Herbig Ae/Be Stars

- More massive YSO have earlier spectral types, and begin to overlap with the A and B stars
 - Many of the A-type stars have emission lines and other spectral peculiarities
 - To distinguish these stars from older emission line-stars, Herbig (1960 ApJS 4 337) selected a group of Ae or Be type stars with associated bright nebulosity and which were in obscured regions
- These stars have IR excess due to circumstellar dust
 - Circumstellar dust distinguishes YSOs in this mass range from classical Ae and Be type stars
 - Classical Ae and Be stars often have IR excesses
 - + Due to free-free emission from circumstellar gas disk (free-free)

T Tauri Stars & Herbig Ae/Be Stars

- T Tauri stars have long PMS evolution
 - 10-100 Myr
- Herbig Ae/Be stars are 2-10 M_{\odot}
 - t_{PMS} < 10 Myr
- For $M > 5 M_{\odot}$ there is no PMS phase
 - Birthline indicates approximate location where YSOs become visible

IR Excess of HeAeBe Stars

- Spectral energy distribution (SED) of AB Aur [Hillenbrand et al's (1992) group I] and PV Cep (group II)
 - Squares are observed fluxes
 - Circles are extinction corrected
 - Note the onset of an IR excess already at 1-2 µm

IR Spectra of HAe/Be Stars

- ISO spectra of Hae/Bes show a rich variety of solid state bands
 - Silicates (amorphous and crystalline)
 - + Interstellar silicates are amorphous
 - FeO,
 - polycyclic aromatic hydrocarbons (PAHs),
 - Crystalline H₂O ice

HD 100546 & Comet Hale-Bopp

 ISO-SWS spectrum of the Herbig Ae star HD 100546 (full line) compared to the spectrum of comet Hale-Bopp

Interplanetary & Interstellar Dust

HAeBes are Progenitors of Debris Disks Stars

- A stars host debris disks
 - Vega, β Pic, Fomalhaut
- Dust removed by P-R effect & replenished by erosion of planetisimals
- Warps & blobs may be excited by planets

IR Properties of YSO

- IRAS/ISO data for of HAe/Be stars give examples of the information that only IR observations can yield
 - IR observations may yield the only method of study
 - of YSO deeply buried in molecular clouds
 - IR spectral energy distribution classification
 - + $\lambda F_{\lambda} \sim \lambda^{S}$
 - + s = -3 star
 - + s = -4/3 accretion disk
 - s < -4/3 class III</p>
 - ♦ -4/3 < s < 0 class II</p>
 - s > 0 class |
 - + IR properties of YSO cannot be understood in terms of spherical dust clouds

IR Spectra of Class I Objects

- Sources where most of the energy is radiated in the IR
 - Cool dust continuum T ≈ 35 K
 - Many absorption features (d'Hendecourt et al. 1996 AA 315 L365)
 - + Deep, broad 9.7 & 18 μm Si absorption
 - + 3 & $6\mu m H_2O$ ice
 - + 4.27 & 15.2 µm CO₂ ice
 - + 7.7 µm CH₄

IR Spectra of Class I Objects

 The 2.5-18 µm spectrum of RAFGL 7009S compared to the laboratory spectrum of a ultraviolet photolysed ice mixture H₂O:CO:CH₄:NH₃:O₂

Collapse & Accretion of Stars

YSO are not on the main sequence

- Main sequence?
 - + Hydrostatic equilibrium
 - + Surface radiant energy loss balanced by thermonuclear burning of H
- Initially the central temperatures of YSO are too cool for for H fusion

+ Energy lost must be balanced by the release of gravitational potential energy

 The location of a YSO in the HR diagram is a clue to its age

Pre-Main Sequence Evolution

- A reliable understanding of pre-main sequence evolution would reveal many details of star formation
 - What is the star formation history?
 - + How long does star formation last?
 - + Which stars form first?
 - + What is the relation between young stars in adjacent regions?
 - + How long does circumstellar material persist?
 - What is the evolutionary status of various YSO + CTTS vs. WTTS?
 - + How quickly do planets form?
 - What is the origin of the initial mass function?

Stars Near the Sun

- Young stars in the solar neighborhood showing M_K vs V-K color of main sequence and premain sequence stars
 - All stars have Hipparcos parallaxes
 - Isochrones for solar [Fe/H] from four groups plotted at 10 & 100 Myr
 - Hyades (600 Myr) and late-type Gliese indicate the main sequence

Evolving Circumstellar Environment

• Debris disk studies suggest that the quantity of circumstellar material declines rapidly with age: $M \propto t^{-2}$

Young Low Mass Stars in Orion

- Spectral type & luminosity for ~ 1700 stars within 2.5 pc of the Trapezium cluster (Hillenbrand 1997 AJ 112 1733)
- Youthful population
 - Lies above the main sequence
 - Age < 1-2 Myr

HR Diagram for Low Mass Stars in Orion

Age Spread in IC 348?

- 110 T Tauri stars in IC 348
 - \bullet H α
 - + ROSAT
- Apparent age ~ 0.7 -12 Myr
- Mean ~ 1.3 Myr
 - Reddening for stars of known spectral type

 $\square A_V = 2.8 \text{ mag}$ assumed

I Astrometric nonmembers

Disk Lifetime?

- JHKL excess/disk fraction as a function of mean cluster age (Haisch et al. 2001 ApJL 553 153)
- The decline in the disk fraction vs.age suggests a disk lifetime ~ 6 Myr
 - Vertical bars represent the √N errors in derived excess/disk fractions
 - Horizontal bars represent the error in the mean of the individual source ages derived from a single set of PMS tracks
 - Systematic uncertainty is estimated by comparing ages from using different PMS tracks

460

Estimating Ages

- Derived ages for T Tauri stars depend to some extent on initial location in the HR diagram
 - $L \& T_{eff}$ at the end of protostellar accretion
 - + Disk accretion during the T Tauri phase (10⁻⁷ M_{\odot} yr⁻¹) is insignificant
 - Low mass *protostars* may finish their primary accretion phase near the *birthline* (Stahler 1983 ApJ 274 822)
 - + The birthline is generally near the D-burning main sequence
 - + Whether the D-burning main sequence defines an exact starting point for for T Tauri stars depends on factors such as how much thermal energy is added during protostellar accretion
 - + The youngest low mass stars are observed near the birthline, but a definitive observational test does not yet exist
 - + D-burning is insignificant for more massive stars (M > 5 M_{\odot})

Pre-Main Sequence Evolution

- Before a YSO reaches the main sequence its interior is too cool for H fusion
 - The star contracts so that gravitational potential energy makes up for energy lost from the surface
- Pre-main sequence stars have convective interiors and hence nearly isentropic

$$P\rho^{-\gamma} = K$$

where $n = 1/(\gamma-1)$ is the polytropic index

• $\gamma = 5/3$ corresponds to n = 3/2 **polytrope**

- Mass radius relation $M_* R_*^{1/3} = K$
 - *K* is determined by the boundary condition between the convective interior and the radiative atmosphere

Hayashi Tracks

- Hayashi (1961 PASJ 13 450) discovered a "forbidden zone" on the HR diagram
 - Opacity drops rapidly < 4000 K when H recombines
 - Photosphere must have large optical depth
 + Low opacity makes it impossible to match the radiative atmosphere to the convective interior
 - Initial contraction of low mass pre-main sequence stars tends to be at approximately constant temperature

Hayashi Tracks

- Hayashi 1961
 PASJ 13 450
- D'Antona & Mazzitelli
 1994 ApJS 90
 467

Theoretical (Dis)Agreement

- Variation between premain-sequence contraction tracks for masses
 - Swenson et al. 1994 ApJ 425 286 (solid)
 - D'Antona & Mazzitelli 1994 ApJS 90 467 (dotted)
 - Baraffe et al. 1998 A&A 337 403, (long-dash)
 - Palla & Stahler 1999 ApJ 525 772 (dotshort-dash)
 - Yi et al. 2001 ApJS 136 417 (long-dashshort-dash)

Evolution of Polytropes

• The gravitational potential energy of polytrope is

 $W = -\frac{3}{5-n}\frac{GM^{2}}{R} = -\frac{6}{7}\frac{GM^{2}}{R}$ For n = 3/2By the Virial theorem 2T + W = 0Total energy $E = T + W = -\frac{3}{7} \frac{GM^2}{R}$ $L = \frac{dE}{dt} = -\frac{3}{7} \frac{GM^2}{R^2} \frac{dR}{dt}$

Hayashi Contraction

- The negative sign indicates that a decrease in the total stellar energy results in positive luminosity
 - By the virial theorem half of the gravitational potential energy is converted into thermal energy and half is radiated

+ Negative specific heat capacity

• Consider Hayashi evolution is described by $T_{eff} = (L / 4\pi\sigma R^2)^{1/4} \approx \text{const.}$

Kelvin-Helmholtz Timescale

• Combining the contraction luminosity with T_{eff} = const. yields

$$L = L_0 \left(\frac{3t}{\tau_{KH}}\right)^{-2/3} \text{ where } \tau_{KH} = \frac{3}{7} \frac{GM^2}{L_0 R_0}$$

- τ_{KH} is the Kelvin-Helmholtz timescale ~ E/L
 - As the star ages it contracts and becomes fainter
 - The rate of decrease in L (and R) slows with time
- For a PMS object 0.8 M_{\odot} , 2 R_{\odot} , & 1 L_{\odot}
 - τ_{KH} = 4.3 x 10⁶ yr and Hayashi contraction time is $\tau_{KH}/3$ = 1.4 x 10⁶ yr

Hayashi Contraction

- A factor of 10 in age corresponds to a factor of 10^{2/3} or 1.7 mag. dimmer
 - A discrepancy with detailed models arises between 1-3 x 10⁵ yr due to D-burning which occurs when central temperatures reach ≈ 10⁶ K
 - D-burning slows stellar contraction, which continues when D is exhausted
 - Contraction is halted again by H fusion on the main sequence

Contraction of Low Mass Stars/Brown Dwarfs

Convective/Radiative Tracks

- Low mass stars remain convective until they reach the main sequence (n = 3/2 polytrope)
 - Path is ~ vertical on the HR diagram
 - More massive stars (> 0.7 M_☉) develop a radiative core (Henyey et al. 1955 PASP 67 154)
 - + Subsequent contraction is at $L \sim \text{constant}$
 - + Radiative stars have a well defined massluminosity relation
 - Stars < 0.3 M_☉ are completely convective on the main sequence

Formation of Protostars

- Pre-main sequence tracks assume that low mass stars are formed high on convective Hayashi tracks
 - Why are there so few of these objects?
 - Perhaps stars evolve quickly through this region?
 - + $\tau_{KH} \sim M^2 / LR$
 - +For a uniform star formation rate $N(t) \sim L^{-3/2}$ when $L \sim t^{2/3}$
 - Young stars are also likely to be the most heavily extincted
 - +But class I and III sources have the same median luminosity (Keyon & Hartmann 1995 ApJS 101 117)

Formation Timescales

- Stars cannot form arbitrarily high on Hayashi tracks (arbitrarily large *R*)
 - Finite time is required to accumulate the stellar matter
 - Characteristic accretion rate is *dM/dt* ~ *c*³/G + 2 x 10⁻⁶ (*T*/10 K) M_☉ yr⁻¹
 + Time to assemble 1 M_☉ star from a 20 K NH₃ core is 0.2 Myr
- Where does the gravitational potential energy go?

Where Does the Energy Go?

- Stahler Shu & Tamm (ApJ 1980 241 637) conclude efficient escape of accretion energy
 - Accretion energy is absorbed by the surrounding spherical dusty envelope
 - A 1 M_{\odot} protostar emerges with a radius ~ 5 R_{\odot}

Where Does the Energy Go?

- *M*_o = 0.01 M_☉ *R*_o = 3.5 R_☉
 dM/dt = 10⁻⁵ M_☉ yr⁻¹ for 10⁵ yr
 - Accretion shut off at 1 M_{\odot}
 - Gas photosphere cools at constant *R* for ~ 1 day
 - Loiters for ~ 3000 yr on the D main-sequence
 - Followed by Hayashi contraction
- Accretion energy must be trapped to produce a protostellar core in hydrostatic equilibrium
- From the virial theorem computing the radius of a protostellar core reduces to finding the fraction of energy (including Dburning) trapped

The Birthline

- Schematically star formation consists of two steps
 - Formation of a core in hydrostatic equilibrium
 - Quasi-static contraction to the main sequence
- Step (1) is complex
 - 3-d Radiation-MHD
 - Vast range of spatial scales R ~ 10¹¹ 10¹⁷ cm
- Stahler (1983 ApJ 274 822) says skip (1)
 - D-burning enforces a strong mass-radius relation once accretion terminates

The Birthline

- For large *dM/dt* deuterium is replenished and mixed into the convective core
 - Maintains significant D abundance
- D burning rate is very sensitive to temperature, $\varepsilon \sim T^{14.8}$
 - In hydrostatic equilibrium $T_{core} \sim M_p/R_p$
 - + If the core temperature drops the protostar radius contracts until D burning re-ignites
 - + The increase in L_p causes the protostar to expand
 - + D-burning enforces a constant M_p/R_p
 - + The D main-sequence mass-radius relation defines the protostellar *birthline*

Comparison with Observations

- Comparison with Taurus-Auriga T Tauri stars suggests rough agreement with the positions of the most luminous opticallyvisible stars
 - A few objects may lie above the birthline
 - Note—we have no way to estimate masses for class I objects

Comparison with Observations

- There is nothing in the birthline calculations which forbids accreting protostars to lie above the D-burning main sequence
- By construction we have no details on core formation
 - The location of the Taurus-Auriga population implies a mass radius relation

 $R \approx 6 (M / M_{\odot}) R_{\odot}$

or an accretion luminosity

 $L = 10 L_{\odot} (dM/dt / 2 \times 10^{-6} M_{\odot} \text{ yr}^{-1})$

for our characteristic dM/dt

Comparison with Observations

- Comparison with the luminosity function for Class I objects implies very log mass accretion rates—median $dM/dt \sim 10^{-7} M_{\odot}$
 - Episodic accretion?

AY 216

 FU Orionis phenomenon - 10⁴ variation in L

