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The Shapley Value 

  Eyal Winter 

1. Introduction 

 

To promote an understanding of the importance of Shapley’s (1953) paper on the value, 

we shall start nine years earlier with the seminal book by von Neumann and Morgenstern 

that laid the foundations of cooperative game theory. Unlike non-cooperative game 

theory, cooperative game theory does not specify a game through a minute description of 

the strategic environment, including the order of moves, the set of actions at each move, 

and the payoff consequences relative to all possible plays, but, instead, it reduces this 

collection of data to the coalitional form. The cooperative game theorist must base his 

prediction strictly on the payoff opportunities available to each coalition, conveyed by a 

single real number: gone are the actions, the moves, and the individual payoffs. The chief 

advantage of this approach, at least in multiple-player environments, is its practical 

usefulness. A real-life situation fits more easily into a coalitional form game, whose 

structure has proved more tractable than that of a non-cooperative game, whether that be 

in normal or extensive form.  

Prior to the appearance of the Shapley value, one solution concept alone ruled the 

kingdom of (cooperative) game theory: the von Neumann–Morgenstern solution. The core 

would not be defined until around the same time as the Shapley value. As set-valued 

solutions suggesting “reasonable” allocations of the resources of the grand coalition, both 

the von Neumann–Morgenstern solution and the core are based on the coalitional form 

game. However, no single-point solution concept existed as of yet to associate a single 

payoff vector to a coalitional form game. In fact the coalitional form game of those days 

had so little information in its black box that the creation of a single-point solution seemed 

untenable. It was in spite of these sharp limitations that Shapley came up with the 

solution. Using an axiomatic approach, Shapley constructed a solution remarkable not 

only for its attractive and intuitive definition but also for its unique characterization by a 
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set of reasonable axioms. Section 2 of this chapter reviews Shapley’s result, and in 

particular a version of it popularized in the wake of his original paper. Section 3 turns to a 

special case of the value for the class of voting games, the Shapley–Shubik index.  

In addition to a model that attempts to predict the allocation of resources in multi-

person interactions, Shapley also viewed the value as an index for measuring the power of 

players in a game. Like a price index or other market indices, the value uses averages (or 

weighted averages in some of its generalizations) to aggregate the power of players in 

their various cooperation opportunities. Alternatively, one can think of the Shapley value 

as a measure of the utility of players in a game. Alvin Roth took this interpretation a step 

further in formal terms by presenting the value as a von Neumann–Morgenstern utility 

function. Roth’s result is discussed in Section 4. 

Section 5 is devoted to alternative axiomatic characterizations of the Shapley 

value, with particular emphasis on Young’s axiom of monotonicity, Hart and Mas-Colell’s 

axiom of consistency, and the last named pair’s notion of potential (arguably a single-

axiom characterization).   

To be able to apply the Shapley value to concrete problems such as voting 

situations, it is important to be able to characterize it on sub-classes of games. Section 6 

discusses several approaches in that direction. Section 7 surveys several attempts to 

generalize the Shapley value to a framework in which the environment is described by 

some a priori cooperation structure other than the coalitional form game (typically a 

partition of the set of players). Aumann and Drèze (1974) and Owen (1977) pioneered 

examples of such generalizations.  

While the Shapley value is a classic cooperative solution concept, it has been 

shown to be sustained by some interesting strategic (bargaining) games. Section 8 looks at 

some of these results. Section 9 closes the chapter with a discussion of the practical 

importance of the Shapley value in general, and of its role as an estimate of parliamentary 

and voter power and as a rule for cost allocation in particular.    

Space forbids discussion of the vast literature inspired by Shapley’s paper. 

Certain of these topics, such as the various extensions of the value to NTU games, and the 

values of non-atomic games to emerge from the seminal book by Aumann and Shapley 

(1974), are treated in other chapters of this Handbook.   
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2. The Framework 

 

Recall that a coalitional form game (henceforth game) on a finite set of players N = 

{1,2,3 ..., n} is a function v from the set of all coalitions  2N to the set of real numbers R 

with v(∅) = 0. v(S) represents the total payoff or rent the coalition S can get in the game 

v. 

A value is an operator φ that assigns to each game v a vector of payoffs φ(v) =(φ1, 

φ2,..., φn) in Rn. φi(v) stands for i’s payoff in the game, or alternatively for the measure of 

i’s power in the game. 

Shapley presented the value as an operator that assigns an expected marginal 

contribution to each player in the game with respect to a uniform distribution over the set 

of all permutations on the set of players. Specifically, let π be a permutation (or an order)  

on the set of players, i.e., a one-to-one function from N onto N, and let us imagine the 

players appearing one by one to collect their payoff according to the order π. For each 

player i we can denote by pπ
i = {j: π(i) > π(j)} the set of players preceding player i in the 

order π. The marginal contribution of player i with respect to that order π is v(pπ
i ∪ i) - 

v(pπ
i). Now, if permutations are randomly chosen from the set Π of all permutations, with 

equal probability for each one of the n! permutations, then the average marginal 

contribution of player i in the game v is  

 

φi(v) = 1/n!∑π∈Π[v(pπ
i ∪ i) - v(pπ

i)],        (1) 

 

which is Shapley’s definition of the value. 

While the intuitive definition of the value speaks for itself, Shapley supported it 

by an elegant axiomatic characterization. We now impose four axioms to be satisfied by a 

value: 

The first axiom requires that players precisely distribute among themselves the 

resources available to the grand coalition. Namely,  

 

Efficiency:  ∑i∈N φi(v) = v(N). 
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The second axiom requires the following notion of symmetry: 

Players i,j ∈ N are said to be symmetric with respect to game v if they make the same 

marginal contribution to any coalition, i.e., for each S ⊂ N  with i,j ∉S,   v(S ∪ i) = v(S ∪ 

j). The symmetry axiom requires symmetric players to be paid equal shares. 

 

Symmetry: If players i and j are symmetric with respect to game v, then φi(v) = φj(v). 

 

The third axiom requires that zero payoffs be assigned to players whose marginal 

contribution is null with respect to every coalition: 

 

Dummy : If i is a dummy player, i.e., v(S ∪ i)- v(S) = 0 for every S ⊂ N, then φi(v) = 0. 

 

Finally, we require that the value be an additive operator on the space of all games, i.e., 

 

Additivity: φ(v+w) = φ(v) +φ(w), where the game v+w is defined by (v+w)(S) = v(S) 

+w(S) for all S. 

 

Shapley’s amazing result consisted in the fact that the four simple axioms defined above 

characterize a value uniquely: 

 

Theorem 1 (Shapley 1953): There exists a unique value satisfying the efficiency, 

symmetry, dummy, and additivity axioms: it is the Shapley value given in Equation (1). 

 

The uniqueness result follows from the fact that the class of games with n players forms a  

2n-1 -dimensional vector space in which the set of unanimity games constitutes a basis. A 

game uR is said to be a unanimity game on the domain R if uR(S) =  1, whenever R⊂S and  

0 otherwise. It is clear that the dummy and symmetry axioms together yield a value that 

is uniquely determined on unanimity games (each player in the domain should receive an 

equal share of 1 and the others zero.) Combined with the additivity axiom and the fact 
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that the unanimity games constitute a basis for the vector space of games, this yields the 

uniqueness result. 

 Here it should be noted that Shapley’s original formulation was somewhat 

different from the one described above. Shapley was concerned with the space of all 

games that can be played by some large set of potential players U, called the universe. 

For every game v, which assigns a real number to every finite subset of U, a carrier N is 

a subset of U such that v(S) = v(S∩N) for every S⊂U. Hence, the set of players who 

actually participate in the game must be contained in any carrier of the game. If for some 

carrier N a player i is not in N, then i must be a dummy player because he does not affect 

the payoff of any coalition that he joins. Shapley imposed the carrier axiom onto this 

framework, which requires that within any carrier N of the game the players in N share 

the total payoff of v(N) among themselves. Interestingly, this axiom bundles the 

efficiency axiom and the dummy axiom into one property. 

 

3. Simple Games 

 

Some of the most exciting applications of the Shapley value involve the measurement of 

political power. The reason why the value lends itself so well to this domain of problems 

is that in many of these applications it is easy to identify the real-life environment with a 

specific coalitional form game. In politics, indeed in all voting situations, the power of a 

coalition comes down to the question of whether it can impose a certain collective 

decision, or, in a typical application, whether it possesses the necessary majority to pass a 

bill. Such situations can be represented by a collection of coalitions W  (a subset of 2N), 

where W stands for the set of “winning” coalitions, i.e., coalitions with enough power to 

impose a decision collectively. We call these situations “simple games.” While simple 

games can get rather complex, their coalitional function v assumes only two values: 1 for 

winning coalitions and 0 otherwise  (see Chapter 36 in this Handbook). If we assume 

monotonicity, i.e., that a superset of a winning coalition is likewise winning, then the 

players’ marginal contributions to coalitions in such games also assume the values 0 and 

1. Specifically, player i’s marginal contribution to coalition S is 1 if by joining S player i 

can turn the coalition from a non-winning (or losing) to a winning coalition. In such 
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cases, we can say that player i is pivotal to coalition S. Recalling the definition of the 

Shapley value, it is easy to see that in such games the value assigns to each player the 

probability of being pivotal with respect to his predecessors, where orders are sampled 

randomly and with equal probability. Specifically, 

 

φi(v) = |{π∈Π; pπ
i∪i ∈ W and - pπ

i ∉ W}|/n! 

 

 This special case of the Shapley value is known in the literature as the Shapley–Shubik 

index for simple games (Shapley and Shubik 1954). 

A very interesting interpretation of the Shapley–Shubik index in the context of 

voting was proposed by Straffin (1977). Consider a simple (voting) game with a set of 

winning coalitions W representing the distribution of power within a committee, say a 

parliament.  Suppose that on the agenda are several bills on which players take positions. 

Let us take an ex ante point of view (before knowing which bill will be discussed) by 

assuming that the probability of each player voting in favor of the bill is p (independent 

over i). Suppose that a player is asking himself what the probability is that his vote will 

affect the outcome. Put differently, what is the probability that the bill will pass if  I 

support it? The answer to this question depends on p (as well as the distribution of power 

W). If p is 1 or 0, then I will have no effect unless I am a dictator. But because we do not 

know which bill is next on the agenda, it is reasonable to assume that p itself is a random 

variable. Specifically, let us assume that p is distributed uniformly on the interval [0,1]. 

Straffin points out that with this model for random bills the probability that a player is 

effective is equivalent to his Shapley–Shubik index in the corresponding game (see 

Chapter 32 in this Handbook). We shall demonstrate this with an example. 

 

Example: 

 

Let  [3;2,1,1]  be a weighted majority game1, where the minimal winning coalitions are 

{1,2} and {1,3}. Player 2 is effective only if player 1 votes for and player 3 votes against. 

                                                           
1 In a weighted majority game [q;w1,...,wn], a coalition S is winning if and only if ∑i∈Swi ≥ q. 
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For a given probability p of acceptance, this occurs with probability p(1-p). Since 2 and 3 

are symmetric, the same holds for player 3. Now player 1’s vote is ineffective only if 2 

and 3 both vote against, which happens with probability (1-p)2. Thus player 1 is effective 

with probability 2p-p2. Integrating these functions between 0 and 1 yields φ1 = 2/3, φ2 = φ3 

= 1/6. 

It is interesting to note that with a different probability model for bills one can 

derive a different well-known power index, namely the Banzhaf index (see Chapter 32 in 

this Handbook). Specifically, if player k’s probability of accepting the bill is pk, and if p1, 

..., pn are chosen independently, each from a uniform distribution on [0,1], then player i’s 

probability of being effective coincides with his Banzhaf index.  

 

4. The Shapley Value as a von Neumann–Morgenstern Utility Function 

 

If we interpret the Shapley value as a measure of the benefit of “playing” the game (as 

was indeed suggested by Shapley himself in his original paper), then it is reasonable to 

think of different positions in a game as objects for which individuals have preferences.  

Such an interpretation immediately gives rise to the following question: What properties 

should these preferences possess so that the cardinal utility function that represents them 

coincides with the Shapley value? This question is answered by Roth (1977). 

Roth defined a position in a game as a pair (i,v), where i is a player and v is a 

game. He then assumed that individuals have preferences defined on the mixture set M 

that contains all positions and lotteries whose outcomes are positions. Using “~” to denote 

indifference and “f” to denote strict preference, Roth imposed several properties on 

preferences. The first two properties are simple regularity conditions: 

 

A1: Let v be a game in which i is a dummy. Then (i,v) ~ (i,v0), where v0 is the null game 

in which every coalition earns zero. Furthermore, (i,vi) f (i,v0), where vi is the game in 

which i is a dictator, i.e., vi(S) = 1 if i∈S and vi(S) = 0 otherwise. 
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The second property, which relates to Shapley’s symmetry axiom, requires that individual 

preferences not depend on the names of positions, i.e.,  

 

A2: For any game v and permutation π, (i,v) ~ (π(i),π(v)).2 

 

The two remaining properties are more substantial and deal with players’ attitudes 

towards risk. The first of these properties requires that the certainty equivalent of a lottery 

that yields the position i in either game v or game w  (with probabilities p and 1-p) be the 

position i in the game given by the expected value of the coalitional function with respect 

to the same probabilities. Specifically, for two positions (i,v) and (i,w), we denote by 

[p(i,v);(1-p)(i,w)] the lottery where (i,v) occurs with probability p and (i,w) occurs with 

probability 1-p. 

 

A3: Neutrality to Ordinary Risk: (i,(pw + (1-p)v)) ~ [p(i,w);(1-p)(i,v)].   

  

Note that a weaker version of this property requires that  (i,v) ~ [(1/c)(i,cv);(1-1/c)(i,v0)] 

for c > 1. It can be shown that this property implies that the utility function u, which 

represents the preferences over positions in a game, must satisfy u(cv,i) = cu(v,i).  

The last property asserts that in a unanimity game with a carrier of r players the 

utility of a non-dummy player is 1/r of the utility of a dictator. Specifically, let vR be 

defined by vR(S) = 1 if  R ⊂ S and  0 otherwise. 

 

A4: Neutrality to Strategic Risk: (i,vR) ~ (i,(1/r)vi). 

 

An elegant result now asserts that: 

 

Theorem (Roth 1977): Let u be a von Neumann–Morgenstern utility function over 

positions in games, which represents preferences satisfying the four axioms. Suppose that 

                                                           
2 π(v) is the game with π(v)(S) = v(π(S)), where π(S) = {j; j=π(i) for some  i∈S}. 
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u is normalized so that u(i,vi) = 1 and ui(i,v0) = 0. Then u(i,v) is the Shapley value of 

player i in the game v. 

Roth’s result can be viewed as an alternative axiomatization of the Shapley value. 

I will now survey several other characterizations of the value, which, unlike Roth’s utility 

function, employ the standard concept of a payoff function. 

 

5. Alternative Axiomatizations of the Value 

 

One of the most elegant aspects of the axiomatic approach in game theory is that the same 

solution concept can be characterized by very different sets of axioms, sometimes to the 

point of seeming unrelated. But just as a sculpture seen from different angles is 

understood in greater depth, so is a solution concept by means of different 

axiomatizations, and in this respect the Shapley value is no exception. This section 

examines several alternative axiomatic treatments of the value. 

Perhaps the most appealing property to result from Definition (1) of the Shapley 

value is that a player’s payoff is only a function of the vector of his marginal contributions 

to the various coalitions. This raises an interesting question: Without forgoing the above 

property, how far can we depart from the Shapley value? “Not much,” according to Young 

(1985), whose finding also yields an alternative axiomatization of the value. 

For a game v, a coalition S, and a player i∉S, we denote by Di(v,S) player i’s 

marginal contribution to the coalition S with respect to the game v, i.e., Di(v,S) = v(S∪i) 

– v(S). Young introduced the following axiom: 

 

Strong Monotonicity: Suppose that v and w are two games such that for some i∈N 

Di(v,S) ≥ Di(w,S). Then φi(v) ≥ φi(w). 

 

He then showed that this property plays a central role in the characterization of the 

Shapley value. Specifically, 
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Theorem (Young 1985): There exists a unique value φ satisfying strong monotonicity, 

symmetry, and efficiency, namely the Shapley value. 

 

Note that Young’s strong monotonicity axiom implies the marginality axiom, which 

asserts that the value of each player is only a function of that player’s vector of marginal 

contributions. Young’s axiomatic characterization of the value thus supports the claim 

that the Shapley value to some extent is a synonym for the principle of marginal 

contribution—a time-honored principle in economic theory. But we must be clear about 

what is meant by marginal contribution. In Young’s framework, as in Shapley’s 

definition of the value, players contribute by increasing the wealth of the coalition they 

join (or decreasing it if contributions are negative). This caused Hart and Mas-Colell 

(1989) to ask the following question: Can the Shapley value be derived by referring the 

players’ marginal contributions to the wealth generated by the entire multilateral 

interaction, instead of tediously listing all the coalitions they can join? Offhand, the 

question sounds somewhat amorphous, for how is one to define an “entire interaction”? 

Absent a satisfactory definition, we shall proceed by way of supposition. Suppose each 

pair (N,v) is associated with a single real number P(N,v) that sums up the wealth 

generated by the entire interaction in the game. We are already within an ace of defining 

marginal contributions. Specifically, player i’s marginal contribution with respect to 

(N,v) is simply: 

  

DiP(N,v) =  P(N,v) – P(N\i,v),        

 

where (N\i,v) is the game v restricted to the set of players N\i. To be associated with a 

measure of power in the game, these marginal contributions need to add up to the total 

resources available to the grand coalitions, i.e., v(N). So we will say that P is a potential 

function if  

 

∑i∈N DiP(N,v) = v(N).        (2) 

Moreover, we normalize P to satisfy P(∅,v) = 0. Given the mild requirement on p, there 

seems to be enough flexibility for many potential functions to exist. The remarkable 
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result of Hart and Mas-Colell (1989) is that there is in fact only one potential function, 

and it is closely related to the Shapley value. Specifically, 

 

Theorem (Hart and Mas-Colell 1989): There exists a unique potential function P. 

Moreover, the corresponding vector of marginal contributions (D1P(N,v), ...DnP(N,v)) 

coincides with the Shapley value of the game (N,v). 

 

Let us note that by rewriting Equation (2) we obtain the following recursive equation: 

 

P(N,v) = (1/|N|) [v(N) + ∑i∈N P(N\i,v)].   (3) 

 

Starting with P(∅,v) = 0, Equation (3) determines p recursively. It is interesting to note 

that the potential is related to the notion of  “dividends” used by Harsanyi (1963) to 

extend the Shapley value to games without transferable utility. Specifically, let ∑T⊂NaTuT 

be the (unique) representation of the game (N,v) as a linear combination of unanimity 

games. In any unanimity game uT on the carrier T, the value of each player in T is the 

“dividend” dT = aT/|T|, and the Shapley value of player i in the game (N,v)  is the sum of 

dividends that a player earns from all coalitions of which he is a member, i.e., ∑{T; i∈T}dT. 

Given the definition and uniqueness of the potential function, it follows that P(N,v) = ∑

TdT, i.e.,  the total Harsanyi dividends across all coalitions in the game. 

  One can view Hart and Mas-Colell’s result as a concise axiomatic 

characterization of the Shapley value—indeed, one that builds on a single axiom. In the 

same paper, Hart and Mas-Colell propose another axiomatization of the value by a 

different but related approach based on the notion of consistency.  

Unlike in non-cooperative game theory, where the feasibility of a solution 

concept is judged according to strategic or optimal individual behavior, in cooperative 

game theory neither strategies nor individual payoffs are specified. A cooperative 

solution concept is considered attractive if it makes sense as an arbitration scheme for 

allocating costs or benefits. It comes as no surprise, then, that some of the popular 

properties used to support solution concepts in this field are normative in nature. The 
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symmetry axiom is a case in point. It asserts that individuals indistinguishable in terms of 

their contributions to coalitions are to be treated equally.  One of the most fundamental 

requirements of any legal system is that it be internally consistent. Consider some value 

(a single-point solution concept) φ, which we would like to use as a scheme for allocating 

payoffs in games. Suppose that we implement φ by first making payment to a group of 

players Z. Examining the environment subsequent to payment, we may realize that we 

are facing a different  (reduced) game defined on the remaining players N\Z who are still 

waiting to be paid. The solution concept φ is said to be consistent if it yields the players 

in the reduced game exactly the same payoffs they are getting in the original game. 

Consistency properties play an important role in the literature of cooperative game 

theory. They were used in the context of the Shapley value by Hart and Mas-Colell 

(1989). The difference between Hart and Mas-Colell’s notion of consistency and that of 

the related literature on other solution concepts lies in their definition of reduced game.  

For a given value φ, a game (N,v), and a coalition T, the reduced game (T,vT)  on the set 

of players T is defined as follows: 

 

vT(S) = v(S∪Tc) - ∑i∈T
c φi(v|S∪T

c) for every S ⊂ T,  

 

where v|R denotes the game v restricted to the coalition R. 

The worth of coalition S in the reduced game vT is derived as follows. First, the 

players in S consider their options outside T, i.e., by playing the game only with the 

complementary coalition Tc. This restricts the game v to coalition S∪Tc.  In this game the 

total payoff of the members of Tc according to the solution φ is ∑i∈T
c φi(v|S∪T

c). Thus the 

resources left available for the members of S to allocate among themselves are precisely 

vT(S). 

A value φ is now said to be consistent if for every game (N,v), every coalition T, 

and every i∈T, one has φi(T,vT)  = φi(N,v). 

Hart and Mas-Colell (1989) show that with two additional standard axioms the 

consistency property characterizes the Shapley value. Specifically, 
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Theorem (Hart and Mas-Colell 1989): There exists a unique value satisfying 

symmetry, efficiency and consistency, namely the Shapley value3. 

 

It is interesting to note that by replacing Hart and Mas-Colell’s property with a different 

consistency property one obtains a characterization of a different solution concept, 

namely the pre-nucleolus. Sobolev’s (1975) consistency property is based on the 

following definition of the reduced game: 

vT*(S) = maxQ⊂N\T[v(Q∪S) - ∑i∈Qφi(v)] if  S≠T, ∅,  

vT*(S) = ∑i∈Tφi(v) if S = T, and  vT*(S) = 0 if  S= ∅. 

Note that in Sobolev’s definition the members of S evaluate their power in the reduced 

game by considering their most attractive options outside T. Furthermore, the 

collaborators of S outside T are paid according to their share in the original game v (and 

not according to the restricted game as in Hart and Mas-Colell’s property). It is surprising 

that while the definitions of the Shapley value and the pre-nucleolus differ completely, 

their axiomatic characterizations differ only in terms of the reduced game on which the 

consistency property is based. This nicely demonstrates the strength of the axiomatic 

approach in cooperative game theory, which not only sheds light on individual solution 

concepts, but at the same time exposes their underlying relationships.  

Hart and Mas-Colell’s consistency property is also related to the “balanced 

contributions” property due to Myerson (1977). Roughly speaking, this property requires 

that player i contribute to player j’s payoff what player j contributes to player i’s payoff. 

Formally, the property can be written as follows: 

 

Balanced Contribution: For every two players i and j, φi(v) - φi(v|N\j) = φj(v) - φj(v|N\j). 

 

Myerson (1977) introduced a value that associates a payoff vector with each game v and 

graph g on the set N (representing communication channels between players). His result 

                                                           
3 Hart and Mas-Colell (1989) in fact  showed that instead of the efficiency and symmetry axioms it is 
enough to require that the solution be “standard” for two-person games, i.e., that for such games  φi({i,j},v) 
= v(i) +(1/2)[v({i,j}) – v(i) –v(j)]. 
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implies that the balanced contributions property, the efficiency axiom, and the symmetry 

axiom characterize the Shapley value. 

 We will close this section by discussing another axiomatization of the value, 

proposed by Chun (1989). It employs an interesting property which generalizes the 

strategic equivalence property traceable to von Neumann and Morgenstern (1944). 

Chun’s coalitional strategic equivalence property requires that if we change the 

coalitional form game by adding a constant to every coalition that contains some (fixed) 

coalition T⊂N, then the payoffs to players outside S will not change. This means that the 

extra benefit (or loss if the added constant is negative) accrues only to the members of T. 

Formally: 

 

Coalitional Strategic Equivalence: For all T⊂N and a ∈R, let wa
T be the game defined 

by wa
T(S) = a if T⊂S and 0 otherwise. For all T⊂N and a∈R, if v = w + wa

T, then φi(v) = 

φi(w) for all i ∈ N\T. 

 

Von Neumann and Morgenstern’s strategic equivalence imposes the same requirement, 

but only for |T| = 1. 

 Another similar property proposed by Chun is fair ranking. It requires that if the 

underlying game changes in such a way that all coalitions but T maintain the same worth, 

then although the payoffs of members of T will vary, the ranking of the payoffs within T 

will be preserved. This directly reflects the idea that the ranking of players’ payoffs 

within a coalition depends solely on the outside options of their members. Specifically: 

 

Fair Ranking: Suppose that v(S) = w(S) for every S ≠ T; then for all i,j∈T,  φi(v) > φj(v) 

if and only if  φi(w) > φj(w). 

 

To characterize the Shapley value an additional harmless axiom is needed. 

 

Triviality: If v0 is the constant zero game, i.e., v0(S) = 0 for all S⊂N, then φi(v0) = 0 for 

all i∈N. 
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The following characterization of the Shapley value can now be obtained: 

 

Theorem (Chun 1989): The Shapley value is the unique value satisfying efficiency, 

triviality, coalitional strategic equivalence, and fair ranking. 

 

6. Sub-Classes of Games 

 

Much of the Shapley value’s attractiveness derives from its elegant axiomatic 

characterization. But while Shapley’s axioms characterize the value uniquely on the class 

of all games, it is not clear whether they can be used to characterize the value on 

subspaces. It sounds puzzling, for what could go wrong? The fact that a value satisfies a 

certain set of axioms trivially implies that it satisfies those axioms on every subclass of 

games. However, the smaller the subclass, the less likely these axioms are to determine a 

unique value on it. To illustrate an extreme case of the problem, suppose that the subclass 

consists of all integer multiples of a single game v with no dummy players, and no two 

players are symmetric. On this subclass Shapley’s symmetry and dummy axioms are 

vacuous: they impose no restriction on the payoff function. It is therefore easy to verify 

that any allocation of v(N) can be supported as the payoff vector for v with respect to a 

value on this subclass that satisfies all Shapley’s axioms. Another problem that can arise 

when considering subclasses of games is that they may not be closed under operations 

that are required by some of the axioms.  A classic example of this is the class of all 

simple games. It is clear that the additivity axiom cannot be used on such a class, because 

the sum of two simple games is typically not a simple game anymore. One can revise the 

additivity axiom by requiring that it apply only when the sum of the two games falls 

within the subclass considered. Indeed, Dubey (1975) shows that with this amendment to 

the additivity4 axiom, Shapley’s original proof of uniqueness still applies to some 

subclasses of games, including the class of all simple games. However, even in 

conjunction with the other standard axioms, this axiom does not yield uniqueness in the 

                                                           
4 Specifically, one has to require the axiom only for games v1, v2 whose sum belongs to the underlying 
subclass. 
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class of all monotonic5 simple games. To redress this problem, Dubey (1975) introduced 

an axiom that can replace additivity: For two simple games v and v’, we define by 

min{v,v’} the simple game in which S is winning if and only if it is winning in both v 

and v’. Similarly, we define by max{v,v’} the game in which S is winning if and only if 

it is winning in at least one of the two games v and v’. Dubey imposed the property of  

 

Modularity: φ(min{v,v’}) + φ(max{v,v’}) = φ(v) + φ(v’). 

 

One can interpret this axiom within the framework of Roth’s model in Section 3. Suppose 

that φi(v) stands for the utility of playing i’s position in the game v, and player i is facing 

two lotteries. In the first lottery he will participate in either the game v or the game v’ 

with equal probabilities. The other lottery involves two more “extreme” games: 

max{v.v’}, which makes winning easier than with v and v’, and min{v,v’}, which makes 

winning harder. As before, each of these games will be realized with probability ½. 

Modularity imposes that each player be “risk neutral” in the sense that he be indifferent 

between these two lotteries.  

Note that min{v,v’} and max{v,v’} are monotonic simple games whenever v and 

v’ are too, so we do not need any conditioning in the formulation of the axiom. Dubey 

characterized the Shapley value on the class of monotonic simple games by means of the 

modularity axiom, showing that: 

 

Theorem (Dubey 1975): There exists a unique value on the class of monotonic6 simple 

games satisfying efficiency, symmetry, dummy, and modularity, and it is the Shapley–

Shubik value. 

 

When trying to apply a solution concept to a specific allocation problem (or game), one 

may find it hard to justify the Shapley value on the basis of its axiomatic characterization. 

After all, an axiom like additivity deals with how the value varies as a result of changes 

in the game, taking into account games which may be completely irrelevant to the 

                                                           
5 Recall that a simple game v is said to be monotonic if v(S) = 1 and S ⊂ T implies v(T) = 1. 
6 The same result was shown by Dubey (1975) to hold for the class of superadditive simple games. 
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underlying problem. The story is different insofar as Shapley’s other axioms are 

concerned, because the three of them impose requirements only on the specific game 

under consideration. Unfortunately, one cannot fully characterize the Shapley value by 

axioms of the second type only7 (save perhaps by imposing the value formula as an 

axiom). Indeed, if we were able to do so, it would mean that we could axiomatically 

characterize the value on subclasses as small as a single game. While this is impossible, 

Neyman (1989) showed that Shapley’s original axioms characterize the value on the 

additive class (group) spanned by a single game. Specifically, for a game v let G(v) 

denote the class of all games obtained by a linear combination of restricted games of v, 

i.e., G(v) = {v’ s.t. v’ = ∑ikiv|Si, where ki are integers and v|Si is the game v restricted to 

the coalition Si}. 

Note that by definition the class G(v) is closed under summation of games, which 

makes the additivity axiom well defined on this class. Neyman shows that: 

 

Theorem  (Neyman 1989): For any v there exists a unique value on the subclass G(v) 

satisfying efficiency, symmetry, dummy, and additivity, namely the Shapley value. 

 

It is worth noting that Hart and Mas-Colell’s (1989) notion of Potential also 

characterizes the Shapley value on the subclass G(v), since the Potential is defined on 

restricted games only. 

 

7. Cooperation Structures 

 

One of Shapley’s axioms which characterize the value is the symmetry axiom. It requires 

that a player’s value in a game depend on nothing but his payoff opportunities as 

described by the coalitional form game, an in particular not on the his “name.” Indeed, as 

we argued earlier, the possibility of constructing a unique measure of power 

axiomatically from very limited information about the interactive environment is 

doubtless one of the value’s most appealing aspects. For some specific applications, 

                                                           
7 A similar distinction can be made within the axiomatization of the Nash solution where the symmetry and 
efficiency axioms are “within games” while IIA and Invariance are “between games.”  
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however, we might possess more information about the environment than just the 

coalitional form game. Should we ignore this additional information when attempting to 

measure the relative power of players in a game? One source of asymmetry in the 

environment can follow simply from the fact that players differ in their bargaining skills 

or in their property rights. This interpretation led to the concept of the weighted Shapley 

value by Shapley (1953) and Kalai and Samet (1985) (see Chapter 54 in this Handbook). 

But asymmetry can derive from a completely different source. It can be due to the fact 

that the interaction between players is not symmetric, as happens when some players are 

organized into groups or when the communication structure between players is 

incomplete, thus making it difficult if not impossible for some players to negotiate with 

others. This interpretation has led to an interesting field of research on the Shapley value, 

which is mainly concerned with generalizations. 

 The earliest result in this field is probably due to Aumann and Drèze (1974), who 

consider situations in which there exists an exogenous coalition structure in addition to 

the coalitional form game. A coalition structure B = (S1,...,Sm) is simply a partition of the 

set of players N, i.e., ∪Sj = N and Si∩Sj= ∅ for i≠j. In this context a value is an operator 

that assigns a vector of payoffs φ(B,v) to each pair (B,v), i.e., a coalition structure and a 

coalitional form game on N. Aumann and Drèze (1974) imposed the following axioms on 

such operators. First, the efficiency axiom is based on the idea that by forming a group, 

players can allocate to themselves only the resources available to their group. 

Specifically, 

 

Relative Efficiency: For every coalition structure B = (S1,...,Sm) and 1 ≤ k ≤ m, we have  

∑j∈Skφj(B,v) = v(Sk). 

 

The remaining three axioms are straightforward extensions of their counterparts in the 

benchmark model. 

 

Symmetry: For every permutation π on N and every coalition structure B, we have φ(πB,

πv) = πφ(B,v), where πB is the coalition structure with (πB)i = πSi. 
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Dummy:  If i is a dummy player in v, then φi(B,v) = 0 for all B. 

 

Additivity: φ(B,v+w) =  φ(B,v) + φ(B,w) for all B and any pair of games v and w. 

 

Aumann and Drèze showed that the above axioms characterize a value uniquely. This 

value assigns the Shapley value to each player in the game restricted to his group. 

Specifically, for each coalition S and game v, we define by v|S the game on S given by 

(v|S)(T) = v(T) for all T ⊂ S. We now have: 

 

Theorem (Aumann and Drèze 1974): For a given set of players N and a coalition 

structure B, there exists a unique B-value satisfying the four above axioms, namely φ

i(B,v) = φi(v|B(i)), where B(i) denotes the component of B that includes player i, and φ 

stands for the Shapley value. 

 

Aumann and Drèze then defined the coalition structure of all the major solution concepts 

in cooperative game theory, in addition to the Shapley value. In so doing they exposed a 

startling property of consistency satisfied by all but one of them. The Shapley value is the 

exception. Hart and Mas-Colell (1989) would later show that the Shapley value satisfies a 

version of this property (discussed earlier in Section 5). 

In Aumann and Drèze’s framework, the coalition structure can be thought of as 

representing contractual relationships that affect players’ property rights over resources, 

i.e., players in S ∈ B “own” a total resource v(S), from which transfers to players outside 

S are forbidden. This is apparent from both the definition and the efficiency axiom that 

depends on the coalition structure. Roughly speaking, players from one component of the 

partition cannot share benefits with any player from another component. But in real life 

coalition formation often takes place merely for strategic reasons without affecting the 

fundamentals of the economy. A group may form in order to pressure another group, or 

to enhance the bargaining position of its members vis-à-vis other members without 

affecting the constraint that all players in N share the total pie v(N). It is thus reasonable 

to ask whether it is possible to extend the Shapley value to this context as well. Owen 

(1977), Hart and Kurz (1983), and Winter (1989, 1991, 1992) take up this question. 
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Owen proposed a value, like the Shapley value, in which each player receives his 

expected marginal contribution to coalitions with respect to a random order of players. 

But while the Shapley value assumes that all orders are of equal probability, the Owen 

value restricts orders according to the coalition structure. Specifically, for a given 

coalition structure B, let us consider a subset of the set of all orders, which includes only 

the orders in which players of the same component of B appear successively. Denote this 

set of orders Π(B).  The set of orders Π(B) can be obtained by first ordering the 

components of B and then ordering players within each component of the partition. 

According to the Owen value, each player is assigned an expected marginal contribution 

to the coalition of preceding players with respect to a uniform distribution over the set of 

orders in Π(B). More formally, let B = (S1,....,Sm) be a coalition structure. Set Π(B) = {π∈

Π; if i,j∈Sk and π(i) < π(r) < π(j), then r∈Sk}, which is the set of all permutations 

consistent with the coalition structure B. The Owen value of player i in the game v with 

the coalition structure B is now given by 

 

φi(B,v) = (1/|Π(B)|) ∑π∈Π(B)[v(pπ
i ∪ i) - v(pπ

i)].   

 

Note that the Owen value satisfies efficiency with respect to the grand coalition, i.e., the 

total payoff across all players is v(N). This is due to the fact that the total marginal 

contribution of all players with respect to a fixed order sums up to precisely v(N). 

Like the Shapley value, the Owen value can be characterized axiomatically in 

more than one way, including the way proposed by Owen himself and that of Hart and 

Kurz (1983). We will introduce here one version that was used in Winter (1989) for the 

characterization of level structure values, which generalize the Owen value.  

First note that for a given coalition structure B = (S1, ...,Sm) and game v, we can 

define a “game between coalitions” in which each coalition Si acts as a player. A 

coalition acting as a player will be denoted by [Si]. Specifically, the worth of the coalition 

{[Si1], ..., [Sik]} is v(Si1∪Si2, ..., ∪Sik). We will denote this game by v*. 

 

We now impose two symmetry axioms: 
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Symmetry across Coalitions: If players [Sk] and [Sl] are symmetric in the game v*, then 

the total values for these coalitions are equal, i.e., ∑Sl φj(B,v) = ∑Sk φj(B,v). 

 

Symmetry within Coalitions: For any two players i and j who are symmetric in v and 

belong to the same coalition in B, i.e., i,j ∈ Sk ∈ B, we have φi(B,v) = φj(B,v). 

 

We recall that the Owen value satisfies: 

 

Efficiency: ∑i∈N φi(B,v) = v(N). 

 

With the above axioms we now have: 

 

Theorem (Owen 1977): For a given set of players N and a coalition structure B, the 

Owen value is the unique B-value satisfying symmetry across coalitions, symmetry 

within coalitions, dummy, additivity, and efficiency. 

 

Hart and Kurz (1983) formulated a different axiom which can be used to characterize the 

Owen value requiring that: 

 

Inessential Games among Coalitions: If v(N) = ∑k v(Sk), then for all k  we have ∑j∈Skφ

j(B,v) = v(Sk).  

 

Hart and Kurz (1983) show that this axiom together with symmetry, additivity, and a 

carrier axiom combining dummy and efficiency yield a characterization of the Owen 

value. Hart and Kurz also used the Owen value to model processes of coalition 

formation. 

Other papers take the Owen value as a starting-point either to suggest alternative 

axiomatizations or to develop further generalizations. Winter (1992) used the consistency 

and the potential approach to characterize the Owen value. Calvo, Lasaga, and Winter 

(1996) used Myerson’s approach of balanced contributions for another axiomatization of 

the Owen value. In Owen and Winter (1992), the multilinear extension approach (see 
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Owen (1972)) was used to propose an alternative interpretation of the Owen value based 

on a model of random coalitions. Finally, Winter (1991) proposed a general solution 

concept, special cases of which are the Harsanyi (1963) solution on standard NTU games 

and the Owen value for TU games with coalition structures (as well as other non-

symmetric generalizations of the Shapley value). 

As argued earlier, there is an intrinsic difference between Aumann and Drèze’s 

interpretation of coalition structures and that of Owen. Thinking of coalition structures as 

unions or clubs, which define an asymmetric “closeness” relation between the various 

individuals, suggests several alternatives for introducing cooperation structures into the 

Shapley value framework. One such approach was proposed by Myerson (1977), who 

used graphs to represent cooperation structures between players. This important paper is 

discussed thoroughly in Monderer and Samet (see Chapter 54 in this Handbook). Another 

approach that is closer to Owen’s (and indeed generalizes it) was analyzed by Winter 

(1989). Here cooperation is described by the notion of  (hierarchical) level structures.  

Formally, a level structure is a finite sequence of partitions B =  (B1,B2,..., Bm) such that 

Bi is a refinement of Bi+1. That is, if S∈Bi, then S⊂T for some T∈ Bi+1. 

The idea behind level structure is that individuals inherit connections to other 

individuals by association to groups with various levels of commitment. In the context of 

international trade, one can think of Bm (the coarsest partition) as representing free trade 

agreements between, say, Nafta, the European Union, Mercusor, etc. Each bloc in this 

coalition structure is partitioned into countries, each country into federal states or 

regions, and so on down to the elementary units of households. 

In order to define the extension of the Owen value within this framework, we 

adopt the interpretation that the partition Bj represents a stronger connection between 

players than that of the coarser Bk where k > j. Let us think of a permutation as the order 

by which players appear to collect their payoffs. To make payoffs dependent on the 

cooperation structure, we restrict ourselves to orders in which no player i follows player j 

if there is another player, say k, who is “closer” to player i and who has still not 

appeared. Formally, we can construct this set of orders inductively as follows:  

For a given level structure B = (B1,...,Bm), define  
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Πm = {π∈Π; for each l,j ∈ S ∈Bm and i ∈ N, π(l) < π(i) < π(j) implies i ∈ S} and  

Πr = {π∈Πr+1; for each l,j ∈ S ∈Br and i ∈ N, π(l) < π(i) < π(j) implies i ∈ S}. 

The proposed value gives an expected marginal contribution to each player with 

respect to the uniform distribution over all the orders that are consistent with the level 

structure Β, i.e., the orders in Π1. Specifically, 

 

φi(B,v) = (1/|Π1|) ∑π∈Π1[v(pπ
i ∪ i) - v(pπ

i)].     (4) 

 

Note that when the level structure consists of only one partition (i.e., m = 1), we are back 

in Owen’s framework. Moreover, in contrast to the special case of Owen, in which there 

is only one game between coalitions, this framework gives rise to m games between 

coalitions, one for each hierarchy level (partition). We denote these games by v1,v2, ... 

,vm. The following axiom is an extension of the axiom of symmetry across coalitions that 

we defined earlier in relation to the Owen value. 

 

Coalitional Symmetry: Let B = (B1,...,Bm) be a level structure. For each level 1≤ i ≤ m, 

if S, T ∈ Bi are symmetric as players ([S] and [T]) in the game vi and if S and T are 

subsets of the same component in Bj  for all j > i, then  ∑r∈S φr(B,v) = ∑r∈T φr(B,v). 

 

In order to axiomatize the level structure value, we need another symmetry axiom that 

requires equal treatment for symmetric players within the same coalition: 

 

Symmetry within Coalitions: If k and j are two symmetric players with respect to the 

game v, where for every level 1≤ i ≤ m, and any non-singleton coalition S∈BI, then k∈S 

iff j∈S, and φi(B,v) = φj(B,v). 

 

Using straightforward generalizations of the rest of the axioms of the Owen value, it can 

be shown that: 
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Theorem (Winter 1989): There exists a unique level structure value satisfying 

coalitional symmetry, symmetry within coalitions, dummy, additivity, and efficiency. 

This value is given by (4). 

 

Several other approaches to cooperation structures have been proposed. We have already 

mentioned Myerson (1977), who uses a graph to represent bilateral connections (or 

communications) between individuals. An interesting application of Myerson’s solution 

was proposed by Aumann and Myerson (1988). They considered an extensive form game 

in which players propose links to other players, sequentially. Using the Myerson value to 

represent the players’ returns from each graph that forms, they analyze the endogenous 

graphs that form (given by the subgame perfect equilibria of the link formation game). 

Myerson (1980) discusses conference structures that are given formally by an arbitrary 

collection of coalitions representing a (possibly non-partitional) set of associations to 

which individuals belong. Derks and Peters (1993) consider a version of the Shapley 

value with restricted coalitions, representing a set of cooperation constraints. These are 

given by a mapping ρ: 2N → 2N, such that (1) ρ(S) ⊂ S, (2) S⊂T implies ρ(S) ⊂ ρ(T), and 

(3) ρ(ρ(S)) = ρ(S). This mapping can be interpreted as institutional constraints on the 

communications between players, i.e., ρ(S) represents the most comprehensive agreement 

that can be attained within the set of players S. Van den Brink and Gilles propose 

Permission Structures, based on the idea that some interactions take place in hierarchical 

organizations in which cooperation between two individuals requires the consent of their 

supervisors. Permission structures are thus given by a mapping p: N→2N, where j∈p(i) 

stands for “j supervises i.” The function p imposes exogenous restrictions on cooperation 

and allows for an extension of the Shapley value. 

I will conclude this section by briefly discussing another interesting (asymmetric) 

generalization of the value. Unlike the others, this one was proposed by Shapley himself 

(see also Chapter 32 in this Handbook). Shapley (1977) examines the power of indices in 

political games, where players’ political positions affect the prospects of coalition 

formation. Shapley’s aim was to embed players’ positions in an m-dimensional Euclidean 

space. The point xi ∈ Rm of player i summarizes i’s position (on a scale of support and 

opposition) on each of the relevant m “pure” issues. General issues faced by legislators 
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typically involve a combination of several pure ones. For example, if the two pure issues 

are government spending (high or low) and national defense policy (aggressive or 

moderate), then the issue of whether or not to launch a new defense missile project is a 

combination of the two pure issues. Shapley’s suggestion was to describe general issues 

as vectors of weights w = (w1, ..., wm). Note that every vector w induces a natural order 

over the set of players. Specifically, j appears after i if w•xi > w•xj (where x•y stands for 

the inner product of the vectors x and y).  The main point to notice here is that different 

vectors induce different orders on the set of players. This is illustrated in Figure 1 for the 

case of 2 pure issues and 5 players. To measure the legislative power of each player in 

the game, one has to aggregate over all possible (general) issues. Let us therefore assume 

that issues occur randomly with respect to a uniform distribution over all issues (i.e., 

vectors w in Rm). For each order of players π, let θ(π) be the probability that the random 

issue generates the order π. Thus the players’ profile of political positions (x1,x2, ... ,xn) is 

mapped into a probability distribution over the set of all permutations. Shapley’s political 

value yields an expected marginal contribution to each player, where the random orders 

are given by the probability distribution θ. Note that the political value is in the class of 

Weber’s random order values (see Weber (1988)). A random order value is characterized 

by a probability distribution over the set of all permutations. According to this value, 

each player receives his expected marginal contribution to the players preceding him with 

respect to the underlying probability distribution on orders. The relation between the 

political value and the Owen value is also quite interesting. Suppose that the vector of 

positions is represented by m clusters of points in R2,  where the cluster k consists of the 

players in Sk, whose positions are very close to each other but further away than those of 

other players (in the extreme case we could think of the members of Sk as having 

identical positions). It is pretty clear that the payoff vector that will emerge from 

Shapley’s political value in this case will be very close to the Owen value for the 

coalition structure B = (S1,..., Sm). 

 

8. Sustaining the Shapley Value via Non-Cooperative Games 
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If the Shapley value is interpreted merely as a measure for evaluating players’ power in a 

cooperative game, then its axiomatic foundation is strong enough to fully justify it. But 

the Shapley value is often interpreted (and indeed sometime applied) as a scheme or a 

rule for allocating collective benefits or costs. The interpretation of the value in these 

situations implicitly assumes the existence of an outside authority—call it a planner—

which determines individual payoffs based on the axioms that characterize value. 

However, situations of benefit (or cost) allocation are, by their very nature, situations in 

which individuals have conflicting interests. Players who feel underpaid are therefore 

likely to dispute the fairness of the scheme by challenging one or more of its axioms. It 

would therefore be nice if the Shapley value could be supported as an outcome of some 

decentralized mechanism in which individuals behave strategically in the absence of a 

planner whose objectives, though benevolent, may be disputable. This objective has been 

pursued by several authors as part of a broader agenda that deals with the interface 

between cooperative and non-cooperative game theory. The concern of this literature is 

the construction of non-cooperative bargaining games that sustain various cooperative 

solution concepts as their equilibrium outcomes. This approach, often referred to in the 

literature as “the Nash Program,” is attributed to Nash’s (1950) groundbreaking work on 

the bargaining problem, which, in addition to laying the axiomatic foundation of the 

solution, constructs a non-cooperative game to sustain it.  

Of all the solution concepts in cooperative game theory, the Shapley value is 

arguably the most “cooperative,” undoubtedly more so than such concepts as the core and 

the bargaining set whose definitions include strategic interpretations. Yet, perhaps more 

than any other solution concept in cooperative game theory, the Shapley value emerges 

as the outcome of a variety of non-cooperative games quite different in structure and 

interpretation. 

Harsanyi (1985) is probably the first to address the relationship between the 

Shapley value and non-cooperative games. Harsanyi’s “dividend game” makes use of the 

relation between the Shapley value and the decomposition of games into unanimity 

games. In the more recent literature which uses sequential bargaining games to sustain 

cooperative solution concepts, Gul (1989) makes a pioneering contribution. In Gul’s 

model, players meet randomly to conduct bilateral trades. When two players meet, one of 
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them is chosen randomly (with equal probabilities 1/2-1/2) to make a proposal. In a 

proposal by player i to player j at period t, player i offers to pay rt to player j for 

purchasing j’s resources in the game. If player j accepts the offer, he leaves the game 

with the proposed payoff, and the coalition {i,j} becomes a single player in the new 

coalitional form game, implying that i now owns the property rights of player j. If j 

rejects the proposal by i, both players return to the pool of potential traders who meet 

through random matching in a subsequent period. Each pair’s probability of being 

selected for trading is 2/(nt(nt-1)), where nt is the number of players remaining at period t. 

The game ends when only a single player is left. For any given play path of the game, the 

payoff of player j is given by the current value of his stream of resources minus the 

payments he made to the other players. Thus, for a given strategy combination σ and a 

discount factor δ, we have  

 

Ui(σ,δ) = ∑0
∞ (1-δ)[V(Mi

t) - ri
t]δt,  

 

where Mi
t is the set of players whose resources are controlled by player i at time t and δ is 

a discount factor. Gul confines himself to the stationary subgame perfect equilibria 

(SSPE) of the game, i.e., equilibria in which players’ actions at period t depend only 

upon the allocation of resources at time t. He argues that SSPE outcomes may not be 

efficient in the sense of maximizing the aggregate equilibrium payoffs of all the players 

in the economy, but he goes on to show that in any no-delay equilibrium (i.e., an 

equilibrium in which all pairwise meetings end with agreements) players’ payoffs 

converge to the Shapley value of the underlying game when the discount factor 

approaches 1. Specifically, 

 

Theorem (Gul 1989): Let σ(δk) be a sequence of SSPEs with respect to the discount 

factors {δk}0
∞ which converge to 1 as k goes to infinity. If σ(δk) are is a no-delay 

equilibrium for all k, then Ui(σ(δk),δk) converges to i’s Shapley value of V as k goes to 

infinity. 
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It should be argued that in general the SSPE outcomes of Gul’s game do not converge to 

the Shapley value as the discount factor approaches 1. Indeed, if delay occurs along the 

equilibrium path, the outcome may not be close to the Shapley value even for δ close to 

1. Gul’s original formulation of the above theorem required that σ(δk) be efficient 

equilibria (in terms of expected payoffs). Gul argues that the condition of efficiency is a 

sufficient guarantee that along the equilibrium path every bilateral matching terminates in 

an agreement. However, Hart and Levy (1999) show in an example that efficiency does 

not imply immediate agreement. Nevertheless, in a rejoinder to Hart and Levy (1999), 

Gul (1999) points out that if the underlying coalitional game is strictly convex8, then in 

his model efficiency indeed implies no delay. 

A different bargaining model to sustain the Shapley value through its consistency 

property was proposed by Hart and Mas-Colell (1996) 9. Unlike in Gul’s model, which is 

based on bilateral agreements, in Hart and Mas-Colell’s approach players submit 

proposals for payoff allocations to all the active players. Each round in the game is 

characterized by a set S⊂N of “active players” and a player i ∈ S who is designated to 

make a proposal after being randomly selected from the set S. A proposal is a feasible 

payoff vector x for the members in S, i.e., ∑j∈Sxj = v(S). Once the proposal is made, the 

players in S respond sequentially by either accepting or rejecting it. If all the members of 

S accept the proposal, the game ends and the players in S share payoffs according to the 

proposal. Inactive players receive a payoff of zero. If at least one player rejects the 

proposal, then the proposer i runs the risk of being dropped from the game. Specifically, 

the proposer leaves the game and joins the set of inactive players with a probability of 1-

p, in which case the game continues into the next period with the set of active players 

being S\i. Or the proposer remains active with probability p, and the game continues into 

the next period with the same set of active players. The game ends either when agreement 

is reached or when only one active player is left in the game. Hart and Mas-Colell 

analyzed the above (perfect information) game by means of its stationary subgame 

perfect equilibria, and concluded: 
                                                           
8 We recall that a game v is said to be strictly convex if v(S∪i) - V(S) > v(T∪i) - v(T) whenever  T  ⊂ S 
and  S ≠ T. 
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Theorem (Hart and Mas-Colell 1996): For every monotonic and non-negative10 game v 

and for every 0 ≤ p< 1, the bargaining game described above has a unique stationary 

subgame perfect equilibrium (SSPE). Furthermore, if aS is the SSPE payoff vector of a 

subgame starting with a period in which S is the active set of players, then aS = φ(v|S) 

(where φ stands for the Shapley value and v|S for the restricted game on S). In particular, 

the SSPE outcome of the whole game is the Shapley value of v. 

A rough summary of the argument for this result runs as follows. Let as,i denote 

the equilibrium proposal when the set of active players is S and the proposer is i∈S. In 

equilibrium, player j∈S with j≠i should be paid precisely what he expects to receive if 

agreement fails to be reached at the current payoff. As the protocol specifies, with 

probability p we remain with the same set of players and the next period’s expected 

proposal will be aS = 1/|S|∑i∈Sas,i. With the remaining probability 1-p, players i will be 

ejected so that the next period’s proposal is expected to be aS\i. We thus obtain the 

following two equations for aS,i: 

(1)  ∑jaj
S,i = v(S)  (feasibility condition) and 

(2)  aj
S,i = paj

S +(1-p)aj
S\i (equilibrium condition). 

Rewriting the second condition we notice that the two of them correspond 

precisely to the two properties of Myerson (1977), which we discussed in Section 5 and 

which together with efficiency characterize the value uniquely. 

In a recent paper, Perez-Castrillo and Wettstein (1999) suggested a game that 

modifies that of Hart and Mas-Colell (1996) so as to allow the (random) order of 

proposals to be endogenized. The game runs as follows: Prior to making a proposal there 

is a bidding phase in which each player i commits to pay a payoff vi
j to player j. These 

bids are made simultaneously. The identity of the proposal is determined by the bids 

specifically, the proposer is chosen to be the player i for which the difference between the 

bids made by i and the bids made to i is maximized, i.e., i = argmaxk∈N[∑jvk
j - ∑jvj

k] 

(players’ bids to themselves is always zero). If there is more than one player for which 

                                                                                                                                                                             
9  In the original Hart and Mas-Colell (1996) paper, the bargaining game was based on an underlying non-
transferable utility game.  
10 v(S) ≥ 0 for all S ⊂ N, and v(T) ≤ v(S) for T ⊂ S. 
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this maximum is attained, then the proposer is chosen from among these players with an 

equal probability for each candidate. Following player i’s recognition to propose, the 

game proceeds according to Hart and Mas-Colell’s protocol, so far as p = 1 is concerned. 

Namely, upon rejection,  player i leaves the game with probability 1.  Perez-Castrillo and 

Wettstein (1999) show that this game implements the Shapley value in a unique subgame 

perfect equilibrium (since the game is of a finite horizon, no stationarity requirement is 

needed). 

Almost all the bargaining games that have been proposed in the literature on the 

implementation of cooperative solutions via non-cooperative equilibria are based on the 

exchange of proposals and responses. A different approach to multilateral bargaining was 

adopted in Winter (1994). Rather than a model in which players make full proposals 

concerning payoff allocations and respond to such proposals, a more descriptive feature 

of bargaining situations is sought by assuming that players submit only demands, i.e., 

players announce the share they request in return for cooperation. A coalition emerges 

when the underlying resources are sufficient to satisfy the demands of all members. I will 

describe here a simple version of the Winter (1994) model and some of the results that 

follow. 

Consider the order in which players move according to their name, i.e., player 1 

followed by 2, etc. Each player i in his turn publicly announces a demand di (which 

should be interpreted as a statement by player i of agreeing to be a member of any 

coalition provided that he is paid at least di). Before player i makes his demand, we check 

whether there is a compatible coalition among the i-1 players who already made their 

demands. A coalition S is said to be compatible (to the underlying game v) if S can 

satisfy the demands of all its members, i.e., ∑j∈Sdj ≤ v(S). If compatible coalitions exist, 

then the largest one (in terms of membership) leaves the game and each of its members 

receives his demand. The game then proceeds with the set of remaining players. If no 

such coalition exists, then player i moves ahead and makes his demand. The game ends 

when all players have made their demands. Those players who are not part of a 

compatible coalition receive their individually rational payoff.  

Consider now a game that starts with a chance move that randomly selects an 

order with a uniform probability distribution over all orders and then proceeds in 
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accordance with the above protocol. We call this game the demand commitment game. 

Winter (1994) shows that the demand commitment game implements the Shapley value if 

the underlying game is strictly convex.  

 

Theorem (Winter 1994): For strictly convex (cooperative) games, the demand 

commitment game has a unique subgame perfect equilibrium, and each player’s 

equilibrium payoff equals his Shapley value.  

Winter (1994) also considers a protocol that requires a second round of bidding in 

the event that the first round ends without a grand coalition that is compatible. It can be 

shown that with small delay costs the Shapley value emerges not only as the expected 

equilibrium outcome for each player, but that the actual demands made by the players in 

the first round coincide with the Shapley value of the underlying game.  

Several other papers have followed the same approach in different contexts. 

Dasgupta and Chiu (1999) discuss a modified version of the Winter (1994) game, which 

allows for the implementation of the Shapley value in general games. Roughly, the idea 

is to allow outside transfers (or gifts) that will convexify a non-convex game. A balanced 

budget is guaranteed by a schedule of taxes dependent on the order of moves. Bag and 

Winter (1999) used a demand commitment-type mechanism to implement stable and 

efficient allocations in excludable public goods. Morelli (1999) modified Winter’s (1994) 

model to describe legislative bargaining under various voting rules. Finally, Mutuswami 

and Winter (2000) used demand mechanisms of the same kind to study the formation of 

networks. They also noted that if the mechanism in Winter (1994) is amended to allow a 

compatible coalition to leave the game only when it is connected (i.e., only when it 

includes the last k players for some 1≤ k ≤ n), then the resulting game implements the 

Shapley value not only in the case of convex games but in all games. 

 

9. Practice 

 

While game theory is thought of as “descriptive” in its attempt to explain social 

phenomena by means of formal modeling, cooperative game theory is primarily 

“prescriptive.” It is not surprising that much of the literature on cooperative solution 



 32 

concepts finds its way not into economics journals but into journals of management 

science and operations research. Cooperative game theory does not set out to describe the 

way individuals behave. Rather, it recommends reasonable rules of allocation, or 

proposes indices to measure power. The prospect of using such a theory for practical 

applications is therefore quite attractive, the more so for its single-point solution and 

axiomatic foundation.  In this section, I discuss two areas in which the Shapley value can 

be (and indeed has been) used as a practical tool: the measurement of voter power and 

cost allocation. 

 

9.1 Measuring States Power in the U.S. Presidential Election 

 

The procedure for electing a president in the United States consists of two stages. First, 

each state elects a group of representatives, or “Great Electors,” who comprise the 

Electoral College. Second, the Electoral College elects the president by simple majority 

rule. It is assumed that each Great Elector votes for the candidate preferred by the 

majority of his/her state. Since the Electoral College of each state grows in proportion to 

its census count, a narrow majority in a densely populated state, like California, can 

affect an election’s outcome more than wide majorities in several scarcely populated 

states. Mann and Shapley (1962) and Owen (1975) measured the voting power of voters 

from different states, using the Shapley value together with the interesting notion of 

compound simple games. 

Let M1,M2,...,Mn be a sequence of n disjoint sets of players. Let w1,w2,...,wn be a 

sequence of n simple games defined on the sets M1,...,Mn respectively. And let v be 

another simple game defined on the set N = {1,2,...,n}. We will refer to the players in N 

as districts. The compound game u = v[w1,...,wn] is a simple game defined on the set M = 

M1∪M2,...,∪Mn by u(S) = v({j| wj(S∩Mj) = 1}). In words: We say that S wins in district j 

if S’s members in that district form a winning coalition, i.e., if wj(S∩Mj) = 1. S is said to 

be winning in the game u if and only if the set of districts in which S is winning is itself a 

winning coalition in v. In the context of the presidential race, Mj is the set of voters in 

state j, wj is the simple majority game in state j, and v is the electoral college game. 

Specifically, the electoral college game can be written as the following weighted majority 
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game [270;p1,...,p51], where 51 stands for the number of states, and pi is the number of 

electors nominated by a state i (e.g., 45 for California and 3 for the least populated states 

and the District of Columbia).  

In general compound games, Owen has shown that the value of player i is the 

product of his value in the game within his district and the value of his district in the 

game v, i.e., φi(u) =  φj(v)φi(wj). 

Since the districts’ games are all symmetric simple majority games, the value of 

each player in the voting game in his state is simply 1 divided by the number of voters. 

To compute the value of the game v, Owen used the notion of a multilinear extension 

(see Owen (1972)). Overall, he found that the power of a voter in a more populated state 

is substantially greater than that of a voter in a less populated state. For example, 

California voters enjoy more than three times the power of their counterparts in 

Washington D.C.   

Others have used the Shapley value (as well as other indices) to measure political 

power. Seidmann (1987) used it to compare the power of governments in Ireland 

following elections in the early and mid 80s. He argued that a government’s durability 

greatly depends on the distribution of power across opposition parties, which can be 

estimated by means of the Shapley–Shubik index.  Carreras, García-Jurado, and Pacios 

(1993) used the Shapley and the Owen value to evaluate the power of each of the parties 

in all the Spanish regional parliaments. Fedzhora (2000) uses the Shapley–Shubik index to 

study the voting power of the 27 regions (oblasts) in the Ukraine in the run-off stage of the 

presidential elections between 1994 and 1999. She also compares these indicators to the 

transfers that Ukrainian governments were making to the different regions. Another 

interesting application of the Shapley value to political science is due to Rapoport and 

Golan (1985). Immediately after the election of the tenth Israeli parliament, 21 students of 

political science, 24 Knesset members, and 7 parliamentary correspondents were invited 

to assess the political power ratios of the 10 parties represented in the Knesset. These 

assessments were then compared with various power indices, including the Shapley value. 

The value provided the best fit for 31% of the subjects, but the authors claimed the 

Banzhaf index performed better. 
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9.2 Allocation of Costs 

 

The problem of allocating the cost of constructing or maintaining a public facility among 

its various users is of great practical importance. Young (1994) (see Chapter 34 in this 

Handbook) offers a comprehensive survey of the relation between game theory and cost 

allocation. An interesting allocation rule for such problems, which is closely related to 

the Shapley value, emerges from the “Airport Game” of Littlechild and Owen (1973). 

Specifically, consider n planes of different size for which a runway needs to be built. 

Suppose that there are m types of planes and that the construction of a runway sufficient 

to service a type j plane is cj with c1 < c2, ... , < cm. Let Nj be the number of planes of type 

j so that ∪Nj = N is the set of all planes which need to be serviced. A runway servicing a 

subgroup of planes S⊂N will have to be long enough to allow the servicing of the largest 

plane in S. This gives rise to the following natural cost-sharing game (in coalitional form) 

defined on the set of planes: c(S) =  cj(S)  and c(∅) = 0, where j(S) =  max{j| S∩Nj ≠∅}. 

Littlechild and Owen’s (1973) suggestion was to use the game c to determine the 

allocation of cost by applying the Shapley value on the game.  

Note that the game v can be decomposed into m unanimity games. Specifically, 

define Rk = Rk ∪ Rk+1,...,∪Rm  and consider the coalitional form games vk with vk(S) = 0 

when S∩Rk = ∅ and  vk(S) =  ck- ck-1 otherwise (we set c0 = 0). It is easy to verify that 

the sum of the games vk is exactly the cost-sharing game, i.e., v1(S) +...+vm(S) = c(S) for 

every coalition of planes S. The additivity of the Shapley value implies that the value of 

the game c is φ(c) = φ(v1) +, ..., +φ(vm). But each vk is a unanimity game with φi(vk) = 0 

for i∈N\Rk and  φi(vk) = (ck-ck-1)/|Rk| for i∈Rk. We therefore obtain that the Shapley value 

of the game c is given by φi(c) = (c2-c1)/|R1|+(c3-c2)/|R2|+, ... ,+ (cj-cj-1)/|Rj| for  a plane of 

type j. 

The rule suggested by Littlechild and Owen (1973) has the following interesting 

interpretation: First, all players share equally the cost of a runway for type 1 planes. Then 

all players who need a larger facility share the marginal extra cost, i.e., c2-c1. Next, all 

players who need yet a larger runway share equally the cost of upgrading to a runway 

large enough to service type 3 planes. We now continue in this manner until all the 
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residual costs are allocated, which will ultimately allow for the acquisition of a runway 

long enough to service all planes. 

A version of the Airport game was studied by Fragnelli et al. (1999). Their work 

was part of a research project funded by the European Commission with the aim of 

determining cost allocation rules for the railway infrastructure in Europe. Fragnelli et al. 

realized that the original Airport game is ill-suited to their problem since the maintenance 

cost of a railway infrastructure depends on the number of users. They constructed a new 

game which distinguishes construction costs (which do not depend on the number of 

users) from maintenance costs, and derived a simple formula for the Shapley value of the 

game. They also used real data concerning the maintenance of railway infrastructures to 

estimate the allocation of cost among different users. 
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