Chapter 1

Introduction

Credit

These Mathematica Notebooks are based on original TgX notes by Tom R. Marsh of the Department of Physics and
Astronomy at the University of Southampton.

1.1 Aims

Electromagnetism is one of the four fundamental forces. Along with gravity, it is also the one we encounter most
obviously in every-day life. It is of immense practical importance and underlies optics, electricity generation, and
modern communications and as well as the motors and transformers which crop up in almost every household
appliance.

Electromagnetism is a field theory, and was the first physical theory that unified seemingly separate branches of
physics, in this case optics and electricity. In field theories the physical quantities (e.g., the electric and magnetic field)
are defined over all space. Compare this with classical mechanics where it makes no sense to talk of the velocity of a
particle defined over all space. In order to understand such continuously changing quantities we will make frequent use
of vector derivatives. These are often difficult to get used to when first encountered.

The first part of the course develops these alongside Maxwell's equations (Chapters 2, 3), and a major aim of this
course is to make you familiar with these quantities. Wave solutions of Maxwell's equations are presented as the
consequences of these can be seen almost daily, even if only in a rainbow or the reflection from a puddle on a road.
The aims of the course are to develop “intuition” for the behaviour of electromagnetic waves by looking at them in
different situations. By the end of the course you should have become familiar with vector calculus, the physics of
electric and magnetic fields, and the physics of waves, both in a general sense, and in the specific case of
electromagnetic waves.

1.2 Course Structure

The combination of vector calculus and wave physics can often be difficult when first encountered. A good way to
gain confidence is to apply them in problems. There will be 2 assignments followed by a tutorial where we will work
though the methods of solving the problems.

1.3 Assessment

The two assignments will contribute 40% of the marks for the course and the 1 % hour exam the remaining 60%.



1.4 Notes

The course notes are at http://physics.uwa.edu.au/pub/Electromagnetism as Mathematica Notebooks and in PDF
format. The Notebooks try to be more-or-less self contained and cover everything you should know without covering
too much. Please be on the look-out for errors and let me know of any that you find.

1.5 References

No one book is entirely suited to this course, and in any case books are very much a matter of personal preference. The
one I like best is Introduction to Electrodynamics by Griffiths. Classical Electrodynamics by Jackson is the most
famous and comprehensive text, but only recommended to the very mathematically inclined. Finally, volume 2 of The
Feynman Lectures on Physics are worth looking at for their physical insight, particularly with regard to vector
calculus. I would urge you to look at more than one treatment of any topic that you have difficulty with as each version
may contain elements that help.

1. D] Griffiths, Introduction to Electrodynamics, 3rd edition, Prentice-Hall, 1999.
2. J D Jackson, Classical Electrodynamics, 2nd edition, Wiley, 1975.

R P Feynman, R B Leighton, and M Sands, The Feynman Lectures on Physics, Volume 2: Electromagnetism and
" Matter, Addison-Wesley, 1963-65.

1.6 Conventions

The notes are arranged in chapters each of which may cover one or more lectures. The order of the topics follows the
order of the lectures. Each chapter starts with an introduction that briefly lays out what is to come. Worked examples
are included, most, but not all, of which will be covered in the lectures. Some sections are marked with a A: this
warning sign indicates that you should watch out. Other sections include a & which indicates that they contain material
not covered in the lectures and not examinable. Nevertheless, they should at least be looked at in most cases. At the
end of the chapters, a short section summarises the principal results and equations which you should aim to master.
Appendices are used to collect together material on specific topics such as vector calculus, coordinate systems, and
delta functions. The material in these appendices is examinable.

The notes follow various conventions for the symbols. Vector quantities are always in bold-face e.g., A. The
magnitudes of vectors are scalars and are indicated by e.g., A. Cross-products (wedge product) are indicated by a A
rather than X. Unit vectors are indicated with a hat as in X for a unit vector along the x direction.

Another convention that needs to be understood is that of a right-handed set of axes. For many students the vector
nature of electromagnetism is one of its most difficult aspects as it is often necessary to picture problems in
3-dimensions. The relative orientation of various vectors is often an issue. Starting with x and y axes at right-angles to
each other, a right-handed set of axes is defined by 2 =% A §. A helpful rule for cross-products is to orient your right
hand so that your fingers point from the first to the second vector (e.g., from % to y in this case). Your thumb then
points in the direction of the cross-product.

Since these notes are Mathematica Notebooks, 1 use Mathematica conventions throughout. I find some of these
conventions very useful. The exponential e (e), imaginary i (i), and differential d (d) are all displayed using
"double-struck" characters (which distinguishes them from ordinary letters e, i, and d). Integrals, e.g.,



ks

f ’ cos(x)dx
0

1

change of variables, e.g.,

Dt[x]

1+ x2
deo

/. x > tan(6) // Simplify

and total derivatives also use d:

dsin(x y)
dx
d
cos(xy) (y +x dTi}c)

Partial derivatives use 0:

dsin(x y)

ox
ycos(xy)

In the figures fields and currents are indicated by crosses, ®, if they point down into the page and dots, ©, if they point
up out of the page.

Paul Abbott
Wednesday, July 26, 2006



Chapter 2

Gradients and Potentials

2.1 Introduction

There are many circumstances in which the rate at which a physical quantity changes with distance needs to be known.
In building a road, the rate of change of height with horizontal distance — the gradient — is all-important. Gradients
of pressure in fluids drive accelerating flows and gradients of temperature drive heat flow.

The physical quantities are usually distributed over three dimensions and so the first task in this chapter is to extend the
definition of gradient from one dimension, where it is given by the derivative with respect to position, to three
dimensions. We will find that the three dimensional gradient is a vector and can be calculated by application of a new
operator called the gradient or vector derivative operator. We then look at how the nature of the electrostatic field
allows us to define a quantity called the potential whose gradient is equal to the electric field.

The chapter finishes with example calculations of fields from potentials.

2.2 The Gradient

Consider a quantity such as temperature or pressure which can be assigned a value f at every point over a region.
Temperature and pressure are scalar quantities which means that unlike vectors there is no sense in which a direction
can be associated with them. Therefore f is a single number, which as it represents a physical quantity, must vary
continuously. Moving from (x, y, z) to (x + dx, y + dy, z + d z), the value of f changes by

0
—fdx+ﬁdy+ﬁdz.
Ox dy 0z

df =
This is reminiscent of a dot product:
dx

LOf . Of .Of\ . . .
df=(¢& & £)|ay E(xa—i:+y8—£+z6—];)-(xdx+ydy+zdz)=Vf~¢ﬂl, Q2.1
dz

where d/ is the line element vector (dx, dy, dz), i.e.,

dx
di=|dy|=Xdx+ydy+2dz,
dz

and V is the vector derivative operator (called del or more rarely nabla),

VZ(E EN {%)zx—+y—+z
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The quantity V f is the gradient of f, and is also sometimes written as grad f . Since d f = V f-d/, for a given length
of line element d 1, d f is maximum when d is parallel to V f. Thus V f points in the direction of maximum increase
of f and its magnitude equals the rate of change of f in that direction. The gradient is the key to straightforward
extension of some well-known equations that apply in one dimension. Thus the well known equation for heat
conductivity:

dT

Q=—K%,

where Q is the heat flux in W.m™2, and « is the conductivity, becomes
0=-«VT 2.2)

in 3D with the heat flux now a vector pointing in the direction of maximum decrease in temperature.

Figure 2.1 Contours of equal temperature, 7', with arrows representing —V 7.

Figure 2.1 illustrates the idea of the gradient in a two-dimensional example. The contours represent lines of equal
temperature (isotherms), in a case where there are two peaks of temperature with one higher than the other. The
gradient is always perpendicular to the lines of equal temperature and it is large where the lines are close together.

Example 2.1 Why is the gradient always perpendicular to contour lines (or, in 3D, contour surfaces)?

If a line element d 1 lies in a line or surface along which f is constant (i.e., an isoline or isosurface) then we can write
V f-dl=0. Therefore dl must be perpendicular to the gradient V f, which is why the arrows representing the
gradient in Figure 2.1 were drawn at right-angles to the contour lines.

Exercise 2.1 In Figure 2.2 what does V P represent?
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Figure 2.2 Contours of equal pressure (isobars), P.

2.2.2 Taylor series

You should all recall the Taylor series for a (differentiable) function in one variable:

n? n?
fat )y =f@+hf' 0+ 37 [0+ 37 [P0+ ...
In Mathematica you can compute Taylor series by adding an order term to the function:

f(h+x) +OM)’
fQ+f () h+ % @ n + % Pehr + % A hrt + o)

For example, the Maclaurin series (i.e., the Taylor series about 0) for tan(x) is

tan(x) + O(x)"*
x 2x 17 x7 62 x°
X+ —+

10
315 T35 T ages PO

Since the Taylor series involves the derivatives of a function at a point, x, if f'(x) = 0 and f”(x) <O, then

fx+h)=f(x)—ah®+ ...,

(where @ > 0) and x is a local maximum of f because, in the neighbourhood of x (i.e., around /& = 0), f decreases as we
move away from x. But of course, you already knew this from high-school calculus. However, in more than one

variable, the situation is more complicated.
One very interesting (formal) way of writing the Taylor series is
a
f+h) =" fx)

where this formal notation is interpreted as

3

" a1 d\v 1 d
fGc+h) =e' s f(x):(1+h6—x+2—!(ha—x) +3—!(ha) +...]f(x)

h? X
=f@)+hf' W+ 57 [0+ 37 O+ ...



This idea turns out to be useful in group theory. The action of the operator e” # on f(x) has the effect of translating
the function to f(x + h).

Another advantage of this notation is that it is straightforward to extend it to any number of variables by replacing & :—x
with h - V:

fax+h) =" f(x) = (1 +h -w% (h V) + % (h V) + ...)f(x)
1 1
= [@)+ 0 -9) f0) + 57 (h-V) f@) + 57 (V) f0)+ ..

Some care needs to be taken when interpreting this expression: For two variables, the second term is

(h V) f(x) = (h, k)- @y, 8,) f(x, y) =
h O, y) + k FOD(x, y),

and the third term is

1 1
a7 (h V) f(x) = 5 (1K) -0y, 0y) ((h. k) O, 0y) f(x. y)) =

1 1
5 PO R +k [0 ) ket S KO, ).

Omitting the factor of 1/2, this can be written in matrix notation as

Oxdx oxdy ( h )
Pray  Prey [k )
dyox dydy

(h-VY fx)=h" Hh=(h k).

where (apart from a sign), H is the Hessian matrix.

We require an important result from linear algebra: A symmetric n X n matrix M is positive definite < xT M x > 0 for
all x # 0 in R" & all the n eigenvalues, A;, of M are such that each A; > 0. Similarly, a negative definite matrix has
each A; < 0. Since the Taylor series

0f(x.y) fy) Py
ox

1 0xox 0x oy h
fO+h,y+k)= flx,)+(h k ).[ o) ]+ 3 (h k). Prew & feo) ( )+
dy 0y ox dydy

involves the partial derivatives of f at the point, x = (x, y), if Vf(x) =0, i.e., f1Ox, y) =0 = fOV(x, y), and H is
negative definite then (x, y) is a a local maximum of f.

The relationship between the sign of the eigenvalues and the sign of x7 M x results directly from the definition of the
eigenvalues, A; and corresponding (orthonormal) eigenvectors, u;, of a symmetric matrix:

Mlli Zki U; :u; Mu,- Zli u; u; Zli (51"1‘.

If the eigenvectors span R", we can express any vector in R" as x = a; u; + -+ + @, u, where each @; € R. Then

n n

n n n n n
v Mx:[za, u;]M[Zai )= 33 S = 33 w0 = 3
=1 i=1 =1 j=1 =1 j=1 =1

The eigenvectors diagonalize the symmetric matrix, which can be written in the form

M =P .D.P,



where P is the matrix of eigenvectors, P = (u; |u, | ... | u,), and D is the diagonal matrix with the eigenvalues A, A,,
..., A, along the diagonal. Then

X" Mx=x"PTDPx=Px)" DPx)=>y Dy=Q; y> +A2y5 +... + 1, ¥2),

where y = Px. Clearly, A, y? + 4, y3 + ... + A, ¥ > 0 for arbitrary (real) y; only if all A; > 0.

5 -2

Example 2.2 Consider the symmetric 2 X 2 matrix M = ( ) g ) Is M positive definite?

If we compute x” Mx
5 -2 )
-2 87

{x, y}.M {x, y} // Factor
532 —4yx+8y

=

it is not immediately obvious that this expression is positive for arbitrary x and y. However, if we write the result in
the form

9 ,, 4 2
% == g- x-2y)y + g- 2x+y)* // Simplify
True

it is now obvious, since (x — 2 y)2 and 2 x + y)2 are both positive for all x = (x, y) # 0 in R2. Alternatively, we see
that both eigenvalues are positive:

A = Eigenvalues[M]
{9, 4}

Hence M is positive definite. Alternatively, with
P = DiagonalMatrix[A]
(o 4)
0 4
then clearly y' Dy = A, u?> + 2, v* >0 forall y = (u, v) # 0 in R2.

{u, v}.DAu, v}
91 + 412

The orthogonal eigenvectors are
Eigenvectors[M ]T
(1)

21
We need to make these orthonormal:

%
Norm /@ %

%)

P=



P'.P
10
(o 1)
P diagonalizes the matrix M.
P! .M.P // Simplify
(0 4)
0 4
and we confirm that PT DP = M:

Pl.DP==M
True

Computing (P x)” D (P x) we also obtain a result that is positive for all x = (x, y) # 0 in R2.
(PAx, yD.D.(PAx, y})
2 2
4(_X+L_] +9(_1_L]
VERRRYE Vi W5
Simplify /@ %
2 =294 2 Qatyy
— (x- —(2x
5 YT Y
Example 2.3 Describe the conic 5 x> — 4 xy + 8 y* = 36.

Visualizing the conic shows that it is an ellipse:

ContourPlot[5 x*> — 4 yx+38 yz, {x, —4, 4}, {y, —4, 4}, Contours — {36}, ContourShading — False];
4+

-4t ‘ ‘ ‘ ‘
-4 -2 0 2 4

Write the equation in matrix form:

b

5 =2
2 s)

{x, y}.M.{x, y} == 36 // ExpandAll
5 —4yx+8y* =36

=

Diagonalizing the matrix, x’ Mx=x" PP DPx=(Px) D(Px)=y" Dy, where y=(u,v)=Px. Hence the
equation becomes



10

{u, v}.D.{u, v} == 36 // Simplify
9u? +41v* =36

. 2 2 L . .
that is, % + VT = 1, which is the equation of an ellipse.

w2
ContourPlot[—i— + —9——, {u, -4, 4}, {v, —4, 4}, Contours - {1}, ContourShading —» False];

ar

-4 -2 0 2 4

The effect of the orthogonal matrix P on x is to rotate the axes:

2y X 2x
{

Zy X _+L}
Vi V5 V5 W5

2.2.3 Conservative fields and potentials

Eq.2.1,d f =V f-dl, can be used to calculate the finite change in f when moving from two points, A to B (Fig. 2.3):

B B
f(B)—f(A)zfdfzf Vrodl
A A

A

Figure 2.3 Path of integration from A to B and back again.

If we then move back from B to A over a different path, the total change in f will be zero and thus

9§Vfdl=0,
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where the symbol f indicates an integral over a closed loop. The reverse of this process can be shown to be true.
That is, if integrals over closed loops in a vector field A are always zero i.e.,

9€A~cﬂl=0

for any loop, then A can be derived from a scalar field, called y say, by taking its gradient
A=Vy.
This is an important theorem since it is generally much easier to work with scalars than vectors.

Since the force on a charge ¢ in an electric field E is g E, and so a force —q E needs to be applied to hold the charge
still, the integral

—9€qE~dl

represents the work needed to move the charge around a loop. In electrostatics this must be zero or else we could
obtain energy indefinitely by allowing the charge to move around the loop in the direction that makes the work
needed negative. In electrostatics fE -d1 =0 for all loops and therefore from above, we must be able to derive E
from a scalar, i.e., E = V. In fact by convention we write

E=-V¢,

where ¢ is called the electric potential. The minus sign means that the potential increases as one nears positive
charges and makes ¢ the work done in bringing a unit charge from infinity to a given point. The reasoning above
breaks down in time varying cases when it is possible for fE -dl # 0 (e.g., think of the coils of a transformer). Thus
the above equation applies in electrostatics only.

We have used the conservation of energy to argue that fE -dl =0 and any vector field that satisfies this condition is
known as a conservative field. Not all fields satisfy this condition. For example any field that can be drawn in closed
loops cannot have a zero-line integral around these loops. The magnetic field around a wire is one example, and in
general it is not possible to derive magnetic fields from scalar potentials.

2.2.4 Calculating fields from potentials
The calculation of fields from potentials is best illustrated with some examples. We start with a simple one.

Example 2.4 What is the electric field equivalent to the potential ¢ = —k x?

We apply the vector derivative operator through E = —V ¢ or in component form
9
E, ox k
p)
Ey [=-] 35 |(-kx) = [O]
E, 8 0
0z

Thus ¢ = —k x is the potential of a uniform field pointing in the x direction (i.e., 7) with magnitude k.

This example can be generalised:

Example 2.5 What is the electric field equivalent to the potential ¢ = —A - r where A is a constant vector and r is the
position vector?

The dot product can be expanded out so

¢=—A1X—A2y—A3Z.
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We then have

Ay
E=-V¢= Az]zA.

Az

Therefore a uniform field, E, has a potential of the form ¢ = —E - r.

Now for a trickier case:

Example 2.6 What is the electric field equivalent to the potential ¢ = 1/r where r is the distance from a point?

This can be answered in two ways:

(1) The direct approach is to apply the vector derivative operator to 1/ remembering that > = x> + > +z> . Thus
since

d (1)_ L or 1 a@+y+)”
ax\r) " 12 9x 2 Ox ’
and
12
or X +y*+7%) 1, 5, L, X
— = = — +y° + 2x=—,
ox ox 2(x y ) o r
we obtain

E:—V¢:r—zr—z—, 2.3)

where # or e, are unit vectors pointing in the radial direction. Therefore, as expected, a 1/r potential gives a 1/72
electric field.

(2) A more intuitive approach can be taken based upon Eq. 2.1, df =V f-dl. If dl is parallel to V f, i.e., we step
along the direction of the gradient, then this becomes d f = |V f| d I, or

d
vi=

along a path parallel to the gradient. For the electric field we can similarly write E = —d¢/d! for a path parallel to
the field. For ¢ = 1/r the field must point in the radial direction by symmetry so we take the derivative moving out
in radius, i.e., E = —d¢/dr for any spherically symmetric potential ¢. This trivially gives the result (Eq. 2.3)
obtained more painfully above, and can be applied to any potential that varies with r only.

Computation of fields using Mathematica

Define the distance between two points as follows:

Unprotect[Norm]; ||z_|| := ‘/;, Protect[Norm];
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The potential of a (point) charge g positioned at r 0, measured at r is

q

¢r_,r0_,q_:1) := ———
[lr —r0]|

For example, the potential due to a unit charge at the origin

0 =1{0,0, 0};

measured at the point

P={x,y,z};
is
o(P, O0)
1

Va2 +y2 + 72
In Mathematica after defining V:

VE _{a_j; 6_]; 6_];}
7 lox’ ay’ az

We can compute —V ¢ in Cartesian coordinates directly:

1
(‘J:Simplify[—V———/.x2 +y +7 —)rz,r>0]
Va2 +y2 +22
Xy z
b )

P
e, = —
X yr Z
il

the electric field & can be written as

P e,

3 2
True

Alternatively, the electric field for any spherically symmetric potential ¢ can be computed using £ = —d¢/dr:

2.2.5 Point Charge — Monopole

The electric field and potential of a point charge (monopole) can be visualized as follows. Computing the field lines (by
numerically solving a set of differential equations), we show the charge, equipotential lines (black), and field lines

(purple) together:
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A Note that the field lines and equipotentials are orthogonal (i.e., they intersect at right-angles).
Restricting attention to the x-z plane (i.e., y = 0),

P={x,0, z};

the potential of a point (unit) charge is

¢1 (X_5 Z_) = ¢(P5 0)
1

Va2 +22
and the (Cartesian) components of the electric field are

{8.\” 8y5 8z} = _V¢1(x, Z)

X Z

@+2)? @+ 2)

32 }

A Note that restricting attention to the x-z plane simplifies the computations slightly and is convenient when plotting
graphs of the potential and field. However, you should remember that, in general, the potential and field are functions
of all 3 (Cartesian) coordinates.

A There is an important sublety here: from first year you should already be aware that the density of lines in plots of the
electric field are proportional to the strength of the field. However, the density needs to be computed in 3 dimensions
(i.e., lines per unit volume) rather than in 2 dimensions (i.e., lines per unit area). If you do this for a point charge you
will find that the density of lines does indeed go like the inverse square of the distance from the charge, i.e., 1/72.

A powerful alternative visualization is a surface plot with the equipotential lines superimposed onto the surface:
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Imagine placing a ball bearing on this surface under the influence of gravity acting in the vertical direction.
Qualitatively, the magnitude and direction of the force on the ball-bearing is obvious. By analogy, one can
immediately obtain the forces acting on and the resulting motion of a positive test charge in such a potential.

2.2.6 Pure Dipole

The second method used in example 2.4 can be applied more generally to cases lacking symmetry and is usually the
way to proceed unless the potential is given in terms of x, y, and z (in which case direct application of d /dx etc, is
easiest). Consider a (pure) dipole potential of the form

p-r pr prx+pry+psz  pceos(d)

Tdner?  dner dre (2 +y+2)7 A @4

where p is a constant vector and 8 is the angle between p and the radial direction, #. What is the electric field of such a
potential? Since the potential is expressed in spherical coordinates r and 6, it is easiest to work out the field in the
radial (increasing r) and tangential (increasing 6) directions.

We start again from Eq. 2.1, df =V f-dl, or its equivalent — here d¢ = —E-dl. If dl is parallel to the radial
direction, only the radial component of E, E ,, contributes to the dot product and thus

_d¢ _dr 8¢ 3¢

E=-—/| =-="==-2,
" dl s dl dr ~ ar

with the partial derivative showing that only r changes. Similarly if we move tangentially, only the tangential
component Ey contributes to the dot product and

as _d606¢ _ 104

Cdl beone  dl 80 r 86,

Egz

A Note here that, for r constant, if we move from (r, 6) to (r, 6 + d6) we have moved by d! = rdf so d0/di=1]r
which is why a 1 /r term appears (as it must to give the correct dimensions). For 6 constant, if we move from (r, 6) to
(r +dr, 0) we have moved by dl = drsodr/dl=1.

Applying E, = - g—f and Ey = —% g—z to the potential of Eq. 2.4 we find

2 0
E = 2P

4rerd’
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p sin(6)
Ep= —"
o dreyrd.

The total field is
E=E, e +Ejey,

and is illustrated in Figure 2.4 below.

e
AN

""%

-4 -2 0 2 4

Figure 2.4 The field pattern (purple) and equipotential lines (black) for a potential of the form p cos(@) /2.

Total derivative versus partial derivative

Recall the definition of the total derivative. For f a function of r and 6 we find that

dfa,6)

y dl

ar a0
o7 [0

where fOD(r, ) denotes the partial derivative of f with respect to its second argument, i.e., 6:
afr, 0)
a0
OV 0)
and similarly for f9(r, §). Computing the total derivative for constant § we obtain:

d f(r, )

SetAttributes[#, Constant]; T,

dr
mf(l’o)(r, 0)

and similarly for constant r.

2.2.7 Dipole

The total potential, ¢, (x, z), of a pair of equal and opposite charges, +1 positioned at {0, O, 1} and —1 positioned at
{0,0, —1}, is
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¢2(X_’ Z_) = ¢(P’ {0’ 0’ _1}5 _1) + ¢(P5 {0’ 09 1}’ 1)
1 1

\/x2 +(z-1)° \/x2 +(z+ 1)
with corresponding electric field

{ax’ ay’ az} = _V¢2(x9 Z)
X X z—1 z+1

O _
@ +z-1)" @)’

@t @ ae- D)

Below we plot the charges, equipotential lines, and field lines together:

[\S]

You should compare this figure with the corresponding one for a (pure) dipole.

Here is a surface plot of ¢, (x, z) with the equipotential lines superimposed onto the surface:

2.2.8 Quadrupole

It is not hard to extend such computations to arbitrary collections of charges. A combination that is particularly
important in the study of nuclear physics, magnets used in particle accelerators, and gravitational waves, is the

quadrupole which, as its name suggests, consists of 4 poles.
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Consider the following arrangement of charges: +1 at {1, 0, 1} and {-1,0, —1} and —1 at {1, 0, —1} and {1, O, 1}:

¢4(X_’ Z_) = ¢(P’ {1’ 0’ 1}’ 1) + ¢(P5 {1’ 09 _1}’ _1) + ¢(P5 {_1’ 0’ 1}’ _1) + ¢(P5 {_19 09 _1}’ 1)
1 1 1 1

- - + +
Va1 +e-17  Ja-12 4G+ Vo D+’ -1 +@— 17
The corresponding electric field is

{ax’ ay’ az} = _V¢4(x9 Z)
x—1 x—1 x+1 x+1

- - + 0,
(-1 + (- 1)

G-12 4@+ DD )+ (12
z—1 z—1 z+1 z+1

- - +
G- +@-1))" @+ +e-1)"

G- +e+ D) (@) + @+

Here is a plot of the charges, equipotential lines, and field lines:

Here is a surface plot with the equipotential lines superimposed onto the surface:

Example 2.7 What can you say about the stability of a positive test charge positioned at the origin, {0, 0, 0}, for the
quadrupole potential?

First we need to define stability:
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Something is stable if, after an arbitrary (small) perturbation, the resulting forces acting on it tend to return it to its
original position. From the above diagram it is clear that, after a small displacement in the north-east (45°) or
south-west (225°) directions, the resulting force would tend to return the test charge to its original position. However,
after a small displacement in the north-west (135°) or south-east (315°) directions, the resulting force on the test
charge is away from the origin and towards one of the negative charges. Hence a test charge positioned at the origin
is not stable.

Note that both the potential and its first (partial) derviatives (i.e., its electric field) at {0, 0, 0} are both identically
Zero:

$4(0, 0)
0

{6, &y, 6} {x >0,y >0,z 0}
{0, 0, 0}

Using calculus we then know that {0, 0, 0} is an extremum. In single-variable calculus, if a function has zero
derivative then one test to decide whether it is a maximum or a minimum is to compute its second derivative. In
higher dimensions there are other (topological) possibilities including saddle-points. The generalization of the
single-variable test is to compute the eigenvalues of the matrix of second derivatives (i.e., the Hessian):

Phy(x2) P pa(x,2)

dx dx 0x 0z
x>0,y>0,2-0
Poy(xz)  PPy(x2) /- 4 'z )
Az 9x 070z
3
O 7
3
77 0

If all the eigenvalues are negative (positive) then we have a maximum (minimum). If some of the eigenvalues are
positive and some are negative then we have a saddle-point:

Eigenvalues[ %]
INCANCL

That we have a saddle-point should be obvious from the surface plot.

2.2.9 Three charges

Three unit positive charges are positioned at the vertices of an equilateral triangle:

1 1

» 0 o1
| Lo - |
A=] 2 s |
1

"0 =

This problem is dealt with by E Durand in Electrostatique, Tome 1, Distributions (Masson, Paris 1964 ).
Write down the total potential for this configuration of charges;
P =1{x, y, z};
$3(x_, y_, z) = §(P, A[1]) + (P, A[2]) + ¢(P, A[3])
1 1

+ +

\/<x_%f+yz+(z+ﬁ)2 \/<x+%f+yz+(z+ﬁ)2 \/xz+yz+(z-%)2
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Write down the electric field for this configuration of charges;

{ax, ay, 8z} = _V¢3(x, Ys 2)
1

X— 73 X X+%
{ L2 1 T . 123/2"' 2., N
(x=3) +y +(Z+W)) (x2 +y +(Z_W)) (x+ ) +y +(z+m))
y y y
. 123/2"’ 2, : T 2, . 202
(x2 +y +(Z_W)) (k=3 +y +(Z+W)) ((x+3) +y +(Z+W))
1 1 1
e - T N ST }
2,312 2.3/2 2.3/2

2
(x2+y2+(z—%)) ((x—%) +y2+(z+ﬁ))

Solve these equations numerically, for example,

FindRoot[{&,, &, &:} == {0, 0, 0}, {{x, 0}, {y, 0}, {z, —0.1}}]
{x>0.,y-0.,z->-0.1643822188}

Show that the electric field vanishes at the following 4 points:

0. 0. o
0. 0. —0.1643822188
c= H

—0.1423591774 0. 0.08219110939
0.1423591774 0.  0.08219110939

{E» &y, &} /. Thread[P - c[1]] // Chop
{0, 0, 0}

{E» &y, &} /. Thread[P — c[2]] // Chop
{0, 0, 0}

{E» &y, &} /. Thread[P — c[3]] // Chop
{0, 0, 0}

{&, &y, &} /. Thread[P - c[[4]] // Chop
{0, 0, 0}

Restricting attention to the x-z plane, here is a plot of the critical points and equipotential contours:
ContourPlot[¢; (x, 0, 2), {x, —0.16, 0.16}, {z, —0.19, 0.13},

ContourShading — True, Epilog — {PointSize[0.02], Hue[0.5], Point[{0, 0}],
Point[{0, —0.16438}], Point[{—0.142359, 0.08219}], Point[{0.142359, 0.08219}1}1;

-0.15 \

-0.15 -0.1 -0.05 © 0.05 0.1 0.15




21

From this plot it looks like {0, 0, 0} is a minimum and the other three critical points are saddle-points. Here is a plot of
the electric field lines and equipotentials in the x-z plane:

Note that the apparent convergence of flux at the centre is illusory. The flux flow towards the centre diverts out of the
plane of the source charges.

What can you say about the stability of a test charge positioned at each of the above 4 points?
We need to compute the Hessian matrix. In 2 dimensions this reads

P 3(xy2) B3 (x,y,0)

dxdx 0x0z
B ¢3(xy2) 92 $3(x,y,0)
0z0x 020z

Evaluating the eigenvalues of the Hessian at the first critical point, {0, 0, 0}:

H /. Thread[P — c[[1]] // Eigenvalues
{7.794228634, 7.794228634}

it looks like {0, 0, 0} is a minimum because both eigenvalues are positive. However, the potential is a function of all
three coordinates so we really need to compute the matrix

Pps(x,y,) iy PP3(x,y2)

dxdx Ixdy 0x0z
H=| £8erd  Fe@yd B3y
- dyox dydy dydz 4

FPp3(r,y,0) Py PP3(xy2)
0z0x 0z 0y 020z

We now find that all 4 critical points are saddle-points:

H /. Thread[P — c[1]] // Eigenvalues
{—15.58845727, 7.794228634, 7.794228634}

H /. Thread[P — c[[2]] // Eigenvalues
{24.24375449, —17.07427809, —7.169476398}

H /. Thread[P — c[[3]] // Eigenvalues
{24.24375449, —17.07427809, —7.169476397}

H /. Thread[P — c[[4]] // Eigenvalues
{24.24375449, —17.07427809, —7.169476397}
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That the first critical point (which looked like a minima in two dimensions) is a saddle-point should be obvious from
the physical situation: imagine placing a positive test charge at the origin. The force on the test charge after a small
displacement out of the plane of the the three fixed charges is away from the origin.

The last 3 critical points are themselves vertices of an equilateral triangle. Note that, by symmetry, we should not be
suprised then that the eigenvalues of H evaluated at these critical points are equal.

2.2.10 Multipole Expansion

If you are far away from a localized charge distribution, it "looks" like a point charge, and the potential is

7 L_ 2 \where Q is the total charge. However, if Q is zero, what is the leading term of the potential for
€y r

large r? To answer this question, again consider a physical dipole:

approximately

-q
Here the total charge is Q = ¢ — g = 0. At the point

P={x,y, z};

the potential is
—s s
P X,y ,Zz )= ¢(P, {0, 0, —2-}, —q) + ¢(P, {0, 0, E‘}’ ‘I)
q q

\/xz+y2+(z—%)2 \/xz+y2+(%+z)2

In spherical polar coordinates, the potential reads

&2 (r cos(@) sin(0), r sin(¢) sin(), r cos(d)) // Simplify
1 1

2q
Var2 —4scos(@)r+s>  Var: +4scos@)r + 52

For r > s we expand ¢, into a Taylor series in s:

Factor /@ (% + O[s]°) // PowerExpand
gcos(@) s L4 cos(0) (5 cos?(0) — 3) s> L4 cos(0) (63 cos*(0) — 70 cos?(0) + 15) s°

6
” 8 12875 +oL

The leading term is

_gscos()  p-F

drer? drer?
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where p = ¢s. This corresponds to a pure dipole potential. Evidently the potential of a dipole goes like 1/ for large

r. Putting together a pair of equal and opposite dipoles makes a quadrupole:

ba(x,y_,2)=
s s s
(P {550, ) a) +9(P (550 =5 ) —a) +6{P, {= 2, 0, =} —g) +9(P (-5, 0,2}, 4]
q _ q _
\/ 5 \2 2 5 \2 \/ s 2 2 5 \2
(x=3) +y+@-73) (z+x0) +y +(x-3)
q + q
Va-9 430212 +27 (G +0 +32+ (5 +2)
The quadrupole potential goes like 1/7°:
¢ 4(r cos(¢) sin(0), r sin(¢) sin(), r cos(6)) + 0[s]4 // Simplify // PowerExpand
3 0 in(0) s
q cos(6) coz(d)) sin(6) s N 0(s4)
T
The potential of an arbitrary charge distribution confined to a volume V is
(P) = f 1 (s)d 2.5
0= e ) 'R PO 2.5)

where R is the distance from ds to P. With respect to a fixed origin O, we can obtain a systematic expansion for ¢ (P)
in terms of inverse powers of r. The diagram below defines the variables. Without loss of generality, we have aligned

O P with the z-axis:
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In spherical polar coordinates, we write

S = {s cos(¢) sin(), s sin(¢) sin(6), s cos(0)};
P={0,0,r};
and find that

R = ||P - S|| // Simplify
Vr2 =2scos(@) r+ s

For r > s we expand % into a series in s:

1
Factor /@ (}- + 0(s)4] // PowerExpand

1 . cos(8) s . (3cos?(@) — 1) s> cos(0) (5cos?(0) — 3) s>

4
r 72 27 * 2r4 +O6s)

It turns out that the trigonometric terms are Legendre polynomials, P,(cos(6)):

Factor /@ Table(P, (cos(8)), {n, 0, 3})
{1, cos(o), % (3cos’(0) - 1), % cos(6) (5 cos” (6) — 3)}

which are generated by the generating function:

1 (o]
S " P,(x), |t] <1
Vi-2xt+2 nZ:;‘

Hence we can write

0o

1 n
(%) Palcos(®). r>s. 2.6)
=0

R(x)

1
-

n

Combining (2.5) and (2.6) we have

1 e 1
H(P) = Z f 5" P,(cos(0)) p(s)ds =
n=0 14

4re el
1 1 1
(— f os)ds + — f scos(®) p(s)ds + 2.7
dre \1r Jy rrJy

1 1 2
- f s — (3cos“ (@) - 1) p(s)ds + ]
rJy 2

This is the desired result — the multipole expansion of V in powers of 1/r. The first term (~1/r) is the monopole
term, the second (~1/r?) is the dipole term, the third (~1/7) is the quadrupole term, and so on. Although (2.7) is
exact is more useful as an approximation scheme. The leading term in the expansion provides the approximate
potential at large distances from the charge distribution.

This expansion is not restricted to computing the potential due to a charge distribution: it arises in many fields
including atomic and molecular physics (both for bound states of atoms and molecules and in scattering theory),
nuclear physics, and gravitational computations.

It is usually easiest to compute (2.7) in spherical polar coordinates. To change coordinates you need to compute the
Jacobian determinant,
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dr=dxdydz=|%

Ox  Ox
or o6

by
or o6
A
or o6

In spherical polar coordinates,

ox
o¢

9¢

%

spc = r {sin(0) cos(¢), sin(0) sin(¢), cos(0)};

the Jacobian matrix reads

d(r cos(¢) sin(0)) A(r cos(¢) sin(0)) d(r cos(¢) sin(0))
or 90 09
d(r sin(¢) sin(0)) d(r sin(¢) sin(0)) d(r sin(¢) sin(0))
or 90 09
A(r cos(0)) A(r cos(0)) A(r cos(0))
or 90 09
cos(¢) sin(@) rcos(@) cos(¢p) —r sin(6) sin(¢)
sin(6) sin(¢) rcos(8) sin(¢) r cos(¢) sin(H) ]
cos(6) —r sin(6) 0
Alternatively,
Dispc, {{r, 0, #}}1
cos(¢) sin(@) rcos(@) cos(¢p) —r sin(6) sin(¢)
sin(6) sin(¢) rcos(8) sin(¢) r cos(¢) sin(H) ]
cos(6) —r sin(6) 0
or
aspc
o{{r, 9, ¢}}
cos(¢) sin(@) rcos(@) cos(¢p) —r sin(6f) sin(¢)
[ sin(6) sin(¢) rcos(8) sin(¢) r cos(¢) sin(H) ]
cos(6) —r sin(6) 0

and the determinant (| |) simplifies to

|%] // Simplify

? sin(0)

D drdode=rsin@)drdode,

2.8)
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2.3 Summary

This chapter covers several topics which you should aim to be completely happy with. Here is a summary of these.

Eq. 2.1 was
df=Vf-dl
and shows how much a function f(r) changes in moving from r to r + d 1.

If a vector field satisfies

96‘A~¢ﬂl=0
c

for any circuit C, it is said to be conservative and we can write
A=Vy,

where ¢ is some scalar function.

In electrostatics the electric field must be conservative and by convention with i = —¢ we write
E=-V¢.

Expanding potentials into Taylor series, e.g,

A(x.y) | Poxy) PPy "
ox Ox0x Ox oy
+h y+k) = L)+ (h k). +—(h k). . + ...,
Blx+ I, y+K) = 9x, ) + ( )[ Mm] sool o W)
dy dyox dydy

is useful when determining stability and for finding the leading long-range behaviour of a potential.



Chapter 3

Gauss' Law, Gauss' Theorem and Divergence

3.1 Introduction

In this chapter we look at Gauss' Law in a new way. The standard form of Gauss' Law involves integrated quantities
e.g., the "flux emergent" from a region is the flux per unit area integrated over the surface. Although this form is very
useful in problems with a high degree of symmetry, it only provides a constraint in most other cases without being of
much use in finding a functional form for the electric field. In this chapter a local form of Gauss' Law is derived that
applies at every point.

In proceeding towards the local version of Gauss' Law, a new quantity measuring the production of flux per unit
volume is introduced. This scalar quantity is called the divergence and can be derived from the field using V, the
vector derivative operator of Chapter 2.

3.2 Coulomb's to Gauss' Law

We start with the derivation of Gauss' Law from Coulomb's Law. Gauss' Law contains no new physics beyond
Coulomb's Law. Its importance is that it greatly simplifies the problem of finding the electric field in certain cases of
simple symmetry. It is also the key to the main work of this chapter which is deriving a differential form of Coulomb's
Law. We begin in the standard way by considering the electric flux emerging from a closed surfacep enclosing a point
charge g (Fig. 3.1). The electric flux coming out through an element of area d S equals E d S cos(f) where 6 is the angle
between the electric field E and a line perpendicular to the area element, dS. It is convenient to think of the surface
area element d S as a vector directed along its normal and of magnitude equal to its area, in which the piece of flux can
be written as E-d S.

The figure shows a surface S which encloses a charge g and a small element of the surface with area d S

Figure 3.1 out of which emerges electric flux.

The total flux emergent from the surface S is then given by

P E-as,
s

where the circle through the integral sign indicates an integral over a closed surface. In SI units, Coulomb's Law is

1 q
= — 7
4re 12
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where 7 is a unit vector in the radial direction. Therefore the total flux emergent from the surface is

q 96‘ F-dS
drey Jg 1r* 7
The integrand equals the projected area of the element as seen from the point charge (i.e., F-dS) divided by its

distance squared. This is the definition of the solid angle subtended by the element, d (). In spherical polar coordinates

(see Eq. 2.8):

A

S
— =dQ = sin@)dod¢.

dr=r*dS=rdrdQ, dS=dS#=
;

Therefore the total emergent electric flux is

1 9€dQ= 4.
471'60 s €

where the total solid angle is fg dQ =4 r steradians.

21 T
9§cmzf f sin(@) d0d ¢ = 4.
N 0 0

Example 3.1: Compute the volume and surface area of a sphere using spherical polar coordinates.

The volume is

R 27
f f f r’sin(@)dododr
0 0 0

47 R
3

while the surface area of a sphere of radius R is

27
szf sin@) d¢ do
0 0

47 R?

Note that the total integral over the solid angle ) = sin(d) d¢ d 6 is

T 27

f f sin(@)d ¢ do
0 0

4

and the SI unit of solid angle is the steradian.
Since the electric fields of two charge can be added vectorially, the result can be extended to many charges and we find
that the electric flux emergent from a closed surface is equal to the charge enclosed by the surface divided by €. This
is Gauss' Law,

E(ﬂS: {enclosed ’ (31)
s €

which depends upon the 1/7* nature of Coulomb's Law. Note that gravitational forces obey an equivalent Law:

§g -dS = (4‘ T G) Menclosed -
N
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3.3 Applying Gauss' Law

Gauss' Law is only directly useful in deriving electric fields in cases of high symmetry. However, it is very quick to
apply it in such cases, especially compared to direct application of Coulomb's Law which generally requires the
evaluation of some difficult integrals, and the cases for which it is useful are of wide application. There are 3 cases for
which Gauss' Law can be applied. They are (1) a plane, (2) a cylinder and (3) a sphere. We now go through each one.

3.3.1 The electric field due to an infinite plane

We wish to know what electric field is produced by an infinite plane charged with o C.m~2. Although an infinite plane
is an impossible idealisation, any surface looks like one if one is close enough to it (e.g., the "Flat Earth"). To solve the
problem using Gauss' Law we need to choose a suitable (gaussian) surface enclosing some charge. This should exploit
the symmetry of the problem so that electric field is either parallel or perpendicular to the surface. The electric field
from an infinite plane must emerge perpendicular to it as there is no preferred direction parallel to the plane. Thus the
shape shown in Fig. 3.2 is chosen so that its curved surfaces run parallel to the field and no flux emerges through them.
The end caps of area A on the other hand are perpendicular and so a flux E A escapes through each of them.

+
i g
8
¥

Gaussian
surface

3
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The field from an infinite plane emerges at right-angles to it. The surface we consider has arbitrary to
Figure 3.2 faces of the same arbitrary shape and area A which lie parallel to the plane and vertical walls which
connect the two faces.

The charge enclosed by this volume is o A and so by Gauss' Law we obtain

oA
2EA= —,
€

and therefore the magnitude of the electric field from an infinite plane is given by
Ee o
B 2 €

The field from an infinite plane is equal but opposite on both sides. A more realistic case is the field close to large
charged conductor, where "close" implies that it is effectively a plane. This can be treated in exactly the same way
except now the field inside the conductor is zero (if it wasn't, current would flow and that would not be electrostatics).
Thus all the flux escapes on one side and we get

s

loa
E=—
€

for the field close to a charged conductor.

Example 3.2: The electric field beneath a thunder cloud is 1000 V/m. What is the surface charge density of the ground
underneath the cloud?
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As far as electrostatics are concerned, the Earth is a conductor. Thus E=o0/€ applies and so
o =1000¢ = 8.9%x 107 C.m™2.

3.3.2 The electric field due to an infinite cylinder

The problem now is to derive the electric field at distance r from the axis of an infinitely long cylinder of radius a
charged with Q C.m™!. The electric field must emerge at right angles to the surface of the cylinder because again there
is no preferred direction. Thus the natural gaussian surface is itself a cylinder, but of finite length [/ as shown in Fig.
3.3.

sE=al

Figure 3.3 The gaussian surface for a long cylinder of radius a is itself a cylinder, but of radius r.

This cylinder is co-axial with the infinite cylinder so that the electric field is uniform over, and perpendicular to, its
curved surface. The electric field is parallel to the two ends of the gaussian cylinder and so they do not matter. The
surface over which the flux emerges has area 2 7 r [, while the amount of charge enclosed is Q [. Therefore by Gauss'
Law we have

l
2nrlE = Q—,
€

and so

_ 0

2meyr

Unlike the case of a plane, getting closer to a real cylinder never makes it appear to be an infinite cylinder: end effects
do not become infinitesimal. However, there are situations of great practical importance where the above solution is
useful. In particular the above field describes the field pattern inside co-axial cables, even in the time-varying case.

3.3.3 The electric field from a charged sphere

What is the field at a distance r from a sphere with total charge Q (distributed spherically symmetrically)? This case is
the easiest. By symmetry the gaussian surface must itself be a sphere centred on the true sphere. The field will come
out radially and will therefore be perpendicular to the 4 772 area of the gaussian sphere. Thus by Gauss' Law

4nr’ E = g,
€

and we arrive at the familiar result

Q

der?
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This is so familiar that it almost seems "obvious" but try deriving it directly from Coulomb's Law and you will see that
it is not. This result also applies for an arbitrary spherically symmetric charge distribution where Q(r) is the charge
enclosed in a (Gaussian) sphere of radius r

Gaussian
surface

(a) ()

3.3.4 Gauss' Law at a point

To derive a local version of Gauss' Law we first need to restate it in mathematical form. We have already seen that the
emergent flux can be written fq E-dS. The charge enclosed can be written as fv pdr where p is the charge density
defined throughout the volume V whose bounding surface is S = 0 V. Thus Gauss' Law becomes

1
96‘ E~¢ﬂS=—fpdr. (3.2)
S=ov € Jy

This is a fundamental equation which you need to remember. Even point charges can be included in this formulation
by use of delta functions.

We want a version of Gauss' Law that applies at a point. However, one cannot define a volume enclosed or a surface
area for a point, and so we consider instead a finite volume that is shrunk to infinitesimal dimensions.

Consider first the charge enclosed

Q=fpclr,
|4

as V becomes smaller. For a continuous charge distribution, there comes a point when V is so small that p is essentially
constant throughout it and so in the limit V —» 0

O-pV.

We want a finite limit so it makes more sense to divide by V so that we have

1
lim — dr = p.
iy J, atr =

This leaves us to consider the following limit for the left-hand side of Eq. 3.2, called the divergence of the electric field
(div E for short):

1
divE = lim — E-ds. :
Eim g, e

In words this quantity is the amount of electric flux produced per unit volume at a point. It can be defined similarly for
any vector field. For instance we will find later that the divergence of the magnetic field is always zero. With this
definition Gauss' Law at a point becomes div E = p /¢y, which says that the amount of electric flux produced per unit
volume is proportional to the charge density at every point.

Eq. 3.3 defines the divergence. By considering particular shapes for the volume V, we can obtain expressions for
computing the divergence that are suited to particular geometries. Cartesian coordinates are most commonly used, and
so let us consider a small cuboid oriented with its sides along the x, y and z axes and centred on the point (x, y, 2):
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dy

e

A small box with sides parallel to the cartesian axes and drawn to have more electric flux leaving than
entering.

Figure 3.4

Let its sides have lengths Ax, Ay, and A z. We will now calculate the flux emergent from this cuboid. First consider
the amount of flux emerging from the two faces oriented parallel to the y-z plane. Only the x component of the electric
field, E,, contributes to the flux through these faces, and in one face it points in while at the other it points out.

A A subscripted function such as G, (x, y, z) denotes the x-component of the vector G(x, y, z). Partial derivatives are
denoted using any of the equivalent standard notations 8, G(x, y, z), % or G109(x, y, 7). It is mathematically
sloppy to denote the partial derivative of a function using a subscript on the function for how would you interpret an
expression like Zle G;?

Taking the difference between the x components evaluated in the centre of each face and multiplying by their area
these faces contribute

Ax Ax
(Ex(x+ - Z)—EX(X— - Z))AYAZ, (3.4)
to the flux emergent from the cuboid. The only reason that there is any net contribution to the flux is that the E,
component may change across the cuboid so that the two faces do not cancel. Thus Fig. 3.4 has been drawn to indicate
that more flux leaves than enters the box. As A x becomes small, the expression for E, can be expanded to first order

e.g.,

E(+—Ax ) E(oy o+~ 9B o
X s Vo = x-xa s ~ X.
* 2 0t P EUT S oy

The partial derivative applies as the change is in x alone. A similar expression with a negative sign applies for the other
face and substituting into Eq. 3.4 we obtain a contribution to the emergent flux of

X

AxAyAz.
X

Alternatively, using Mathematica we obtain the same result immediately:

Ax Ax 2
(Sx(x + 7, A z] - Sx(x - 7, A z)) Ay Az + O[AX]” // Normal
Ax Ay Az EMV(x, y, 2)

The other four faces give analogous contributions from the y and z components and, recognising the product of lengths
A x AyA z as the volume V, we get a total emergent flux from the cuboid of

OE, 0E, OE,
9€ E-dS = ( 4 == )V.
5=V dx  dy 0Oz

Therefore the limit of Eq. 3.2, which we called the divergence of E, becomes

. 1 0E, O0E, OE,
divE = lim —96‘ E-dS = + + .
V=0V Jsoov dx  dy 0z
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Using V, the vector derivative operator of Chapter 2, the expression on the right can be written in shorthand form as
V - E. We thus arrive at our target, a form of Gauss' Law that applies at a point:

V-E= + o = (3.5)

This should be committed to memory as the first of Maxwell's equations. Like all equations, it is best remembered not
just as a collection of symbols but from the physical meaning of the various terms. Remembering that V.E — the
divergence of E — represents the amount of electric flux produced per unit volume, by Gauss' Law it must equal the
charge per unit volume, p, divided by €.

3.4 Calculating the divergence

A The divergence of a vector function v is itself a scalar V -v. You cannot compute the divergence of a scalar: that is
meaningless. In general, the value of the divergence depends on the point at which V - v is evaluated.

Geometrical interpretation: The name divergence should indicate to you that the divergence (V -v) measures how
much the vector diverges from the point in question.

If a field v can be simply expressed in terms of cartesian coordinates, application of Eq. 3.5 is probably the easiest
method to compute V - v.

Example 3.3: What is the divergence of the vector function v = z?

First, let us visualise this vector field:

v=1{0,0, 1};
<< Graphics PlotField3D"
PlotVectorField3D(v, {x, -1, 1}, {y, —1, 1}, {z, —1, 1}, VectorHeads — True);

From the geometrical interpretation we expect this field to have zero divergence at any point {x, y, z}. Computing the
divergence in cartesian coordinates we obtain

ov1l] ovI2] ovI3]
+ +

ox ay 0z
0

Example 3.4: An electric field has the form E, = kx, E, = E, = 0. What is its divergence and what physical set-up
could give such a field?
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This is about the simplest possible field other than a constant. We obtain immediately V - E = k:

E={kx, 0, 0};
0E[1] d&M2] a&M3]
+ +
ox ay 0z

k
Here is a plot of the vector field:

PlotVectorField3D(&E /. k - 1, {x, —1, 1}, {y, —1, 1}, {z, —1, 1}, VectorHeads — True);

The physical interpretation follows from Gauss' Law. The charge density is proportional to V -E and so this field
comes from a uniform charge density and would be the form of field set up inside an infinite slab of uniform charge
density perpendicular to the x-axis.

3.4.1 Non-cartesian coordinate systems

It is more difficult if the field is more naturally expressed in a different coordinate system. We had a similar
circumstance in Chapter 2 where we showed that the fundamental definition of the gradient could be used to help out.
We can do something similar for divergence. Suppose that we have a field of the form

E=E®)?.

This is spherically symmetric and in general it is tricky and tedious to apply the Cartesian form of V - E to such a field.
Instead we return to the definition of divergence, Eq. 3.3, but instead of applying it to a cuboid as we did in obtaining
divE =V - E, we use a shape more suited to the field: we take the small volume V to be a thin spherical shell centred
upon the centre of symmetry of the field, with inner and outer radii of r and r + dr respectively.

Given the symmetry of the field and the choice of a shell, whatever the divergence is, it has the same value throughout

the shell. Thus the total flux produced by the shell equals the (constant) divergence times the volume of the shell,

V =4nr? dr. The flux produced by the shell, ® = fg E-dS§, also equals the flux going out through the outer surface,

Dy =Er+drA(r+dr)y=4n(r+d r)2 E(r+dr) minus that coming in through the inner surface,
O, =Er)A(n)=4nxr? E(),ie.,

2 2

O=4x(r+dr) Er+dr)—4nr? E(r)=4n —8(raf(r)) dr= (riz —8(raf(r)) ] v,

where the middle term follows from taking small differences of the expression 2 E(r) treated as a single function. We
can easily verify this result using Mathematica:

A 2 _ 5 2 5 1 @2 &W) 2
a(r+dr)Er+dr)—4dnr-E@)+0dr) ==@nr dr) -y T—- + 0(dr)
r r

True
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Hence, from the definition of divergence,

1
V -E =1lim —§ E-dS,
V-0 Vo Jgogy

we obtain

1 9P EM)

V. .E=
72 or

Proceeding in this manner one can obtain more general expressions for the divergences of fields expressed in spherical
polar and other coordinates. It turns out that there are much more direct methods for computing the divergence in any
coordinate system — see Appendix A for a summary of vector operators in orthogonal coordinate systems. For
example, the general expression for the divergence in spherical polar coordinates is (see Eq. A.14)

V-E Lo (P E)+ 0 (sin(@) E,) + OEy
E=— % 9 9%
2 Or 7T rsin@) 06 77 ¥sin@@) 0¢

(3.6)
where E=E, F+ Eg 0+ E, §.

Example 3.5: What is the divergence of the vector function v = r = rr?

First, let us visualise this vector field using cartesian coordinates:

v={x, y, z};
PlotVectorField3D(v, {x, -1, 1}, {y, —1, 1}, {z, —1, 1}, VectorHeads — True);

From the geometrical interpretation we expect this field to have large (positive) divergence at any point {x, y, z}.
Computing the divergence in cartesian coordinates we obtain

ov[1] av[2] ov[3]
+ +
ox ay 0z

3
Since v=v, F+ vy 6+ Vg (3 = rF, using the divergence in spherical polar coordinates (Eq. 3.6) we find that

1
;; 8, (’,2 r)
3

which is identical to the result obtained using cartesian coordinates. For this particular vector field, the divergence does
not depend on the point at which it is computed.

Example 3.6: What is the divergence of v = rLZ F r% r?

With
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{x, y, z}

3/2
(x2+y2+z2)/
X

y z
(xz +y2 +Z2)3/2 ’ (_x2 +y2 +Z2)3/2 ’ (_x2 +y2 +Z2)3/2 }

we visualize the field:

PlotVectorField3D (v, {x, -1, 1}, {y, —1, 1}, {z, —1, 1}, VectorHeads — True, PlotPoints — 6);

From this plot we would expect this field to have non-zero divergence. However, computing the divergence in
cartesian coordinates,

ov[1] av[2] ov[3]
+ +
ox ay 0z

// Together
0

or spherical polar coordinates,
1 1

=07 )
r? r?

0

we find that the divergence is identically zero! What is going on here? We will return to this example shortly.

3.5 Poisson's equation, Laplace's equation, and Gauss' Theorem

3.5.1 Poisson's equation

We showed in Chapter 2 that conservation of energy means that an electrostatic field can be expressed in terms of a
potential as in E = —V ¢. Substituting this into Eq. 3.5 we obtain

V. Vo=ap=V2g=-L 3.7)

€
which is known as Poisson's equation. Here V? is the Laplacian operator which, written in Cartesian form, is

- 82 .\ 82 .\ 82
ox2  9y* 072

The Laplacian operator also arises in quantum mechanics. There are other forms for V2 in different coordinate
systems. E.g.,the Laplacian operator in spherical polar coordinates reads (Eq. A.15)
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1 6 ,,0y, 1( 1 0 P T
LB (L By 1P |
pr (r ar)+ 2 \sin@) a0 (sin® 69)+ sin(0)? 04 G8)

Poisson's equation (Eq. 3.7) can be used to find the charge distribution given a form for the potential.

Example 3.7: What charge distribution is needed to give a potential of the form ¢ = k > where r is the distance from a
point?

Apply the V2 operator to r* = x> + y* + z2. Thus

0
— P =2x,
ox
9 2x=2
ax “XTo

so V2 (kr?) =6k.

Alternatively, using the Laplacian operator in spherical polar coordinates, we get the same result:

1 9 2a(rz)]_ 19
75( o |7k 5, @r) =6k

VZ 2 =k .
(kr) r2 or

Therefore Eq. 3.7 gives p = =6k €. Thus a constant charge density gives a potential proportional to 7> and this is the
form of potential inside a uniformly charged sphere for example.

3.5.2 Laplace's equation
In regions with no charge density, Poisson's equation reduces to
V=0, (3.9)

which is known as Laplace's equation. Solutions of this equation with boundary conditions are important in the design
of the focussing fields of TV tubes for instance.

Example 3.8: Verify that the 1 /r Coulomb potential satisfies Laplace's equation.
Using brute force by applying the V2 operator in cartesian form, i.e.,

- 82 .\ 82 .\ 82
o2 9y 02’

we have to calculate derivatives such as

& (1/r) .
0x2

Since 7% = x? +y? + 7> we have

a(l/r) 3 1 or X

0x 2 Ox r3

Computing the second derivative

_— = +
0x r3 * O0x r3 rs

A(=x/r) 3 1 3x Or 1 3x%

Similar expressions apply to the other components and we find

O’

1 3 3@ +y2+72
TN I s G
r r3 rd

since x> +y* + 72 =12,
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Alternatively, using the Laplacian operator in spherical polar coordinates (Eq. A.15),

1 1 0 o(l/r) 1 0
M e A

(-1)=0.

3.5.3 Gauss' Theorem

The interpretation of divergence as the flux produced per unit volume suggests that the following integral

fV-Aclr,
14

must represent the emergent flux from a volume V for any vector field A. We have seen that the emergent flux can also
be written as fg _yy A-d S and so therefore we expect

9§ AdS:fV-Aclr. (3.10)
S=0V |4

This result is known as Gauss' Theorem (sometimes it is called the divergence theorem). It is important to distinguish
between Gauss' Theorem, which has only mathematical content, and applies to any physical vector field, as opposed to
Gauss' Law which is founded in experiment and is just another way of expressing Coulomb's Law.

The importance of Gauss' Theorem is that it provides a way to transform between the surface and volume integrals
frequently encountered in physics. Thus if we go back to the integral version of Gauss' Law (Eq. 3.1)

1
9€ E~¢ﬂS=—fpdr,
S=9V € Jy

and apply Gauss' Theorem, we can immediately deduce that

1
9€ E~¢ﬂS=fV~Eclr=—fpdr,
S=0V 1% € Jy

Since this applies for any volume V, we must have

V.-E=—,
€

which, as before, is Gauss' Law in differential form (but it no longer depends upon the assumption of a volume of
particular shape as that is accounted for in the proof of Gauss' Theorem).

3.5.4 A paradox — the Dirac delta function

Example 3.9: Compute V - E for a point charge and compare with p /€.
The potential of a point charge, Q, is

Q

dre r

é(r) =
Hence the electric field E is

—0¢n .1 Q.

E)=-Véir= or T drne r_zr'

In Example 3.6 we saw that

1
v=r—2?:>V~v=O:>V-E=O.
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However, after visualizing the fields we were puzzled to find that the divergence was identically zero.

Alternatively, in Example 3.8 we found that V> (%) = 0. Hence

v-z;:-v%s:-%vz(%):o.

Gauss' Law in differential form says that

and, for a point charge, the charge density is zero everywhere except at » = 0 where it is infinite!

If we apply the divergence theorem to the electric field E we find that

1
fv.Edrzgg E-dS = Q _zrzdgzg.
v S=ov

drey Jggy T €

However, above we have shown that V - E = 0. What is the resolution to this paradox? Hint: you should be suspicious
of "point" charges. Taking Coulomb's Law at face value, the potential and field of a "point charge" at the origin are
infinite. Note that, although there is no such thing as a "point charge", the electron is effectively a point charge with
physical radius < 1077 m.

The problem is the point » = 0, where E blows up. A more careful analysis shows that V - E = 0 everywhere except at
the origin. We seem to require a function with the bizarre property that V - E = 0 everywhere except at a single point,

yet
fV~Eclr= g
v €

No function can possibly behave this way. What we have stumbled onto is the Dirac delta function which is not really
a function at all. The Dirac delta "function" was originally defined by Dirac as

0, x#0
6= i:O,andfé(x)clle. (3.11)

However this definition does not make sense mathematically. In addition, 6(x) has the interesting property that
f fx—a)d(x)dx = f(a). (3.12)

It turns out that Dirac had a good idea though. See Appendix B for more on 6(x).
Example 3.10: Compute E, ¢, and V - E for the following (spherically symmetric) charge distribution:

<2 r<R
p(r):[%”R3 ’ )
0 , =R

Using spherical polar coordinates, the charge enclosed in a sphere of radius r < R is

r 3 3
2 0 r r
dr=4 —_— = R

for i T 0%

‘I(")zfP(")dr=47rfrp(r)r2cﬂr=4n - 0
\4 —

0 3 TR
For r = R, we find that g(R) = Q, the fotal charge.

Using Gauss' Law (also see Section 3.3.3), the electric field is

1 Or 4

e R F,r<R
En=|"" ",

Trg I TZR

Here is a plot of the radial component of E (r), i.e., E,:
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4R g

R 4R

The Gradient Theorem says that

B B -
¢<B)—¢<A)=fd¢=—f E~¢ﬂl=>¢(r)=—fE,-dr,
A A o

and leads to

1 9] 3 p2 1 2
e ® (R -3r) L r<R
o) = Do .
— = rzR
4re 1 ’
Here is a plot of the potential, ¢(r):
30
87T Re
Q
4nRe
_2
167 R ¢
R 4R

The divergence of the electric field is (see Eq. 3.6)

1 0 ¢ 3 - L( 2 )=£ ,<R
V~E(r)=r—25(r2E,)= dre R 50( )

0 ,r=R

Here is a plotof V - E (r):

R 4R

This result is to be expected from Gauss' Law. Note that V - E is discontinuous (because p itself is discontinuous).

If we apply the divergence theorem to the electric field E we find that

fV~Edr=fﬂdr=@z§ E-dS
1% v € € §=9V

or
1 [R—3r2¢ﬂﬂ r<R_Q(1re_z r<R q(

f%rzdﬂ r=R &

1 r=R €0

s

47'(60

which all checks out. There is no paradox here.
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Consider now what happens to p(r) = QR3 for this spherically symmetric charge distribution in the "point charge"
Tﬂ
limit, i.e.,as R - 0:
|
6t
4
2t
|
L L
R R 2R

2

The boxes get narrower and taller — in such a way that the volume integral (note the > dr factor) is a constant equal
to the total charge. If you read through Appendix B you should be able to show that, in the limit, p(r) = Q 6(r) and

hence V-E = % = % o(r). This simple result is a key ingredient to a concise formulation much of electromagnetism.

3.5.5 Continuity Equations

As another example of Gauss' Theorem we will look at how the conservation of charge can be expressed as a
differential equation. Our result will be used later in deducing the existence of an extra term in one of Maxwell's
equations, a term that allows the propagation of electromagnetic waves. Since there are conserved quantities in many
branches of physics, equations of very similar form crop up over and over again and are known as continuity equations.

Consider the charge flowing out of a volume V. The total rate of charge leaving V is given by the integral of the
current density J over the surface of the volume. J is a vector with dimensions A.m~2 directed along the local current
flow at every point and with magnitude equal to the current density. Thus if the total charge in V' is Q, the conservation
of charge tells us that the charge flowing out of V must be balanced by a decrease in Q, that is

00
o ‘9?“”5’

where the partial derivative indicates that the volume is fixed in position. Since the total charge Q = f pdr we find

]
— | pdr=-QJ-ds.
ot Vp ’ ‘éJ

Now apply Gauss' Theorem to transform the surface integral into a volume integral and we find

fa—pdrz—fV-Jdr.
\%4 6t \%4

As before, since this applies for any volume V we obtain our final result, the continuity equation for electric charge

P
9P v.y=o0. (3.13)
ot

This equation expresses the conservation of electric charge. It says that at every point the electric current produced per
unit volume (V - J) must be balanced by a decrease in the charge density.

3.5.6 Other examples of the continuity equation

In fluid flow, the equivalent of current density is the mass flow rate per unit area, p,, v, where v is the velocity vector
field. The mass density p,, takes the place of the charge density, and the continuity equation becomes

0 Pm
ot

+V-(p,v)=0.
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In incompressible flow (a good approximation at low speeds), p,, is constant and we have V -v =0, an important
equation in fluid dynamics.

In the conduction of heat in a uniform solid the "density" of heat is C T where C is the heat capacity per unit volume
and T is the temperature. The equation of continuity is then

C6T+V =0
ot Q=0

where Q is the heat flux. We obtained an expression for Q in terms of the temperature gradient in Eq. 2.2 and
substituting this we obtain

) C oT
VT = — —,
Kk Ot

a fundamental equation in the theory of heat conduction, also known as the diffusion equation.
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3.6 Summary

In this chapter we expressed Gauss' Law in integral form as

1
9S‘E~cﬂ5=—fpdr,
s € Jy

We then progressed from that to considering the limit of infinitesimal volumes, defining a scalar quantity called the
divergence div E by

1
divE = lim — 9§Ews.
v-0 V s
A form convenient for cartesian coordinates was developed by considering a volume in the shape of a cuboid. We

obtained

E, OE, E,
divE:a + y+6"=V-E.
ox ay 0z

Gauss' Law at a point was finally derived:

V- -E="1.
€

We then returned to the Gauss' Theorem, a mathematical theorem that applies to any continuous vector field and
allows one to transform between surface and volume integrals

9S‘A~¢ﬂS=fV~Adr.
s 14

Gauss' theorem was applied to derive the continuity equation which expresses the conservation of charge in differential
form:

ap
—— +V.-J=0
6t+ J 9

where J is the current density. Finally the examples illustrated how to cope with non-cartesian coordinate systems.



Chapter 4

Faraday's Law, Stokes' Theorem and curl

4.1 Introduction

This chapter repeats the pattern of Chapter 3. We start from an experimentally derived physical law, in this case
Faraday's Law of induction, and derive a differential version of it that applies at a point. In so doing, we introduce the
third and final of the vector derivatives, a vector called the curl of a field. We then follow up with Stokes' Theorem
which, in the same way that Gauss' Theorem is used to transform between volume and surface integrals, can be used to
transform between surface and line integrals.

4.2 Faraday's Law of Induction

Faraday observed that changing the magnetic flux through a loop of wire whether by moving the wire or the source of
the magnetic field caused a voltage to be developed around the loop. The voltage produced is proportional to the rate
of change of the magnetic flux through the loop. The direction of the voltage produced is such that if a current flows it
"tries" to keep the field constant. This is Lenz's Law and leads to minus signs in the equations for induction. As an
aside, super-conducting loops are able to keep the flux precisely constant over long periods of time.

Faraday's work is the classic example of basic physics with applications of immense importance (dynamos,
transformers, etc), unrecognised at the time of its discovery.

We start by writing a mathematical version of Faraday's' Law. The voltage, V, or EMF (electro-motive force) around a
circuit, C, is simply the line integral of the electric field:

V:gngl.
c

We met this earlier in Chapter 2 where we said that this quantity had to be zero for energy conservation. However, that
was in electrostatics, and does not apply when work is being done to change the fields. A corollary is that the
electrostatic relation E = —V ¢ no longer applies in the time-varying case. The flux connecting the circuit C is the
integral of the magnetic flux density B over any surface, S, bounded by C = dS and can be written

fB~¢ﬂS.
s

Therefore Faraday's Law in integral form is

d
Edl:——deS. (4.1)
9gc‘:as dt Jg

For the sign to make sense, the direction in which the circuit is travelled has to be defined. Fig. 4.1 shows the
convention based upon the right-hand rule. If one grasps the circuit with the right-hand so that the fingers point along
the direction of B, then the thumb points along the direction in which C is traversed.
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Magnetic flux threads a circuit C which is covered by a surface § that has C as its boundary. The arrow on

Figure 4.1 C indicates in which direction the line integral is taken for B pointing in the direction shown.

Example 4.1: What is the electric field inside a long solenoid of # turns/unit length when the current / flowing through
the coils changes?

The figure shows side and end-on views of a solenoid carrying current /. The end-on view looks into the
Figure 4.2 magnetic field (represented by dots). To calculate the electric field induced by changing I, a circuit is
taken to be a circle of radius r enclosing the field.

We will assume the result from first year that the magnetic field inside the solenoid is given by B = upnl. By
symmetry E must run in circles around the axis of the solenoid and so we take such a circle as our circuit. Since E
runs parallel to the circuit at all points, the line integral reduces to

96‘E~cﬂl=27rrE.
c

For circuits inside the radius a of the solenoid (r < a), the flux linking the circuit is
bp =fB~¢ﬂS=7rr2B=7rr2u0 nl.
s

Therefore applying Faraday's Law we have

ST E ) dl
rE=-mr n—,
bg re lo T
or
B r dl(< )
= 2”0ndt r<a).

There is no magnetic flux outside the solenoid so the flux linking the circuit stays fixed at 7 a> B
for r > a and therefore

£ a? dl
=— — (r>a).
7y Hon gy (r>a)
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The existence of an electric field outside the coil allows signals flowing through the coil to be picked up with a loop
of wire enclosing the coil.

4.3 Curl and Stokes' Theorem

As for Gauss' Law, we would like a version of Faraday's Law that applies at a point. We will start by considering the
line integral around a loop as the loop is shrunk to infinitesimal size.

y

[« Ly dy

x

The figure shows a small loop used to obtain an expression for the line integral in the limit of infinitesimal
Figure 4.3 size. The circuit is traversed in a direction appropriate for the right-hand rule and a z-axis which points out
of the page.

To be specific we consider the loop illustrated in Fig. 4.3. This is a rectangle in the x-y plane with sides parallel to the x
and y-axes. Note that by contrast with the derivation of divergence, the loop's orientation is significant. This will be
reflected in the quantity called curl which we will introduce which turns out to be a vector rather than a scalar like
divergence. The circuit direction indicated in Fig. 4.3 follows the right-hand rule for a right-handed coordinate set of
axes in which Z=% A .

The line integral around the circuit has four separate parts corresponding to the line segments PQ, QR, RS and SP. The

contribution from PQ is due entirely to the x component of E, which we evaluate at the mid-point of the segment as
E.(x, y—dy/2). Multiplying this by the length of the segment and adding in the other three similar terms we have

¢ E-ai-
c

Ex,y—-dy/2)dx+E,(x+dx/2,y)dy—-E.(x,y+dy/2)dx - E,(x—dx/2, y)dy,

with the minus signs appearing when we travel against the direction of the coordinate axes. This expression can be
grouped into two pairs of differences:

SlgEdl =(Ey(x+dx/2,y) = Ey(x=dx/2,y)dy— (Ex(x,y+dy/2) = Ex(x, y —=dy/2)) dx,
c
which, when expanded to first order as we did when deriving div E = V - E, yields:
dx dx 3
(6 e+ F2) -8 (= o)) ar oo
dy & (x, y)dx+ O(dx))

and similarly

d d
e (s )0 5 s
dx &V (x, y)dy + O(dy)’)

Collecting terms together, we can write
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0E, OE,
9€E-¢ﬂl=( - )dxdyz(V/\E),dxdy=V/\E~dS.
c Jx dy <

where we have recognised that the term in brackets is the z-component of the vector V A E. The last expression follows
because the area vector representing the loop is given by d S = 2dxdy.

Although we have not proved it, this result is general, i.e., for an infinitesimal flat element of area d S of any shape and
orientation bounded by a loop C = 0SS we can write

9§ E-dl=V AE-dS. 4.2)
C=0S

The quantity VA E is a vector and is called the curl of the electric field. You may also sometimes see it called the
rot E, short for rotation. Eq. 4.2 defines curl in the same way that Eq. 3.3 defined the divergence.

Of all three derivatives we have now encountered — grad, div, and curl — the curl is the most difficult to get a feel
for. Its nature is defined by Eq. 4.2. When thinking about curl, one should picture a small loop embedded in the vector
field and consider what the circulation around it is. Still, it is not always obvious whether there is any overall line
integral. We will look at some examples later which may help, but first we will finish with Stokes' Theorem.

Any finite surface can be subdivided into many small flat facets obeying the above equation. Adding the line integrals
of all of these facets, the individual contributions cancel except on the outer boundary (for example refer back to Fig.
4.1 and consider adding the integrals around the two adjacent dashed squares). We then obtain Stokes' Theorem

9§ Edl:fV/\EdS, 4.3)
C=0S S

for any surface S bounded by the circuit C = 4S. This applies to any physical vector field, not just E. S and C here are
now finite in contrast to Eq. 4.2 and S no longer has to be flat. With Stokes' theorem we can transform line integrals
< surface integrals.

As a simple application, let us revisit the condition fc E -dl = 0 which we derived for electrostatic fields in Chapter 2.
Since this applies for any circuit, Stokes' theorem implies that

VAE=0,

for electrostatic fields (0 is a zero vector). Such a field is said to be curl-free or irrotational. The study of irrotational
fluid flows for which V A v = 0 is of great importance in aerodynamics, and approximations based on this explain why
aircraft fly.

The reverse of the above condition is also true. That is if a vector field A satisfies VA A =0, then we can write
fc A-dl =0 and, from Chapter 2, that A can be derived from a potential A = V¢. We are saying then that VAV ¢$ =0
which is reasonable if you remember that the cross-product of a vector with itself is zero (although this is not a proof
because V is not an ordinary vector).

Since the condition VAy =0 implies v = V¢, curl-free flows are also called potential flows. Recalling that
incompressible flows satisfy V -v =0, then we have V2 ¢ =0, and so incompressible potential flows satisfy Laplace's
equation which is also satisfied by electrostatic fields, a useful mathematical similarity between very different physical
systems.
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4.4 Differential version of Faraday's Law

Applying Stokes' theorem to the left-hand side of Faraday's Law we obtain

d
fV/\E~LﬂS=——fB~LﬂS.
s dt Jg

Since this applies to any loop, we must have

VAE-~- dB
NE=- 5

The total time derivative d /dt allows the loop to move, but we do not want this because this means that we are
measuring B in our rest frame while we are measuring E in the rest frame of the loop. A simple thought experiment
shows that E and B change according to the frame in which they are measured: Picture a charge ¢ moving at velocity v
in a region with a magnetic field B but no electric field. The force on the charge is g v A B. How does the picture alter
when viewed from a frame in which the charge is at rest (even if it only at rest for an infinitesimal time). Since in this
frame the charge is at rest, there is no v A B term, and yet the charge must feel a force because it moves in a circle in a
magnetic field. We are forced to the conclusion that in the new frame there is an electric field, which for low v must
have strength v A B. In other words, a magnetic field in one frame may look like an electric field in another frame (see
the section on Lorentz transformations below).

The important point is that it is essential to measure electric and magnetic fields in the same reference frame. This can
be done by fixing the loop to be stationary in our rest frame (and replacing total derivatives by partial derivatives)
whereby we obtain

B
V/\E:—a— 4.4)
ot

This is the differential version of Faraday's Law and the second of Maxwell's equations. It contains no more physics
than the integral version, Eq. 4.1, but it applies at a point.

4.4.1 Lorentz Transformations for an Electromagnetic Field

A full description of the transformation of electric and magnetic fields from one frame to another requires the Special
Theory of Relativity (and indeed was the main subject of Einstein's original paper) and is beyond the scope of this
course (i.e., this subsection is not examinable).

For the components of vectors parallel (||) and perpendicular (+) to v, the vector form of the electromagnetic (Lorentz)
transformation formulas is

E“ =E|’|; E. :'Y(E; _(V/\B’)¢);

’ ’ 1 ’
By =By; B. =7(Bi T OnE )L);

where
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The primed expressions (E’, B') correspond to quantities measured in a coordinate system moving at a uniform

velocity v with respect to the coordinate system in which the unprimed expressions, (E, B), are deduced. Can you see
where the Lorentz force law comes from? What about the Biot-Savart law?

4.5 Calculating the curl

As with the divergence, the direct application of curl A = V A A will in some cases be the simplest approach, although
the cross-product can make the calculation of curl error-prone.

A The curl of a vector function A 1is itself a vector VA A. You cannot compute the curl of a scalar: that is meaningless.
In general, the value of the curl depends on the point at which V A A is evaluated.

Geometrical interpretation: The name curl should indicate to you that VA A measures how much the vector A curls
around the point in question.

Example 4.2: What is the curl of a field given by E = A Ar where A is a constant vector?

Expanding out the cross-product, the field is given by

E, AyZ_Azy
E, |=]|Ax-Az]|
E. Ary—Ayx

We then apply

OE./dy—-0E, |02\ (2A,
VAE=|0E. /dz-0E./dx |=|24A,
OE,|0x—0E,/dy) \2A4,

=2A.

The derivatives are all straightforward, and we obtain the simple result VA E =2 A.

Since A is a constant, E = A Ar is the form of field that arises when the magnetic flux has a fixed direction and
changes at a constant rate. The electric field in a solenoid has this form.

A={a, b, c}; r={x,y, 2z}
E=AAr
{bz—cy,cx—az,ay—bux}

It is usual to visualize this vector field in two dimensions. For example,

<< Graphics'PlotField"; PlotVectorField({—y, x}, {x, —1, 1}, {y, —1, 1});
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From the geometrical interpretation we expect this field to have non-zero curl at any point {x, y, z}. Also, we expect
the curl to point in the z-direction as the right-hand rule would suggest. Note that the vector field really exists in three
dimensions:

PlotVectorField3D({z - y, x — z, y — x}, {x, =1, 1}, {y, —1, 1}, {z, —1, 1}, VectorHeads — True);

However, it is harder to decide from this plot whether we expect this field to have non-zero curl.

Computing the curl in cartesian coordinates we obtain

{9, 8131 - 8; &[2], 9. E[1] - 8. &3], 0. E2] - 9, E11}

{2a,2b,2c}
Y% ==2 A
True

On other occasions it is better to remember the meaning of curl. For example what is the curl of E = r* e #? It
would be a difficult task to calculate all the necessary derivatives, but also an unnecessary one. This is a spherically
symmetric field, so the curl, which is a vector, can only point along the radial direction: anything else would not be
spherically symmetric. The derivation of the curl (see Eq. 4.2) means that, in the radial direction we need to calculate
the line integral around a loop perpendicular to the radial direction. But this is everywhere perpendicular to the field
and therefore the line integral, and the curl, are zero everywhere. This is true for any spherically symmetric field, and
seems natural as there is no sense of rotation about such a field.

When calculating the divergence we used its basic definition to compute its value in a spherically symmetric case (see
section 3.4.1). A similar approach can be taken with the curl in the case of cylindrical symmetry. Consider a field A
that runs in circles around the z-axis with a strength that varies as A(r) where r is the distance from the z-axis. This
describes, for instance, the magnetic field around a wire carrying a current, with A(r) o 1/7.

C

The figure shows the path of integration used to evaluate the curl in a field that runs in circles around an

Figure 4.4 axis pointing out of the page and passing through the centre of the circles.
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Only loops perpendicular to z can have any line integral. Therefore, the curl must lie in the z-direction. Therefore we
choose a small loop which lies perpendicular to the z-axis as illustrated in Fig. 4.4. We are free to choose any shape for
the loop, so we pick one to make the calculation as easy as possible. The circuit C illustrated in Fig. 4.4 either runs
parallel to the field or perpendicular to it. The line integral around it can then be written down as

d(r A(r))
9€A~¢ﬂlEV/\A~¢ﬂS=(r+dr)A(r+dr)9—rA(r)0= ——=0dr=|\VAA|rfdr

C or

with the last step following from Eq. 4.2, and where A(r) is the magnitude of the field at distance r. We can easily
verify the middle result (up to second order) using Mathematica:

o(r A(r))

r

r+drAr+dr)0—rA@E 0+ 0(dr) = 0dr+0(dr)?

True

Therefore we obtain

1 9@ A
VAA= L UAD)
r or

Proceeding in this manner one can obtain more general expressions for the curls of fields expressed in any coordinate
system. See Appendix A for a summary of vector operators in orthogonal coordinate systems. For example, the general
expression for the curl in spherical polar coordinates is (see Eq. A.16)

L1 (0Gin®) Ay 94
VAA_rsin(Q)( 36 - a¢) ’
1 (0A, (A 1, 0(rAy)  OA,
rsin(6) ( 9g S0 —5; )e" * 7( or 00 Jeo

where A=A, P+ Ag 0+ Ay §.

Example 4.3: What is the curl of a field that runs in circles around the z-axis with a strength that drops off inversely
with distance?

Using the above result, we put A(r) = 1 /r and find that VA A = 0.

This is the form of magnetic field near a wire carrying a current. It illustrates the point that a field can appear to have
circulation but have no curl. However our calculation breaks down on the axis itself because a loop enclosing that
would definitely have a finite integral (c.f. computing the divergence of the electric field of a point charge).

Example 4.4: What is the curl of a field that runs in circles around the z-axis with a strength that increases linearly
with distance?

Now A(r) =rand we find VA A =22

This is the form of magnetic field inside a wire of uniform current density. It turns out that the curl of the magnetic
field is proportional to the current density so it is no fluke that the curl turns out to have constant magnitude. Since
the region near a current carrying wire carries no current itself, the result in Example 4.3 is no surprise either.
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4.6 General remarks on grad, div and curl

The curl is the last new vector derivative. It is important to appreciate the nature of the these quantities in the sense that
grad ¢ = V¢ is a vector, as is curl E = VA E, whereas div E = V - E is a scalar. Realising this helps one avoid mistakes
of the following kind

0B

V- E=—-—
ot

because a scalar on the left cannot equal a vector on the right. When first met these quantities can be confusing. One
has no "feel" or "intuition" for them. Intuition is actually a misleading expression; "experience of"' would be more
accurate. Why should anyone have intuition for a concept such as curl which they have never met before? You can
only develop "intuition" after use and after seeing these quantities in action. The way to develop it most quickly is to
remember equations such as Eq. 4.4 and always to focus on the physical meaning behind the symbols.

4.7 Summary

We started in this chapter by expressing Faraday's law. We then considered how this can be applied to an infinitesimal
region and in doing so defined a new quantity, the curl of E, defined by (for infinitesimal loops)

96‘E~¢ﬂlscurlE~¢ﬂS=V/\E~cﬂS,
c

with the second form based on consideration of a small rectangular loop. The curl of a vector field is itself a vector.

This led on to more general equation called Stokes' Theorem that can be applied to finite surfaces and can be used to
transform between surface and line integrals. This equation was then applied to the integral version of Faraday's law to
arrive at the differential form of Faraday's law.



Chapter 5
Magnetic fields

5.1 Introduction

In this chapter we look at the physics of magnetostatics. We will encounter the second pair of Maxwell's equations
although one of them will have to be modified for time variable phenomena later. We make use of Gauss' and Stokes'
theorems, but no new mathematics has to be introduced. Our starting points are the Biot-Savart and Ampere's laws.

5.2 The Biot-Savart Law

The Biot-Savart law gives the contribution to the magnetic at a point from a small current element. Let a current / flow
through a short element dI. Then the magnetic field due to this element at a point r away from it is given by

o IdIAF
dB = —
4r r2

The cross-product here gives a magnetic field obeying the usual right-hand rule for magnetic fields from currents. That
is, with the thumb of your right-hand pointing along the current, your fingers point in the direction of the field.

There are rather few situations where the Biot-Savart law proves practical to use and we are not going to use it to any
great extent. The main point we take from it is that the field lines run in circles around an axis defined by the direction
of d 1. If they run in circles, no flux of B is produced or destroyed, and therefore we can write immediately

V.B=0, 5.1)

because V - B, the divergence of B, represents the amount of magnetic flux produced per unit volume. This equation is
the third of Maxwell's equations. It can be proved more formally, but the proof is not illuminating. If we compare with
the equivalent equation for the electric field (Eq. 3.5) V- E = £, we can interpret V - B = 0 as saying that there are no

s
€

sources of magnetic flux, or in other words there are no magnetic charges (magnetic monopoles).

5.2.1 Lorentz Transformation

As an aside, a current element / d1 can be thought of as a charge moving with a velocity, i.e., I dl =g v. Hence the
Biot-Savart law says that the magnetic field due to this charge at a point r away from it is given by

g fo g¥AT
4o r?

We can relate this to the electric field of the point charge as follows

B=404 ( ! ?] E
=—A4mge VA —|=puye vAE.
47 T dre 12 Ho €

Compare this with the Lorentz transformation formula for magnetic fields:
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B. =y(B; + ciz (V/\E’)i);

5.3 Amperes Circuital Law

Amperes circuital law (often just Amperes law) is not independent from the Biot-Savart law, and can be derived from
it. In fact as Ampere did most of the experiments that lead up to both laws, there is a case for renaming the Biot-Savart
law, except for the confusion it would cause. The actual derivation is again not very informative, and we are content to
quote the result, which in words says that the line integral of B around a closed loop is equal to y, times the total
current through the loop.

Following the work of previous chapters, we can immediately write this in symbolic form as

9§ Bdl:uodeS. (5.2)
C=0S N

Here C is the loop through which the current flows, J is the current density and S is any surface bounded by C.
Applying Stokes' theorem to transform the line integral into a surface integral we have:

9§ B-cﬂl:fV/\BdS:yodeS
C=0S S N

and, since this applies for any loop C, we must have
VAB=ulJ, (5.3)

which is the differential form of Ampere's law. This was the relation referred to in the discussion after example 4.4 in
which we calculated the curl of some example fields.

As an unusual application of Ampere's law, suppose that we wish to measure the total current flowing to or from the
ground during a thunderstorm. We could do so by measuring the magnetic field at a series of points on the ground at
the boundary of the storm. Taking the line integral would give us the current. This would a great deal easier than
measuring the current directly, which would in any case require knowing where lightning was going to strike.

Example 5.1: A current / flows in a long wire of circular cross-section of radius a (Fig. 5.1). What is the magnetic
field as a function of the distance r from the axis of the wire?

A cross-section of a wire carrying a current into the page (represented by crosses). C is the path used to

Figure 5.1 4 termine the magnetic field.

We will apply the integral form of Ampere's law (Eq. 5.2).
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We need to define a suitable circuit. Since the magnetic field must run around the wire in circles, the obvious path is
itself a circle centred on the axis of the wire so that the magnetic field is everywhere parallel to it and of the same
strength. This problem is very similar to example 4.1 where we calculated the electric field of a solenoid. Fig. 5.1
shows such a path.

The line integral fc B - dl reduces to 2 r B. The current linked depends on whether the circuit is inside or outside

the wire. If it is outside (r > @) then the current enclosed is simply 7; if it is inside (r < @) then the current enclosed
scales with area (i.e., r2) and must therefore be I (r/a)® so that it equals I for r = a. Applying Ampere's law (Eq. 5.2)
we obtain

Ho I

Sar? r>a
T motr ’
aal r<a

Example 5.2: Derive the equation B = y n I for the magnetic field inside a long solenoid with # turns per unit length
and carrying a current /.

AR RRIIIIDDIDRD R

B —
O R SRR
| | c
L

Figure 5.2: Cross-section of a solenoid with ® representing wires carrying current into the page and ©

Figure 5.2 representing currents flowing out of the page. The circuit C is used to determine the magnetic field.

Consider the rectangular circuit as shown in Fig. 5.2. Only the side running parallel to the field inside the solenoid
gives any contribution to fc B -dl. Its contribution is B L. The circuit links a current of n L[ and so BL = uynLI.

Therefore B = g nl.

5.4 Summary

Starting from the Biot-Savart law, the third of Maxwell's equations, Eq. 5.1, was written down. This equation expresses
the fact that no magnetic charges have ever been found. Next Ampere's law was translated into mathematical form (Eq.
5.2). Applying Stokes' theorem, the differential version, Eq. 5.3, was immediately obtained.



Chapter 6

Electromagnetic Waves

6.1 Introduction

In this chapter we show that Ampere's Law cannot apply in the time-varying case. We consider how to modify,
introducing an extra term, the displacement current, to satisfy charge conservation. We then demonstrate the existence
of electromagnetic waves. We examine the essential properties of these waves in the vacuum, considering both the
general properties of waves and properties specific to electromagnetic waves.

6.2 The displacement current
In the previous chapters we have derived the following differential equations describing electric and magnetic fields

VE=L VB:O

€

VAE=-% VAB=polJ

The second pair of equations relate the curl of one vector field to a different vector field. If we take the final equation,
for instance, it says that the free current density, J, is the curl of the magnetic field. This places an important restriction
upon the nature of J . To realise why, we first need a mathematical result (a vector field identity) which states that for
any vector field A, the divergence of its curl equals zero, i.e.,

V- (VAA)=0.

Taking the divergence (V -) of both sides of VAB =y, J we obtain V - J =0 In other words Ampere's Law (as we
have seen it so far) implies that the current density J is divergence-less.

This result cannot be true. It says that the total flux of current per unit volume is everywhere zero. Equivalently, using
Gauss' Theorem we have

fVJdr:gg J-dS =0,
14 §=av

which says that the total current flowing out of any volume is always zero. This is wrong because it would mean that
nothing could ever be charged or discharged. Every time a capacitor is charged, V - J = 0 is violated as charge flows on
and off the plates.

We saw the correct relation for the divergence of the current density when we discussed continuity equations. If current

flows out of a volume, it is balanced by a loss of charge from the volume, and thisled usto V - J + Z—f =0.

Using Gauss' Law V - E = ﬁ we may write the continuity equation as
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where we have made use of the commutativity of V and % which is to say that the order in which they are applied
makes no difference. Therefore if Ampere's Law is changed to

OE
VAB= (J+eo W)’ 6.1)
we have a divergence-less field on each side of the equation. Moreover, in static cases the modified equation reduces to
VAB =y J which was derived from magnetostatic experiments. Finally, the modified equation now resembles
Faraday's Law, the only difference being that because there are no magnetic charges, there is no magnetic current term
in Faraday's Law. Equation 6.1 is our final version of Ampere's Law and completes the set of Maxwell's equations.

The new term, uo € % is related to the displacement current (actually a current density) and was introduced by
Maxwell. Although very suggestive, the above discussion provides only a motivation for the introduction of the
displacement current and ultimately its true test rests on experiments. For example, there are many other terms that
could be added which would also have zero divergence. However, the displacement current is needed for the
propagation of electromagnetic waves, and so every time one turns on a light its existence is demonstrated.

The effects of the displacement current are exactly those of an ordinary current, and cannot be distinguished from it.
For instance, as a capacitor is charged, and the field between the plates increases, it is as if a current were flowing
between the plates and a magnetic field will be generated just as it would if there were a true current of the same
magnitude.

Why wasn't the displacement current found experimentally? First, the experiments that led to Ampere's Law are
difficult to perform in time varying cases; Ampere experimented with coils and steady currents. Second the
displacement current is small. In vacuum, a rate of change of electric field of order 10" V.m™'.s" over 1 m? is needed
to produce a current of only 1 A. The displacement current is often negligible with the important exception of when no
ordinary current can flow, as in a vacuum or a dielectric. When we derive the wave equation in Section 6.5, the
displacement current is vital.

6.3 Summary of Maxwell's Equations

Maxwell's equations, in terms of total charge and current densities, p and J, read
q g 1Y

VE=L VB:O

€
6.2)
OB OE

V/\EZ—W V/\BZ/J()(J+€0 7)
Note that these equations apply generally but, because the total charge and current densities include contributions from
polarisation and magnetisation, it is not usually convenient to use them when materials are present.

Each of these differential equations has an integral equivalent. Very often it is the integral versions that are easier to
apply, but the differential equations are vital in the study of electromagnetic radiation as we will see in the rest of this
chapter. The integral versions can be derived by suitable integration followed by application of Stokes' Theorem or
Gauss' Theorem. For example, consider

OE
V/\Bzuo(J+e0 W)‘
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This has a curl on the left, so if we integrate it over some surface, we will be able to transform the resulting surface
integral into a line integral by Stokes' theorem. Thus we get the following steps

OE
fV/\B-cﬂSzuof(J+eo W)ds,

N N

and so, after applying Stokes' Theorem to the left-hand side, we get

OE
B'Lﬂlzllofj'i'&)— LﬂS,
960‘:% s( 8t)

This equation says that the line integral of B around a circuit is equal to the sum of the free and displacement currents
flowing through it.

We can go through a similar procedure for each equation and we obtain the following integral equations equivalent to
Equations 6.2:

ng-cﬂS:Elevpdr $B-dS=0

6.3)
0B OE
§E-dl=-[ %.ds $psBdl=p [((J+e G)-dS

The right-hand sides of these equations can be replaced by integrated quantities such as charge or current as
appropriate.

6.4 General properties of waves

6.4.1 Phase or wave velocity

The 3D wave equation has the form

H
Qe

[3%)
o~

v 25
¢ v2 o0’

A

where { represents any wave-like quantity. Why does this describe waves? First we have to define what a wave is. A
wave is some sort of disturbance that propagates with time. In the simplest case waves propagate without changing
shape. For example, someone's voice sounds the same, apart from loudness, almost independently of the distance of the
speaker. The sound waves are little distorted by travel in air. A wave of this form travelling in the x-direction can be
described by

{x,)=4 f(x—vi).

This function is constant for constant values of x — v ¢, which implies that x = v¢ + const and so v represents the speed
at which the disturbance travels which we will call the wave or phase velocity.

For example, with the function

sin(x)

f (X_) = s
X

double-click on the graphic below to see an animation of a one-dimensional wave.

Table[Plot[ f[x — 1.2 ], {x, 0.01, 20}, PlotRange — All], {t, 0, 11}];
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Show[GraphicsArray[Partition[ %, 3]]1];
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To see that {(x, t) satisfies the wave equation, we substitute it in. We therefore need to calculate various derivatives.

Thus, for example, putting

{x_,t) =4 f(x—vD);

then the second derivative with respect to x is

FL(x, 1)

0x?

Lo ff(x—tv)
whilst the second derivative with respect to ¢ is

FL(x, t)

or
V2 f(x—1tv)

Substituting into the wave equation we find
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0*L(x, t) 1 0*4(x, 0

9% o ar
2 4 _
Lo f/(x—tv) == %;CW)

Since f” (x —t v) crops up on both sides, this result holds for any f, provided that
Ve =y,

so that the constant v, appearing in wave equation can be identified with the wave velocity. The above relation shows
that v = v, because waves can go in either direction.

6.4.2 Linearity and superposition

The next important property of the wave equation is its linearity which allows one to superpose solutions. This means
that given any two solutions of the wave equation, their sum (or in general any linear combination) is also a solution.
The physical consequence of this property is that two beams of light do not affect each other even where they cross.
Linearity is an extremely useful property, and although nonlinear equations show more interesting effects, they are
often harder to deal with.

Sound waves are linear at typical strengths; when they become non-linear they turn into shock waves. Ocean waves are
approximately linear when the depth of the water is much larger than their height. However, as they approach the shore
this is no longer the case and the top of the wave curls over and the wave breaks. The behaviour in this zone is highly
nonlinear.

To prove the property of superposition for the wave equation, suppose that we have two solutions {; and ¢, that satisfy
the wave equation. That is

1 &4 e
V= — , Vi = —
2 912 quj or?
Then {3 = {; + & is also a solution:
VoV eV e LG L P8 L PGl 1P
T ! 2 ! z_quj or? quj a2 quj or? _quﬁ or?

If there were any non-linear terms such as £2, the above proof would break down. Hence the close connection between
linearity and superposition.

6.4.3 Plane waves

We saw above that {(x, 1) = {y f(x —v, t) is a solution of the wave equation corresponding to a wave travelling at v, in
the x-direction. More generally

(r, =0 flk-r—wt)
is a solution. To confirm that this is a possible solution, we write this equation out explicitly

{&XL,y,z,t)=4 flax+by+cz—wi);

and compute the left-hand side



& L(x, y,2, ) N & L(x, y,z, ) N D Lx, 3,2, 1)
ax? ay? 072
(@ +b*+c) G fflax+by+cz—tw)

// Factor

and right-hand side

1 *¢(x,y,2 0
v; or?
W fflax+by+cz—tw)

2
Vo

of the wave equation. The wave equation is satisfied provided that

8I\-)

=a*+b* + 2

=
AN

where a, b, and ¢ are the components of the vector k = (a, b, ¢) which has magnitude k. Then we have the important
(dispersion) relation

w
Vg = 7 (6.4)

The function f(ax+by+ cz— wt)is constant for x, y, z, and ¢t which satisfy
ax+by+cz—wt=constant,

At a fixed instant of time therefore
ax+by+cz=k-r=constant.

This is the equation of a plane in three dimensions and so the function f describes plane waves. All physical quantities
related to the wave are constant over these planes. The vector k is perpendicular to the planes of constant phase and
therefore is parallel to the direction of the waves. It is called the wave vector.

As time changes, the wave-fronts move. We can calculate the velocity at which they move from consideration of the
argument of f, more usually called the phase, which we denote by ¢ = k-r — w . Differentiating with respect to time,
with ¢ constant and setting v = % we have k-v = w. Movement parallel to planes of constant phase cannot be seen so
it is only movement perpendicular to the wavefronts that is of interest. The wave vector k is perpendicular to the wave

~

fronts and so we can set v = v, k, whereby we obtain
w
Vg = —,
*T ok

which we have already seen when we proved that the plane wave solution satisfied the wave equation. This shows that
the v, in the wave equation is the velocity at which the wavefronts move in the direction of the wave vector k, as
expected. Thus our 1D results extend naturally to 3D through the wave vector.

The wave vector k points in the direction of motion of the wavefronts and for all the waves that we will consider, this
coincides with the direction that a beam of radiation (i.e., the energy) travels. Rather surprisingly perhaps, there are
waves for which this is not the case (e.g., light in birefringent crystals) but we will not consider these in this course.

6.4.4 Harmonic plane waves

A particularly important solution to the wave equation is the harmonic plane wave form
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(r, )= @ ® ) = ¢ (cos(k-r—wit) +isin(k-r—wt))
Applying the operators % and V to { (r, 1) we see that

L, n=-iwlr),
Vi, 1) = ik{(r, 1),

along with analogous results for vector fields.

In other words, application of the differential operator % is equivalent to multiplication by —iw. Similarly V is
equivalent to multiplication by i k. For example, V - E =0 becomes i k- E=0ork-E =0.

A Compare with the quantum mechanical momentum operator, p = —i V.

6.5 Wave equation from Maxwell's Equations

The displacement current term gives us electromagnetic waves. The second pair of Maxwell's equations connects

spatial derivatives of each field to the rate of change of the other. It is this coupling from the electric to the magnetic

field and back again that allows the propagation of waves. Qualitatively, a time-varying B-field in VA E = — 22 leads

o’
to a time-varying E-field, which leads (self-consistently) to a time-varying B-fieldin VA B = py (J + ¢ %).

In this course we will only consider electromagnetic waves in vacuum and restrict attention to the situation where there
are no free currents (J = 0) or charges (p = 0). Hence Maxwell's equations become

VE=O VB:O

6.5
V/\EZ—% V/\Bzyoeo% ©.5)

The first pair of equations restricts the variety of possible fields.

The standard way to proceed with such pairs of coupled differential equations is to take the derivative of one of them
and use the other to eliminate one or other of the independent variables. In this case we take the curl of Faraday's Law
because this leads to a V A E term which can be eliminated using Amperes law:

OE
V/\V/\BZ/J()G()VAW

The left-hand side can be rearranged using a second vector field identity
VAVAA=V(V-A) -V A
Using the commutativity of V and J /3¢ on the right-hand side we obtain

O0(VAE) 0’ B

V2B = = g € e
Ho € =57 Ho € 55

Substituting from Equation (6.6) for V - E and V A B we then have

v E 0*E
= € ——.
Ho €0 ET2

This equation has the form of a three-dimensional (vector) wave equation for the field E, with phase velocity



63

1

V= —

‘/Ho €

Since yy =4 X 10~7 and € = 8.89 x 1072 we obtain
Vs =2.99x10° m.s™",

which is equal to the speed of light, c¢. The clear implication is that light is itself an electromagnetic wave. This is an
early instance of the unification of seemingly separate branches of physics, in this case electromagnetism and optics,
and one of the triumphs of 19th century physics.

6.6 Relations between fields and the wave vector

In deriving the wave equation we lose information on the relationships between the E and B fields. We need to go back
to Equation (6.6) to derive these. Using the harmonic plane wave form for the E and B fields

E(I‘, t) - EO ei (kr-wt)
B(r, 1) = By ¢'®""
we can simplify the equations, translating them from vector differential equations to plain vector equations:

k-E=0 k-B=0

krAE=wB krB=-puye wE ©6.6)
The first two equations show that E and B are perpendicular to the wave vector k. Since k points in the direction of the
wave, this means that electromagnetic waves are transverse waves. In general a vector in 3D has three degrees of
freedom. The condition that E must be perpendicular to k reduces this to two degrees of freedom. Physically this
corresponds to the two polarisations that light can be split into.

The other two equations relate E and B. It is normal to regard the electric field as the one which defines the wave, and
for example the direction it points defines the polarisation of the wave. Thus it is convenient to use kAE =w B to
obtain the magnetic field strength. This equation shows that B is perpendicular to E, and so we have found the property
of electromagnetic waves that E, B, and k are mutually perpendicular.

Since k and E are perpendicular, in terms of magnitudes we have k E = w B, and therefore E = < B =v, B by Eq. 6.5.
For waves in a vacuum v4; = ¢, and so B = E/c. The final equation k B = y € w E tells us nothing new since with
Ho € = %2 it also reduces to B = E/c.

6.7 Summary

In this chapter we showed that Ampere's law VA B = y J fails to satisfy charge conservation and introduced a new
term, the displacement current, in order to correct it. Thus we obtained

V/\B:pO(J+eO Z—If).

This gave us our final versions of Maxwell's equations.

We then studied general properties of the wave equation, and in particular plane waves of the form
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{r.0)=24 flk-r—vo).

We showed that k is a vector pointing in the direction of the wave and that the phase or wave velocity v4 was given by
w
Vg = —
*T ok

We then showed that Maxwell's equations in free space lead to a 3D wave equation

0* E

V2E = ——
Ho €o ETe

The complex exponential form of the wave allowed us to substitute —ik for V and i w for /90t in all Maxwell's
equations and therefore derive relations between the fields and k and we showed that E, B, and k were mutually
perpendicular.

6.8 Vector field identities

V-VAA=0
It is easy to prove that
V.-VAA=0,
by writing out the terms explicitly:
ax (6y Az(x’ s Z) - az Ay(x’ s Z)) + ay (6z Ax(x, Ys Z) - ax Az(x’ s Z)) + az (6x Ay(x7 s Z) - ay Ax(x, s Z))
0
VAVAA=V(V-A)-V?A
There are elegant methods of proving that
VAVAA=V(V-A) -V A

but these are outside the scope of this course. An inelegant but straightforward proof is to to examine each component.
The x-component of left hand side reads

9A,(6y,2)  dA(x,2) BA, (x,y,2) DA, (x,y,2)
6( ax dy ) 6( a2 ox )

ay 0z
—APOD(x, 3, 2) = APV y, ) + ALV (x, 3, )+ AT, s 2)

The x-component of right hand side is

DA (x,,2) Ay (x,,2) A, (x,y,2)
a( ox + ay + 0z ) 62 Ax(x, ya Z) azAx(x, ya Z) 62 Ax(x’ y, Z)

ox ox? ay? 072
—APOD(x, 3, 2) = APV y, ) + ALV (x, 3, )+ AT, s 2)

These two results are identical
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% == % %
True

You can either compute the other two components or argue that x, y, and z are just labels which can be permuted at will
(which implies that proving the identity for one component proves it for all components).

Note that V> A consists of a scalar operator (V?) applied to a vector (A) resulting in a vector.



Appendix A

Differential Operators

A.1 Definitions

When parameterizing the position of a point in 3-space, the particular coordinate system which is most useful depends
on the symmetry of the physical or geometric system at hand. All coordinate systems can be derived from the Cartesian
system by a particular (non-linear) transformation. If x =} j €jx; is a particular geometric point referred to a
rectangular frame of reference, the same point may also be described by coordinates ¢; derived from the transformation

xi =xi(qy), i,j=1,2,3. (A.1)

To obtain the transformation between different coordinate systems, one needs to compute the partial derivatives
0x; /0q;. The matrix of partial derivatives (the linear map D x(q)) is known as the Jacobian matrix (of x):

Ix| 0x| 0x|
dq1  Oqp  Og3

ox, ox; ox.

0x3 0x3 0x3
0q1  Oqp  Og3

A.1.1 Orthogonal coordinates

The coordinates g; comprise an orthogonal set if

3
6)Ci 8.Xi

§ —— L =0, k+j. A3
dq; 9qx / (A-3)

i=1

A.1.2 Scale factors

Introducing dimensional scale factors h;(q;) defined by

3

2 6xi : .
hj = ﬁ , J= 1, 2, 3, (A4)
J

i=1

then, for an orthogonal set of coordinates, one finds that

0xy 0xo 0x3 Ix| 0x| 0x|
dqy  dq1  dq dqy  0qx  dgs K 0 0
T _ 0xy 0xo 0x3 0x) 0xo 0x; _ 2
(Dx(g)” -Dx(q) = dqy  dg  dq || 9 dqr  dqs | T 0 h 0 (A.5)
0x| 0xo 0x3 0x3 0x3 0x3 0 0 h%
dq3  Oq3  Ogs Oq1 O Ogs

where T denotes the matrix transpose.
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A.1.3 Jacobian determinant

Since |AT| =|A| and |A- B| = |A| |B|, where |A| denotes the determinant of the matrix A, we find that the Jacobian

determinant, J x(q), for an orthogonal set of coordinates is

0(x1, X2, x3)

Jx(q) =D x(q)| = FZrS)

A.1.4 Taylor expansion

The Taylor expansion of f = {f, f>, ..
JO =fX)+D fx)-(y—x)+

2!

where the Jacobian matrix of f is

ox; 0x) ox,

o  0h ... Oh
Dfx)=| % o],

O Ofw ... Ofn

0x| 0xy Ox,

1 1
ST D =y =0+t o D) (s  y )

(G1, g2, q3) = hy hy hs. (A.6)

., fn} :R" > R™ can be written as

(A7)

(A.8)

with (i, j)[h element {D f(x)}l.’j = 2 and D f(®)-(y—=x, ..., y—x) denotes D* f(x) as a k-linear map applied to the

ox;
k-tuple (y — x, ..., y — x). In coordinates,

n

D* = ]
JOOG-x ...,y-x= I iy =X, ) - i = x3,)- (A.9)

i enip =1

A.1.5 Differential elements

The differential elements are

Line : dsk th qu
Area: dSjx =dxjdx; > hjh.dq;dqx (A.10)
Volume: dV=dxdydz— Jx(q)dq, dg, dqgs =h) h hsdq, dq, dg;
A.1.6 Differential operators
The fundamental vector operators can be shown to be
) 1 of 1 of 1 of
Gradient: Vf= — —e; + — — e, + — — A.11
racien f hy 9q “ hy 0q, e hy dq3 “ ( )
Divergence: V- F =
(A.12)

1 d [ Jx(q) d (Jx(q) 9
7@ (a( ;lq F1)+%( ;zq Fz)+%

J x(g)
(Fe- 7))
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Laplacian: V? f =

L (L (L0 1), D (S0 01, D (Jx0 B)) AL
Jx@) \og1 \ h} dqi) 9dq \ h} 9q2) dqs \ h: Og3
h1 (2] hz e h3 e3
Cul: VAF= ——| 2 & & (A.14)
: - J x(q) dq, 0q> 0q; :
h1 F1 hz F2 h3 F3
A.2 Examples
A.2.1 Spherical Polar Coordinates
A.2.1.1 Definition
x = rcos(¢) sin(f), y = rsin(¢) sin(d), z = rcos(d) (A.15)

Note that care must be taken when inverting these relations. For example, ¢ # tan™! (%) in general — though you will
see this statement appearing regularly in textbooks.

A.2.1.2 Jacobian Matrix

From the definition, we find

d(r cos(¢) sin(0)) d(r cos(¢) sin(0)) A(r cos(¢) sin(0))

ar a0 ¢
.D _ d(r sin(¢) sin(0)) d(r sin(¢) sin(0)) d(r sin(¢) sin(0))
- ar a0 ¢
A(r cos(0)) A(r cos(0)) A(r cos(0))
ar a0 ¢

cos(¢) sin(@) rcos(f) cos(¢p) —r sin(f) sin(¢)
[ sin(6) sin(¢) rcos(d) sin(¢) rcos(¢) sin(6) ]
cos(6) —rsin(6) 0
This matrix can also be generated directly by taking the outer product of the partial derivative (D) with the coordinate
vectors:

Outer[D, {r cos(¢) sin(0), r sin(¢) sin(6), r cos(6)}, {r, 6, ¢}]
cos(¢) sin(@) rcos(@) cos(¢p) —r sin(f) sin(¢)
sin(6) sin(¢) rcos(d) sin(¢) rcos(¢) sin(6) ]
cos(6) —rsin(6) 0

A.2.1.3 Jacobian Determinant

The Jacobian determinant is needed when computing the volume element:

J = |D| // Simplify
* sin(6)
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A.2.14 Scale Factors

Computing
DT.D // Simplify
10 0
0 0

0 0 r2sin®(0)
we see that spherical polar coordinates are an othogonal coordinate system. The diagonal entries,

Transpose(%, {1, 1})
{1, 2, sinz(Q)}

lead to the scale factors:

{h,, hg, hy} =V % |/ PowerExpand
{1, r, r sin(6)}

A.2.1.5 Differential Operators

From the definitions, we find that

, af 1 of 1 of
dient: Vf= — —_ —_— .
Gradien f 3y e + plry; €y + rsin@) 96 e (A.16)
Di R A 0 (sin(®) Fy) + OFy A17
tergenice - =2 o T @ a0 UMY T sin@) 9 (A-17)
_ 1 8 ,,0fy 1( 1 8,  df 1 &f ]
. 2_ — 7 (220 . o _J - -5
Laplacian: V- f = T 5 (r 3y )+ P (sin(@) 30 (sm(G) 30 ) + @) 0% (A.18)
Curl: VA F =
e, reyg rsin@)e
1 6" a( Yo 1 (8(sin(9)F¢) aFg)
|9 O o = — - ér
r? sin(6) F, rFy rsin@)F, r sin(6) 00 ¢ (A.19)
1 OF, . d(rFy) 1 (0(rFy) OF,
r sin(@) ( ap 0@ )e" v (Tor )
A.2.2 Cylindrical Coordinates
A.2.2.1 Definition
x=pcos(p), y=psin(¢), z=z (A.20)

Note that care must be taken when inverting these relations. For example, ¢ # tan™! (%) in general — though you will
see this statement appearing regularly in textbooks. However, using half-angle formul®, you can show that
o= 2tan‘1(#) is correct. Alternatively, you can use ¢ = tan~'(x, y), a special form of tan~! which gives the arc

tangent of y/x, taking into account which quadrant the point (x, y) is in.
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/- {x - pcos(¢), y > psin(¢)} // Simplify
x+p

tan( %)

A.2.2.2 Jacobian Matrix

We generate the Jacobian matrix directly by taking the outer product of the partial derivative (D) of the coordinate
vectors:

D = Outer[D, {P cos(¢), PSin(¢), z}, {P, ?, z}]
cos(@) —psin(g) 0
[ sin(@)  peos9) 0 ]
0 0 1

A.2.2.3 Jacobian Determinant

The Jacobian determinant is needed when computing the volume element:

J =Dl // Simplity
P

A.2.2.4 Scale Factors

Computing

DT.D // Simplify

1 0 0
0 p> 0
0 0 1

we see that spherical polar coordinates are an othogonal coordinate system. The diagonal entries,

Transpose(%, {1, 1})
{L e 1)

lead to the scale factors:

{hy, hg, h;} = V % [/ PowerExpand
{1, p, 1}

A.2.2.5 Differential Operators

From the definitions, we find that

o, Lar, oS

Gradient: Vf = % e, + ; 74 ey + PP e, (A.21)

1 0(pF, 1 OF OF,
Divergence: V-F = — wFy) g2 P
p  dp p 0¢ 0z

(A.22)



1,0 of 1 &#f &f (A23)
1 . 2 = — | — _t—— —— + —
Laplacian: V- f ;>(6p 0)6p)) PR 5
| e, pes e,
Curl: VAF=—|9, 095 0.|=
F, pFy F; (A.24)

(1 OF. 6F¢)e +(6Fp 6F1)e¢+i(a(pF"’) B an)eZ
S Ta s T Ta %

9z ap L ap 0



Appendix B

Dirac's Delta Function 6(x)

B.1 Examples

Consider the (piecewise continuous) function

Plot({a2 (), 61(x), 01 (0}, {x, =4, 4}, PlotStyle - {Hue(0), Hue(%), Hue(%)});
0.4
0.2
") S 2 4
04
~0/4

The derivative is
0 [x_ ]1:=0/;x<-€
O [x ]i=— /;—€e<x=<e€
- 2€
0 [x_ ]1:=0/5x>¢€

1 2
Plot[{a2 (x), 61 (x), 61 (x)}, {x, —4, 4}, PlotStyle - {Hue(0), Hue(g-), Hue(;—)});

1
e

0.8

0.6
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The area under each curve is constant:

NIntegrate[6; (x), {x, =5, —1, 1, 5}]
1.

NlIntegrate[d;/, (x), {x, =5, -1/2,1/2, 5}]
1.

In other words

FéE(X) dx=1, Y. eR".

Alternatively, we can obtain this from

Fée(x)dx=fm95'(x)clx=95(x)|i°m =(% —(%))z 1, Ve eR*.

Consider the integral

Ff(X) e (x) d x,

where f(x) is an arbitrary function which goes to O "sufficiently fast" as x - toco. For € "sufficiently small", we can
write

1 € 1
j: swawax= 5 [ W 5 QefO) = fO)

using the Mean Value Theorem. As € — 0, d.(x) = d(x), and 6(x) has the interesting properties that

Fé(x) dx=1, fmf(x) o(x)dx = f(0)

Show, using integration by parts, that

Ff(X) o' (x)dx = f(0)

B.2 Definition

The symbol d(x) is not a function in the usual mathematical sense. A function in one dimension is a mapping between
ordered pairs x — y = f(x). In the case of the symbol d(x), any such mapping carries every point x on the real axis, save
one, into the number zero. This is hardly a well behaved function. Nevertheless, it can be treated symbolically as
though it shared most properties of ordinary smooth

functions. I will often treat it as an ordinary function. Our purpose here is to outline this highly useful notation, and not
to give a mathematical justification for this use.

It is possible to view d(x) as representing the symbolic limit of a sequence of suitably defined functions. Imagine, for
example, a sequence based on the parameter € defined by any of the following three functions:
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Code

Clear[Subscript]

SetOptions[Integrate, GenerateConditions — False];

Se(¥) = £ —

T x2+e?

€ 1
o [x_]:=—

n xt+ée

1
Plot[{a2 (x), 61 (x), 61 (x)}, {x, —4, 4}, PlotStyle - {Hue(0), Hue(—), Hue(

For any € we find that

f 6.(x) dx |/ PowerExpand

1

For the function 1;2
+X

lim

1

1 sin(E)
0c(¥) = &

X

1 sin(<)
Oc [x_]:=—

/g X

Plot[{a2 (x), 61 (x), 61 (x)}, {x, —10, 10}, PlotRange — All, PlotStyle —» {Hue(0), Hue(—), Hue[
2

S|
f ——— 6.(x) dx /| PowerExpand
=0 J_oo 1+x2

10

2

)
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f 6. (x)dx /.sgn(e) » 1
1_
2
0c(x) = \/L; —e e
1 -2
O [xX ]Ji=— —e€e 2
T €

0 / 6 ‘S
O//. 4
,/// . 2 \\\\\ —
- ti — -2 2 4

f 6.(x) dx |/ PowerExpand
1

B.3 Sequence

Each of these functions, for any € <« 1, have the properties (1) sharply peaked at x = 0; and (2) area under curve is
unity independent of e. In short, if one constructs a convergent sequence of €'s, then the quantity d(x) = lime,o 0¢(x).

for each of the above functions J,(x), has the desired properties of the delta "function". By this I mean the following:
whenever a delta "function" appears multiplying a smooth function under an integral sign, you should imagine that it is
replaced by J.(x) and the integral evaluated. Then, after integration, the limit of the sequence of the results of

integration is taken. This process gives meaning to the delta function. With this idea in mind, I can treat the delta
function as if it were itself a smooth function and even write, for example,

Fd'(x) f)dx = —f 0x) f'(x)dx =—-f"(0)

0
where I have integrated by parts. Other useful results, whose justification are based in such arguments, are these:

olax) = %

x0(x)=0
S(* = a?) = 517 (6(x— a) + 6(x + @)

8((x = @) (x = b)) = g (6(x = @) + 6(x = b))
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B.4 Three Dimensions

The idea of the delta function is readily extended to spaces of higher dimension. Let a point in 3-dimensions be
r = (x, y, ). I define the delta function in this space by

or—-r)=6(x—x)6(y—-y)6(z—7)

fffé(r—r’)dxdydz:l,
fffé(r—r’)f(r)dxdydz:f(r’)

An example of this is

fffé(x—a) e Mdxdydz =e ",

As a further example, consider
) =P (1) =9-9(1)= - S p ver-ar (5] =~(F - 3) 0

if r 0.

Clearly, h(r) is singular at » =0. To investigate its behavior near the singularity, integrate over a small spherical
volume V centered at the origin. The divergence theorem

fV~Aclr=f A-dS,
14 §=0v

provides what we seek:

fvh(r)dr = fvvz(})dr
= [ V-V(H)dr
= [,y V()-dS
= [, V(+)-rds
= —f_,, &rrtdQ
= —f_ dQ

S=0v
= 4.

Conclusion: h(r) is zero everywhere except at a single point, namely r = 0. There it is infinite, but in such a way that its
volume integral over the singularity is —4 . Therefore, we have the identity

—Vz(i) -V. rLz = 476(r).

r



