

Looking ahead...

- Weather notebook: due Friday 26 May
- We're now getting into dynamics...how the atmosphere moves (winds)...on local and global scales
- Remember our fundamentals of energy, mass, forces, gas laws

Recap: Precipitation formation and types

- Cloud droplets are too small to fall as rain
- The smaller the drop, greater curvature, more likely to evaporate
- In above freezing air, cloud droplets can grow larger as faster-falling, bigger droplets collide & coalesce with smaller droplets
- In ice-crystal (Bergeron) process, both ice and liquid droplets must coexist at below-freezing T. The diff in saturation vapor pressure causes water to diffuse from liquid droplets (which shrink) toward ice crystals (which grow)
- Most of rain fall in mid-lats starts as snow
- Precipitation reaches sfc in various forms, depending on atmospheric conditions

crystal precipitation process.

Symbols for precipitation types Table 8.5 Summary of Precipitation Types			
Drizzle	>> (light)	Tiny water drops with diameters less than 0.5 mm that fall slowly, usually from a stratus cloud	
Rain	** (light)	Falling liquid drops that have diameters greater than 0.5 mm	
Snow	** (light)	White (or translucent) ice crystals in complex hexagonal (six-sided) shapes that often join together to form snowflakes	
Sleet (ice pellets)	A	Frozen raindrops that form as cold raindrops (or partially melted snowflakes) refreeze while falling through a relatively deep subfreezing layer	
Freezing rain	(light)	Supercooled raindrops that fall through a relatively shallow subfreezing layer and freeze upon contact with cold objects at the surface	
Snow grains (granular snow)	<u>A</u>	White or opaque particles of ice less than 1 mm in diameter that usually fall from stratus clouds, and are the solid equivalent of drizzle	
Snow pellets (graupel)	⊕ (light showers)	Brittle, soft white (or opaque), usually round particles of ice with diameters less than 5 mm that generally fall as showers from cumuliform clouds; they are softer and larger than snow grains	
Hail	† (moderate or heavy showers)	Transparent or partially opaque ice particles in the shape of balls or irregular lumps that range in size from that of a pea to that of a softball; the largest form of precipitation. <i>Large</i> hall has a diameter of V_v in. or greater; hall al- most always is produced in a thunderstorm	

Chapter 9: The Atmosphere in Motion: Air Pressure, Forces, & Winds

This chapter discusses:

- 1. Measurement and meaning of surface (sfc) and upper-level air pressure
- 2. Effect of pressure and other forces on surface and upper-level winds

Why does the wind blow? How can one tell wind direction from weather charts?

Atmosphere obeys the gas law (equation of state)

Pressure (p) = temperature (T) x density (p) x constant

$p v = T \rho$ constant or $p \sim T x \rho$

- At the same T (p ~ ρ), air at higher *pressure* is more *dense* than air at lower pressure. Therefore:
- Air above a region of sfc H pressure is more dense then air above a region of L pressure
- For sfc H-pressure areas (anticyclones) and sfc Lpressure areas (mid-latitude storms) to form, air density above them must change.
- Surface air pressure: increases as wind moves more air into a column than is able to leave (net convergence); decreases when air leaves (net divergence)

More on gas law... (p = T x ρ x C^{*})

- At a constant pressure, gas becomes less dense as T goes up; hence:
 - At a given atmospheric pressure, air that is cold is more dense than air that is warm
- Using gas law, we can calculate:
 - Average T at a certain level (pressure), if we know air density...
 - Average pressure if we know T and density
- ('Constant = 2.87 when p is in mb, T in K, and density in kg/m^3)

SO, at average sfc T (15°F), what is average sea-level pressure (SLP) if aver density = 1.226 kg/m³?

Barometer & units

- Literally, instrument that measures bars (unit of pressure)
- 1 bar = 100,000 Newtons (N) (force) acting over 1 sq meter (area) = 100,000 N m⁻²
- 1 bar = 1000 mb
- 1 Pascal (Pa) = force of 1 N over 1 sq m (N m⁻²)
- 100 Pa = 1 mb
- 1 kilopascal (kPa) = 10 mb
- 1 hectopascal (hPa) = 1 mb

The Distribution of Pressure

- Pressure maps depict <u>isobars</u>, lines of equal pressure
- Through analysis of isobaric charts, pressure gradients are apparent
 - · Steep pressure gradients are indicated by closely spaced isobars
 - Steep pressure gradients = strong winds

Small gradient over country

40 mb change in 3000 km → Gradient = 1 mb/75 km = 0.012 mb / km

Figure 9.9

Continental maps of station recorded sea-level pressure are often smoothed and simplified to ease interpretation.

Smoothing adds error to those already introduced by error in instrument accuracy.

Example of typical 500 mb height chart

- Height contours analogous to the pressure gradient
- Small changes over large regions: approximate 10% difference across North America
- •More contour lines in an interval represent greater amounts of T (pressure) change (larger gradient).

• Generally in N Hemisphere, colder air to north means lower heights, so isobars usually decrease in value from S to N.

500 mb height contours for May 3, 1995

Common Isobaric Charts

Table 9.1Common Isobaric Charts and TheirApproximate Elevation above Sea Level

(m)	E ELEVATION (ft)
120	400
1,460	4,800
3,000	9,800
5,600	18,400
9,180	30,100
11,800	38,700
16,200	53,200
	(m) 120 1,460 3,000 5,600 9,180 11,800 16,200

Flying on constant pressure surface

High to low, look out below!

- Aircraft altimeters are barometers that convert pressure to approximate elevation, and need to be calibrated
- Air pressure is influenced by temperature, and so will the elevation indicated by altimeter
 - Flying into warmer air column \rightarrow altimeter will register altitude that is LOWER than true elevation
- Flying into a region of lower pressure can be dangerous, especially in mountainous terrain

Pondering the winds

- Why do the surface winds cross the isobars, whereas the upper level winds blow parallel to the contour lines?
- We must address the FORCES that affect winds...

Newton's laws of motion

- An object at rest will remain at rest and an object in motion remain in motion as long as no FORCE is exerted on it.
- 2. The FORCE exerted on an object equals its mass times acceleration produced

F = ma

Acceleration = change in velocity Velocity specifies both speed and direction

Forces on wind

- TO determine the direction the wind blows, we must consider the net balance of all forces acting:
- 1. Pressure gradient force
- 2. Coriolis force
- 3. Centripetal force
- 4. Friction

