Herbig Ae/Be Stars

- More massive YSO have earlier spectral types, and begin to overlap with the A and B stars
	- Many of the A-type stars have emission lines and other spectral peculiarities
	- To distinguish these stars from older emission line-stars, Herbig (1960 ApJS 4 337) selected a group of Ae or Be type stars with associated bright nebulosity and which were in obscured regions
- These stars have IR excess due to circumstellar dust
	- Circumstellar dust distinguishes YSOs in this mass range from classical Ae and Be type stars
	- Classical Ae and Be stars often have IR excesses
		- + Due to free-free emission from circumstellar gas disk (free-free)

T Tauri Stars & Herbig Ae/Be Stars

- \bullet T Tauri stars have long PMS evolution
	- 10-100 Myr
- **.** Herbig Ae/Be stars are 2-10 M_{\odot}
	- \bullet t_{PMS} < 10 Myr
- For M $>$ 5 M_® there is no PMS phase
	- *Birthline* indicates approximate location where YSOs become visible

IR Excess of HeAeBe Stars

- Spectral energy distribution (SED) of AB Aur [Hillenbrand et al's (1992) group I] and PV Cep (group II)
	- Squares are observed fluxes
	- Circles are extinction corrected
	- Note the onset of an IR excess already at 1-2 µm

IR Spectra of HAe/Be Stars

- ISO spectra of Hae/Bes show a rich variety of solid state bands
	- Silicates (amorphous and crystalline)
		- + Interstellar silicates are amorphous
	- FeO,
	- polycyclic aromatic hydrocarbons (PAHs),
	- Crystalline H_2O ice

HD 100546 & Comet Hale-Bopp

ISO-SWS spectrum of the Herbig Ae star HD 100546 (full line) compared to the spectrum of comet Hale-Bopp

Interplanetary & Interstellar Dust

HAeBes are Progenitors of Debris Disks Stars

- A stars host debris disks
	- Vega, β Pic, Fomalhaut
- Dust removed by P-R effect & replenished by erosion of planetisimals
- \bullet Warps & blobs may be excited by planets

IR Properties of YSO

- IRAS/ISO data for of HAe/Be stars give examples of the information that only IR observations can yield
	- IR observations may yield the only method of study
	- of YSO deeply buried in molecular clouds
	- IR spectral energy distribution classification
		- + $\lambda F_{\lambda} \sim \lambda^{S}$
		- $+ s = -3$ star
		- + s = -4/3 accretion disk
			- \cdot s < -4/3 class III
			- \leftrightarrow -4/3 < s < 0 class II
			- \cdot s > 0 class I
		- + IR properties of YSO cannot be understood in terms of spherical dust clouds

IR Spectra of Class I Objects

- Sources where most of the energy is radiated in the IR
	- Cool dust continuum *T* ≈ 35 K
	- Many absorption features (d'Hendecourt et al. 1996 AA 315 L365)
		- + Deep, broad 9.7 & 18 µm Si absorption
		- $+$ 3 & 6µm H₂O ice
		- + 4.27 & 15.2 μ m CO₂ ice
		- $+ 7.7 \mu m CH₄$

IR Spectra of Class I Objects

o The 2.5-18 µm spectrum of RAFGL 7009S compared to the laboratory spectrum of a ultraviolet photolysed ice mixture $H_2O:CO:CH_4:NH_3:O_2$

Collapse & Accretion of Stars

• YSO are not on the main sequence

- Main sequence?
	- + Hydrostatic equilibrium
	- +Surface radiant energy loss balanced by thermonuclear burning of H
- Initially the central temperatures of YSO are too cool for for H fusion

+Energy lost must be balanced by the release of gravitational potential energy

• The location of a YSO in the HR diagram is a clue to its age

Pre-Main Sequence Evolution

- A reliable understanding of pre-main sequence evolution would reveal many details of star formation
	- What is the star formation history?
		- + How long does star formation last?
		- + Which stars form first?
		- + What is the relation between young stars in adjacent regions?
		- + How long does circumstellar material persist?
	- What is the evolutionary status of various YSO + CTTS vs. WTTS?
		- + How quickly do planets form?
	- What is the origin of the initial mass function?

Stars Near the Sun

- Young stars in the solar neighborhood showing M_K vs V-K color of main sequence and premain sequence stars
	- All stars have **Hipparcos** parallaxes
	- Isochrones for solar [Fe/H] from four groups plotted at 10 & 100 Myr
	- Hyades (600 Myr) and late-type Gliese indicate the main sequence

Evolving Circumstellar Environment

. Debris disk studies suggest that the quantity of circumstellar material declines rapidly with age: $M \propto t^{-2}$

Young Low Mass Stars in Orion

- Spectral type & luminosity for \sim 1700 stars within 2.5 pc of the Trapezium cluster (Hillenbrand 1997 AJ 112 1733)
- Youthful population
	- Lies above the main sequence
	- Age < 1-2 Myr

HR Diagram for Low Mass Stars in Orion

Age Spread in IC 348?

- **.** 110 T Tauri stars in IC 348
	- \bullet H α
	- **+** ROSAT
- Apparent age \sim 0.7 -12 Myr
- \bullet Mean \sim 1.3 Myr
	- **o** Reddening for stars of known spectral type

 $A_V = 2.8$ mag assumed

/ Astrometric nonmembers

Disk Lifetime?

- **JHKL excess/disk fraction** as a function of mean cluster age (Haisch et al. 2001 ApJL 553 153)
- The decline in the disk fraction vs.age suggests a disk lifetime ~ 6 Myr
	- Vertical bars represent the √*N* errors in derived excess/disk fractions
	- Horizontal bars represent the error in the mean of the individual source ages derived from a single set of PMS tracks
	- Systematic uncertainty is estimated by comparing ages from using different PMS tracks

Estimating Ages

- **.** Derived ages for T Tauri stars depend to some extent on initial location in the HR diagram
	- *L* & T_{eff} at the end of protostellar accretion
		- + Disk accretion during the T Tauri phase (10⁻⁷ M_® yr⁻¹) is insignificant
	- Low mass *protostars* may finish their primary accretion phase near the *birthline* (Stahler 1983 ApJ 274 822)
		- + The birthline is generally near the D-burning main sequence
		- + Whether the D-burning main sequence defines an exact starting point for for T Tauri stars depends on factors such as how much thermal energy is added during protostellar accretion
		- + The youngest low mass stars are observed near the birthline, but a definitive observational test does not yet exist
- $_{\rm AY\,216}$ + D-burning is insignificant for more massive stars (M > 5 M $_{\odot})$ $_{\rm 461}$

Pre-Main Sequence Evolution

- Before a YSO reaches the main sequence its interior is too cool for H fusion
	- The star contracts so that gravitational potential energy makes up for energy lost from the surface
- Pre-main sequence stars have convective interiors and hence nearly isentropic

$$
P\rho^{-\gamma} = K
$$

where $n = 1/(\gamma-1)$ is the polytropic index

• g = 5/3 corresponds to *n* = 3/2 *polytrope*

- Mass radius relation $M_* R_*^{1/3} = K$
	- *K* is determined by the boundary condition between the convective interior and the radiative atmosphere

Hayashi Tracks

- **.** Hayashi (1961 PASJ 13 450) discovered a "forbidden zone" on the HR diagram
	- Opacity drops rapidly < 4000 K when H recombines
	- Photosphere must have large optical depth + Low opacity makes it impossible to match the radiative atmosphere to the convective interior
	- Initial contraction of low mass pre-main sequence stars tends to be at approximately constant temperature

Hayashi Tracks

- **.** Hayashi 1961 PASJ 13 450
- **.** D'Antona & Mazzitelli 1994 ApJS 90 467

Theoretical (Dis)Agreement

- **J** Variation between premain-sequence contraction tracks for masses
	- Swenson et al. 1994 ApJ 425 286 (solid)
	- D'Antona & Mazzitelli 1994 ApJS 90 467 (dotted)
	- Baraffe et al. 1998 A&A 337 403, (long-dash)
	- Palla & Stahler 1999 ApJ 525 772 (dotshort-dash)
	- Yi et al. 2001 ApJS 136 417 (long-dashshort-dash)

Evolution of Polytropes

• The gravitational potential energy of polytrope is

 $W = -\frac{3}{5}$ $5 - n$ *GM*² *R* $=-\frac{6}{7}$ 7 $GM²$ *R* For $n = 3/2$ By the Virial theorem $2T + W = 0$ Total energy $E = T + W = -\frac{3}{7}$ 7 *GM*² *R* $L =$ *dE dt* $=-\frac{3}{7}$ 7 *GM*² R^2 *dR dt*

Hayashi Contraction

- The negative sign indicates that a decrease in the total stellar energy results in positive **luminosity**
	- By the virial theorem half of the gravitational potential energy is converted into thermal energy and half is radiated

+ Negative specific heat capacity

• Consider Hayashi evolution is described by

 $T_{\text{eff}} = (L / 4 \pi \sigma R^2)^{1/4} \approx \text{const.}$

Kelvin-Helmholtz Timescale

Combining the contraction luminosity with T_{eff} = const. yields

$$
L = L_0 \left(\frac{3t}{\tau_{KH}}\right)^{-2/3} \text{ where } \tau_{KH} = \frac{3}{7} \frac{GM^2}{L_0 R_0}
$$

- σ τ _{KH} is the Kelvin-Helmholtz timescale ~ *E/L*
	- As the star ages it contracts and becomes fainter
	- The rate of decrease in *L* (and *R*) slows with time
- For a PMS object 0.8 M_{\odot} , 2 R_{\odot}, & 1 L_o
	- τ_{KH} = 4.3 x 10⁶ yr and Hayashi contraction time is τ_{KH} /3 = 1.4 x 10⁶ yr

†

Hayashi Contraction

- A factor of 10 in age corresponds to a factor of $10^{2/3}$ or 1.7 mag. dimmer
	- A discrepancy with detailed models arises between 1-3 x 105 yr due to D-burning which occurs when central temperatures reach $\approx 10^6$ K
	- D-burning slows stellar contraction, which continues when D is exhausted
	- Contraction is halted again by H fusion on the main sequence

Contraction of Low Mass Stars/Brown Dwarfs

Convective/Radiative Tracks

- Low mass stars remain convective until they reach the main sequence (*n* = 3/2 polytrope)
	- Path is ~ vertical on the HR diagram
	- More massive stars $(> 0.7 M_{\odot})$ develop a radiative core (Henyey et al. 1955 PASP 67 154)
		- +Subsequent contraction is at *L* ~ constant
		- + Radiative stars have a well defined massluminosity relation
	- Stars < 0.3 M_o are completely convective on the main sequence

Formation of Protostars

- Pre-main sequence tracks assume that low mass stars are formed high on convective Hayashi tracks
	- Why are there so few of these objects?
	- Perhaps stars evolve quickly through this region?
		- + τ_{KH} ~ *M*²/*LR*
		- +For a uniform star formation rate *N*(*t*) ~ $L^{-3/2}$ when $L \sim t^{2/3}$
	- Young stars are also likely to be the most heavily extincted
		- +But class I and III sources have the same median luminosity (Keyon & Hartmann 1995 ApJS 101 117)

Formation Timescales

- Stars cannot form arbitrarily high on Hayashi tracks (arbitrarily large *R*)
	- Finite time is required to accumulate the stellar matter
	- Characteristic accretion rate is *dM*/*dt* ~ *c*3/G $+ 2 \times 10^{-6}$ (*T*/10 K) M_o yr⁻¹ + Time to assemble 1 M_{\odot} star from a 20 K NH₃ core is 0.2 Myr
- Where does the gravitational potential energy go?

Where Does the Energy Go?

- ^l Stahler Shu & Tamm (ApJ 1980 241 637) conclude efficient escape of accretion energy
	- Accretion energy is absorbed by the surrounding *spherical* dusty envelope
	- A 1 M_o protostar emerges with a radius \sim 5 R_o

Where Does the Energy Go?

- $M_0 = 0.01 M_{\odot} R_0 = 3.5 R_{\odot}$ • $dM/dt = 10^{-5} M_{\odot}$ yr⁻¹ for 10⁵ yr
	- Accretion *shut off* at 1 M_o
	- Gas photosphere cools at constant R for \sim 1 day
	- Loiters for ~ 3000 yr on the D main-sequence
	- Followed by Hayashi contraction
- Accretion energy must be trapped to produce a protostellar core in hydrostatic equilibrium
- From the virial theorem computing the radius of a protostellar core reduces to finding the fraction of energy (including Dburning) trapped

The Birthline

- Schematically star formation consists of two steps
	- Formation of a core in hydrostatic equilibrium
	- Quasi-static contraction to the main sequence
- Step (1) is complex
	- 3-d Radiation-MHD
	- Vast range of spatial scales $R \sim 10^{11}$ 10¹⁷ cm
- Stahler (1983 ApJ 274 822) says skip (1)
	- D-burning enforces a strong mass-radius relation once accretion terminates

The Birthline

- ^l For large *dM/dt* deuterium is replenished and mixed into the convective core
	- Maintains significant D abundance
- . D burning rate is very sensitive to temperature, $\varepsilon \sim T^{14.8}$
	- In hydrostatic equilibrium $T_{core} \sim M_p/R_p$
		- + If the core temperature drops the protostar radius contracts until D burning re-ignites
		- $+$ The increase in L_p causes the protostar to expand
		- + D-burning enforces a constant M_p/R_p
		- + The D main-sequence mass-radius relation defines the protostellar *birthline*

Comparison with Observations

- **c** Comparison with Taurus-Auriga T Tauri stars suggests rough agreement with the positions of the most luminous opticallyvisible stars
	- A few objects may lie above the birthline
	- Note—we have no way to estimate masses for class I objects

Comparison with Observations

- There is nothing in the birthline calculations which forbids accreting protostars to lie above the D-burning main sequence
- **.** By construction we have no details on core formation
	- The location of the Taurus-Auriga population implies a mass radius relation $R \approx 6$ (*M* / M_®) R_®

or an accretion luminosity $L = 10$ L_o $(dM/dt / 2 \times 10^{-6}$ M_o yr⁻¹)

for our characteristic *dM/dt*

Comparison with Observations

- \bullet Comparison with the luminosity function for Class I objects implies very log mass accretion rates—median $dM/dt \sim 10^{-7}$ M_o
	- Episodic accretion?
	- FU Orionis phenomenon 10⁴ variation in *L*

