion orderfor a given situ-
ation can be found from Fig. 2. For example, assume we wish
to reproduce a 1 kHz plane-wave field within a sphere of radius

m with a 1% error. In this case, (assuming a
wave propagation speed of 340 m/s), and the curve in Fig. 2 in-
dicates that an expansion order of at least is required
for an error of 0.01. A straightforward method for determining
the required order is as follows.

Rule of Thumb:From Fig. 2, we observe that using a repro-
duction order equal to the product gives an error of around
4% for all values of . Such an error should be sufficient for
most practical applications. Thus, given the wavenumber(or
equivalently the frequency) and the radius of the reproduction
sphere , the following simple rule of thumb can be used to
determine the reproduction order:

(17)

where denotes rounding up to the nearest integer.

IV. L OUDSPEAKERARRAY DESIGN

A. Loudspeaker Weights

In the previous section we showed that a loudspeaker array
can reproduce a plane-wave sound field with a normalized error
of around 4%, if the array weights are chosen to satisfy (13) for

, where is chosen according to (17).
Let

and

be -vectors.
To satisfy (13) for the first orders therefore requires

(18)

where

...

...

(19)

is a matrix (where denotes an element-by-element
product)

(20)

is the vector of array weights, and

...

...

(21)

is a vector. Note that for each order, there are modes
(corresponding to ), giving a total of

rows in each of and . We thus have a system of equations
involving the unknown loudspeaker weights.

B. Determining the Number of Loudspeakers

The number of loudspeakersspecifies whether the linear
system (18) can be solved exactly or not. There are three cases
of interest.

For an over-determined system (i.e., ), in general there
will be no exact solution to (18), and the array weights would
typically be found to solve the least squares problem

where represents the vector 2-norm. This is a well studied
problem [13, p. 236]. Note that this least squares approach at-
tempts to find the set of loudspeaker weights that can best re-
produce all of the spherical harmonics for . As
we saw in the previous section, however, the lower order har-
monics carry the most energy for small reproduction spheres,
with higher order modes contributing more energy to larger re-
production spheres. This suggests that for an over-determined
system it may be preferable to exactly reproduce as many low-
order harmonics as possible, and then use a least squares ap-
proach for the higher orders (that cannot be exactly reproduced
anyway). This would ensure that reproduction was accurate for
the largest reproduction sphere possible using the given number
of loudspeakers.

If is a square nonsingular matrix, then a unique solution
to (18) exists, given by . Although this solution will
satisfy (18) exactly, it is somewhat of a moot point ifis poorly
conditioned. The conditioning of is determined primarily by
the loudspeaker geometry, which we consider below.

Finally, when the linear system is under-determined (i.e.,
), there may either be no solution or an infinite number

of solutions. In the latter case it would be most appropriate to
find the array weights to satisfy

subject to
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Again, this least squares problem has a well-known solution [13,
p. 271].

In general the system (18) can only be satisfied exactly if
. Therefore, the number of loudspeakers required for

exact reproduction of the plane-wave field is

(22)

We note that this is also the number of independent modes in an
th order ambisonics representation [2], [5]. In the ambisonics

formulation, however, no relationship has been established be-
tween the number of modes, the accuracy of the reproduction,
or the frequency.

C. Loudspeaker Geometry

Although (22) provides an expression for the minimum
number of loudspeakers required, it says nothing about where
the loudspeakers should be placed. We know, however, that
the applicability of the solution obtained for (18) will depend
on the condition number of the matrix, i.e., the ratio of its
largest and smallest eigenvalues. Because of the structure of

, finding the optimum loudspeaker positions to minimize
the condition number is nontrivial. We do not attempt to find
such an optimum geometry here, rather we appeal to heuristics.
Specifically, a well-conditioned matrix should result from
a geometry in which the loudspeaker locations are maximally
distributed in some sense. One way to approach this is through
a problem in mathematics know as thesphere packing problem,
defined as [14]: “Place points on a sphere in dimensions
so as to maximize the minimal distance (or equivalently the
minimal angle) between them.” The solution to this problem in
three-dimensions can be found in the library of 3-D packings at
[14], which contains the coordinates of packings for up to 130
points. In all cases that we have tried, we have found that using
these coordinates results in a well-conditionedmatrix.

D. Summary of Results

The design procedure for the loudspeaker array can be sum-
marized as follows.

1) The number of loudspeakers required to accurately repro-
duce a plane-wave with wavenumberwithin a sphere of
radius is

This number of loudspeakers guarantees that the
normalized reproduction error within the sphere is
approximately 4%.

2) Each loudspeaker must be placed at a distance greater
than from the center of the sphere. If the loudspeakers
are placed on a sphere of radius , their locations
can be found from [14].

3) The loudspeaker weights are chosen to satisfy (18).

V. APPLICATION TO 2-D REPRODUCTION

The spherical harmonics expansion used in the previous sec-
tion is appropriate for the reproduction of a 3-D sound field
within a sphere. In many practical situations, however, it is of

interest to reproduce a sound field in two dimensions only, typ-
ically using an array of loudspeakers placed on a ring around a
listener. Hence, we now consider the special case of reproducing
a 2-D sound field in a plane. Without loss of generality we de-
fine the reproduction region as being bounded by a circle in the
plane , centered on the origin and with radius.

In the 2-D case, the spherical harmonics expansion for the
plane-wave field becomes

(23)

where we have exchanged the order of the summations, substi-
tuted (5), and noted that in the plane. Similarly,
the field produced by the array is

(24)

Equating (23) with (24), multiplying both sides by , and
integrating over the unit circle with respect togives

(25)

where we have used the orthogonality property of complex ex-
ponentials, i.e.,

(26)

and defined

(27)

and

(28)

where the proof of the final equality is given in the Appendix.
Thus, for the special case of a 2-D plane-wave field,4 the re-

quirement for exact reproduction is given by (25). It is important
to note that, unlike the 3-D case, the resulting linear system is
dependent on the radial distance to the observation point. This
suggests that there is no single set of array weights that can give
exact reproduction for all points within the reproduction circle.
However, the Kirchhoff–Helmholtz theorem again tells us that,

4Here we have adapted our general result to the 2-D case. One would obtain
a similar expression, however, by starting with an orthogonal expansion that is
better suited to the specific 2-D case, e.g., a cylindrical expansion.
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Fig. 3. Normalized truncation error (29) for a 2-D field as a function ofkx for various reproduction ordersM .

as long as we can satisfy (25) on the circle bounding the repro-
duction region, then the reproduction will also be accurate for
points within this region. Thus, in solving for the array weights
it is only necessary to solve (25) at .

As in the 3-D case, we must consider reproduction by a finite
series expansion, and we have the following results.

Proposition 1: Let be the field produced by a 2-D
plane-wave source, and let be the corresponding field
produced by truncating the series expansion ofat mode ,
i.e., using modes . Then the normalized
truncation error is

(29)

Proposition 2: For exact reproduction of a 2-D plane-wave
field up to the th mode, i.e., using modes ,
the number of loudspeakers required is

(30)

The proofs parallel those given in Section III and are not re-
peated here.

The normalized truncation error (29) is shown in Fig. 3 as a
function of for various reproduction orders . Comparing
this with the truncation error for the general 3-D case, we note

Fig. 4. Loudspeaker locations used for the examples shown in Figs. 5–7.

that for an error less than around 10%, the curve for a given
in Fig. 3 is essentially identical to that for in Fig. 2.
Thus, the rule of thumb for determining the required reproduc-
tion order for 2-D is the same as for 3-D, i.e.,

(31)

where is the wavenumber and is the radius of the reproduc-
tion circle.
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Fig. 5. Reproduction at a height ofz = �0:1 m. Normalized reproduction error within the circle is 0.0322.

Fig. 6. Reproduction at a height ofz = 0 m. Normalized reproduction error within the circle is 0.0359.

VI. SIMULATION EXAMPLES

A. Three-Dimensional Example

In the first example, we considered a monochromatic plane
wave of frequency 1 kHz, incident from
within a reproduction sphere of radius m. This gave

, and the rule of thumb (17) suggested using ,
thus requiring loudspeakers. The loudspeakers were

placed on a sphere of radius m, at points specified by
the set “pack.3.25” in [14]. Loudspeaker locations are shown
in Fig. 4. The loudspeaker weights were found from (18), and
the resulting reproduced pressure fields within the sphere are
shown in Figs. 5–7, displayed as slices through the sphere at
heights of 0.1, 0, and 0.1 m, respectively. These figures are
displayed as density plots, where acoustic pressures greater than
1 are white, pressures less than1 are black, and pressures in
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Fig. 7. Reproduction at a height ofz = 0:1 m. Normalized reproduction error within the circle is 0.0468.

Fig. 8. Reproduction of a 2-D plane wave for various maximum modes.

between are appropriately shaded. In each figure, the top two
plots show the real and imaginary parts of the ideal plane-wave
field, and the bottom two plots show the field produced by the
loudspeaker array. The circle indicates the boundary of the re-
production sphere at the particular height shown. The normal-
ized reproduction error (within the sphere) in each slice ranged
from 3% to 5%. These values agree very well with the expected
error of 4% and thus validate our rule of thumb for choosing the
required expansion order.

B. Two-Dimensional Example

In the second example we considered a monochromatic 2-D
plane wave of frequency 1 kHz, incident from . Here we
examined the effect of changing the expansion order. Fig. 8
shows the real part of the reproduced field for (top
left), (top right), (bottom left), and
(bottom right). In each case we used an array of
loudspeakers equally spaced on a circle of radius m.
Observe that as increases, the size of the reproduction region
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(in which the plane wave is accurately reproduced) increases
proportionally.

In closing, we briefly consider the expected performance of
a five-loudspeaker array, a system that is commonly found in
practice. Our results indicate that within a region of m
(which is only slightly larger than the average adult human
head), accurate reproduction of a 2-D plane-wave sound field
will only be accurate up to around 1100 Hz.

VII. CONCLUSIONS

Spherical harmonics are a powerful tool that can be used to
analyze the propagation of wave fields. Here we have used a
spherical harmonics expansion of the acoustic field produced
by a plane-wave source to derive performance bounds on the re-
production of this sound field within a sphere. We have shown
that for a wavenumber, the field within a sphere of radius
can be accurately reproduced using a order expan-
sion, requiring loudspeakers for a 3-D field, or

loudspeakers for a 2-D field.

APPENDIX

Proof of Theorem 2

Let denote the field produced by truncating the series ex-
pansion (9) of at order . By definition,

and

The squared error over the unit sphere is

which follows from the orthogonality property (7) of the spher-
ical harmonics.

The addition theorem of Legendre functions states that [11,
p. 27]

(32)

where denotes the angle betweenand . Using this addition
theorem with [noting that ], gives

after substituting (10).
It can similarly be shown that

Hence,

Substitution of (1) for shows that

thus completing the proof.

Proof of (28)

Here we show that , as in (28). The
Bessel function can be written as [15, p. 210]

Using a spherical harmonics expansion, we can write [10, p.
227]

and using (32) and (5), can be expressed in a series
as

Substitution gives
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From the orthogonality property of complex exponentials (26)
this becomes

thus completing the proof.
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