
Chapter 1
Introduction

Credit

These Mathematica  Notebooks  are  based  on  original  TEX  notes  by  Tom R.  Marsh  of the  Department  of  Physics  and
Astronomy at the University of Southampton.

1.1   Aims

Electromagnetism  is  one  of  the  four  fundamental  forces.  Along  with  gravity,  it  is  also  the  one  we  encounter  most
obviously  in  every-day  life.  It  is  of  immense  practical  importance  and  underlies  optics,  electricity  generation,  and
modern  communications  and  as  well  as  the  motors  and  transformers  which  crop  up  in  almost  every  household
appliance. 

Electromagnetism  is  a  field  theory,  and  was  the  first  physical  theory  that  unified  seemingly  separate  branches  of
physics, in this case optics and electricity. In field theories the physical quantities (e.g., the electric and magnetic field)
are defined over all space. Compare this with classical mechanics where it makes no sense to talk of the velocity of a
particle defined over all space. In order to understand such continuously changing quantities we will make frequent use
of vector derivatives. These are often difficult to get used to when first encountered. 

The  first  part  of  the  course  develops  these  alongside  Maxwell's  equations  (Chapters  2,  3),  and  a  major  aim  of  this
course  is  to  make  you  familiar  with  these  quantities.  Wave  solutions  of  Maxwell's  equations  are  presented  as  the
consequences  of  these can be seen almost  daily,  even if  only in a  rainbow or the reflection  from a puddle  on a road.
The aims  of  the  course  are  to  develop  “intuition”  for  the  behaviour  of  electromagnetic  waves  by  looking  at  them in
different  situations.  By  the  end  of  the  course  you  should  have  become  familiar  with  vector  calculus,  the  physics  of
electric  and  magnetic  fields,  and  the  physics  of  waves,  both  in  a  general  sense,  and  in  the  specific  case  of
electromagnetic waves.

1.2   Course Structure

The  combination  of  vector  calculus  and  wave  physics  can  often  be  difficult  when  first  encountered.  A  good  way  to
gain confidence is to apply them in problems.  There will be 2 assignments  followed by a tutorial where we will work
though the methods of solving the problems. 

1.3   Assessment

The two assignments will contribute 40% of the marks for the course and the 1 1ÅÅÅÅ2  hour exam the remaining 60%. 



1.4   Notes

The  course  notes  are  at  http://physics.uwa.edu.au/pub/Electromagnetism  as  Mathematica  Notebooks  and  in  PDF
format. The Notebooks try to be more-or-less  self contained and cover everything  you should know without covering
too much. Please be on the look-out for errors and let me know of any that you find.

1.5   References

No one book is entirely suited to this course, and in any case books are very much a matter of personal preference. The
one  I  like  best  is  Introduction  to  Electrodynamics  by  Griffiths.   Classical  Electrodynamics  by  Jackson  is  the  most
famous and comprehensive text, but only recommended to the very mathematically inclined. Finally, volume 2 of The
Feynman  Lectures  on  Physics  are  worth  looking  at  for  their  physical  insight,  particularly  with  regard  to  vector
calculus. I would urge you to look at more than one treatment of any topic that you have difficulty with as each version
may contain elements that help.

1. D J Griffiths, Introduction to Electrodynamics, 3rd edition, Prentice-Hall, 1999.

2. J D Jackson, Classical Electrodynamics, 2nd edition, Wiley, 1975.

3. R P Feynman, R B Leighton,  and M Sands,  The Feynman  Lectures on Physics, Volume 2: Electromagnetism and
Matter, Addison-Wesley, 1963-65.

1.6   Conventions

The notes are arranged in chapters each of which may cover one or more lectures. The order of the topics follows the
order of the lectures.  Each chapter  starts with an introduction that briefly lays out what is to come. Worked examples
are  included,  most,  but   not  all,  of  which  will  be  covered  in  the  lectures.  Some  sections  are  marked  with  a  ‹:  this
warning sign indicates that you should watch out.  Other sections include a ´ which indicates that they contain material
not covered  in  the lectures  and  not  examinable.  Nevertheless,  they should  at  least be looked  at  in most  cases.  At the
end  of  the  chapters,  a  short  section  summarises  the  principal  results  and  equations  which  you  should  aim to  master.
Appendices  are  used  to  collect  together  material  on  specific  topics  such  as  vector  calculus,  coordinate  systems,  and
delta functions.  The material in these appendices is examinable. 

The  notes  follow  various  conventions  for  the  symbols.  Vector  quantities  are  always  in  bold-face  e.g.,  A.  The
magnitudes  of  vectors  are  scalars  and  are  indicated  by  e.g.,  A.  Cross-products  (wedge  product)  are  indicated  by  a  Ô
rather than µ. Unit vectors are indicated with a hat as in x̀ for a unit vector along the x direction. 

Another  convention  that  needs  to  be  understood  is  that  of  a  right-handed  set  of  axes.  For  many  students  the  vector
nature  of  electromagnetism  is  one  of  its  most  difficult  aspects  as  it  is  often  necessary  to  picture  problems  in
3-dimensions. The relative orientation of various vectors is often an issue. Starting with x and y axes at right-angles to
each other, a right-handed set  of axes is defined by z̀ = x̀Ô ỳ. A helpful rule  for cross-products  is to orient  your right
hand  so  that  your  fingers  point  from the  first  to  the  second  vector  (e.g.,  from x̀  to  ỳ  in  this  case).  Your  thumb then
points in the direction of the cross-product. 

Since  these  notes  are  Mathematica  Notebooks,  I  use  Mathematica  conventions  throughout.  I  find  some  of  these
conventions  very  useful.   The  exponential  e  (‰),  imaginary  i  (Â),  and  differential  d  („)  are  all  displayed  using
"double-struck" characters (which distinguishes them from ordinary letters e, i, and d). Integrals, e.g., 
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‡
0

pÄÄÄÄÄ2

cosHxL ‚ x

1

change of variables, e.g., 

Dt@xD
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
1 + x2

ê. x Æ tanHqL êê Simplify

„ q

and total derivatives also use „: 

‚ sinHx yL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

‚ x
cosHx yL Jy + x

„ y
ÅÅÅÅÅÅÅÅÅÅ
„ x

N

Partial derivatives use ∂:

∂sinHx yL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂x
y cosHx yL

In the figures fields and currents are indicated by crosses, ⊗, if they point down into the page and dots, ü, if they point
up out of the page.

Paul Abbott
Wednesday, July 26, 2006
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Chapter 2
Gradients and Potentials

2.1   Introduction

There are many circumstances in which the rate at which a physical quantity changes with distance needs to be known.
In building a road, the rate of change of height with horizontal distance — the gradient  — is all-important. Gradients
of pressure in fluids drive accelerating flows and gradients of temperature drive heat flow. 

The physical quantities are usually distributed over three dimensions and so the first task in this chapter is to extend the
definition  of  gradient  from  one  dimension,  where  it  is  given  by  the  derivative  with  respect  to  position,  to  three
dimensions. We will find that the three dimensional gradient is a vector and can be calculated by application of a new
operator  called  the  gradient  or  vector  derivative  operator.  We  then  look  at  how  the  nature  of  the  electrostatic  field
allows us to define a quantity called the potential whose gradient is equal to the electric field. 

The chapter finishes with example calculations of fields from potentials.

2.2   The Gradient

Consider  a quantity  such  as  temperature  or pressure  which  can be  assigned  a value  f  at  every  point  over a  region.
Temperature and pressure are scalar quantities which means that unlike vectors there is no sense in which a direction
can be associated  with  them. Therefore  f  is  a  single  number,  which  as  it  represents  a physical  quantity,  must  vary
continuously. Moving from Hx, y, zL to Hx + „ x, y + „ y, z + „ zL, the value of f  changes by

„ f =
∂ f
ÅÅÅÅÅÅÅÅÅÅ
∂ x

„ x +
∂ f
ÅÅÅÅÅÅÅÅÅÅ
∂y

„ y +
∂ f
ÅÅÅÅÅÅÅÅÅÅ
∂z

„ z.

This is reminiscent of a dot product:

(2.1)„ f = I ∂ fÅÅÅÅÅÅÅ∂x
∂ fÅÅÅÅÅÅÅ∂y

∂ fÅÅÅÅÅÅÅ∂z M.
i

k

jjjjjjjj
„ x
„ y
„ z

y

{

zzzzzzzz ª Jx̀ 
∂ f
ÅÅÅÅÅÅÅÅÅÅ
∂x

+ ỳ 
∂ f
ÅÅÅÅÅÅÅÅÅÅ
∂y

+ z̀ 
∂ f
ÅÅÅÅÅÅÅÅÅÅ
∂z

N ÿ Hx̀ „ x + ỳ „ y + z̀ „ zL = — f ÿ ‚ l,

where ‚ l is the line element vector H„ x, „ y, „ zL, i.e.,

‚ l =
i

k

jjjjjjjj
„ x
„ y
„ z

y

{

zzzzzzzz ª x̀ „ x + ỳ „ y + z̀ „ z,

and — is the vector derivative operator (called del or more rarely nabla),

— = I ∂ÅÅÅÅÅÅÅ∂x
∂ÅÅÅÅÅÅÅ∂y

∂ÅÅÅÅÅÅ∂z M ª x̀ 
∂

ÅÅÅÅÅÅÅÅÅÅ
∂x

+ ỳ 
∂

ÅÅÅÅÅÅÅÅÅÅ
∂y

+ z̀ 
∂

ÅÅÅÅÅÅÅÅÅ
∂z



2.2.1   — f  or grad f

The quantity — f  is the gradient of f , and is also sometimes written as grad f  . Since „ f = — f ÿ ‚ l, for a given length
of line element ‚ l, „ f  is maximum when ‚ l is parallel to — f . Thus — f  points in the direction of maximum increase
of  f  and  its  magnitude  equals  the  rate  of  change  of  f  in  that  direction.  The  gradient  is  the  key  to  straightforward
extension  of  some  well-known  equations  that  apply  in  one  dimension.  Thus  the  well  known  equation  for  heat
conductivity:

Q = -k 
„ T
ÅÅÅÅÅÅÅÅÅÅÅ
„ x

,

where Q is the heat flux in W.m-2 , and k is the conductivity, becomes 

(2.2)Q = -k —T

in 3D with the heat flux now a vector pointing in the direction of maximum decrease in temperature.

Figure 2.1 Contours of equal temperature, T , with arrows representing -— T .

Figure  2.1  illustrates  the  idea  of  the  gradient  in  a  two-dimensional  example.  The  contours  represent  lines  of  equal
temperature  (isotherms),  in  a  case  where  there  are  two  peaks  of  temperature  with  one  higher  than  the  other.  The
gradient is always perpendicular to the lines of equal temperature and it is large where the lines are close together.

Example 2.1 Why is the gradient always perpendicular to contour lines (or, in 3D, contour surfaces)?

If a line element ‚ l lies in a line or surface along which f  is constant (i.e., an isoline or isosurface) then we can write
— f ÿ ‚ l = 0.  Therefore  ‚ l  must  be  perpendicular  to  the  gradient  — f ,  which  is  why  the  arrows  representing  the
gradient in Figure 2.1 were drawn at right-angles to the contour lines. 

Exercise 2.1 In Figure 2.2 what does — P represent?
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Figure 2.2 Contours of equal pressure (isobars), P. 

2.2.2   Taylor series

You should all recall the Taylor series for a (differentiable) function in one variable:

f Hx + hL = f HxL + h f £ HxL +
h2
ÅÅÅÅÅÅÅÅÅ
2 !

 f ″ HxL +
h3
ÅÅÅÅÅÅÅÅÅ
3!

 f H3L HxL + …

In Mathematica you can compute Taylor series by adding an order term to the function:

f Hh + xL + OHhL5

f HxL + f £ HxL h +
1
ÅÅÅÅÅ
2

f ″ HxL h2 +
1
ÅÅÅÅÅ
6

f H3L HxL h3 +
1

ÅÅÅÅÅÅÅÅÅ
24

f H4L HxL h4 + OHh5 L

For example, the Maclaurin series (i.e., the Taylor series about 0) for tanHxL is

tanHxL + OHxL10

x +
x3
ÅÅÅÅÅÅÅÅ
3

+
2 x5
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
15

+
17 x7
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
315

+
62 x9
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2835

+ OHx10 L

Since the Taylor series involves the derivatives of a function at a point, x, if f £ HxL = 0 and f ″ HxL < 0, then

f Hx + hL = f HxL - a h2 + …,

(where a > 0) and x is a local maximum of f  because, in the neighbourhood of x (i.e., around h = 0), f  decreases as we
move  away  from  x.  But  of  course,  you  already  knew  this  from  high-school  calculus.   However,  in  more  than  one
variable, the situation is more complicated. 

One very interesting (formal) way of writing the Taylor series is

f Hx + hL = ‰h ∂ÅÅÅÅÅÅÅ∂x  f HxL
where this formal notation is interpreted as

f Hx + hL = ‰h ∂ÅÅÅÅÅÅÅ∂x  f HxL =
i
k
jjjj1 + h

∂
ÅÅÅÅÅÅÅÅÅÅ
∂x

+
1

ÅÅÅÅÅÅÅÅÅ
2 !

 Jh ∂
ÅÅÅÅÅÅÅÅÅÅ
∂x

N
2

+
1

ÅÅÅÅÅÅÅÅÅ
3 !

 Jh ∂
ÅÅÅÅÅÅÅÅÅÅ
∂x

N
3

+ …
y
{
zzzz f HxL

= f HxL + h f £ HxL +
h2
ÅÅÅÅÅÅÅÅÅ
2 !

 f ″ HxL +
h3
ÅÅÅÅÅÅÅÅÅ
3 !

 f H3L HxL + …
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This idea turns out to be useful in group theory.   The action of the operator  ‰h ∂ÅÅÅÅÅÅÅ∂x  on f HxL has the effect of translating
the function to f Hx + hL.

Another advantage of this notation is that it is straightforward to extend it to any number of variables by replacing h ∂ÅÅÅÅÅÅÅ∂x
with h ÿ —:

f Hx + hL = ‰h ÿ—  f HxL = J1 + h ÿ —+
1

ÅÅÅÅÅÅÅÅÅ
2!

 Hh ÿ —L2 +
1

ÅÅÅÅÅÅÅÅÅ
3 !

 Hh ÿ —L3 + …N f HxL

= f HxL + Hh ÿ —L f HxL +
1

ÅÅÅÅÅÅÅÅÅ
2 !

 Hh ÿ —L2  f HxL +
1

ÅÅÅÅÅÅÅÅÅ
3 !

 Hh ÿ —L3  f HxL + …

Some care needs to be taken when interpreting this expression: For two variables, the second term is

Hh ÿ —L f HxL = Hh, kL ÿ H∂x , ∂y L f Hx, yL =

h f H1,0L Hx, yL + k f H0,1L Hx, yL,
and the third term is

1
ÅÅÅÅÅÅÅÅÅ
2 !

 Hh ÿ —L2  f HxL =
1
ÅÅÅÅÅ
2

 Hh, kL ÿ H∂x , ∂y L HHh, kL ÿ H∂x , ∂y L f Hx, yLL =

1
ÅÅÅÅÅ
2

f H2,0L Hx, yL h2 + k f H1,1L Hx, yL h +
1
ÅÅÅÅÅ
2

k2 f H0,2L Hx, yL.

Omitting the factor of 1 ê 2, this can be written in matrix notation as

Hh ÿ —L2  f HxL = hT  H h = H h k L.
i

k
jjjjjjj

∂2 f Hx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∂x ∂x
∂2 f Hx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∂x ∂y

∂2 f Hx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∂y∂x
∂2 f Hx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∂y ∂y

y

{
zzzzzzz.
i
k
jj h

k
y
{
zz,

where (apart from a sign), H  is the Hessian matrix.  

We require an important result from linear algebra: A symmetric n µ n matrix M  is positive definite  ñ xT  M x > 0 for
all  x ≠ 0  in  n ñ  all  the  n  eigenvalues,  li ,  of M  are  such that  each  li > 0.  Similarly,  a  negative  definite  matrix  has
each li < 0. Since the Taylor series

f Hx + h, y + kL = f Hx, yL + H h k L.
i
k
jjjjjj

∂ f Hx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∂x
∂ f Hx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∂y

y
{
zzzzzz +

1
ÅÅÅÅÅ
2

 H h k L.
i

k
jjjjjjj

∂2 f Hx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∂x ∂x
∂2 f Hx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∂x ∂y

∂2 f Hx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∂y ∂x
∂2 f Hx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∂y ∂y

y

{
zzzzzzz.
i
k
jj h

k
y
{
zz + …

involves  the  partial  derivatives  of  f  at  the  point,  x = Hx, yL,  if  — f HxL = 0,  i.e.,  f H1,0L Hx, yL = 0 = f H0,1L Hx, yL,  and  H  is
negative definite then Hx, yL is a a local maximum of f .

The relationship between the sign of the eigenvalues and the sign of xT  M x  results directly from the definition of the
eigenvalues, li  and corresponding (orthonormal) eigenvectors, ui , of a symmetric matrix: 

Mui = li  ui fl u j
T  Mui = li  u j

T  ui = li  di, j .

If the eigenvectors span n , we can express any vector in n  as x = a1  u1 +  + an  un  where each ai œ . Then

xT  Mx =
i
k
jjjjjj‚

j=1

n

a j  u j
T
y
{
zzzzzz M

i
k
jjjjj‚

i=1

n

ai  ui
y
{
zzzzz = ‚

i=1

n

‚
j=1

n

ai  a j  u j
T  Mui = ‚

i=1

n

‚
j=1

n

ai  a j  li  di, j = ‚
i=1

n

li  ai
2 .

Since ai
2 > 0 and the ai  are arbitrary, xT  Mx > 0 ó li > 0, "i=1,2,…,n .

The eigenvectors diagonalize the symmetric matrix, which can be written in the form

M = PT .D.P,
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where P is the matrix of eigenvectors, P = Hu1 » u2 » … » un L, and D is the diagonal matrix with the eigenvalues  l1 , l2 ,
…, ln  along the diagonal. Then

xT  Mx = xT  PT  D P x = HP xLT  D HP xL fl yT  D y = Hl1  y1
2 + l2  y2

2 + … + ln  yn
2 L,

where y = P x. Clearly, l1  y1
2 + l2  y2

2 + … + ln  yn
2 > 0 for arbitrary (real) yi  only if all li > 0.

Example 2.2 Consider the symmetric 2 µ 2 matrix M = i
k
jj 5 -2

-2 8
y
{
zz. Is M  positive definite?

If we compute xT  Mx

M = J 5 -2
-2 8 N;

8x, y<.M.8x, y< êê Factor
5 x2 - 4 y x + 8 y2

it is not immediately obvious that this expression is positive for arbitrary x and y. However, if we write the result in
the form

% ==
9
ÄÄÄÄÄ
5
Hx - 2 yL2 +

4
ÄÄÄÄÄ
5
H2 x + yL2 êê Simplify

True

it is now obvious,  since Hx - 2 yL2  and H2 x + yL2  are both positive for  all  x = Hx, yL ≠ 0  in 2 .  Alternatively,  we see
that both eigenvalues are positive:

L = Eigenvalues@MD
89, 4<

Hence M  is positive definite. Alternatively, with

 = DiagonalMatrix@LD
J 9 0

0 4 N

then clearly yT  D y = l1  u2 + l2  v2 > 0 for all y = Hu, vL ≠ 0 in 2 .

8u, v<..8u, v<
9 u2 + 4 v2

The orthogonal eigenvectors are

Eigenvectors@MDT
J -1 2

2 1 N

We need to make these orthonormal:

P =
%

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Norm êû %

i

k
jjjjjjj

- 1ÅÅÅÅÅÅÅÅÅÅè!!!!5
2ÅÅÅÅÅÅÅÅÅÅè!!!!5

2ÅÅÅÅÅÅÅÅÅÅè!!!!5
1ÅÅÅÅÅÅÅÅÅÅè!!!!5

y

{
zzzzzzz
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PT .P

J 1 0
0 1 N

P diagonalizes the matrix M .

PT .M.P êê Simplify

J 9 0
0 4 N

and we confirm that PT  D P = M :

PT ..P == M
True

Computing HP xLT  D HP xL we also obtain a result that is positive for all x = Hx, yL ≠ 0 in 2 . 

HP.8x, y<L..HP.8x, y<L
4
i
k
jjjj

2 x
ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!5 +

y
ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!5

y
{
zzzz

2

+ 9
i
k
jjjj

2 y
ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!5 -

x
ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!5

y
{
zzzz

2

Simplify êû %
9
ÅÅÅÅÅ
5
Hx - 2 yL2 +

4
ÅÅÅÅÅ
5
H2 x + yL2

Example 2.3 Describe the conic 5 x2 - 4 x y + 8 y2 = 36.

Visualizing the conic shows that it is an ellipse:

ContourPlot@5 x2 - 4 y x + 8 y2 , 8x, -4, 4<, 8y, -4, 4<, Contours Æ 836<, ContourShading Æ FalseD;

-4 -2 0 2 4
-4

-2

0

2

4

Write the equation in matrix form:

M = J 5 -2
-2 8 N;

8x, y<.M.8x, y< == 36 êê ExpandAll
5 x2 - 4 y x + 8 y2 ã 36

Diagonalizing  the  matrix,  xT  Mx = xT  PT  D P x = HP xLT  D HP xL = yT  D y,  where  y = Hu, vL = P x.  Hence  the
equation becomes
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8u, v<..8u, v< == 36 êê Simplify
9 u2 + 4 v2 ã 36

that is, u2
ÅÅÅÅÅÅÅ4 + v2

ÅÅÅÅÅÅÅ9 = 1, which is the equation of an ellipse. 

ContourPlotA u
2

ÄÄÄÄÄÄÄÄÄ
4

+
v2

ÄÄÄÄÄÄÄÄ
9

, 8u, -4, 4<, 8v, -4, 4<, Contours Æ 81<, ContourShading Æ FalseE;

-4 -2 0 2 4
-4

-2

0

2

4

The effect of the orthogonal matrix P on x is to rotate the axes:

P.8x, y<
9 2 y

ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!5 -
x

ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!5 ,
2 x

ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!5 +
y

ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!5 =

2.2.3   Conservative fields and potentials

Eq. 2.1, „ f = — f ÿ ‚ l, can be used to calculate the finite change in f  when moving from two points, A to B (Fig. 2.3):

f HBL - f HAL = ‡
A

B
„ f = ‡

A

B
 — f ÿ ‚ l.

A

B

Figure 2.3 Path of integration from A to B and back again.

If we then move back from B to A over a different path, the total change in f  will be zero and thus

® — f ÿ ‚ l = 0,
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where  the  symbol  ò  indicates  an  integral  over  a  closed loop.  The reverse  of  this  process  can  be  shown to  be true.
That is, if integrals over closed loops in a vector field A are always zero i.e.,

® A ÿ ‚ l = 0

for any loop, then A can be derived from a scalar field, called y say, by taking its gradient

A = — y.

This is an important theorem since it is generally much easier to work with scalars than vectors. 

Since the force on a charge q in an electric field E is q E, and so a force -q E  needs to be applied to hold the charge
still, the integral

-® q E ÿ „ l

represents  the  work  needed  to  move  the  charge  around  a  loop.  In  electrostatics  this  must  be zero  or  else we  could
obtain  energy  indefinitely  by  allowing  the  charge  to  move  around  the  loop  in  the  direction  that  makes  the  work
needed  negative.  In  electrostatics  ò E ÿ ‚ l = 0 for  all  loops  and  therefore  from above,  we  must  be able  to derive  E
from a scalar, i.e., E = — y. In fact by convention we write

E = -—f,

where  f  is  called  the  electric  potential.  The  minus  sign  means  that  the  potential  increases  as  one  nears  positive
charges  and  makes  f  the  work  done  in  bringing  a  unit  charge  from infinity  to  a  given  point.  The  reasoning  above
breaks down in time varying cases when it is possible for ò E ÿ „ l ≠ 0 (e.g., think of the coils of a transformer). Thus
the above equation applies in electrostatics only. 

We have used the conservation of energy to argue that ò E ÿ „ l = 0 and any  vector field that satisfies  this condition is
known as a conservative  field. Not all  fields satisfy this condition.  For example any field that can be drawn in closed
loops  cannot  have  a  zero-line  integral  around  these  loops.  The  magnetic  field  around  a  wire  is  one  example,  and  in
general it is not possible to derive magnetic fields from scalar potentials.

2.2.4   Calculating fields from potentials

The calculation of fields from potentials is best illustrated with some examples. We start with a simple one.

Example 2.4 What is the electric field equivalent to the potential f = -k x? 

We apply the vector derivative operator through E = -— f or in component form

i

k
jjjjjjjj

Ex

Ey

Ez

y

{
zzzzzzzz = -

i

k

jjjjjjjjjjjjj

∂ÅÅÅÅÅÅÅ∂x
∂ÅÅÅÅÅÅÅ∂y

∂ÅÅÅÅÅÅ∂z

y

{

zzzzzzzzzzzzz
 H-k xL =

i

k
jjjjjjj

k
0
0

y

{
zzzzzzz.

Thus f = -k x is the potential of a uniform field pointing in the x direction (i.e., i
`
) with magnitude k. 

This example can be generalised:

Example 2.5 What is the electric field equivalent to the potential f = -A ÿ r where A is a constant vector and r is the 
position vector?

The dot product can be expanded out so

f = -A1  x - A2  y - A3  z.
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We then have

E = -—f =
i

k
jjjjjjj

A1

A2

A3

y

{
zzzzzzz = A.

Therefore a uniform field, E, has a potential of the form f = -E ÿ r.

Now for a trickier case:

Example 2.6 What is the electric field equivalent to the potential f = 1 ê r where r is the distance from a point?

This can be answered in two ways:

(1)  The direct  approach  is to  apply the vector  derivative  operator  to 1 ê r  remembering that  r2 = x2 + y2 + z2  .  Thus
since 

∂
ÅÅÅÅÅÅÅÅÅÅ
∂x

 J 1
ÅÅÅÅÅ
r
N = -

1
ÅÅÅÅÅÅÅÅ
r2  

∂r
ÅÅÅÅÅÅÅÅÅÅ
∂x

= -
1

ÅÅÅÅÅÅÅÅ
r2  

∂ Hx2 + y2 + z2 L1ê2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∂x
,

and

∂r
ÅÅÅÅÅÅÅÅÅÅ
∂x

=
∂ Hx2 + y2 + z2 L1ê2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∂x
=

1
ÅÅÅÅÅ
2

 Hx2 + y2 + z2 L-1ê2
 2 x =

x
ÅÅÅÅÅ
r

,

we obtain

∂
ÅÅÅÅÅÅÅÅÅÅ
∂x

 J 1
ÅÅÅÅÅ
r
N = -

x
ÅÅÅÅÅÅÅÅ
r3 ,

and so, with similar expressions for the other components, we obtain

(2.3)E = -—f =
r

ÅÅÅÅÅÅÅÅ
r3 ª

r̀
ÅÅÅÅÅÅÅÅ
r2 ª

erÅÅÅÅÅÅÅÅ
r2 ,

where r̀  or er  are unit  vectors  pointing  in the radial  direction.  Therefore,  as expected,  a  1 ê r  potential  gives  a 1 ê r2

electric field.

(2) A more intuitive approach can be taken based upon Eq. 2.1,  „ f = — f ÿ „ l. If „ l  is parallel  to — f , i.e.,  we step
along the direction of the gradient, then this becomes „ f = †— f § „ l, or

†— f § =
„ f
ÅÅÅÅÅÅÅÅÅÅÅ
„ l

f = 1 ê r fi -
‚ f
ÄÄÄÄÄÄÄÄÄÄÄÄ
‚ r

=
1

ÄÄÄÄÄÄÄÄ
r2

fi E =
r̀

ÄÄÄÄÄÄÄÄ
r2

along a path parallel to the gradient.  For the electric field we can similarly write E = -„ f ê„ l  for a path parallel  to
the field. For f = 1 ê r the field must point in the radial direction by symmetry so we take the derivative moving out
in  radius,  i.e.,  E = -„ f ê„ r  for  any  spherically  symmetric  potential  f.  This  trivially  gives  the  result  (Eq.  2.3)
obtained more painfully above, and can be applied to any potential that varies with r only. 

Computation of fields using Mathematica

Define the distance between two points as follows: 

Unprotect@NormD; °z_¥ :=
è!!!!!!
z.z ; Protect@NormD;
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The potential of a (point) charge q positioned at r 0, measured at r is

fHr_, r0_, q_: 1L :=
q

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ°r - r0¥
For example, the potential due to a unit charge at the origin

 = 80, 0, 0<;
measured at the point

P = 8x, y, z< ;

is

fHP, L
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!x2 + y2 + z2

In Mathematica after defining —:

— f_ := 9 ∂ fÄÄÄÄÄÄÄÄÄÄÄ
∂x

,
∂ f
ÄÄÄÄÄÄÄÄÄÄÄ
∂ y

,
∂ f
ÄÄÄÄÄÄÄÄÄÄÄ
∂ z

=

We can compute -—f in Cartesian coordinates directly:

 = SimplifyA-—
1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄè!!!!!!!!!!!!!!!!!!!!!!!!!!
x2 + y2 + z2

ê. x2 + y2 + z2 Æ r2 , r > 0E

9 x
ÅÅÅÅÅÅÅÅ
r3 ,

y
ÅÅÅÅÅÅÅÅ
r3 ,

z
ÅÅÅÅÅÅÅÅ
r3 =

Introducing the unit vector, er , in the radial direction

er =
P
ÄÄÄÄÄÄÄ
r

9 x
ÅÅÅÅÅ
r

,
y
ÅÅÅÅÅ
r

,
z
ÅÅÅÅÅ
r
=

the electric field  can be written as

 ä
P

ÄÄÄÄÄÄÄÄ
r3

ä
er
ÄÄÄÄÄÄÄÄ
r2

True

Alternatively, the electric field for any spherically symmetric potential f can be computed using E = -„ f ê„ r :

 == -
‚ 1ÄÄÄÄr
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
‚ r

er
True

2.2.5   Point Charge — Monopole

The electric field and potential of a point charge (monopole) can be visualized as follows. Computing the field lines (by
numerically  solving  a  set  of  differential  equations),  we  show  the  charge,  equipotential  lines  (black),  and  field  lines
(purple) together:
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‹ Note that the field lines and equipotentials are orthogonal (i.e., they intersect at right-angles).

Restricting attention to the x-z plane (i.e., y = 0), 

P = 8x, 0, z<;
the potential of a point (unit) charge is

f1Hx_, z_L = fHP, L
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!x2 + z2

and the (Cartesian) components of the electric field are

8x , y , z < = -— f1 Hx, zL
9 x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx2 + z2 L3ê2 , 0,
z

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx2 + z2 L3ê2 =

‹ Note  that  restricting  attention  to  the  x-z  plane  simplifies  the  computations  slightly  and  is  convenient  when  plotting
graphs of the potential and field.  However, you should remember that, in general, the potential and field are functions
of all 3 (Cartesian) coordinates.  

‹ There is an important sublety here: from first year you should already be aware that the density of lines in plots of the
electric field are proportional to the strength of the field.  However, the density needs to be computed in 3 dimensions
(i.e., lines per unit volume) rather than in 2 dimensions (i.e., lines per unit area). If you do this for a point charge you
will find that the density of lines does indeed go like the inverse square of the distance from the charge, i.e., 1 ê r2 .

A powerful alternative visualization is a surface plot with the equipotential lines superimposed onto the surface:
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Imagine  placing  a  ball  bearing  on  this  surface  under  the  influence  of  gravity  acting  in  the  vertical  direction.
Qualitatively,  the  magnitude  and  direction  of  the  force  on  the  ball-bearing  is  obvious.   By  analogy,  one  can
immediately obtain the forces acting on and the resulting motion of a positive test charge in such a potential.

2.2.6   Pure Dipole

The second  method used  in example 2.4  can be applied more generally  to cases lacking  symmetry and  is usually  the
way to  proceed  unless  the  potential  is given  in  terms  of x,  y,  and  z  (in  which  case  direct  application  of  ∂ ê∂x  etc,  is
easiest). Consider a (pure) dipole potential of the form

(2.4)f =
p ÿ r̀

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0  r2 =

p ÿ r
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0  r3 =

p1  x + p2  y + p3  z
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0 Hx2 + y2 + z2 L3ê2 =

p cosHqL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0  r2

where p is a constant vector and q is the angle between p and the radial direction, r̀. What is the electric field of such a
potential?  Since  the  potential  is  expressed  in  spherical  coordinates  r  and  q,  it  is  easiest  to  work  out  the  field  in  the
radial (increasing r) and tangential (increasing q) directions.

We  start  again  from  Eq.  2.1,  „ f = — f ÿ „ l,  or  its  equivalent  —  here  „ f = -E ÿ „ l.   If  „ l  is  parallel  to  the  radial
direction, only the radial component of E, E r , contributes to the dot product and thus

Er = -
„ f
ÅÅÅÅÅÅÅÅÅÅÅ
„ l

¶
q const

= -
„ r
ÅÅÅÅÅÅÅÅÅÅ
„ l

 
∂f
ÅÅÅÅÅÅÅÅÅÅ
∂r

= -
∂f
ÅÅÅÅÅÅÅÅÅÅ
∂r

,

with  the  partial  derivative  showing  that  only  r  changes.  Similarly  if  we  move  tangentially,  only  the  tangential
component Eq  contributes to the dot product and

Eq = -
„ f
ÅÅÅÅÅÅÅÅÅÅÅ
„ l

¶
r const

= -
„ q
ÅÅÅÅÅÅÅÅÅÅ
„ l

 
∂f
ÅÅÅÅÅÅÅÅÅÅ
∂q

= -
1
ÅÅÅÅÅ
r

 
∂f

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂q .

‹ Note  here  that,  for  r  constant,  if  we  move  from Hr, qL  to  Hr, q + „ qL  we  have  moved  by  „ l = r „ q  so  „ q ê„ l = 1 ê r
which is why a 1 ê r term appears (as it must to give the correct dimensions). For q constant, if we move from Hr, qL to
Hr + „ r, qL we have moved by „ l = „ r so „ r ê„ l = 1.  

Applying Er = - ∂fÅÅÅÅÅÅÅ∂r  and Eq = - 1ÅÅÅÅr  ∂fÅÅÅÅÅÅÅ∂q  to the potential of Eq. 2.4 we find

Er =
2 p cosHqL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0  r3 ,
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Eq =
p sinHqL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0  r3 .

The total field is

E = Er  er + Eq  eq ,

and is illustrated in Figure 2.4 below.
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Figure 2.4 The field pattern (purple) and equipotential lines (black) for a potential of the form p cosHqL ê r2 .

Total derivative versus partial derivative

Recall the definition of the total derivative. For f  a function of r and q we find that

‚ f Hr, qL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

‚ l
„ r
ÅÅÅÅÅÅÅÅÅÅ
„ l

f H1,0L Hr, qL

where f H0,1L Hr, qL denotes the partial derivative of f  with respect to its second argument, i.e., q:

∂ f Hr, qL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂q
f H0,1L Hr, qL

and similarly for f H1,0L Hr, qL.  Computing the total derivative for constant q we obtain: 

SetAttributes@q, ConstantD; ‚ f Hr, qL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

‚ l
„ r
ÅÅÅÅÅÅÅÅÅÅ
„ l

f H1,0L Hr, qL

and similarly for constant r.

2.2.7   Dipole

The total  potential,  f2 Hx, zL,  of  a  pair  of  equal  and  opposite  charges,  +1 positioned  at  80, 0, 1<  and  -1  positioned  at
80, 0, -1<, is
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f2Hx_, z_L = fHP, 80, 0, -1<, -1L + fHP, 80, 0, 1<, 1L
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#########################x2 + Hz - 1L2
-

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#########################x2 + Hz + 1L2

with corresponding electric field

8x , y , z < = -— f2 Hx, zL
9 x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Hx2 + Hz - 1L2 L3ê2

-
x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Hx2 + Hz + 1L2 L3ê2

, 0,
z - 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Hx2 + Hz - 1L2 L3ê2

-
z + 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Hx2 + Hz + 1L2 L3ê2

=

Below we plot the charges, equipotential lines, and field lines together:
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You should compare this figure with the corresponding one for a (pure) dipole.

Here is a surface plot of f2 Hx, zL with the equipotential lines superimposed onto the surface:

2.2.8   Quadrupole

It  is  not  hard  to  extend  such  computations  to  arbitrary  collections  of  charges.   A  combination  that  is  particularly
important  in  the  study  of  nuclear  physics,  magnets  used  in  particle  accelerators,  and  gravitational  waves,  is  the
quadrupole which, as its name suggests, consists of 4 poles.  
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Consider the following arrangement of charges:  +1 at 81, 0, 1< and 8-1, 0, -1< and -1 at 81, 0, -1< and 8-1, 0, 1<:

f4Hx_, z_L = fHP, 81, 0, 1<, 1L + fHP, 81, 0, -1<, -1L + fHP, 8-1, 0, 1<, -1L + fHP, 8-1, 0, -1<, 1L
-

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################################Hx + 1L2 + Hz - 1L2

-
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################################Hx - 1L2 + Hz + 1L2
+

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################################Hx + 1L2 + Hz + 1L2

+
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################################Hx - 1L2 + Hz - 1L2

The corresponding electric field is

8x , y , z < = -— f4 Hx, zL
9 x - 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
HHx - 1L2 + Hz - 1L2 L3ê2 -

x - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
HHx - 1L2 + Hz + 1L2 L3ê2

-
x + 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
HHx + 1L2 + Hz - 1L2 L3ê2

+
x + 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
HHx + 1L2 + Hz + 1L2 L3ê2

, 0,

z - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
HHx - 1L2 + Hz - 1L2 L3ê2

-
z - 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
HHx + 1L2 + Hz - 1L2 L3ê2

-
z + 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
HHx - 1L2 + Hz + 1L2 L3ê2

+
z + 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
HHx + 1L2 + Hz + 1L2 L3ê2

=

Here is a plot of the charges, equipotential lines, and field lines:
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Here is a surface plot with the equipotential lines superimposed onto the surface:

Example 2.7 What can you say about the stability of a positive test charge positioned at the origin, 80, 0, 0<, for the 
quadrupole potential?

First we need to define stability:

Something is stable  if,  after an arbitrary (small)  perturbation,  the resulting forces acting on it tend to return it to its
original  position.    From  the  above  diagram  it  is  clear  that,  after  a  small  displacement  in  the  north-east  (45°)  or
south-west (225°) directions, the resulting force would tend to return the test charge to its original position. However,
after  a  small  displacement  in  the  north-west  (135°)  or  south-east  (315°)  directions,  the  resulting  force  on  the  test
charge is away from the origin and towards one of the negative charges. Hence a test charge positioned at the origin
is not stable.
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Something is stable  if,  after an arbitrary (small)  perturbation,  the resulting forces acting on it tend to return it to its
original  position.    From  the  above  diagram  it  is  clear  that,  after  a  small  displacement  in  the  north-east  (45°)  or
south-west (225°) directions, the resulting force would tend to return the test charge to its original position. However,
after  a  small  displacement  in  the  north-west  (135°)  or  south-east  (315°)  directions,  the  resulting  force  on  the  test
charge is away from the origin and towards one of the negative charges. Hence a test charge positioned at the origin
is not stable.

Note  that  both  the  potential  and  its  first  (partial)  derviatives  (i.e.,  its  electric  field)  at  80, 0, 0<  are  both  identically
zero:

f4H0, 0L
0

8x , y , z < ê. 8x Æ 0, y Æ 0, z Æ 0<
80, 0, 0<

Using  calculus  we  then  know  that  80, 0, 0<  is  an  extremum.  In  single-variable  calculus,  if  a  function  has  zero
derivative  then  one  test  to  decide  whether  it  is  a  maximum  or  a  minimum  is  to  compute  its  second  derivative.  In
higher  dimensions  there  are  other  (topological)  possibilities  including  saddle-points.  The  generalization  of  the
single-variable test is to compute the eigenvalues of the matrix of second derivatives (i.e., the Hessian):

i

k
jjjjjjj

∂2 f4 Hx,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂x ∂x

∂2 f4 Hx,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂x ∂z

∂2 f4 Hx,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂z ∂x

∂2 f4 Hx,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂z ∂z

y

{
zzzzzzz ê. 8x Æ 0, y Æ 0, z Æ 0<

i

k
jjjjjjj

0 3ÅÅÅÅÅÅÅÅÅÅè!!!!2
3ÅÅÅÅÅÅÅÅÅÅè!!!!2 0

y

{
zzzzzzz

If  all  the  eigenvalues  are  negative  (positive)  then  we  have a  maximum  (minimum).  If  some of  the  eigenvalues  are
positive and some are negative then we have a saddle-point:

Eigenvalues@%D
9-

3
ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!2 ,

3
ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!2 =

That we have a saddle-point should be obvious from the surface plot.

2.2.9   Three charges
Three unit positive charges are positioned at the vertices of an equilateral triangle:

Ú =

i

k

jjjjjjjjjjjjjjjjj

- 1ÄÄÄÄ2 0 - 1ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2
è!!!!

3
1ÄÄÄÄ2 0 - 1ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

2
è!!!!

3

0 0 1ÄÄÄÄÄÄÄÄÄÄÄè!!!!
3

y

{

zzzzzzzzzzzzzzzzz
;

This problem is dealt with by E Durand  in Electrostatique, Tome 1, Distributions (Masson, Paris 1964 ). 

Write down the total potential for this configuration of charges;

P = 8x, y, z<;
f3Hx_, y_, z_L = fHP, ÚP1TL + fHP, ÚP2TL + fHP, ÚP3TL

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Hx - 1ÅÅÅÅ2 L
2

+ y2 + Iz + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 è!!!!3 M2

+
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Hx + 1ÅÅÅÅ2 L
2

+ y2 + Iz + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 è!!!!3 M2

+
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%x2 + y2 + Iz - 1ÅÅÅÅÅÅÅÅÅÅè!!!!3 M2
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Write down the electric field for this configuration of charges;

8x , y , z < = -— f3 Hx, y, zL
9 x - 1ÅÅÅÅ2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
IHx - 1ÅÅÅÅ2 L

2
+ y2 + Iz + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 è!!!!3 M2 M3ê2
+

x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Ix2 + y2 + Iz - 1ÅÅÅÅÅÅÅÅÅÅè!!!!3 M2 M3ê2

+
x + 1ÅÅÅÅ2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

IHx + 1ÅÅÅÅ2 L
2

+ y2 + Iz + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 è!!!!3 M2 M3ê2

,

y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Ix2 + y2 + Iz - 1ÅÅÅÅÅÅÅÅÅÅè!!!!3 M2 M3ê2

+
y

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
IHx - 1ÅÅÅÅ2 L

2
+ y2 + Iz + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 è!!!!3 M2 M3ê2
+

y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
IHx + 1ÅÅÅÅ2 L

2
+ y2 + Iz + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2è!!!!3 M2 M3ê2
,

z - 1ÅÅÅÅÅÅÅÅÅÅè!!!!3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Ix2 + y2 + Iz - 1ÅÅÅÅÅÅÅÅÅÅè!!!!3 M2 M3ê2

+
z + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 è!!!!3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
IHx - 1ÅÅÅÅ2 L

2
+ y2 + Iz + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 è!!!!3 M2 M3ê2
+

z + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 è!!!!3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

IHx + 1ÅÅÅÅ2 L
2

+ y2 + Iz + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2è!!!!3 M2 M3ê2

=

Solve these equations numerically, for example,

FindRoot@8x , y , z < == 80, 0, 0<, 88x, 0<, 8y, 0<, 8z, -0.1<<D
8x Ø 0., y Ø 0., z Ø -0.1643822188<

Show that the electric field vanishes at the following 4 points:

 =

i

k

jjjjjjjjjjjj

0. 0. 0.
0. 0. -0.1643822188

-0.1423591774 0. 0.08219110939
0.1423591774 0. 0.08219110939

y

{

zzzzzzzzzzzz
;

8x , y , z < ê. Thread@P Æ P1TD êê Chop
80, 0, 0<
8x , y , z < ê. Thread@P Æ P2TD êê Chop
80, 0, 0<
8x , y , z < ê. Thread@P Æ P3TD êê Chop
80, 0, 0<
8x , y , z < ê. Thread@P Æ P4TD êê Chop
80, 0, 0<

Restricting attention to the x-z plane, here is a plot of the critical points and equipotential contours:

ContourPlot@f3 Hx, 0, zL, 8x, -0.16, 0.16<, 8z, -0.19, 0.13<,
ContourShading Æ True, Epilog Æ 8PointSize@0.02D, Hue@0.5D, Point@80, 0<D,

Point@80, -0.16438<D, Point@8-0.142359, 0.08219<D, Point@80.142359, 0.08219<D<D;

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

-0.15

-0.1

-0.05

0

0.05

0.1
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From this plot it looks like 80, 0, 0< is a minimum and the other three critical points are saddle-points. Here is a plot of
the electric field lines and equipotentials in the x-z plane:

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

Note that the apparent convergence of flux at the centre is illusory. The flux flow towards the centre diverts out of the
plane of the source charges.

What can you say about the stability of a test charge positioned at each of the above 4 points?

We need to compute the Hessian matrix. In 2 dimensions this reads

H =
i

k

jjjjjjjj
∂2 f3 Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂x∂x
∂2 f3 Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂x∂z

∂2 f3 Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂z ∂x

∂2 f3 Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂z ∂z

y

{

zzzzzzzz;

Evaluating the eigenvalues of the Hessian at the first critical point, 80, 0, 0<:

H ê. Thread@P Æ P1TD êê Eigenvalues
87.794228634, 7.794228634<

it looks like 80, 0, 0< is a minimum because both eigenvalues are positive.    However, the potential is a function of all
three coordinates so we really need to compute the matrix

H =

i

k

jjjjjjjjjjjjjjjjj

∂2 f3 Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂x∂x

∂2 f3 Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂x∂y

∂2 f3 Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂x∂z

∂2 f3 Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂y∂x

∂2 f3 Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂y∂y

∂2 f3 Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂y∂z

∂2 f3 Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂z ∂x

∂2 f3 Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂z ∂y

∂2 f3 Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂z ∂z

y

{

zzzzzzzzzzzzzzzzz
;

We now find that all 4 critical points are saddle-points:

H ê. Thread@P Æ P1TD êê Eigenvalues
8-15.58845727, 7.794228634, 7.794228634<
H ê. Thread@P Æ P2TD êê Eigenvalues
824.24375449, -17.07427809, -7.169476398<
H ê. Thread@P Æ P3TD êê Eigenvalues
824.24375449, -17.07427809, -7.169476397<
H ê. Thread@P Æ P4TD êê Eigenvalues
824.24375449, -17.07427809, -7.169476397<
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That the first  critical  point (which looked like a minima in two dimensions)  is a saddle-point  should be obvious from
the physical  situation:  imagine  placing  a  positive  test  charge  at  the  origin.  The  force  on  the test  charge  after  a  small
displacement out of the plane of the the three fixed charges is away from the origin.

The last  3  critical  points  are themselves  vertices  of  an equilateral  triangle.  Note that, by symmetry,  we should not be
suprised then that the eigenvalues of H evaluated at these critical points are equal.

2.2.10  Multipole Expansion

If  you  are  far  away  from  a  localized  charge  distribution,  it  "looks"  like  a  point  charge,  and  the  potential  is
approximately 1ÅÅÅÅÅÅÅÅÅÅÅÅÅ4 p e0

 QÅÅÅÅÅr , where Q is the total charge. However, if Q is zero, what is the leading term of the potential for
large r? To answer this question, again consider a physical dipole:

s

r

-q

q

P

q

Here the total charge is Q = q - q = 0.  At the point

P = 8x, y, z<;
the potential is

f2Hx_, y_, z_L = fJP, 90, 0,
-s
ÄÄÄÄÄÄÄÄÄÄ
2

=, -qN + fJP, 90, 0,
s

ÄÄÄÄÄ
2
=, qN

q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#####################################x2 + y2 + Hz - sÅÅÅÅ2 L2

-
q

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#####################################x2 + y2 + H sÅÅÅÅ2 + zL2

In spherical polar coordinates, the potential reads

f2Hr cosHfL sinHqL, r sinHfL sinHqL, r cosHqLL êê Simplify

2 q
i
k
jjjj

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!4 r2 - 4 s cosHqL r + s2

-
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!4 r2 + 4 s cosHqL r + s2

y
{
zzzz

For r p s we expand f2  into a Taylor series in s:

Factor êû H% + O@sD6L êê PowerExpand
q cosHqL s
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r2 +
q cosHqL H5 cos2 HqL - 3L s3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

8 r4 +
q cosHqL H63 cos4 HqL - 70 cos2 HqL + 15L s5
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

128 r6 + OHs6 L

The leading term is

f =
q s cosHqL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0  r2 =

p ÿ r̀
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0  r2
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where p = q s.  This corresponds to a pure dipole potential. Evidently the potential of a dipole goes like 1 ê r2  for large
r.  Putting together a pair of equal and opposite dipoles makes a quadrupole:

f4Hx_, y_, z_L =

fJP, 9 sÄÄÄÄÄ
2

, 0,
s
ÄÄÄÄÄ
2
=, qN + fJP, 9 sÄÄÄÄÄ

2
, 0, -

s
ÄÄÄÄÄ
2
=, -qN + fJP, 9-

s
ÄÄÄÄÄ
2

, 0,
s
ÄÄÄÄÄ
2
=, -qN + fJP, 9-

s
ÄÄÄÄÄ
2

, 0, -
s

ÄÄÄÄÄ
2
=, qN

q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#################################################Hx - sÅÅÅÅ2 L2 + y2 + Hz - sÅÅÅÅ2 L2

-
q

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#################################################H sÅÅÅÅ2 + xL2 + y2 + Hz - sÅÅÅÅ2 L2
-

q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#################################################Hx - sÅÅÅÅ2 L2 + y2 + H sÅÅÅÅ2 + zL2

+
q

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#################################################H sÅÅÅÅ2 + xL2 + y2 + H sÅÅÅÅ2 + zL2

The quadrupole potential goes like 1 ê r3 :

f4Hr cosHfL sinHqL, r sinHfL sinHqL, r cosHqLL + O@sD4 êê Simplify êê PowerExpand
3 q cosHqL cosHfL sinHqL s2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r3 + OHs4 L

The potential of an arbitrary charge distribution confined to a volume V is

(2.5)fHPL =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0

 ‡
V

 
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
RHsL  rHsL „ s,

where R is the distance from  „ s to P.  With respect to a fixed origin , we can obtain a systematic expansion for f HPL
in terms of inverse powers of r. The diagram below defines the variables. Without loss of generality, we have aligned
P
êêêêêê

 with the z-axis:

R

P

O

„ s

r

S
q
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In spherical polar coordinates, we write

S = 8s cosHfL sinHqL, s sinHfL sinHqL, s cosHqL<;
P = 80, 0, r<;

and find that

R = °P - S¥ êê Simplifyè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!r2 - 2 s cosHqL r + s2

For r > s we expand 1ÅÅÅÅÅR  into a series in s:

Factor êû i
k
jjj 1

ÄÄÄÄÄÄ
R

+ OHsL4y
{
zzz êê PowerExpand

1
ÅÅÅÅÅ
r

+
cosHqL s
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r2 +
H3 cos2 HqL - 1L s2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 r3 +
cosHqL H5 cos2 HqL - 3L s3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 r4 + OHs4 L

It turns out that the trigonometric terms are Legendre polynomials, Pn HcosHqLL:

Factor êû TableHPn HcosHqLL, 8n, 0, 3<L
91, cosHqL, 1

ÅÅÅÅÅ
2
H3 cos2 HqL - 1L, 1

ÅÅÅÅÅ
2

cosHqL H5 cos2 HqL - 3L=

which are generated by the generating function:

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!1 - 2 x t + t2

= ‚
n=0

¶

 tn  Pn HxL, » t » < 1

Hence we can write

(2.6)
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
RHxL =

1
ÅÅÅÅÅ
r

 ‚
n=0

¶

 I s
ÅÅÅÅÅ
r
Mn  Pn HcosHqLL, r > s.

Combining (2.5) and (2.6) we have

(2.7)

fHPL =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0

 ‚
n=0

¶

 
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
rn+1  ‡

V
 sn  Pn HcosHqLL rHsL „ s ª

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0

 
i
k
jjj 1

ÅÅÅÅÅ
r

 ‡
V

 rHsL „ s +
1

ÅÅÅÅÅÅÅÅ
r2  ‡

V
 s cosHqL rHsL „ s +

1
ÅÅÅÅÅÅÅÅ
r3  ‡

V
 s2 1

ÅÅÅÅÅ
2
H3 cos2 HqL - 1L rHsL „ s + …y

{
zzz

This  is  the  desired  result  — the  multipole  expansion  of V  in  powers  of 1 ê r.   The first  term ( ~1 ê r)  is  the monopole
term,  the second (~ 1 ê r2 ) is the dipole term,  the third  (~ 1 ê r3 ) is the quadrupole  term, and  so on.  Although (2.7)  is
exact  is  more  useful  as  an  approximation  scheme.   The  leading  term  in  the  expansion  provides  the  approximate
potential at large distances from the charge distribution. 

This  expansion  is  not  restricted  to  computing  the  potential  due  to  a  charge  distribution:  it  arises  in  many  fields
including  atomic  and  molecular  physics  (both  for  bound  states  of  atoms  and  molecules  and  in  scattering  theory),
nuclear physics, and gravitational computations.

It  is usually  easiest  to compute (2.7)  in spherical  polar  coordinates.   To change  coordinates  you need to compute  the
Jacobian determinant,
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(2.8)„r ª „ x „ y „ z ª

ƒƒƒƒƒƒƒƒƒ†
ƒ
ƒƒƒƒƒƒƒƒ

∂xÅÅÅÅÅÅÅ∂r
∂xÅÅÅÅÅÅÅ∂q

∂xÅÅÅÅÅÅÅ∂f

∂yÅÅÅÅÅÅÅ∂r
∂yÅÅÅÅÅÅÅ∂q

∂yÅÅÅÅÅÅÅ∂f

∂zÅÅÅÅÅÅ∂r
∂zÅÅÅÅÅÅÅ∂q

∂zÅÅÅÅÅÅÅ∂f

ƒƒƒƒƒƒƒƒƒ§
ƒ
ƒƒƒƒƒƒƒƒ
 „ r „ q „ f = r2 sinHqL „ r „ q „ f,

In spherical polar coordinates,

spc = r 8sinHqL cosHfL, sinHqL sinHfL, cosHqL<;
 the Jacobian matrix reads

i

k

jjjjjjjjjjjjjjj

∂Hr cosHfL sinHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂r

∂Hr cosHfL sinHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂q

∂Hr cosHfL sinHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂f

∂Hr sinHfL sinHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂r

∂Hr sinHfL sinHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂q

∂Hr sinHfL sinHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂f

∂Hr cosHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂r

∂Hr cosHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂q

∂Hr cosHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂f

y

{

zzzzzzzzzzzzzzz
i

k
jjjjjjj

cosHfL sinHqL r cosHqL cosHfL -r sinHqL sinHfL
sinHqL sinHfL r cosHqL sinHfL r cosHfL sinHqL
cosHqL -r sinHqL 0

y

{
zzzzzzz

 Alternatively,

D@spc, 88r, q, f<<D
i

k
jjjjjjj

cosHfL sinHqL r cosHqL cosHfL -r sinHqL sinHfL
sinHqL sinHfL r cosHqL sinHfL r cosHfL sinHqL
cosHqL -r sinHqL 0

y

{
zzzzzzz

or

∂spc
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂88r, q, f<<
i

k
jjjjjjj

cosHfL sinHqL r cosHqL cosHfL -r sinHqL sinHfL
sinHqL sinHfL r cosHqL sinHfL r cosHfL sinHqL
cosHqL -r sinHqL 0

y

{
zzzzzzz

and the determinant († §) simplifies to

†%§ êê Simplify
r2 sinHqL
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2.3   Summary

This chapter covers several topics which you should aim to be completely happy with. Here is a summary of these. 

Eq. 2.1 was

„ f = — f ÿ ‚ l

and shows how much a function f HrL changes in moving from r to r + ‚ l.

If a vector field satisfies

®
C

 A ÿ ‚ l = 0

for any circuit C, it is said to be conservative and we can write

A = — y,

where y is some scalar function.

In electrostatics the electric field must be conservative and by convention with y = -f we write

E = -—f.

Expanding potentials into Taylor series, e.g, 

fHx + h, y + kL = fHx, yL + H h k L.
i
k
jjjjjj

∂fHx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∂x
∂fHx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∂y

y
{
zzzzzz +

1
ÅÅÅÅÅ
2

 H h k L.
i

k
jjjjjjj

∂2 fHx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∂x ∂x
∂2 fHx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∂x ∂y

∂2 fHx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∂y∂x
∂2 fHx,yLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∂y∂y

y

{
zzzzzzz.
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k
jj h

k
y
{
zz + …,

is useful when determining stability and for finding the leading long-range behaviour of a potential.
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Chapter 3
Gauss' Law, Gauss' Theorem and Divergence

3.1   Introduction

In this  chapter we look at Gauss'  Law in a new way. The standard form of Gauss'  Law involves integrated  quantities
e.g., the "flux emergent" from a region is the flux per unit area integrated over the surface. Although this form is very
useful in problems with a high degree of symmetry, it only provides a constraint  in most other cases without being of
much use in finding a functional  form for the electric field. In this chapter a local  form  of Gauss' Law is derived that
applies at every point.

In  proceeding  towards  the  local  version  of  Gauss'  Law,  a  new  quantity  measuring  the  production  of  flux  per  unit
volume  is  introduced.  This  scalar  quantity  is  called  the  divergence  and  can  be  derived  from  the  field  using  —,  the
vector derivative operator of Chapter 2. 

3.2   Coulomb's to Gauss' Law

We  start  with  the  derivation  of  Gauss'  Law  from  Coulomb's  Law.  Gauss'  Law  contains  no  new  physics  beyond
Coulomb's  Law. Its importance  is that it greatly simplifies  the problem of finding the electric  field in certain  cases of
simple symmetry. It is also the key to the main work of this chapter which is deriving a differential form of Coulomb's
Law. We begin in the standard way by considering the electric flux emerging from a closed surfacep enclosing a point
charge q (Fig. 3.1). The electric flux coming out through an element of area ‚S equals E „ S cosHqL where q is the angle
between the electric  field E  and  a line perpendicular  to the area element,  ‚S.  It  is convenient  to think of the surface
area element ‚S as a vector directed along its normal and of magnitude equal to its area, in which the piece of flux can
be written as E ÿ ‚S. 

Figure 3.1 The figure shows a surface S  which encloses a charge q  and a small element of the surface with area ‚S
out of which emerges electric flux.

The total flux emergent from the surface S is then given by

®
S

 E ÿ ‚S,

where the circle through the integral sign indicates an integral over a closed surface. In SI units, Coulomb's Law is 

E =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0

 
q

ÅÅÅÅÅÅÅÅ
r2  r̀,



where r̀ is a unit vector in the radial direction. Therefore the total flux emergent from the surface is

q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0

 ®
S

 
r̀ ÿ ‚S
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r2 .

The  integrand  equals  the  projected  area  of  the  element  as  seen  from  the  point  charge  (i.e.,  r̀ ÿ ‚S)  divided  by  its
distance squared. This is the definition of the solid angle subtended by the element,  „ W. In spherical polar coordinates
(see Eq. 2.8):

„r ª r2  „ S = r2  „ r „ W, ‚S = „ S r̀ fl
r̀ ÿ ‚S
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r2 = „ W = sinHqL „ q „ f.

 Therefore the total emergent electric flux is

q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0

 ®
S

„ W =
q

ÅÅÅÅÅÅÅÅÅ
e0

,

where the total solid angle is òS
„ W = 4 p steradians. 

®
S

„ W ª ‡
0

2 p

‡
0

p

sinHqL „ q „ f = 4 p.

Example 3.1: Compute the volume and surface area of a sphere using spherical polar coordinates.

The volume is

‡
0

R

‡
0

p

‡
0

2 p

r2  sinHqL ‚ f ‚ q ‚ r

4 p R3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3

while the surface area of a sphere of radius R is

R2  ‡
0

p

‡
0

2 p

sinHqL ‚ f ‚ q

4 p R2

Note that the total integral over the solid angle „ W ª sinHqL „ f „ q is

‡
0

p

‡
0

2 p

sinHqL ‚ f ‚ q

4 p

and the SI unit of solid angle is the steradian.

Since the electric fields of two charge can be added vectorially, the result can be extended to many charges and we find
that the electric flux emergent from a closed surface is equal to the charge enclosed by the surface divided by e0 . This
is Gauss' Law, 

(3.1)®
S

 E ÿ ‚S =
qenclosed
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

e0
,

which depends upon the 1 ê r2  nature of Coulomb's Law.  Note that gravitational forces obey an equivalent Law: 

®
S

 g ÿ ‚S = H4 p GL menclosed .
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3.3   Applying Gauss' Law

Gauss'  Law is  only directly  useful  in deriving  electric  fields  in cases of  high symmetry.  However,  it  is very quick to
apply  it  in  such  cases,  especially  compared  to  direct  application  of  Coulomb's  Law  which  generally  requires  the
evaluation of some difficult integrals, and the cases for which it is useful are of wide application. There are 3 cases for
which Gauss' Law can be applied. They are (1) a plane, (2) a cylinder and (3) a sphere. We now go through each one.

3.3.1   The electric field due to an infinite plane

We wish to know what electric field is produced by an infinite plane charged with s C.m-2 . Although an infinite plane
is an impossible idealisation, any surface looks like one if one is close enough to it (e.g., the "Flat Earth"). To solve the
problem using Gauss' Law we need to choose a suitable (gaussian) surface enclosing some charge. This should exploit
the symmetry  of  the  problem so that  electric  field  is  either  parallel  or  perpendicular  to the surface.  The  electric  field
from an infinite plane must emerge perpendicular to it as there is no preferred direction parallel to the plane. Thus the
shape shown in Fig. 3.2 is chosen so that its curved surfaces run parallel to the field and no flux emerges through them.
The end caps of area A on the other hand are perpendicular and so a flux E A escapes through each of them. 

Figure 3.2
The  field  from  an  infinite  plane  emerges  at  right-angles  to  it.  The  surface  we  consider  has  arbitrary  to
faces  of  the  same  arbitrary  shape  and  area  A  which  lie  parallel  to  the  plane  and  vertical  walls  which
connect the two faces. 

The charge enclosed by this volume is s A and so by Gauss' Law we obtain

2 E A =
s A
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

e0
,

and therefore the magnitude of the electric field from an infinite plane is given by

E =
s

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 e0

ÿ

The  field  from  an  infinite  plane  is  equal  but  opposite  on  both  sides.  A more  realistic  case  is  the  field  close  to large
charged  conductor,  where  "close"  implies  that  it  is  effectively  a  plane.  This  can  be  treated  in  exactly  the  same  way
except now the field inside the conductor is zero (if it wasn't, current would flow and that would not be electrostatics).
Thus all the flux escapes on one side and we get

E =
s

ÅÅÅÅÅÅÅÅ
e0

,

 for the field close to a charged conductor. 

Example 3.2: The electric field beneath a thunder cloud is 1000 V/m. What is the surface charge density of the ground 
underneath the cloud? 
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As  far  as  electrostatics  are  concerned,  the  Earth  is  a  conductor.  Thus  E = s ê e0  applies  and  so
s = 1000 e0 = 8.9 µ 10-8  C.m-2 .

3.3.2   The electric field due to an infinite cylinder

The  problem now  is  to  derive  the  electric  field  at  distance  r  from  the  axis  of  an  infinitely  long  cylinder  of  radius  a
charged with Q C.m-1 . The electric field must emerge at right angles to the surface of the cylinder because again there
is no preferred  direction.  Thus the  natural  gaussian  surface  is itself  a cylinder,  but  of finite  length l  as shown in Fig.
3.3. 

Figure 3.3 The gaussian surface for a long cylinder of radius a is itself a cylinder, but of radius r.

This  cylinder  is  co-axial  with  the  infinite  cylinder  so  that  the  electric  field  is  uniform over,  and  perpendicular  to,  its
curved surface.  The  electric  field  is  parallel  to  the  two ends  of the  gaussian  cylinder  and  so  they do  not  matter.  The
surface over which the flux emerges  has area 2 p r l, while the amount of charge enclosed is Q l. Therefore by Gauss'
Law we have

2 p r l E =
Q l
ÅÅÅÅÅÅÅÅÅÅ
e0

,

and so

E =
Q

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p e0  r

ÿ

Unlike the case of a plane, getting closer to a real cylinder never makes it appear to be an infinite cylinder: end effects
do  not  become  infinitesimal.  However,  there  are  situations  of  great  practical  importance  where  the  above  solution  is
useful. In particular the above field describes the field pattern inside co-axial cables, even in the time-varying case.

3.3.3   The electric field from a charged sphere

What is the field at a distance r from a sphere with total charge Q (distributed spherically symmetrically)? This case is
the easiest.  By symmetry the gaussian  surface must  itself  be a sphere centred on the true sphere.  The field will come
out radially and will therefore be perpendicular to the 4 p r2  area of the gaussian sphere.  Thus by Gauss' Law

4 p r2  E =
Q
ÅÅÅÅÅÅÅÅ
e0

,

and we arrive at the familiar result

E =
Q

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0  r2 ÿ
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This is so familiar that it almost seems "obvious" but try deriving it directly from Coulomb's Law and you will see that
it  is  not.  This  result  also  applies  for  an  arbitrary  spherically  symmetric  charge  distribution  where  QHrL  is  the  charge
enclosed in a (Gaussian) sphere of radius r

3.3.4   Gauss' Law at a point

To derive a local version of Gauss' Law we first need to restate it in mathematical form. We have already seen that the
emergent  flux can  be written  òS

 E ÿ ‚S.  The charge  enclosed can be written  as ŸV
 r „ r  where r  is  the charge density

defined throughout the volume V  whose bounding surface is S = ∂V. Thus Gauss' Law becomes

(3.2)®
S=∂V

 E ÿ ‚S =
1

ÅÅÅÅÅÅÅÅ
e0

 ‡
V

 r „ r.

This is a fundamental  equation which you need to remember.  Even point charges can be included in this formulation
by use of delta functions. 

We want  a version of Gauss' Law that applies at a point. However, one cannot define a volume enclosed or a surface
area for a point, and so we consider instead a finite volume that is shrunk to infinitesimal dimensions.

Consider first the charge enclosed

Q = ‡
V

 r „ r,

as V  becomes smaller. For a continuous charge distribution, there comes a point when V  is so small that r is essentially
constant throughout it and so in the limit V Ø 0

Q Ø r V.

We want a finite limit so it makes more sense to divide by V so that we have 

lim
VØ0

1
ÅÅÅÅÅÅÅ
V

 ‡
V

 r „ r = r.

This leaves us to consider the following limit for the left-hand side of Eq. 3.2, called the divergence of the electric field
(div E for short):

(3.3)div E = lim
VØ0

 
1

ÅÅÅÅÅÅÅ
V

 ®
S=∂V

 E ÿ ‚S.

In words this quantity is the amount of electric flux produced per unit volume at a point. It can be defined similarly for
any  vector  field.  For  instance  we  will  find  later  that  the  divergence  of  the  magnetic  field  is  always  zero.  With  this
definition Gauss' Law at a point becomes div E = r ê e0 ,  which says that the amount of electric flux produced per unit
volume is proportional to the charge density at every point.

Eq.  3.3  defines  the  divergence.  By  considering  particular  shapes  for  the  volume  V ,  we  can  obtain  expressions  for
computing the divergence that are suited to particular geometries. Cartesian coordinates are most commonly used, and
so let us consider a small cuboid oriented with its sides along the x, y and z axes and centred on the point Hx, y, zL:
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Figure 3.4 A  small  box  with  sides  parallel  to  the  cartesian  axes  and  drawn  to  have  more  electric  flux  leaving  than
entering.

Let its  sides  have lengths  D x,  D y,  and D z.  We will  now calculate  the flux emergent  from this cuboid.  First  consider
the amount of flux emerging from the two faces oriented parallel to the y-z plane. Only the x component of the electric
field, Ex , contributes to the flux through these faces, and in one face it points in while at the other it points out. 

‹ A  subscripted  function  such  as  Gx Hx, y, zL  denotes  the  x-component  of  the  vector  GHx, y, zL.  Partial  derivatives  are
denoted using any of the equivalent standard notations ∂x GHx, y, zL,  ∂GHx,y,zLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∂x , or GH1,0,0L Hx, y, zL.  It is mathematically
sloppy to denote the partial derivative of a function using a subscript  on the function for how would you interpret an
expression like ⁄i=1

3 Gi ?

Taking  the  difference  between  the  x  components  evaluated  in  the  centre  of  each  face  and  multiplying  by  their  area
these faces contribute

(3.4)JEx Jx +
D x
ÅÅÅÅÅÅÅÅÅÅÅ
2

, y, zN - Ex Jx -
D x
ÅÅÅÅÅÅÅÅÅÅÅ

2
, y, zNN D yD z,

to  the  flux  emergent  from  the  cuboid.  The  only  reason  that  there  is  any  net  contribution  to  the  flux  is  that  the  Ex

component may change across the cuboid so that the two faces do not cancel. Thus Fig. 3.4 has been drawn to indicate
that more flux leaves than enters the box.  As D x becomes small, the expression for Ex  can be expanded to first order
e.g.,

Ex Jx +
D x
ÅÅÅÅÅÅÅÅÅÅÅ

2
, y, zN = Ex Hx, y, zL +

1
ÅÅÅÅÅ
2

 
∂ExÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂x

D x.

The partial derivative applies as the change is in x alone. A similar expression with a negative sign applies for the other
face and substituting into Eq. 3.4 we obtain a contribution to the emergent flux of

∂ExÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂x

 D x D yD z.

Alternatively, using Mathematica we obtain the same result immediately:

i
k
jjjxik

jjjx +
Dx
ÄÄÄÄÄÄÄÄÄÄ
2

, y, zy{
zzz - x

i
k
jjjx -

Dx
ÄÄÄÄÄÄÄÄÄÄ
2

, y, zy{
zzzy{
zzz Dy Dz + O@DxD2 êê Normal

Dx Dy Dz x
H1,0,0L Hx, y, zL

The other four faces give analogous contributions from the y and z components and, recognising the product of lengths
D x D yD z as the volume V , we get a total emergent flux from the cuboid of

®
S=∂V

 E ÿ ‚S = i
k
jj ∂ExÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂x

+
∂Ey
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂y

+
∂EzÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ z

y
{
zz V .

Therefore the limit of Eq. 3.2, which we called the divergence of E, becomes

div E = lim
VØ0

 
1

ÅÅÅÅÅÅÅ
V

 ®
S=∂V

 E ÿ ‚S =
∂ExÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂x

+
∂Ey
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂y

+
∂EzÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂z

ÿ
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Using  —, the vector derivative operator  of Chapter  2, the expression  on the right can be written in shorthand form as
— ÿE. We thus arrive at our target, a form of Gauss' Law that applies at a point: 

(3.5)— ÿE =
∂Ex
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂x

+
∂Ey
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂y

+
∂Ez
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂z

=
r

ÅÅÅÅÅÅÅÅ
e0

ÿ

This should be committed to memory as the first of Maxwell's equations.  Like all equations, it is best remembered not
just  as  a  collection  of  symbols  but  from the  physical  meaning  of  the  various  terms.  Remembering  that  — ÿE  —  the
divergence of E — represents the amount of electric  flux produced per unit volume, by Gauss' Law it must equal the
charge per unit volume, r, divided by e0 .

3.4   Calculating the divergence
‹ The divergence of a vector function  v is itself  a scalar  — ÿ v.   You cannot compute the divergence of a scalar:  that is

meaningless. In general, the value of the divergence depends on the point at which — ÿ v is evaluated.

Geometrical  interpretation:  The  name  divergence  should  indicate  to  you  that  the  divergence  (— ÿ v)  measures  how
much the vector diverges from the point in question.  

If  a  field  v  can  be  simply  expressed  in  terms  of  cartesian  coordinates,  application  of  Eq.  3.5  is  probably  the  easiest
method to compute — ÿ v.

Example 3.3: What is the divergence of the vector function v = z̀?

First, let us visualise this vector field:

v = 80, 0, 1<;
<< Graphics`PlotField3D`

PlotVectorField3DHv, 8x, -1, 1<, 8y, -1, 1<, 8z, -1, 1<, VectorHeads Æ TrueL;

From the geometrical  interpretation we expect this field to have zero divergence at any point 8x, y, z<.  Computing the
divergence in cartesian coordinates we obtain

∂vP1T
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂x

+
∂vP2T
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂ y

+
∂vP3T
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂ z

0

Example 3.4: An electric field has the form Ex = k x, Ey = Ez = 0. What is its divergence and what physical set-up 
could give such a field? 
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This is about the simplest possible field other than a constant. We obtain immediately — ÿE = k:

 = 8k x, 0, 0<;
∂P1T
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂x

+
∂P2T
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂ y

+
∂P3T
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂ z

k

Here is a plot of the vector field:

PlotVectorField3DH ê. k Æ 1, 8x, -1, 1<, 8y, -1, 1<, 8z, -1, 1<, VectorHeads Æ TrueL;

The  physical  interpretation  follows  from  Gauss'  Law.  The  charge  density  is  proportional  to  — ÿE  and  so  this  field
comes from a uniform  charge  density  and  would  be the form of  field  set up  inside  an infinite  slab of  uniform charge
density perpendicular to the x-axis.

3.4.1   Non-cartesian coordinate systems

It  is  more  difficult  if  the  field  is  more  naturally  expressed  in  a  different  coordinate  system.  We  had  a  similar
circumstance in Chapter 2 where we showed that the fundamental  definition of the gradient could be used to help out.
We can do something similar for divergence. Suppose that we have a field of the form

E = EHrL r̀.
This is spherically symmetric and in general it is tricky and tedious to apply the Cartesian form of — ÿE to such a field.
Instead we return to the definition of divergence, Eq. 3.3, but instead of applying it to a cuboid as we did in obtaining
div E = — ÿE, we use a shape more suited to the field: we take the small volume V  to be a thin spherical shell centred
upon the centre of symmetry of the field, with inner and outer radii of r and r + „ r respectively. 

Given the symmetry of the field and the choice of a shell, whatever the divergence is, it has the same value throughout
the  shell.  Thus  the  total  flux  produced  by  the  shell  equals  the  (constant)  divergence  times  the  volume  of  the  shell,
V = 4 p r2  „ r.  The flux produced by the shell, F = ŸS

 E ÿ ‚S, also equals  the flux going out through the outer surface,
Fr+„r = EHr + „ rL AHr + „ rL = 4 p Hr + „ rL2  EHr + „ rL  minus  that  coming  in  through  the  inner  surface,
Fr = EHrL AHrL = 4 p r2  EHrL, i.e., 

F = 4 p Hr + „ rL2  EHr + „ rL - 4 p r2  EHrL = 4 p 
∂ Hr2  EHrLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∂r
 „ r =

i
k
jjj 1

ÅÅÅÅÅÅÅÅ
r2  

∂ Hr2  EHrLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∂r
y
{
zzz V ,

where the middle term follows from taking small differences of the expression r2  EHrL treated as a single function.  We
can easily verify this result using Mathematica:

4 p Hr + ‚ rL2  Hr + ‚ rL - 4 p r2  HrL + OH‚ rL2 ä H4 p r2  ‚ r L i
k
jjjj

1
ÄÄÄÄÄÄÄÄ
r2

 
∂Hr2  HrLL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂r
y
{
zzzz + OH‚ rL2

True
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Hence, from the definition of divergence, 

— ÿE ª lim
VØ0

 
1

ÅÅÅÅÅÅÅ
V

 ®
S=∂V

 E ÿ ‚S,

we obtain

— ÿE =
1

ÅÅÅÅÅÅÅÅ
r2  

∂ Hr2  EHrLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∂r
ÿ

Proceeding in this manner one can obtain more general expressions for the divergences of fields expressed in spherical
polar and other coordinates.  It turns out that there are much more direct methods for computing the divergence in any
coordinate  system  —  see  Appendix  A  for  a  summary  of  vector  operators  in  orthogonal  coordinate  systems.  For
example, the general expression for the divergence in spherical polar coordinates is (see Eq. A.14)

(3.6)— ÿE =
1

ÅÅÅÅÅÅÅÅ
r2  

∂
ÅÅÅÅÅÅÅÅÅ
∂r

 Hr2  Er L +
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r sinHqL  

∂
ÅÅÅÅÅÅÅÅÅ
∂q

 HsinHqL Eq L +
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r sinHqL  

∂Ef
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂f

,

where E ª Er  r̀ + Eq  q
`

+ Ef  f
`
. 

Example 3.5: What is the divergence of the vector function v = r = r r̀?

First, let us visualise this vector field using cartesian coordinates:

v = 8x, y, z<;
PlotVectorField3DHv, 8x, -1, 1<, 8y, -1, 1<, 8z, -1, 1<, VectorHeads Æ TrueL;

From  the  geometrical  interpretation  we  expect  this  field  to  have  large  (positive)  divergence  at  any  point  8x, y, z<.
Computing the divergence in cartesian coordinates we obtain

∂vP1T
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂x

+
∂vP2T
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂ y

+
∂vP3T
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂ z

3

Since v ª vr  r̀ + vq  q
`

+ vf  f
`

= r r̀, using the divergence in spherical polar coordinates (Eq. 3.6) we find that

1
ÄÄÄÄÄÄÄÄ
r2

 ∂r Hr2  rL
3

which is identical to the result obtained using cartesian coordinates. For this particular vector field, the divergence does
not depend on the point at which it is computed.

Example 3.6: What is the divergence of v = 1ÅÅÅÅÅÅr2  r̀ ª 1ÅÅÅÅÅÅr3  r?

With
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v =
8x, y, z<

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Hx2 + y2 + z2 L3ê2

9 x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx2 + y2 + z2 L3ê2 ,

y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx2 + y2 + z2 L3ê2 ,

z
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx2 + y2 + z2 L3ê2 =

we visualize the field:

PlotVectorField3DHv, 8x, -1, 1<, 8y, -1, 1<, 8z, -1, 1<, VectorHeads Æ True, PlotPoints Æ 6L;

From  this  plot  we  would  expect  this  field  to  have  non-zero  divergence.   However,  computing  the  divergence  in
cartesian coordinates,

∂vP1T
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂x

+
∂vP2T
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂ y

+
∂vP3T
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂ z

êê Together

0

or spherical polar coordinates,

1
ÄÄÄÄÄÄÄÄ
r2

 ∂r
i
k
jjjr2  

1
ÄÄÄÄÄÄÄÄ
r2

y
{
zzz

0

we find that the divergence is identically zero!  What is going on here?  We will return to this example shortly.

3.5   Poisson's equation, Laplace's equation, and Gauss' Theorem

3.5.1   Poisson's equation

We showed in Chapter  2 that  conservation  of energy  means that  an electrostatic  field  can be expressed in terms of  a
potential as in E = -— f. Substituting this into Eq. 3.5 we obtain

(3.7)— ÿ —f ª Df = “2 f = -
r

ÅÅÅÅÅÅÅÅ
e0

,

which is known as Poisson's equation. Here “2  is the Laplacian operator which, written in Cartesian form, is

“2 =
∂2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂x2 +

∂2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ y2 +

∂2
ÅÅÅÅÅÅÅÅÅÅÅÅ
∂z2 ÿ

The  Laplacian  operator  also  arises  in  quantum  mechanics.   There  are  other  forms  for  “2  in  different  coordinate
systems.  E.g., the Laplacian operator in spherical polar coordinates reads (Eq. A.15)
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(3.8)“2 =
1

ÅÅÅÅÅÅÅÅ
r2  

∂
ÅÅÅÅÅÅÅÅÅ
∂r

 Jr2  
∂

ÅÅÅÅÅÅÅÅÅ
∂r

N +
1

ÅÅÅÅÅÅÅÅ
r2  

i
k
jjj 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
sinHqL  

∂
ÅÅÅÅÅÅÅÅÅ
∂q

 JsinHqL ∂
ÅÅÅÅÅÅÅÅÅ
∂q

N +
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
sinHqL2  

∂2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂f2

y
{
zzz.

Poisson's equation (Eq. 3.7) can be used to find the charge distribution given a form for the potential.

Example 3.7: What charge distribution is needed to give a potential of the form f = k r2  where r is the distance from a 
point?

Apply the “2  operator to r2 = x2 + y2 + z2 . Thus 

∂
ÅÅÅÅÅÅÅÅÅÅ
∂x

 r2 = 2 x,

∂
ÅÅÅÅÅÅÅÅÅÅ
∂x

 2 x = 2,

so “2 Hk r2 L = 6 k. 

Alternatively, using the Laplacian operator in spherical polar coordinates, we get the same result:

“2 Hk r2 L = k 
1

ÅÅÅÅÅÅÅÅ
r2  

∂
ÅÅÅÅÅÅÅÅÅ
∂r

 
i
k
jjjr2  

∂ Hr2 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂r

y
{
zzz = k 

1
ÅÅÅÅÅÅÅÅ
r2  

∂
ÅÅÅÅÅÅÅÅÅ
∂r

 H2 r3 L = 6 k.

Therefore  Eq. 3.7 gives r = -6 k e0 . Thus a constant charge density gives a potential proportional  to r2  and this is the
form of potential inside a uniformly charged sphere for example. 

3.5.2   Laplace's equation

In regions with no charge density, Poisson's equation reduces to

(3.9)“2 f = 0,

which is known as Laplace's equation. Solutions of this equation with boundary conditions are important in the design
of the focussing fields of TV tubes for instance. 

Example 3.8: Verify that the 1 ê r Coulomb potential satisfies Laplace's equation.

Using brute force by applying the “2  operator in cartesian form, i.e.,

“2 =
∂2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂x2 +

∂2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ y2 +

∂2
ÅÅÅÅÅÅÅÅÅÅÅÅ
∂z2 ,

we have to calculate derivatives such as

∂2 H1 ê rL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂x2 ÿ

Since  r2 = x2 + y2 + z2  we have

∂ H1 ê rL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂x

= -
1

ÅÅÅÅÅÅÅÅ
r2  

∂r
ÅÅÅÅÅÅÅÅÅÅ
∂x

= -
x

ÅÅÅÅÅÅÅÅ
r3 ÿ

Computing the second derivative

∂ H-x ê r3 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∂x
= -

1
ÅÅÅÅÅÅÅÅ
r3 +

3 x
ÅÅÅÅÅÅÅÅÅÅ
r4  

∂r
ÅÅÅÅÅÅÅÅÅÅ
∂x

= -
1

ÅÅÅÅÅÅÅÅ
r3 +

3 x2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
r5 ÿ

Similar expressions apply to the other components and we find

“2 J 1
ÅÅÅÅÅ
r
N = -

3
ÅÅÅÅÅÅÅÅ
r3 +

3 Hx2 + y2 + z2 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r5 = 0,

since x2 + y2 + z2 = r2 . 
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Alternatively, using the Laplacian operator in spherical polar coordinates (Eq. A.15), 

“2 J 1
ÅÅÅÅÅ
r
N =

1
ÅÅÅÅÅÅÅÅ
r2  

∂
ÅÅÅÅÅÅÅÅÅ
∂r

 Jr2  
∂ H1 ê rL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂r

N =
1

ÅÅÅÅÅÅÅÅ
r2  

∂
ÅÅÅÅÅÅÅÅÅ
∂r

 H-1L = 0.

3.5.3   Gauss' Theorem

The interpretation of divergence as the flux produced per unit volume suggests that the following integral

‡
V

 — ÿA „ r,

must represent the emergent flux from a volume V  for any vector field A. We have seen that the emergent flux can also
be written as òS=∂V

 A ÿ ‚S and so therefore we expect

(3.10)®
S=∂V

 A ÿ ‚S = ‡
V

 — ÿA „ r.

This result is known as Gauss' Theorem (sometimes it is called the divergence theorem). It is important to distinguish
between Gauss' Theorem, which has only mathematical content, and applies to any physical vector field, as opposed to
Gauss' Law which is founded in experiment and is just another way of expressing Coulomb's Law. 

The  importance  of  Gauss'  Theorem  is  that  it  provides  a  way  to  transform  between  the  surface  and  volume integrals
frequently encountered in physics. Thus if we go back to the integral version of Gauss' Law (Eq. 3.1)

®
S=∂V

 E ÿ ‚S =
1

ÅÅÅÅÅÅÅÅ
e0

 ‡
V

 r „ r,

and apply Gauss' Theorem, we can immediately deduce that

®
S=∂V

 E ÿ ‚S = ‡
V

 — ÿE „ r =
1

ÅÅÅÅÅÅÅÅ
e0

 ‡
V

 r „ r,

Since this applies for any volume V , we must have

— ÿE =
r

ÅÅÅÅÅÅÅÅ
e0

,

which,  as  before,  is  Gauss'  Law  in  differential  form  (but  it  no  longer  depends  upon  the  assumption  of  a  volume  of
particular shape as that is accounted for in the proof of Gauss' Theorem).

3.5.4   A paradox — the Dirac delta function
Example 3.9: Compute — ÿE for a point charge and compare with r ê e0 .

The potential of a point charge, Q, is

fHrL =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0

 
Q
ÅÅÅÅÅÅÅ
r

ÿ

Hence the electric field E is

EHrL = -— fHrL =
-∂f HrL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∂r
 r̀ =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0

 
Q
ÅÅÅÅÅÅÅÅ
r2  r̀.

In Example 3.6 we saw that 

v =
1

ÅÅÅÅÅÅÅÅ
r2  r̀ fl — ÿ v = 0 fl — ÿE = 0.
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However, after visualizing the fields we were puzzled to find that the divergence was identically zero.

Alternatively, in Example 3.8 we found that “2 H 1ÅÅÅÅr L = 0. Hence

— ÿE ª -“2 f = -
Q

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0

 “2 J 1
ÅÅÅÅÅ
r
N = 0.

Gauss' Law in differential form says that

— ÿE =
r

ÅÅÅÅÅÅÅÅ
e0

,

and, for a point charge, the charge density is zero everywhere except at r = 0 where it is infinite!  

If we apply the divergence theorem to the electric field E we find that

‡
V

 — ÿE „ r = ®
S=∂V

 E ÿ ‚S =
Q

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0

 ®
S=∂V

1
ÅÅÅÅÅÅÅÅ
r2  r2  „ W =

Q
ÅÅÅÅÅÅÅÅ
e0

ÿ

However, above we have shown that — ÿE = 0. What is the resolution to this paradox? Hint: you should be suspicious
of  "point"  charges.  Taking  Coulomb's  Law at  face  value,  the  potential  and  field  of  a  "point  charge"  at  the  origin  are
infinite.  Note  that,  although  there  is  no  such  thing  as  a  "point  charge",  the  electron  is  effectively  a  point  charge  with
physical radius d 10-17  m.

The problem is the point r = 0, where E blows up. A more careful analysis shows that — ÿE = 0 everywhere except at
the origin. We seem to require a function with the bizarre property that — ÿE = 0 everywhere except at a single point,
yet 

‡
V

 — ÿE „ r =
Q
ÅÅÅÅÅÅÅÅ
e0

ÿ

No function can possibly behave this way.  What we have stumbled onto is the Dirac delta function which is not really
a function at all. The Dirac delta "function" was originally defined by Dirac as

(3.11)dHxL = J 0, x ≠ 0
¶, x = 0 , and ‡

-¶

¶

dHxL „ x = 1.

However this definition does not make sense mathematically.  In addition, dHxL has the interesting property that

(3.12)‡
-¶

¶

f Hx - aL dHxL „ x = f HaL.

It turns out that Dirac had a good idea though.  See Appendix B for more on dHxL.
Example 3.10: Compute E, f, and — ÿE for the following (spherically symmetric) charge distribution:

rHrL =
i
k
jjjjj

QÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4ÅÅÅÅÅ3  p R3 , r < R

0 , r ¥ R
.

Using spherical polar coordinates, the charge enclosed in a sphere of radius r < R is

qHrL = ‡
V

 rHrL „r = 4 p ‡
0

r
rHrL r2  „ r = 4 p 

Q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4ÅÅÅÅ3  p R3

 ‡
0

r
r2  „ r = 4 p

Q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4ÅÅÅÅ3  p R3

 
r3
ÅÅÅÅÅÅÅÅ
3

= Q
r3

ÅÅÅÅÅÅÅÅÅÅ
R3 ÿ

For r = R, we find that qHRL = Q, the total charge.

Using Gauss' Law (also see Section 3.3.3), the electric field is

EHrL =
i

k
jjjjjjj

1ÅÅÅÅÅÅÅÅÅÅÅÅÅ4 p e0
 Q rÅÅÅÅÅÅÅÅR3  r̀, r < R

1ÅÅÅÅÅÅÅÅÅÅÅÅÅ4 p e0
 QÅÅÅÅÅÅr2  r̀, r ¥ R

.

Here is a plot of the radial component of E HrL, i.e., Er : 
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R 4 R

Q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 pR2 e0

The Gradient Theorem says that

fHBL - fHAL = ‡
A

B
„ f = -‡

A

B
 E ÿ ‚ l fl fHrL = -‡

¶

r
Er ÿ „ r,

and leads to

fHrL =
i
k
jjjjjjj

1ÅÅÅÅÅÅÅÅÅÅÅÅÅ4 p e0
 QÅÅÅÅÅÅÅÅR3  H 3ÅÅÅÅ2  R2 - 1ÅÅÅÅ2  r2 L , r < R

1ÅÅÅÅÅÅÅÅÅÅÅÅÅ4 p e0
 QÅÅÅÅÅr , r ¥ R

.

Here is a plot of the potential, fHrL:

R 4 R

Q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p R e0

Q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
16 p R e0

3 Q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 p R e0

The divergence of the electric field is (see Eq. 3.6)

— ÿEHrL =
1

ÅÅÅÅÅÅÅÅ
r2  

∂
ÅÅÅÅÅÅÅÅÅ
∂r

 Hr2  Er L =
i
k
jjjjjj

QÅÅÅÅÅÅÅÅÅÅÅÅÅ4 p e0
 3ÅÅÅÅÅÅÅÅR3 = 1ÅÅÅÅÅÅe0

 J QÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4ÅÅÅÅÅ3  p R3 N = rÅÅÅÅÅÅe0
, r < R

0 , r ¥ R
.

Here is a plot of — ÿE HrL: 

R 4 R

r
ÅÅÅÅÅÅÅÅÅÅ
e0

This result is to be expected from Gauss' Law. Note that — ÿE is discontinuous (because r itself is discontinuous).  

If we apply the divergence theorem to the electric field E we find that

‡
V

 — ÿE „ r = ‡
V

 
rHrL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

e0
 „ r =

qHrL
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

e0
ª ®

S=∂V
 E ÿ ‚S

=

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0

 
i
k
jjjjjj
ò Q rÅÅÅÅÅÅÅÅR3  r2  „ W r < R

ò QÅÅÅÅÅÅr2  r2  „ W r ¥ R
=

Q
ÅÅÅÅÅÅÅÅ
e0

 
i
k
jjjj

r3
ÅÅÅÅÅÅÅÅR3 r < R
1 r ¥ R

ª
qHrL
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

e0
,

which all checks out. There is no paradox here. 
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Consider  now  what  happens  to  rHrL = QÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4ÅÅÅÅÅ3  p R3
 for  this  spherically  symmetric  charge  distribution  in  the  "point  charge"

limit, i.e., as R Ø 0:

R
ÅÅÅÅÅÅÅÅ2

R 2 R

2

4

6

8

The boxes get narrower and taller — in such a way that the  volume integral (note the r2  „ r factor) is  a constant equal
to  the  total  charge.   If  you  read through  Appendix  B you should  be able  to show  that,  in  the  limit,  rHrL = Q dHrL  and
hence   — ÿE = rHrLÅÅÅÅÅÅÅÅÅÅe0

= QÅÅÅÅÅÅe0
 dHrL. This simple result is a key ingredient to a concise formulation much of electromagnetism.

3.5.5   Continuity Equations

As  another  example  of  Gauss'  Theorem  we  will  look  at  how  the  conservation  of  charge  can  be  expressed  as  a
differential  equation.  Our  result  will  be  used  later  in  deducing  the  existence  of  an  extra  term  in  one  of  Maxwell's
equations, a term that allows the propagation  of electromagnetic waves.  Since  there are conserved  quantities in many
branches of physics, equations of very similar form crop up over and over again and are known as continuity equations.

Consider  the  charge  flowing  out  of  a  volume  V .  The  total  rate  of  charge  leaving  V  is  given  by  the  integral  of  the
current density J  over the surface of the volume. J  is a vector with dimensions A.m-2  directed along the local current
flow at every point and with magnitude equal to the current density. Thus if the total charge in V  is Q, the conservation
of charge tells us that the charge flowing out of V must be balanced by a decrease in Q, that is

∂Q
ÅÅÅÅÅÅÅÅÅÅÅ
∂ t

= -®
S

 J ÿ ‚S,

where the partial derivative indicates that the volume is fixed in position. Since the total charge Q = Ÿ r „ r we find

∂
ÅÅÅÅÅÅÅÅ
∂ t

 ‡
V

 r „ r = -®
S

 J ÿ ‚S.

Now apply Gauss' Theorem to transform the surface integral into a volume integral and we find

‡
V

 
∂ r
ÅÅÅÅÅÅÅÅÅÅ
∂ t

 „ r = -‡
V

 — ÿ J „ r.

As before, since this applies for any volume V  we obtain our final result, the continuity equation for electric charge

(3.13)
∂ r
ÅÅÅÅÅÅÅÅÅÅ
∂ t

+ — ÿ J = 0.

This equation expresses the conservation of electric charge. It says that at every point the electric current produced per
unit volume (— ÿ J) must be balanced by a decrease in the charge density.

3.5.6   Other examples of the continuity equation

In fluid flow, the equivalent  of current density is the mass flow rate per unit area, rm  v, where v is the velocity vector
field. The mass density rm  takes the place of the charge density, and the continuity equation becomes

∂ rm
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ t

+ — ÿ Hrm  vL = 0.
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In  incompressible  flow  (a  good  approximation  at  low  speeds),  rm  is  constant  and  we  have  — ÿ v = 0,  an  important
equation in fluid dynamics.

In the conduction of heat in a uniform solid the ''density" of heat is C T  where C is the heat capacity per unit volume
and T is the temperature. The equation of continuity is then

C 
∂T
ÅÅÅÅÅÅÅÅÅÅÅ
∂ t

+ — ÿQ = 0.

where  Q  is  the  heat  flux.  We  obtained  an  expression  for  Q  in  terms  of  the  temperature  gradient  in  Eq.  2.2  and
substituting this we obtain

“2 T =
C
ÅÅÅÅÅÅÅ
k

 
∂T
ÅÅÅÅÅÅÅÅÅÅÅ
∂ t

,

a fundamental equation in the theory of heat conduction, also known as the diffusion equation.
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3.6   Summary

In this chapter we expressed Gauss' Law in integral form as

®
S

 E ÿ ‚S =
1

ÅÅÅÅÅÅÅÅ
e0

 ‡
V

 r „ r,

We  then progressed  from that  to  considering  the  limit  of  infinitesimal  volumes,  defining  a  scalar  quantity  called  the
divergence div E by

div E = lim
VØ0

 
1

ÅÅÅÅÅÅÅ
V

 ®
S

 E ÿ ‚S.

A  form  convenient  for  cartesian  coordinates  was  developed  by  considering  a  volume  in  the  shape  of  a  cuboid.  We
obtained

div E =
∂ExÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂x

+
∂Ey
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂y

+
∂EzÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂z

= — ÿE.

Gauss' Law at a point was finally derived:

— ÿE =
r

ÅÅÅÅÅÅÅÅ
e0

ÿ

We  then  returned  to  the  Gauss'  Theorem,  a  mathematical  theorem  that  applies  to  any  continuous  vector  field  and
allows one to transform between surface and volume integrals

®
S

 A ÿ ‚S = ‡
V

 — ÿA „ r.

Gauss' theorem was applied to derive the continuity equation which expresses the conservation of charge in differential
form: 

∂ r
ÅÅÅÅÅÅÅÅÅÅ
∂ t

+ — ÿ J = 0,

where J is the current density. Finally the examples illustrated how to cope with non-cartesian coordinate systems.
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Chapter 4
Faraday's Law, Stokes' Theorem and curl

4.1   Introduction

This  chapter  repeats  the  pattern  of  Chapter  3.  We  start  from  an  experimentally  derived  physical  law,  in  this  case
Faraday's Law of induction, and derive a differential version of it that applies at a point. In so doing, we introduce the
third  and  final  of the  vector  derivatives,  a vector  called  the curl  of  a  field.  We then follow up with  Stokes'  Theorem
which, in the same way that Gauss' Theorem is used to transform between volume and surface integrals, can be used to
transform between surface and line integrals. 

4.2   Faraday's Law of Induction

Faraday observed that changing the magnetic flux through a loop of wire whether by moving the wire or the source of
the magnetic  field caused a voltage to be developed around the loop. The voltage produced is proportional  to the rate
of change of the magnetic flux through the loop. The direction of the voltage produced is such that if a current flows it
"tries"  to  keep  the  field  constant.  This  is  Lenz's  Law and  leads  to  minus  signs  in  the  equations  for  induction.  As  an
aside, super-conducting loops are able to keep the flux precisely constant over long periods of time.

Faraday's  work  is  the  classic  example  of  basic  physics  with  applications  of  immense  importance  (dynamos,
transformers, etc), unrecognised at the time of its discovery. 

We start by writing a mathematical version of Faraday's' Law. The voltage, V , or EMF (electro-motive force) around a
circuit, C, is simply the line integral of the electric field:

V = ®
C

 E ÿ ‚ l.

We met this earlier in Chapter 2 where we said that this quantity had to be zero for energy conservation. However, that
was  in  electrostatics,  and  does  not  apply  when  work  is  being  done  to  change  the  fields.  A  corollary  is  that  the
electrostatic  relation  E = -— f  no  longer  applies  in  the  time-varying  case.  The  flux  connecting  the  circuit  C  is  the
integral of the magnetic flux density B over any surface, S, bounded by C = ∂S and can be written

‡
S

 B ÿ ‚S.

Therefore Faraday's Law in integral form is

(4.1)®
C=∂S

 E ÿ ‚ l = -
„

ÅÅÅÅÅÅÅÅÅ
„ t

 ‡
S

 B ÿ ‚S.

For  the  sign  to  make  sense,  the  direction  in  which  the  circuit  is  travelled  has  to  be  defined.  Fig.  4.1  shows  the
convention based upon the right-hand rule. If one grasps the circuit with the right-hand so that the fingers point along
the direction of B, then the thumb points along the direction in which C is traversed.



Figure 4.1 Magnetic flux threads a circuit C which is covered by a surface S that has C as its boundary. The arrow on
C indicates in which direction the line integral is taken for B pointing in the direction shown.

Example 4.1: What is the electric field inside a long solenoid of n turns/unit length when the current I flowing through 
the coils changes?

Figure 4.2
The figure shows side and end-on views of a solenoid carrying current I.  The end-on view looks into the
magnetic  field  (represented  by  dots).   To  calculate  the  electric  field  induced  by  changing  I,  a  circuit  is
taken to be a circle of radius r enclosing the field.

We  will  assume  the  result  from  first  year  that  the  magnetic  field  inside  the  solenoid  is  given  by  B = m0  n I.  By
symmetry E must run in circles around the axis of the solenoid and so we take such a circle as our circuit.  Since E
runs parallel to the circuit at all points, the line integral reduces to

®
C

 E ÿ ‚ l = 2 p r E.

For circuits inside the radius a of the solenoid Hr < aL, the flux linking the circuit is

FB = ‡
S

 B ÿ ‚S = p r2  B = p r2  m0  n I.

Therefore applying Faraday's Law we have

2 p r E = -p r2  m0  n
„ I
ÅÅÅÅÅÅÅÅÅÅ
„ t

,

or

E = -
r
ÅÅÅÅÅ
2

 m0  n
„ I
ÅÅÅÅÅÅÅÅÅÅ
„ t

Hr < aL.

There is no magnetic flux outside the solenoid so the flux linking the circuit stays fixed at p a2  B
for r > a and therefore

E = -
a2
ÅÅÅÅÅÅÅÅÅÅ
2 r

 m0  n
„ I
ÅÅÅÅÅÅÅÅÅÅ
„ t

Hr > aL.
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The existence of an electric field outside the coil allows signals flowing through the coil to be picked up with a loop
of wire enclosing the coil.

4.3   Curl and Stokes' Theorem

As for Gauss' Law, we would like a version of Faraday's Law that applies at a point. We will start by considering the
line integral around a loop as the loop is shrunk to infinitesimal size. 

Figure 4.3
The figure shows a small loop used to obtain an expression for the line integral in the limit of infinitesimal
size. The circuit is traversed in a direction appropriate for the right-hand rule and a z-axis which points out
of the page.

To be specific we consider the loop illustrated in Fig. 4.3. This is a rectangle in the x-y plane with sides parallel to the x
and y-axes.  Note that  by  contrast  with  the  derivation  of  divergence,  the  loop's  orientation  is  significant.  This  will  be
reflected  in  the  quantity  called  curl  which  we  will  introduce  which  turns  out  to  be  a  vector  rather  than  a  scalar  like
divergence.  The circuit  direction indicated  in Fig. 4.3  follows  the right-hand rule  for  a right-handed coordinate  set of
axes in which z̀ = x̀Ô ỳ. 

The line integral around the circuit has four separate parts corresponding to the line segments PQ
”÷÷÷÷÷
, QR

”÷÷÷÷÷÷
, RS

”÷÷÷÷÷
 and SP

”÷÷÷÷
. The

contribution  from PQ”÷÷÷÷÷  is due  entirely to the x  component  of  E,  which  we evaluate  at  the mid-point  of the segment  as
Ex Hx, y - „ y ê 2L. Multiplying this by the length of the segment and adding in the other three similar terms we have

®
C

 E ÿ ‚ l =

Ex Hx, y - „ y ê 2L „ x + Ey Hx + „ x ê2, yL „ y - Ex Hx, y + „ y ê 2L „ x - Ey Hx - „ x ê2, yL „ y,

with  the  minus  signs  appearing  when  we  travel  against  the  direction  of  the  coordinate  axes.  This  expression  can  be
grouped into two pairs of differences:

®
C

 E ÿ ‚ l = HEy Hx + „ x ê 2, yL - Ey Hx - „ x ê2, yLL „ y - HEx Hx, y + „ y ê2L - Ex Hx, y - „ y ê2LL „ x,

which, when expanded to first order as we did when deriving div E ª “ ÿ E, yields:

i
k
jjjy  

i
k
jjjx +

‚ x
ÄÄÄÄÄÄÄÄÄÄÄ

2
, yy{

zzz - y  
i
k
jjjx -

‚ x
ÄÄÄÄÄÄÄÄÄÄÄ

2
, yy{

zzzy{
zzz ‚ y + OH‚ xL3

„ y y
H1,0L Hx, yL „ x + OHH„ xL3 L

and similarly

i
k
jjjx  

i
k
jjjx, y +

‚ y
ÄÄÄÄÄÄÄÄÄÄÄ

2
y
{
zzz - x  

i
k
jjjx, y -

‚ y
ÄÄÄÄÄÄÄÄÄÄÄ

2
y
{
zzzy{
zzz ‚ x + OH‚ yL3

„ x x
H0,1L Hx, yL „ y + OHH„ yL3 L

 Collecting terms together, we can write
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®
C

 E ÿ ‚ l = i
k
jj ∂Ey

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂x

-
∂ExÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂y

y
{
zz „ x „ y = H—ÔELz  „ x „ y = —ÔE ÿ ‚S.

where we have recognised that the term in brackets is the z-component of the vector —ÔE. The last expression follows
because the area vector representing the loop is given by ‚S = z̀ „ x „ y. 

Although we have not proved it, this result is general, i.e., for an infinitesimal flat element of area ‚S of any shape and
orientation bounded by a loop C = ∂S we can write

(4.2)®
C=∂S

 E ÿ ‚ l = —ÔE ÿ ‚S.

The  quantity  —ÔE  is  a  vector  and  is  called  the  curl  of  the  electric  field.  You  may  also  sometimes  see  it  called  the
rot E, short for rotation. Eq. 4.2 defines curl in the same way that Eq. 3.3 defined the divergence. 

Of all  three derivatives we have now encountered  — grad, div,  and curl — the curl  is the most  difficult  to get a feel
for. Its nature is defined by Eq. 4.2.  When thinking about curl, one should picture a small loop embedded in the vector
field  and  consider  what  the  circulation  around  it  is.  Still,  it  is  not  always  obvious  whether  there  is  any  overall  line
integral. We will look at some examples later which may help, but first we will finish with Stokes' Theorem. 

Any finite surface can be subdivided into many small flat facets obeying the above equation. Adding the line integrals
of all of these facets,  the individual contributions  cancel except on the outer boundary (for example refer back to Fig.
4.1 and consider adding the integrals around the two adjacent dashed squares). We then obtain Stokes' Theorem

(4.3)®
C=∂S

 E ÿ ‚ l = ‡
S

 —ÔE ÿ ‚S,

for any surface S bounded by the circuit C = ∂S. This applies to any physical vector field, not just E. S and C here are
now finite  in contrast  to Eq. 4.2 and S  no longer  has to be flat. With Stokes'  theorem we can transform line integrals
ó surface integrals.

As a simple application, let us revisit the condition òC
 E ÿ ‚ l = 0 which we derived for electrostatic fields in Chapter 2.

Since this applies for any circuit, Stokes' theorem implies that

—ÔE = 0,

for electrostatic fields (0  is a zero vector). Such a field is said to be curl-free or irrotational. The study of irrotational
fluid flows for which —Ô v = 0 is of great importance in aerodynamics, and approximations based on this explain why
aircraft fly. 

The  reverse  of  the  above  condition  is  also  true.  That  is  if  a  vector  field  A  satisfies  —Ô A = 0,  then  we  can  write
òC

 A ÿ ‚ l = 0 and, from Chapter 2, that A can be derived from a potential A = — f. We are saying then that —Ô— f = 0
which is reasonable if  you remember that the cross-product of a vector with itself is zero (although this is not a proof
because — is not an ordinary vector). 

Since  the  condition  —Ô v = 0  implies  v = —f,  curl-free  flows  are  also  called  potential  flows.  Recalling  that
incompressible  flows satisfy — ÿ v = 0, then we have “2 f = 0, and so incompressible  potential flows  satisfy Laplace's
equation which is also satisfied by electrostatic fields, a useful mathematical similarity between very different physical
systems. 
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4.4   Differential version of Faraday's Law

Applying Stokes' theorem to the left-hand side of Faraday's Law we obtain

‡
S

 —ÔE ÿ ‚S = -
„

ÅÅÅÅÅÅÅÅÅ
„ t

 ‡
S

 B ÿ ‚S.

Since this applies to any loop, we must have

—ÔE = -
„B
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ t

.

The  total  time  derivative  „ ê„ t  allows  the  loop  to  move,  but  we  do  not  want  this  because  this  means  that  we  are
measuring B  in our  rest  frame while we are measuring  E  in the rest frame of  the loop. A simple  thought experiment
shows that E and B change according to the frame in which they are measured: Picture a charge q moving at velocity v
in a region with a magnetic field B but no electric field. The force on the charge is q vÔB. How does the picture alter
when viewed from a frame in which the charge is at rest (even if it only at rest for an infinitesimal time). Since in this
frame the charge is at rest, there is no vÔB term, and yet the charge must feel a force because it moves in a circle in a
magnetic field.  We are forced to the conclusion that  in the new frame there is an electric  field, which for  low v  must
have strength vÔB. In other words, a magnetic field in one frame may look like an electric field in another frame (see
the section on Lorentz transformations below). 

The important point is that it is essential to measure electric and magnetic fields in the same reference frame. This can
be  done  by  fixing  the  loop  to  be  stationary  in  our  rest  frame  (and  replacing  total  derivatives  by  partial  derivatives)
whereby we obtain

(4.4)—ÔE = -
∂B
ÅÅÅÅÅÅÅÅÅÅÅ
∂ t

This  is the  differential  version  of Faraday's  Law and  the second  of Maxwell's  equations.  It contains  no more physics
than the integral version, Eq. 4.1, but it applies at a point.

4.4.1   Lorentz Transformations for an Electromagnetic Field

A full description of the transformation of electric and magnetic fields from one frame to another requires the Special
Theory  of  Relativity  (and  indeed  was  the  main  subject  of  Einstein's  original  paper)  and  is  beyond  the  scope  of  this
course (i.e., this subsection is not examinable).

For the components of vectors parallel (†§) and perpendicular (¶) to v, the vector form of the electromagnetic (Lorentz)
transformation formulas is

E†§ = E†§
£ ; E¶ = g HE¶

£ - HvÔB£ L¶ L;
B†§ = B†§£ ; B¶ = g JB¶

£ +
1

ÅÅÅÅÅÅÅÅ
c2  HvÔE£ L¶ N;

where 

g =
i
k
jjj1 -

v2
ÅÅÅÅÅÅÅÅ
c2

y
{
zzz

-1ê2
.
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The  primed  expressions  HE£ , B£ L  correspond  to  quantities  measured  in  a  coordinate  system  moving  at  a  uniform
velocity v with respect to the coordinate system in which the unprimed expressions, HE, BL, are deduced.  Can you see
where the Lorentz force law comes from? What about the Biot-Savart law?

4.5   Calculating the curl

As with the divergence, the direct application of curl A ª —ÔA will in some cases be the simplest approach, although
the cross-product can make the calculation of curl error-prone.

‹ The curl of a vector function A is itself a vector —ÔA.  You cannot compute the curl of a scalar: that is meaningless.
In general, the value of the curl depends on the point at which —Ô A is evaluated.

Geometrical  interpretation:  The name curl  should  indicate to  you that  —ÔA  measures  how  much  the vector  A  curls
around the point in question.  

Example 4.2: What is the curl of a field given by E = AÔ r where A is a constant vector? 

Expanding out the cross-product, the field is given by

i

k
jjjjjjjj

Ex

Ey

Ez

y

{
zzzzzzzz =

i

k

jjjjjjjj
Ay  z - Az  y
Az  x - Ax  z
Ax  y - Ay  x

y

{

zzzzzzzz.

We then apply

—ÔE =
i

k

jjjjjjjj
∂Ez ê∂y - ∂Ey ê∂z
∂Ex ê∂ z - ∂Ez ê∂x
∂Ey ê∂ x - ∂Ex ê ∂y

y

{

zzzzzzzz =
i

k
jjjjjjjj

2 Ax

2 Ay

2 Az

y

{
zzzzzzzz = 2 A.

The derivatives are all straightforward, and we obtain the simple result —ÔE = 2 A. 

Since  A  is  a  constant,  E = AÔ r  is  the  form of  field  that  arises  when  the  magnetic  flux  has  a  fixed  direction  and
changes at a constant rate. The electric field in a solenoid has this form. 

A = 8a, b, c<;  = 8x, y, z<;
 = AÔ 
8b z - c y, c x - a z, a y - b x<

It is usual to visualize this vector field in two dimensions. For example,

<< Graphics`PlotField`; PlotVectorFieldH8-y, x<, 8x, -1, 1<, 8y, -1, 1<L;
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From the geometrical interpretation we expect this field to have non-zero curl at any point 8x, y, z<.  Also, we expect
the curl to point in the z-direction as the right-hand rule would suggest. Note that the vector field really exists in three
dimensions:

PlotVectorField3DH8z - y, x - z, y - x<, 8x, -1, 1<, 8y, -1, 1<, 8z, -1, 1<, VectorHeads Æ TrueL;

However, it is harder to decide from this plot whether we expect this field to have non-zero curl. 

Computing the curl in cartesian coordinates we obtain

8∂y P3T - ∂z P2T, ∂z P1T - ∂x P3T, ∂x P2T - ∂y P1T<
82 a, 2 b, 2 c<
% == 2 
True

On other  occasions  it  is  better  to  remember  the  meaning  of  curl.  For  example  what  is  the  curl  of  E = r4  ‰-rêl  r̀?   It
would  be a  difficult  task  to calculate  all  the necessary  derivatives,  but  also  an unnecessary  one.  This is  a spherically
symmetric  field,  so  the  curl,  which  is a  vector,  can only  point  along  the  radial  direction:  anything else would  not  be
spherically symmetric. The derivation of the curl (see Eq. 4.2)  means that, in the radial direction we need to calculate
the line  integral  around a  loop perpendicular  to the  radial  direction.  But this  is  everywhere  perpendicular  to the field
and therefore the line integral, and the curl, are zero everywhere.  This is true for any  spherically symmetric field, and
seems natural as there is no sense of rotation about such a field. 

When calculating the divergence we used its basic definition to compute its value in a spherically symmetric case (see
section 3.4.1).  A similar  approach  can be taken with  the curl  in the  case  of cylindrical  symmetry.  Consider  a field A
that  runs  in  circles  around  the  z-axis  with  a  strength  that  varies  as AHrL  where  r  is  the distance  from the  z-axis.  This
describes, for instance, the magnetic field around a wire carrying a current, with AHrL ∝ 1 ê r.  

Figure 4.4 The figure shows the path of integration used to evaluate the curl  in a field that runs in circles around an
axis pointing out of the page and passing through the centre of the circles.

Only loops perpendicular  to z  can have  any line integral. Therefore,  the curl must  lie in the z-direction. Therefore  we
choose a small loop which lies perpendicular to the z-axis as illustrated in Fig. 4.4. We are free to choose any shape for
the loop,  so  we  pick one  to make  the  calculation  as  easy as  possible.  The circuit  C  illustrated  in  Fig.  4.4  either  runs
parallel to the field or perpendicular to it. The line integral around it can then be written down as
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Only loops perpendicular  to z  can have  any line integral. Therefore,  the curl must  lie in the z-direction. Therefore  we
choose a small loop which lies perpendicular to the z-axis as illustrated in Fig. 4.4. We are free to choose any shape for
the loop,  so  we  pick one  to make  the  calculation  as  easy as  possible.  The circuit  C  illustrated  in  Fig.  4.4  either  runs
parallel to the field or perpendicular to it. The line integral around it can then be written down as

®
C

 A ÿ ‚ l ª —Ô A ÿ ‚S = Hr + „ rL AHr + „ rL q - r AHrL q =
∂ Hr AHrLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∂ r
 q „ r = †—Ô A§ r q „ r

with  the  last  step  following  from Eq.  4.2,  and  where  AHrL  is  the  magnitude  of  the  field  at  distance  r.  We  can  easily
verify the middle result (up to second order) using Mathematica:

Hr + ‚ rL AHr + ‚ rL q - r AHrL q + OH‚ rL2 ä
∂Hr AHrLL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂r
 q ‚ r +OH‚ rL2

True

Therefore we obtain

—Ô A =
1
ÅÅÅÅÅ
r

 
∂ Hr AHrLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∂ r
 z̀.

Proceeding in this manner one can obtain more general expressions for the curls  of fields expressed in any coordinate
system. See Appendix A for a summary of vector operators in orthogonal coordinate systems. For example, the general
expression for the curl in spherical polar coordinates is (see Eq. A.16)

—Ô A =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r sinHqL  ik

jj ∂ HsinHqL Af L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∂q
-

∂AqÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂f

y
{
zz er +

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r sinHqL  ik

jj ∂ArÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂f

- sinHqL ∂ Hr Af L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∂r
y
{
zz eq +

1
ÅÅÅÅÅ
r

 J ∂ Hr Aq LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂r

-
∂ArÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂q

N ef

where A ª Ar  r̀ + Aq  q
`

+ Af  f
`
. 

Example 4.3: What is the curl of a field that runs in circles around the z-axis with a strength that drops off inversely 
with distance? 

Using the above result, we put AHrL = 1 ê r and find that —ÔA = 0. 

This is the form of magnetic field near a wire carrying a current. It illustrates the point that a field can appear to have
circulation  but  have  no curl.  However  our  calculation  breaks  down on  the axis  itself  because a  loop enclosing  that
would definitely have a finite integral (c.f. computing the divergence of the electric field of a point charge).

Example 4.4: What is the curl of a field that runs in circles around the z-axis with a strength that increases linearly 
with distance? 

Now AHrL = r and we find —Ô A = 2 z̀. 

This is the form of magnetic field inside a wire of uniform current density. It turns out that the curl of the magnetic
field is proportional  to the current density so it is no fluke that the curl turns out to have constant  magnitude. Since
the region near a current carrying wire carries no current itself, the result in Example 4.3 is no surprise either. 
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4.6   General remarks on grad, div and curl

The curl is the last new vector derivative. It is important to appreciate the nature of the these quantities in the sense that
grad f = — f is a vector, as is curl E = —ÔE, whereas div E = — ÿE is a scalar. Realising this helps one avoid mistakes
of the following kind

— ÿE = -
∂B
ÅÅÅÅÅÅÅÅÅÅÅ
∂ t

because  a scalar  on the left cannot  equal a vector on the right. When first  met these quantities  can be confusing.  One
has  no  "feel"  or  "intuition"  for  them.  Intuition  is  actually  a  misleading  expression;  "experience  of"  would  be  more
accurate.  Why  should  anyone  have  intuition  for  a  concept  such  as  curl  which  they  have  never  met  before?  You  can
only develop "intuition"  after use and after seeing these quantities  in action. The way to develop it most quickly is to
remember equations such as Eq. 4.4 and always to focus on the physical meaning behind the symbols. 

4.7   Summary

We started in this chapter by expressing Faraday's law. We then considered how this can be applied to an infinitesimal
region and in doing so defined a new quantity, the curl of E, defined by (for infinitesimal loops)

®
C

 E ÿ ‚ l ≡ curl E ÿ ‚S = —ÔE ÿ ‚S,

with the second form based on consideration of a small rectangular loop. The curl of a vector field is itself a vector. 

This led on to more general  equation called Stokes' Theorem  that can be applied to finite  surfaces and can be used to
transform between surface and line integrals. This equation was then applied to the integral version of Faraday's law  to
arrive at the differential form of Faraday's law.
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Chapter 5 
Magnetic fields

5.1   Introduction

In  this  chapter  we  look  at  the  physics  of  magnetostatics.  We  will  encounter  the  second  pair  of  Maxwell's  equations
although one of them will have to be modified for time variable phenomena later. We make use of Gauss' and Stokes'
theorems, but no new mathematics has to be introduced. Our starting points are the Biot-Savart and Ampère's laws.

5.2   The Biot-Savart Law

The Biot-Savart law gives the contribution to the magnetic at a point from a small current element. Let a current I  flow
through a short element ‚ l. Then the magnetic field due to this element at a point r away from it is given by

‚B =
m0

ÅÅÅÅÅÅÅÅÅÅÅ
4 p

 
I  ‚ lÔ r̀
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r2

The cross-product here gives a magnetic field obeying the usual right-hand rule for magnetic fields from currents. That
is, with the thumb of your right-hand pointing along the current, your fingers point in the direction of the field. 

There are rather few situations where the Biot-Savart  law proves practical to use and we are not going to use it to any
great extent. The main point we take from it is that the field lines run in circles around an axis defined by the direction
of ‚ l. If they run in circles, no flux of B is produced or destroyed, and therefore we can write immediately

(5.1)— ÿB = 0,

because — ÿB, the divergence of B, represents the amount of magnetic flux produced per unit volume. This equation is
the third of Maxwell's equations. It can be proved more formally, but the proof is not illuminating. If we compare with
the equivalent equation for the electric field (Eq. 3.5) — ÿE = rÅÅÅÅÅÅe0

, we can interpret — ÿB = 0 as saying that there are no
sources of magnetic flux, or in other words there are no magnetic charges (magnetic monopoles).

5.2.1   Lorentz Transformation

As an aside,  a current element I ‚ l  can be thought  of as a charge moving with a velocity, i.e.,  I ‚ l ª q v.   Hence the
Biot-Savart law says that the magnetic field due to this charge at a point r away from it is given by

B =
m0ÅÅÅÅÅÅÅÅÅÅÅ
4 p

 
q vÔ r̀
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r2 .

We can relate this to the electric field of the point charge as follows

B =
m0ÅÅÅÅÅÅÅÅÅÅÅ
4 p

 4 p e0  vÔi
k
jjj 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p e0

 
r̀

ÅÅÅÅÅÅÅÅ
r2

y
{
zzz = m0  e0  vÔE.

Compare this with the Lorentz transformation formula for magnetic fields:



B¶ = g JB¶
£ +

1
ÅÅÅÅÅÅÅÅ
c2  HvÔE£ L¶ N;

5.3   Ampères Circuital Law

Ampères circuital law (often just Ampères law) is not independent from the Biot-Savart law, and can be derived from
it. In fact as Ampère did most of the experiments that lead up to both laws, there is a case for renaming the Biot-Savart
law, except for the confusion it would cause. The actual derivation is again not very informative, and we are content to
quote  the  result,  which  in  words  says  that  the  line  integral  of  B  around  a  closed  loop  is  equal  to  m0  times  the  total
current through the loop.

Following the work of previous chapters, we can immediately write this in symbolic form as

(5.2)®
C=∂S

 B ÿ‚ l = m0  ‡
S

 J ÿ‚S.

Here  C  is  the  loop  through  which  the  current  flows,  J  is  the  current  density  and  S  is  any  surface  bounded  by  C.
Applying Stokes' theorem to transform the line integral into a surface integral we have:

®
C=∂S

 B ÿ‚ l = ‡
S

 —ÔB ÿ‚S = m0  ‡
S

 J ÿ‚S

and, since this applies for any loop C, we must have

(5.3)—ÔB = m0  J,

which is the differential form of Ampère's law. This was the relation referred to in the discussion after example 4.4 in
which we calculated the curl of some example fields. 

As an unusual  application  of Ampère's  law, suppose  that we wish to measure  the total current  flowing to or from the
ground during a thunderstorm.  We could do so by measuring the magnetic field at a series of points on the ground at
the  boundary  of  the  storm.  Taking  the  line  integral  would  give  us  the  current.  This  would  a  great  deal  easier  than
measuring the current directly, which would in any case require knowing where lightning was going to strike.

Example 5.1: A current I flows in a long wire of circular cross-section of radius a (Fig. 5.1). What is the magnetic 
field as a function of the distance r from the axis of the wire?   

Figure 5.1 A cross-section  of  a wire  carrying a  current  into the page (represented  by crosses).  C  is  the path used to
determine the magnetic field. 

We will apply the integral form of Ampère's law (Eq. 5.2). 

We need to define a suitable circuit. Since the magnetic field must run around the wire in circles, the obvious path is
itself  a circle centred on  the axis of the wire so  that  the magnetic field  is everywhere  parallel  to it  and of the same
strength.  This  problem is very  similar  to example  4.1  where  we  calculated  the  electric  field  of a  solenoid.  Fig.  5.1
shows such a path. 
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We need to define a suitable circuit. Since the magnetic field must run around the wire in circles, the obvious path is
itself  a circle centred on  the axis of the wire so  that  the magnetic field  is everywhere  parallel  to it  and of the same
strength.  This  problem is very  similar  to example  4.1  where  we  calculated  the  electric  field  of a  solenoid.  Fig.  5.1
shows such a path. 

The line  integral  òC
 B ÿ‚ l  reduces to 2 p r B.  The current  linked depends  on  whether the circuit  is inside or outside

the wire.  If it is outside (r > a) then the current enclosed is simply I;  if it is inside (r < a) then the current enclosed
scales with area (i.e., r2 ) and must therefore be I Hr ê aL2  so that it equals I  for r = a. Applying Ampère's law (Eq. 5.2)
we obtain

B =
i
k
jjjjjj

m0  IÅÅÅÅÅÅÅÅÅÅÅ2 p r , r > a
m0  I rÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 p a2 , r < a

.

Example 5.2: Derive the equation B = m0  n I for the magnetic field inside a long solenoid with n turns per unit length 
and carrying a current I.

Figure 5.2 Figure  5.2:  Cross-section  of  a  solenoid  with  ⊗  representing  wires  carrying  current  into  the  page  and  ü
representing currents flowing out of the page. The circuit C is used to determine the magnetic field. 

Consider  the rectangular  circuit  as shown in Fig.  5.2.  Only  the side running parallel  to the field  inside the solenoid
gives any contribution  to òC

 B ÿ‚ l. Its  contribution  is B L.  The circuit  links a current  of n L I  and so B L = m0 n L I.
Therefore B = m0  n I.

5.4   Summary

Starting from the Biot-Savart law, the third of Maxwell's equations, Eq. 5.1, was written down. This equation expresses
the fact that no magnetic charges have ever been found. Next Ampère's law was translated into mathematical form (Eq.
5.2). Applying Stokes' theorem, the differential version, Eq. 5.3, was immediately obtained.  
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Chapter 6
Electromagnetic Waves

6.1   Introduction

In  this  chapter  we  show  that  Ampère's  Law  cannot  apply  in  the  time-varying  case.  We  consider  how  to  modify,
introducing an extra term, the displacement current, to satisfy charge conservation. We then demonstrate the existence
of  electromagnetic  waves.  We  examine  the  essential  properties  of  these  waves  in  the  vacuum,  considering  both  the
general properties of waves and properties specific to electromagnetic waves.

6.2   The displacement current

In the previous chapters we have derived the following differential equations describing electric and magnetic fields

— ÿE = rÅÅÅÅÅÅe0
— ÿB = 0

—ÔE = - ∂BÅÅÅÅÅÅÅÅ∂t —ÔB = m0  J

The second pair of equations relate the curl of one vector field to a different vector field. If we take the final equation,
for instance, it says that the free current density, J, is the curl of the magnetic field. This places an important restriction
upon the nature of J  . To realise why, we first need a mathematical  result (a vector field identity) which states that for
any vector field A, the divergence of its curl equals zero, i.e.,

— ÿ H—Ô AL = 0.

Taking  the  divergence  (— ÿ)  of  both  sides  of  —ÔB = m0  J  we  obtain  — ÿ J = 0  In  other  words  Ampère's  Law  (as  we
have seen it so far) implies that the current density J is divergence-less. 

This result cannot be true. It says that the total flux of current per unit volume is everywhere zero. Equivalently, using
Gauss' Theorem we have

‡
V

 — ÿ J „ r = ®
S=∂V

 J ÿ ‚S = 0,

which says that the total current flowing out of any volume is always zero. This is wrong because it would mean that
nothing could ever be charged or discharged. Every time a capacitor is charged, — ÿ J = 0 is violated as charge flows on
and off the plates. 

We saw the correct relation for the divergence of the current density when we discussed continuity equations. If current
flows out of a volume, it is balanced by a loss of charge from the volume, and this led us to — ÿ J + ∂rÅÅÅÅÅÅÅ∂t = 0.

Using Gauss' Law — ÿE = rÅÅÅÅÅÅe0
 we may write the continuity equation as



∂ r
ÅÅÅÅÅÅÅÅÅÅ
∂ t

= e0  
∂— ÿE
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ t

= e0  — ÿ
∂E
ÅÅÅÅÅÅÅÅÅÅÅ
∂ t

— ÿ JJ + e0  
∂E
ÅÅÅÅÅÅÅÅÅÅÅ
∂ t

N = 0,

where we have made use of the commutativity  of —  and ∂ÅÅÅÅÅÅ∂t ,  which  is to say that the  order in which  they are applied
makes no difference. Therefore if Ampère's Law is changed to

(6.1)—ÔB = m0  JJ + e0  
∂E
ÅÅÅÅÅÅÅÅÅÅÅ
∂ t

N,

we have a divergence-less field on each side of the equation. Moreover, in static cases the modified equation reduces to
—ÔB = m0  J  which  was  derived  from  magnetostatic  experiments.  Finally,  the  modified  equation  now  resembles
Faraday's Law, the only difference being that because there are no magnetic charges, there is no magnetic current term
in Faraday's Law. Equation 6.1 is our final version of Ampère's Law and completes the set of Maxwell's equations. 

The  new  term,  m0  e0  ∂EÅÅÅÅÅÅÅÅ∂t ,  is  related  to  the  displacement  current  (actually  a  current  density)  and  was  introduced  by
Maxwell.  Although  very  suggestive,  the  above  discussion  provides  only  a  motivation  for  the  introduction  of  the
displacement  current  and  ultimately  its  true  test  rests  on  experiments.  For  example,  there  are  many  other  terms  that
could  be  added  which  would  also  have  zero  divergence.  However,  the  displacement  current  is  needed  for  the
propagation of electromagnetic waves, and so every time one turns on a light its existence is demonstrated. 

The effects  of the displacement  current  are exactly  those  of an ordinary current,  and  cannot  be distinguished from it.
For  instance,  as  a  capacitor  is  charged,  and  the  field  between  the  plates  increases,  it  is  as  if  a  current  were  flowing
between  the  plates  and  a  magnetic  field  will  be  generated  just  as  it  would  if  there  were  a  true  current  of  the  same
magnitude. 

Why  wasn't  the  displacement  current  found  experimentally?  First,  the  experiments  that  led  to  Ampère's  Law  are
difficult  to  perform  in  time  varying  cases;  Ampère  experimented  with  coils  and  steady  currents.  Second  the
displacement current is small. In vacuum, a rate of change of electric field of order 1011  V .m-1 .s-1  over 1 m2  is needed
to produce a current of only 1 A. The displacement current is often negligible with the important exception of when no
ordinary  current  can  flow,  as  in  a  vacuum  or  a  dielectric.  When  we  derive  the  wave  equation  in  Section  6.5,  the
displacement current is vital. 

6.3   Summary of Maxwell's Equations

Maxwell's equations, in terms of total charge and current densities, r and J, read

(6.2)
— ÿE = rÅÅÅÅÅÅe0

— ÿB = 0

—ÔE = - ∂BÅÅÅÅÅÅÅÅ∂t —ÔB = m0  HJ + e0  ∂EÅÅÅÅÅÅÅÅ∂t L

Note that these equations apply generally but, because the total charge and current densities include contributions from
polarisation and magnetisation, it is not usually convenient to use them when materials are present. 

Each of these  differential  equations  has  an integral  equivalent.  Very often  it is the  integral versions  that are easier  to
apply, but the differential  equations are vital in the study of electromagnetic radiation as we will see in the rest of this
chapter.  The  integral  versions  can  be  derived  by  suitable  integration  followed  by  application  of  Stokes'  Theorem  or
Gauss' Theorem. For example, consider

—ÔB = m0  JJ + e0  
∂E
ÅÅÅÅÅÅÅÅÅÅÅ
∂ t

N.
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This  has  a curl  on the left,  so  if  we integrate  it  over some surface,  we will  be able  to transform the resulting surface
integral into a line integral by Stokes' theorem. Thus we get the following steps

‡
S

 —ÔB ÿ ‚S = m0  ‡
S

 JJ + e0  
∂E
ÅÅÅÅÅÅÅÅÅÅÅ
∂ t

N ÿ ‚S,

and so, after applying Stokes' Theorem to the left-hand side, we get

®
C=∂S

 B ÿ ‚ l = m0  ‡
S

 JJ + e0  
∂E
ÅÅÅÅÅÅÅÅÅÅÅ
∂ t

N ÿ ‚S,

This equation says that the line integral of B around a circuit is equal to the sum of the free and displacement currents
flowing through it.

We can go through a similar procedure for each equation and we obtain the following integral equations equivalent to
Equations 6.2:

(6.3)
òS

 E ÿ ‚S = 1ÅÅÅÅÅÅe0
 ŸV

 r „ r òS
 B ÿ ‚S = 0

òC
 E ÿ ‚ l = -ŸS

 ∂BÅÅÅÅÅÅÅÅ∂t ÿ ‚S òC=∂S
 B ÿ ‚ l = m0  ŸS

 HJ + e0  ∂EÅÅÅÅÅÅÅÅ∂t L ÿ ‚S

The  right-hand  sides  of  these  equations  can  be  replaced  by  integrated  quantities  such  as  charge  or  current  as
appropriate. 

6.4   General properties of waves

6.4.1 Phase or wave velocity

The 3D wave equation has the form

“2 z =
1

ÅÅÅÅÅÅÅÅÅ
vf

2  
∂2 z
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ t2 ,

where z  represents  any wave-like quantity. Why does this describe waves? First we have to define what a wave is. A
wave  is  some  sort  of  disturbance  that  propagates  with  time.  In  the  simplest  case  waves  propagate  without  changing
shape. For example, someone's voice sounds the same, apart from loudness, almost independently of the distance of the
speaker.  The sound waves are little  distorted by travel  in air. A wave of this form travelling in the x-direction can be
described by

zHx, tL = z0  f Hx - v tL.
This function is constant for constant values of x - v t, which implies that x = v t + const and so v represents the speed
at which the disturbance travels which we will call the wave or phase velocity. 

For example, with the function

f Hx_L =
sinHxL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
x

;

double-click on the graphic below to see an animation of a one-dimensional wave.

Table@Plot@ f @x - 1.2 tD, 8x, 0.01, 20<, PlotRange Æ AllD, 8t, 0, 11<D;
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Show@GraphicsArray@Partition@%, 3DDD;

5 10 15 20
-0.2

0.2
0.4
0.6
0.8

1

5 10 15 20
-0.2

0.2
0.4
0.6
0.8
1

5 10 15 20
-0.2

0.2
0.4
0.6
0.8
1

5 10 15 20
-0.2

0.2
0.4
0.6
0.8

1

5 10 15 20
-0.2

0.2
0.4
0.6
0.8
1

5 10 15 20
-0.2

0.2
0.4
0.6
0.8
1

5 10 15 20
-0.2

0.2
0.4
0.6
0.8

1

5 10 15 20
-0.2

0.2
0.4
0.6
0.8
1

5 10 15 20
-0.2

0.2
0.4
0.6
0.8
1

5 10 15 20
-0.2

0.2
0.4
0.6
0.8

1

5 10 15 20
-0.2

0.2
0.4
0.6
0.8
1

5 10 15 20
-0.2

0.2
0.4
0.6
0.8
1

To see  that zHx, tL  satisfies  the  wave equation,  we substitute  it  in.  We therefore  need to calculate  various derivatives.
Thus, for example, putting

zHx_, t_L = z0  f Hx - v tL;
then the second derivative with respect to x is

∂2 zHx, tL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂x2

z0 f ″ Hx - t vL

whilst the second derivative with respect to t is

∂2 zHx, tL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂ t2
v2 z0 f ″ Hx - t vL

Substituting into the wave equation we find 
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∂2 zHx, tL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂x2
ä

1
ÄÄÄÄÄÄÄÄÄ
vf

2
 
∂2 zHx, tL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂ t2

z0 f ″ Hx - t vL ==
v2 z0 f ″ Hx - t vL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

vf
2

Since f ″  Hx - t vL crops up on both sides, this result holds for any f , provided that 

v2 = vf
2 ,

so that the constant vf  appearing in wave equation can be identified with the wave velocity. The above relation shows
that v = ±vf  because waves can go in either direction.  

6.4.2 Linearity and superposition

The next important property of the wave equation is its linearity which allows one to superpose solutions. This means
that given any two solutions of the wave equation,  their sum (or in general any linear combination)  is also a solution.
The physical  consequence of this  property  is that two beams of light  do not  affect each  other even where  they cross.
Linearity  is  an  extremely  useful  property,  and  although  nonlinear  equations  show  more  interesting  effects,  they  are
often harder to deal with. 

Sound waves are linear at typical strengths; when they become non-linear they turn into shock waves. Ocean waves are
approximately linear when the depth of the water is much larger than their height. However, as they approach the shore
this is no longer the case and the top of the wave curls over and the wave breaks. The behaviour in this zone is highly
nonlinear. 

To prove the property of superposition for the wave equation, suppose that we have two solutions z1  and z2  that satisfy
the wave equation. That is

“2 z1 =
1

ÅÅÅÅÅÅÅÅÅ
vf

2  
∂2 z1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ t2 , “2 z2 =

1
ÅÅÅÅÅÅÅÅÅ
vf

2  
∂2 z2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ t2 ÿ

Then z3 = z1 + z2  is also a solution: 

“2 z3 = “2 Hz1 + z2 L = “2 z1 + “2 z2 =
1

ÅÅÅÅÅÅÅÅÅ
vf

2  
∂2 z1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ t2 +

1
ÅÅÅÅÅÅÅÅÅ
vf

2  
∂2 z2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ t2 =

1
ÅÅÅÅÅÅÅÅÅ
vf

2  
∂2 Hz1 + z2 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∂ t2 =
1

ÅÅÅÅÅÅÅÅÅ
vf

2  
∂2 z3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ t2 ÿ

If there were any non-linear terms such as z2 , the above proof would break down. Hence the close connection between
linearity and superposition. 

6.4.3 Plane waves

We saw above that zHx, tL = z0  f Hx - vf tL is a solution of the wave equation corresponding to a wave travelling at vf  in
the x-direction. More generally

zHr, tL = z0  f Hk ÿ r - w tL
is a solution. To confirm that this is a possible solution, we write this equation out explicitly

zHx_, y_, z_, t_L = z0  f Ha x + b y + c z - w tL;
and compute the left-hand side
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∂2 zHx, y, z, tL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂x2
+

∂2 zHx, y, z, tL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂ y2
+

∂2 zHx, y, z, tL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂ z2
êê Factor

Ha2 + b2 + c2 L z0 f ″ Ha x + b y + c z - t wL

and right-hand side

1
ÄÄÄÄÄÄÄÄÄ
vf

2
 
∂2 zHx, y, z, tL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂ t2

w2 z0 f ″ Ha x + b y + c z - t wL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

vf
2

of the wave equation.  The wave equation is satisfied provided that

w2
ÅÅÅÅÅÅÅÅÅÅ
vf

2 = a2 + b2 + c2

where a, b,  and c  are the components  of the vector  k = Ha, b, cL  which  has magnitude  k.  Then  we have the important
(dispersion) relation

(6.4)vf =
w
ÅÅÅÅÅÅÅ
k

The function f Ha x + b y + c z - w tL is constant for x, y, z, and t which satisfy

a x + b y + c z - w t = constant,

At a fixed instant of time therefore

a x + b y + c z = k ÿ r = constant.

This is the equation of a plane in three dimensions and so the function f  describes plane waves. All physical quantities
related  to the  wave are constant  over these  planes.  The vector  k  is  perpendicular  to  the planes of  constant  phase  and
therefore is parallel to the direction of the waves. It is called the wave vector. 

As time changes,  the wave-fronts  move.  We can calculate  the velocity at which  they move  from consideration  of the
argument of f , more usually called the phase, which we denote by y = k ÿ r - w t. Differentiating with respect to time,
with y constant and setting v = „rÅÅÅÅÅÅÅ„t  we have  k ÿ v = w. Movement parallel to planes of constant phase cannot be seen so
it is only movement perpendicular to the wavefronts that is of interest. The wave vector k is perpendicular to the wave
fronts and so we can set v = vf  k

`
, whereby we obtain

vf =
w
ÅÅÅÅÅÅÅ
k

,

which we have already seen when we proved that the plane wave solution satisfied the wave equation. This shows that
the  vf  in  the  wave  equation  is  the  velocity  at  which  the  wavefronts  move  in  the  direction  of  the  wave  vector  k,  as
expected. Thus our 1D results extend naturally to 3D through the wave vector. 

The wave vector k  points in the direction of motion of the wavefronts and for all the waves that we will consider,  this
coincides  with  the  direction  that  a  beam  of  radiation  (i.e.,  the  energy)  travels.  Rather  surprisingly  perhaps,  there  are
waves for which this is not the case (e.g., light in birefringent crystals) but we will not consider these in this course.   

6.4.4 Harmonic plane waves

A particularly important solution to the wave equation is the harmonic plane wave form
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zHr, tL = z0  ‰i Hkÿr-w tL = z0 HcosHk ÿ r - w tL + Â sinHk ÿ r - w tLL
Applying the operators ∂ÅÅÅÅÅÅ∂t  and — to z Hr, tL we see that

∂ÅÅÅÅÅÅ∂t  zHr, tL = -Â w zHr, tL,
— zHr, tL = Â k z Hr, tL,

along with analogous results for vector fields.

In  other  words,  application  of  the  differential  operator  ∂ÅÅÅÅÅÅ∂t  is  equivalent  to  multiplication  by  -Â w.  Similarly  —  is
equivalent to multiplication by Â k. For example, — ÿE = 0 becomes Â k ÿE = 0 or k ÿE = 0. 

‹ Compare with the quantum mechanical momentum operator, p = -Â —.

6.5   Wave equation from Maxwell's Equations

The  displacement  current  term  gives  us  electromagnetic  waves.  The  second  pair  of  Maxwell's  equations  connects
spatial derivatives of each field to the rate of change of the other. It is this coupling from the electric to the magnetic
field and back again that allows the propagation of waves. Qualitatively, a time-varying B-field in —ÔE = - ∂BÅÅÅÅÅÅÅÅ∂t , leads
to a time-varying E-field, which leads (self-consistently) to a time-varying B-field in —ÔB = m0  HJ + e0  ∂EÅÅÅÅÅÅÅÅ∂t L.

In this course we will only consider electromagnetic waves in vacuum and restrict attention to the situation where there
are no free currents (J = 0) or charges (r = 0). Hence Maxwell's equations become

(6.5)
— ÿE = 0 — ÿB = 0
—ÔE = - ∂BÅÅÅÅÅÅÅÅ∂t —ÔB = m0  e0  ∂EÅÅÅÅÅÅÅÅ∂t

The first pair of equations restricts the variety of possible fields. 

The standard way to proceed with such pairs of coupled differential  equations is to take the derivative of one of them
and use the other to eliminate one or other of the independent variables. In this case we take the curl of Faraday's Law
because this leads to a —ÔE term which can be eliminated using Ampères law:

—Ô—ÔB = m0  e0  —Ô ∂E
ÅÅÅÅÅÅÅÅÅÅÅ
∂ t

The left-hand side can be rearranged using a second vector field identity

—Ô—Ô A = — H— ÿAL - “2  A.

Using the commutativity of — and ∂ ê∂ t on the right-hand side we obtain

-“2  B = m0  e0  
∂ H—ÔEL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∂ t
= - m0  e0  

∂2  B
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ t2

Substituting from Equation (6.6) for — ÿE and —ÔB we then have

“2  E = m0  e0  
∂2  E
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ t2 .

This equation has the form of a three-dimensional (vector) wave equation for the field E, with phase velocity
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v =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!
m0  e0

Since m0 = 4 p µ 10-7  and e0 = 8.89 µ 10-12  we obtain

vf = 2.99 µ 108  m.s-1 ,

which is equal  to the speed of light, c.  The clear implication is that light is itself an electromagnetic wave.  This is an
early instance  of  the unification  of seemingly  separate  branches of physics,  in this  case electromagnetism  and  optics,
and one of the triumphs of 19th century physics. 

6.6   Relations between fields and the wave vector

In deriving the wave equation we lose information on the relationships between the E and B fields. We need to go back
to Equation (6.6) to derive these. Using the harmonic plane wave form for the E and B fields

EHr, tL = E0  ‰i Hkÿr-w tL

BHr, tL = B0  ‰i Hkÿr-w tL

we can simplify the equations, translating them from vector differential equations to plain vector equations:

(6.6)
k ÿE = 0 k ÿB = 0
kÔE = w B kÔB = - m0  e0  w E

The first two equations show that E and B are perpendicular to the wave vector k. Since k points in the direction of the
wave,  this  means  that  electromagnetic  waves  are  transverse  waves.  In  general  a  vector  in  3D  has  three  degrees  of
freedom.  The  condition  that  E  must  be  perpendicular  to  k  reduces  this  to  two  degrees  of  freedom.  Physically  this
corresponds to the two polarisations that light can be split into. 

The other two equations relate E and B. It is normal to regard the electric field as the one which defines the wave, and
for  example  the  direction  it  points  defines  the  polarisation  of  the  wave.  Thus  it  is  convenient  to  use  kÔE = w B  to
obtain the magnetic field strength. This equation shows that B is perpendicular to E, and so we have found the property
of electromagnetic waves that E, B, and k are mutually perpendicular. 

Since k and E are perpendicular, in terms of magnitudes we have k E = w B, and therefore E = wÅÅÅÅÅk  B = vf  B by Eq. 6.5.
For  waves  in  a  vacuum  vf = c,  and  so  B = E ê c.  The  final  equation  k B = m0  e0  w E  tells  us  nothing  new  since  with
m0  e0 = 1ÅÅÅÅÅÅÅc2  it also reduces to B = E ê c.

6.7   Summary

In this  chapter  we showed that  Ampère's  law —ÔB = m0  J  fails  to  satisfy  charge  conservation  and  introduced  a  new
term, the displacement current, in order to correct it. Thus we obtained

—ÔB = m0  JJ + e0  
∂E
ÅÅÅÅÅÅÅÅÅÅÅ
∂ t

N.

This gave us our final versions of Maxwell's equations. 

We then studied general properties of the wave equation, and in particular plane waves of the form
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zHr, tL = z0  f Hk ÿ r - v tL.
We showed that k is a vector pointing in the direction of the wave and that the phase or wave velocity vf  was given by

vf =
w
ÅÅÅÅÅÅÅ
k

We then showed that Maxwell's equations in free space lead to a 3D wave equation

—2 E = m0  e0  
∂2  E
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ t2 .

The  complex  exponential  form  of  the  wave  allowed  us  to  substitute  -Â k  for  —  and  Â w  for  ∂ ê∂ t  in  all  Maxwell's
equations  and  therefore  derive  relations  between  the  fields  and  k  and  we  showed  that  E,  B,  and  k  were  mutually
perpendicular.   

6.8   Vector field identities

— ÿ —ÔA = 0

It is easy to prove that

— ÿ —Ô A = 0,

by writing out the terms explicitly:

∂x H∂y Az Hx, y, zL - ∂z Ay Hx, y, zLL + ∂y H∂z Ax Hx, y, zL - ∂x Az Hx, y, zLL + ∂z H∂x Ay Hx, y, zL - ∂y AxHx, y, zLL
0

—Ô—Ô A = — H— ÿAL - “2  A

There are elegant methods of proving that 

—Ô—Ô A = — H— ÿAL - “2  A.

but these are outside the scope of this course. An inelegant but straightforward proof is to to examine each component.
The x-component of left hand side reads

∂ I ∂Ay Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂x - ∂Ax Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂y M
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂ y
-

∂ I ∂Ax Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂z - ∂Az Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂x M
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂ z
-Ax

H0,0,2L Hx, y, zL - Ax
H0,2,0L Hx, y, zL + Az

H1,0,1L Hx, y, zL + Ay
H1,1,0L Hx, y, zL

The x-component of right hand side is

∂ I ∂Ax Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂x +

∂Ay Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂y + ∂Az Hx,y,zLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂z M
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂x
-

∂2 Ax Hx, y, zL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂x2
-

∂2 AxHx, y, zL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂ y2
-

∂2 Ax Hx, y, zL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂ z2
-Ax

H0,0,2L Hx, y, zL - Ax
H0,2,0L Hx, y, zL + Az

H1,0,1L Hx, y, zL + Ay
H1,1,0L Hx, y, zL

These two results are identical
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% ä %%
True

You can either compute the other two components or argue that x, y, and z are just labels which can be permuted at will
(which implies that proving the identity for one component proves it for all components).

Note that “2  A consists of a scalar operator (“2 ) applied to a vector (A) resulting in a vector.
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Appendix A
Differential Operators

A.1   Definitions
When parameterizing the position of a point in 3-space, the particular coordinate system which is most useful depends
on the symmetry of the physical or geometric system at hand. All coordinate systems can be derived from the Cartesian
system  by  a  particular  (non-linear)  transformation.  If  x = ⁄ j e j  xj  is  a  particular  geometric  point  referred  to  a
rectangular frame of reference, the same point may also be described by coordinates qi  derived from the transformation

(A.1)xi = xi Hqj L, i, j = 1, 2, 3.

To  obtain  the  transformation  between  different  coordinate  systems,  one  needs  to  compute  the  partial  derivatives
∂xi ê∂qj . The matrix of partial derivatives (the linear map D xHqL) is known as the Jacobian matrix (of x):

(A.2)D xHqL ª

i

k

jjjjjjjjjjjjjj

∂x1ÅÅÅÅÅÅÅÅÅ∂q1

∂x1ÅÅÅÅÅÅÅÅÅ∂q2

∂x1ÅÅÅÅÅÅÅÅÅ∂q3

∂x2ÅÅÅÅÅÅÅÅÅ∂q1

∂x2ÅÅÅÅÅÅÅÅÅ∂q2

∂x2ÅÅÅÅÅÅÅÅÅ∂q3

∂x3ÅÅÅÅÅÅÅÅÅ∂q1

∂x3ÅÅÅÅÅÅÅÅÅ∂q2

∂x3ÅÅÅÅÅÅÅÅÅ∂q3

y

{

zzzzzzzzzzzzzz
.

A.1.1   Orthogonal coordinates
The coordinates qj  comprise an orthogonal set if

(A.3)‚
i=1

3 ∂xiÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂qj

 
∂xiÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂qk

= 0, k ≠ j.

A.1.2   Scale factors
Introducing dimensional scale factors hi Hqj L defined by

(A.4)hj
2 = „

i=1

3
i
k
jjj ∂xiÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂qj

y
{
zzz

2

, j = 1, 2, 3,

then, for an orthogonal set of coordinates, one finds that

(A.5)HD xHqLLT ÿ D xHqL ª

i

k

jjjjjjjjjjjjjj

∂x1ÅÅÅÅÅÅÅÅÅ∂q1

∂x2ÅÅÅÅÅÅÅÅÅ∂q1

∂x3ÅÅÅÅÅÅÅÅÅ∂q1

∂x1ÅÅÅÅÅÅÅÅÅ∂q2

∂x2ÅÅÅÅÅÅÅÅÅ∂q2

∂x3ÅÅÅÅÅÅÅÅÅ∂q2

∂x1ÅÅÅÅÅÅÅÅÅ∂q3

∂x2ÅÅÅÅÅÅÅÅÅ∂q3

∂x3ÅÅÅÅÅÅÅÅÅ∂q3

y

{

zzzzzzzzzzzzzz
ÿ

i

k

jjjjjjjjjjjjjj

∂x1ÅÅÅÅÅÅÅÅÅ∂q1

∂x1ÅÅÅÅÅÅÅÅÅ∂q2

∂x1ÅÅÅÅÅÅÅÅÅ∂q3

∂x2ÅÅÅÅÅÅÅÅÅ∂q1

∂x2ÅÅÅÅÅÅÅÅÅ∂q2

∂x2ÅÅÅÅÅÅÅÅÅ∂q3

∂x3ÅÅÅÅÅÅÅÅÅ∂q1

∂x3ÅÅÅÅÅÅÅÅÅ∂q2

∂x3ÅÅÅÅÅÅÅÅÅ∂q3

y

{

zzzzzzzzzzzzzz
=

i

k

jjjjjjjjj

h1
2 0 0

0 h2
2 0

0 0 h3
2

y

{

zzzzzzzzz

where T denotes the matrix transpose. 



A.1.3   Jacobian determinant
Since  †AT § = †A§  and  †A ÿ B§ = †A§ †B§,  where  †A§  denotes  the  determinant  of  the  matrix  A,  we  find  that  the  Jacobian
determinant, J xHqL, for an orthogonal set of coordinates is

(A.6)J xHqL = †D xHqL§ ª
∂ Hx1 , x2 , x3 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ Hq1 , q2 , q3 L  Hq1 , q2 , q3 L = h1  h2  h3 .

A.1.4   Taylor expansion
The Taylor expansion of f = 8 f1 , f2 , …, fm < : n Ø m  can be written as

(A.7)
f HyL = f HxL + D f HxL ÿ Hy - xL +

1
ÅÅÅÅÅÅÅÅÅ
2 !

 D2  f HxL ÿ Hy - x, y - xL +  +
1

ÅÅÅÅÅÅÅÅ
k !

 Dk  f HxL ÿ Hy - x, …, y - xL + 

where the Jacobian matrix of f  is 

(A.8)D f HxL ª

i

k

jjjjjjjjjjjjjjjjjjjj

∂ f1ÅÅÅÅÅÅÅÅÅ∂x1

∂ f1ÅÅÅÅÅÅÅÅÅ∂x2


∂ f1ÅÅÅÅÅÅÅÅÅ∂xn

∂ f2ÅÅÅÅÅÅÅÅÅ∂x1

∂ f2ÅÅÅÅÅÅÅÅÅ∂x2


∂ f2ÅÅÅÅÅÅÅÅÅ∂xn

ª ª  ª

∂ fmÅÅÅÅÅÅÅÅÅÅ∂x1

∂ fmÅÅÅÅÅÅÅÅÅÅ∂x2


∂ fmÅÅÅÅÅÅÅÅÅÅ∂xn

y

{

zzzzzzzzzzzzzzzzzzzz
,

with  Hi, jLth  element  8D f HxL<i, j = ∂ fiÅÅÅÅÅÅÅÅÅ∂xj
 and  Dk  f HxL ÿ Hy - x, …, y - xL  denotes  Dk  f HxL  as  a  k-linear  map applied  to the

k-tuple Hy - x, …, y - xL. In coordinates, 

(A.9)Dk  f HxL Hy - x, …, y - xL = „
i1 ,…,ik =1

n i
k
jjj ∂k f

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂xi1   ∂xik

y
{
zzz Hyi1 - xi1 L Hyik - xik L.

A.1.5   Differential elements
The differential elements are 

(A.10)
Line : „ sk = hk  „ qk

Area : „ Sj,k = „ xj  „ xk Ø hj  hk  „ qj  „ qk

Volume : „ V = „ x „ y „ z Ø J xHqL „ q1  „ q2  „ q3 = h1  h2  h3  „ q1  „ q2  „ q3

A.1.6   Differential operators
The fundamental vector operators can be shown to be

(A.11)Gradient : — f =
1

ÅÅÅÅÅÅÅÅÅ
h1

 
∂ f

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂q1

 e1 +
1

ÅÅÅÅÅÅÅÅÅ
h2

 
∂ f

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂q2

 e2 +
1

ÅÅÅÅÅÅÅÅÅ
h3

 
∂ f

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂q3

 e3

(A.12)
Divergence : — ×F =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
J xHqL  J ∂

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂q1

 J J xHqL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

h1
 F1 N +

∂
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂q2

 J J xHqL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

h2
 F2 N +

∂
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂q3

 J J xHqL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

h3
 F3 NN
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(A.13)
Laplacian : “2 f =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
J xHqL  

i
k
jjj ∂

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂q1

 
i
k
jjj J xHqL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
h1

2  
∂ f

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂q1

y
{
zzz +

∂
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂q2

 
i
k
jjj J xHqL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
h2

2  
∂ f

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂q2

y
{
zzz +

∂
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂q3

 
i
k
jjj J xHqL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
h3

2  
∂ f

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂q3

y
{
zzzy{
zzz

(A.14)Curl : —ÔF =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
J xHqL  

ƒƒƒƒƒƒƒ†
ƒ
ƒƒƒƒƒƒ

h1  e1 h2  e2 h3  e3
∂ÅÅÅÅÅÅÅÅÅ∂q1

∂ÅÅÅÅÅÅÅÅÅ∂q2

∂ÅÅÅÅÅÅÅÅÅ∂q3

h1  F1 h2  F2 h3  F3

ƒƒƒƒƒƒƒ§
ƒ
ƒƒƒƒƒƒ

A.2   Examples

A.2.1   Spherical Polar Coordinates

A.2.1.1  Definition

(A.15)x = r cosHfL sinHqL, y = r sinHfL sinHqL, z = r cosHqL
Note that care must be taken when inverting these relations.  For example, f ≠ tan-1 H yÅÅÅÅx L in general — though you will
see this statement appearing regularly in textbooks.  

A.2.1.2   Jacobian Matrix

From the definition, we find

 =

i

k

jjjjjjjjjjjjjjj

∂Hr cosHfL  sinHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂r

∂Hr cosHfL sinHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂q

∂Hr cosHfL sinHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂f

∂Hr sinHfL sinHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂r

∂Hr sinHfL sinHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂q

∂Hr sinHfL sinHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂f

∂Hr cosHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂r

∂Hr cosHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂q

∂Hr cosHqLLÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂f

y

{

zzzzzzzzzzzzzzz
i

k
jjjjjjj

cosHfL sinHqL r cosHqL cosHfL -r sinHqL sinHfL
sinHqL sinHfL r cosHqL sinHfL r cosHfL sinHqL

cosHqL -r sinHqL 0

y

{
zzzzzzz

This matrix can also be generated directly by taking the outer product of the partial derivative (D) with the coordinate
vectors:

Outer@D, 8r cosHfL sinHqL, r sinHfL sinHqL, r cosHqL<, 8r, q, f<D
i

k
jjjjjjj

cosHfL sinHqL r cosHqL cosHfL -r sinHqL sinHfL
sinHqL sinHfL r cosHqL sinHfL r cosHfL sinHqL

cosHqL -r sinHqL 0

y

{
zzzzzzz

A.2.1.3   Jacobian Determinant

The Jacobian determinant is needed when computing the volume element:

 = †§ êê Simplify
r2 sinHqL
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A.2.1.4   Scale Factors

Computing

T . êê Simplify
i

k

jjjjjjjjj

1 0 0
0 r2 0
0 0 r2 sin2 HqL

y

{

zzzzzzzzz

we see that spherical polar coordinates are an othogonal coordinate system. The diagonal entries,

TransposeH%, 81, 1<L
81, r2 , r2 sin2 HqL<

lead to the scale factors:

8hr , hq , hf < =
è!!!!!!

% êê PowerExpand
81, r, r sinHqL<

A.2.1.5   Differential Operators

From the definitions, we find that

(A.16)Gradient : — f =
∂ f
ÅÅÅÅÅÅÅÅÅÅ
∂r

 er +
1
ÅÅÅÅÅÅ
r

 
∂ f
ÅÅÅÅÅÅÅÅÅÅ
∂q

 eq +
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r sinHqL  

∂ f
ÅÅÅÅÅÅÅÅÅÅ
∂f

 ef

(A.17)Divergence : — ÿF =
1

ÅÅÅÅÅÅÅÅ
r2  

∂
ÅÅÅÅÅÅÅÅÅ
∂r

 Hr2  Fr L +
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r sinHqL  

∂
ÅÅÅÅÅÅÅÅÅ
∂q

 HsinHqL Fq L +
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r sinHqL  

∂Ff
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂f

(A.18)Laplacian : “2 f =
1

ÅÅÅÅÅÅÅÅ
r2  

∂
ÅÅÅÅÅÅÅÅÅ
∂r

 Jr2  
∂ f
ÅÅÅÅÅÅÅÅÅÅ
∂r

N +
1

ÅÅÅÅÅÅÅÅ
r2  

i
k
jjj 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
sinHqL  

∂
ÅÅÅÅÅÅÅÅÅ
∂q

 JsinHqL ∂ f
ÅÅÅÅÅÅÅÅÅÅ
∂q

N +
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
sinHqL2  

∂2 f
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂f2

y
{
zzz

(A.19)

Curl : —ÔF =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r2  sinHqL  

ƒƒƒƒƒƒ†
ƒ
ƒƒƒƒƒ

er r eq r sinHqL ef

∂r ∂q ∂f

Fr r Fq r sinHqL Ff

ƒƒƒƒƒƒ§
ƒ
ƒƒƒƒƒ

=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r sinHqL  ik

jj ∂ HsinHqLFf L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∂q
-

∂FqÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂f

y
{
zz er +

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r sinHqL  ik

jj ∂FrÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂f

- sinHqL ∂ Hr Ff L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∂r
y
{
zz eq +

1
ÅÅÅÅÅ
r

 J ∂ Hr Fq LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂r

-
∂FrÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂q

N ef

A.2.2   Cylindrical Coordinates

A.2.2.1  Definition

(A.20)x = r cosHfL, y = r sinHfL, z = z

Note that care must be taken when inverting these relations.  For example, f ≠ tan-1 H yÅÅÅÅx L in general — though you will
see  this  statement  appearing  regularly  in  textbooks.   However,  using  half-angle  formulæ,  you  can  show  that
f = 2 tan-1 I yÅÅÅÅÅÅÅÅÅÅx+r M  is  correct.  Alternatively,  you  can  use  f = tan-1 Hx, yL,  a  special  form  of  tan-1  which  gives  the  arc
tangent of y ê x, taking into account which quadrant the point Hx, yL is in.
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y
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
x + r

ê. 8x Æ r cosHfL, y Æ r sinHfL< êê Simplify

tanJ f
ÅÅÅÅÅÅ
2
N

A.2.2.2   Jacobian Matrix

We generate  the  Jacobian  matrix  directly  by  taking  the  outer  product  of  the  partial  derivative  (D)  of  the  coordinate
vectors:

 = Outer@D, 8r cosHfL, r sinHfL, z<, 8r, f, z<D
i

k
jjjjjjj

cosHfL - r sinHfL 0
sinHfL r cosHfL 0

0 0 1

y

{
zzzzzzz

A.2.2.3   Jacobian Determinant

The Jacobian determinant is needed when computing the volume element:

 = †§ êê Simplify
r

A.2.2.4   Scale Factors

Computing

T . êê Simplify
i

k

jjjjjjjj
1 0 0
0 r2 0
0 0 1

y

{

zzzzzzzz

we see that spherical polar coordinates are an othogonal coordinate system. The diagonal entries,

TransposeH%, 81, 1<L
81, r2 , 1<

lead to the scale factors:

8hr , hf , hz < =
è!!!!!!

% êê PowerExpand
81, r, 1<

A.2.2.5   Differential Operators

From the definitions, we find that

(A.21)Gradient : — f =
∂ f
ÅÅÅÅÅÅÅÅÅÅ
∂ r

 er +
1
ÅÅÅÅÅÅ
r

 
∂ f
ÅÅÅÅÅÅÅÅÅÅ
∂f

 ef +
∂ f
ÅÅÅÅÅÅÅÅÅÅ
∂ z

 ez

(A.22)Divergence : — ×F =
1
ÅÅÅÅÅÅ
r

 
∂ Hr Fr L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∂ r
+

1
ÅÅÅÅÅÅ
r

 
∂Ff
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂f

+
∂Fz
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂z
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(A.23)Laplacian : “2 f =
1
ÅÅÅÅÅÅ
r

 J ∂
ÅÅÅÅÅÅÅÅÅÅ
∂ r

 Jr 
∂ f
ÅÅÅÅÅÅÅÅÅÅ
∂ r

NN +
1

ÅÅÅÅÅÅÅÅÅ
r2  

∂2 f
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂f2 +

∂2 f
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ z2

(A.24)
Curl : —ÔF =

1
ÅÅÅÅÅÅ
r

 

ƒƒƒƒƒƒ†
ƒ
ƒƒƒƒƒ

er r ef ez

∂r ∂f ∂z

Fr r Ff Fz

ƒƒƒƒƒƒ§
ƒ
ƒƒƒƒƒ
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i
k
jj 1

ÅÅÅÅÅÅ
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∂FzÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂f

-
∂Ff
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ z

y
{
zz er + i
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jj ∂Fr

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂z

-
∂FzÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ r

y
{
zz ef +

1
ÅÅÅÅÅÅ
r
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jj ∂ Hr Ff L
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∂r

-
∂Fr
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂f

y
{
zz ez
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Appendix B
Dirac's Delta Function dHxL

B.1   Examples

Consider the (piecewise continuous) function

qe_ @x_D := -
1
ÄÄÄÄÄ
2

ê; x < -e

qe_ @x_D :=
x

ÄÄÄÄÄÄÄÄÄÄ
2 e

ê; -e £ x £ e

qe_ @x_D :=
1
ÄÄÄÄÄ
2

ê; x > e

Plotik
jjj9q2HxL, q1 HxL, q 1ÄÄÄÄÄ2

HxL=, 8x, -4, 4<, PlotStyle Æ 9HueH0L, Hueik
jjj 1

ÄÄÄÄÄ
3
y
{
zzz, Hueik

jjj 2
ÄÄÄÄÄ
3
y
{
zzz=y{
zzz;

-4 -2 2 4
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The derivative is

de_ @x_D := 0 ê; x < -e

de_ @x_D :=
1

ÄÄÄÄÄÄÄÄÄÄ
2 e

ê; -e £ x £ e

de_ @x_D := 0 ê; x > e

Plotik
jjj9d2HxL, d1 HxL, d 1ÄÄÄÄÄ2

HxL=, 8x, -4, 4<, PlotStyle Æ 9HueH0L, Hueik
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ÄÄÄÄÄ
3
y
{
zzz, Hueik
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3
y
{
zzz=y{
zzz;
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The area under each curve is constant:

NIntegrate@d1 HxL, 8x, -5, -1, 1, 5<D
1.

NIntegrate@d1ê2HxL, 8x, -5, -1 ê 2, 1 ê 2, 5<D
1.

In other words

‡
-¶

¶

de HxL „ x = 1, "e e+ .

Alternatively, we can obtain this from

‡
-¶

¶

de HxL „ x = ‡
-¶

¶

qe
£ HxL „ x = qe HxL§-¶

¶ = J 1
ÅÅÅÅÅ
2

- J -1
ÅÅÅÅÅÅÅÅÅÅ
2

NN = 1, "e e+ .

Consider the integral

‡
-¶

¶

f HxL de HxL „ x,

where f HxL is  an arbitrary  function which  goes to 0  "sufficiently  fast"  as x Ø ±¶.   For e  "sufficiently  small",  we can
write

‡
-¶

¶

f HxL de HxL „ x =
1

ÅÅÅÅÅÅÅÅÅÅ
2 e

 ‡
-e

e

f HxL „ x > 1
ÅÅÅÅÅÅÅÅÅÅ
2 e

 H2 e f H0LL = f H0L,

using the Mean Value Theorem. As e Ø 0, de HxL Ø dHxL, and dHxL has the interesting properties that 

‡
-¶

¶

dHxL „ x = 1, ‡
-¶

¶

f HxL dHxL „ x = f H0L

Show, using integration by parts, that

‡
-¶

¶

f HxL d£ HxL „ x = f £ H0L

B.2   Definition

The symbol dHxL is not a function in the usual mathematical  sense. A function in one dimension is a mapping between
ordered pairs x Ø y = f HxL. In the case of the symbol dHxL, any such mapping carries every point x on the real axis, save
one,  into  the  number  zero.  This  is  hardly  a  well  behaved  function.  Nevertheless,  it  can  be  treated  symbolically  as
though it shared most properties of ordinary smooth
functions. I will often treat it as an ordinary function. Our purpose here is to outline this highly useful notation, and not
to give a mathematical justification for this use.

It is possible  to view dHxL  as representing the symbolic limit of a sequence of suitably defined functions.  Imagine, for
example, a sequence based on the parameter e defined by any of the following three functions:
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Code

Clear@SubscriptD
SetOptions@Integrate, GenerateConditions Æ FalseD;

de HxL = eÅÅÅÅp  1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx2 +e2

de_ @x_D :=
e

ÄÄÄÄÄÄ
p

 
1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
x2 + e2

Plotik
jjj9d2HxL, d1 HxL, d 1ÄÄÄÄÄ2

HxL=, 8x, -4, 4<, PlotStyle Æ 9HueH0L, Hueik
jjj 1

ÄÄÄÄÄ
3
y
{
zzz, Hueik

jjj 2
ÄÄÄÄÄ
3
y
{
zzz=y{
zzz;

-4 -2 2 4

0.1

0.2

0.3

0.4

0.5

0.6

For any e we find that

‡
-•

•

de HxL ‚ x êê PowerExpand

1

For the function 1ÅÅÅÅÅÅÅÅÅÅÅÅÅ1+x2

lim
eÆ0 ‡-•

• 1
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
1 + x2

de HxL ‚ x êê PowerExpand

1

de HxL = 1ÅÅÅÅp  
sinH xÅÅÅÅe LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx

de_ @x_D :=
1
ÄÄÄÄÄÄ
p

 
sinH xÄÄÄÄ

e
L

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
x

Plotik
jjj9d2HxL, d1 HxL, d 1ÄÄÄÄÄ2

HxL=, 8x, -10, 10<, PlotRange Æ All, PlotStyle Æ 9HueH0L, Hueik
jjj 1

ÄÄÄÄÄ
3
y
{
zzz, Hueik

jjj 2
ÄÄÄÄÄ
3
y
{
zzz=y{
zzz;
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‡
-•

•

de HxL ‚ x ê. sgnHeL Æ 1

1

de HxL = 1ÅÅÅÅÅÅÅÅÅÅè!!!!
p

 1ÅÅÅÅe  ‰
-x2ÅÅÅÅÅÅÅÅÅÅÅÅ

e2

de_ @x_D :=
1

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄè!!!!
p

 
1
ÄÄÄÄÄ
e

 „
-x2
ÄÄÄÄÄÄÄÄÄÄÄÄÄ

e2

Plotik
jjj9d2HxL, d1 HxL, d 1ÄÄÄÄÄ2

HxL=, 8x, -4, 4<, PlotStyle Æ 9HueH0L, Hueik
jjj 1

ÄÄÄÄÄ
3
y
{
zzz, Hueik

jjj 2
ÄÄÄÄÄ
3
y
{
zzz=, PlotRange Æ Ally{

zzz;

-4 -2 2 4

0.2

0.4

0.6

0.8

1

‡
-•

•

de HxL ‚ x êê PowerExpand

1

B.3   Sequence

Each of these functions,  for  any e ` 1, have the  properties (1)  sharply peaked  at x = 0; and  (2) area  under  curve is
unity independent of e. In short, if one constructs a convergent sequence of e's, then the quantity dHxL = limeØ0 de HxL.

for each of the above functions  de HxL, has the desired properties of the delta "function". By this I mean the following:
whenever a delta "function" appears multiplying a smooth function under an integral sign, you should imagine that it is
replaced  by  de HxL  and  the  integral  evaluated.  Then,  after  integration,  the  limit  of  the  sequence  of  the  results  of
integration  is  taken.  This  process  gives  meaning  to  the  delta  function.  With  this  idea  in  mind,  I  can  treat  the  delta
function as if it were itself a smooth function and even write, for example,

‡
-¶

¶

d£ HxL f HxL „ x = -‡
-¶

¶

dHxL f £ HxL „ x = - f £ H0L

where I have integrated by parts. Other useful results, whose justification are based in such arguments, are these:

dHa xL = dHxLÅÅÅÅÅÅÅÅÅÅ†a§
x dHxL = 0

dHx2 - a2 L = 1ÅÅÅÅÅÅÅÅÅÅ2 †a§  HdHx - aL + dHx+ aLL
dHHx - aL Hx - bLL = 1ÅÅÅÅÅÅÅÅÅÅÅÅ†b-a§  HdHx- aL + dHx - bLL
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B.4   Three Dimensions

The  idea  of  the  delta  function  is  readily  extended  to  spaces  of  higher  dimension.  Let  a  point  in  3-dimensions  be
r = Hx, y, zL. I define the delta function in this space by

dHr - r£ L = dHx - x£ L dHy - y£ L dHz - z£ L

‡ ‡ ‡ dHr - r£ L „ x „ y „ z = 1,

‡ ‡ ‡ dHr - r£ L f HrL „ x „ y „ z = f Hr£ L

An example of this is

‡ ‡ ‡ dHx - aL ‰-†x-b§  „ x „ y „ z = ‰-†b-a§ .

As a further example, consider

hHrL = “2 J 1
ÅÅÅÅÅ
r
N = — ÿ — J 1

ÅÅÅÅÅ
r
N = -— ÿ

r
ÅÅÅÅÅÅÅÅ
r3 = -J 1

ÅÅÅÅÅÅÅÅ
r3  — ÿ r - 3 r ÿ J rÅÅÅÅÅÅÅÅ

r5 NN = -J 3
ÅÅÅÅÅÅÅÅ
r3 -

3
ÅÅÅÅÅÅÅÅ
r3 N = 0

if r ≠ 0.

Clearly,  hHrL  is  singular  at  r = 0.  To  investigate  its  behavior  near  the  singularity,  integrate  over  a  small  spherical
volume V centered at the origin. The divergence theorem

‡
V

 — ÿA „ r = ‡
S=∂V

 A ÿ ‚S,

provides what we seek:

ŸV  hHrL „ r = ŸV  “2 H 1ÅÅÅÅr L „r
= ŸV  — ÿ — H 1ÅÅÅÅr L „ r
= ŸS=∂V

 — H 1ÅÅÅÅr L ÿ ‚S

= ŸS=∂V
 — H 1ÅÅÅÅr L ÿ r

Ô
 „S

= -ŸS=∂V
 rÅÅÅÅÅÅr3 ÿ r

Ô
 r2  „ W

= -ŸS=∂V
„ W

= -4 p .

Conclusion: hHrL is zero everywhere except at a single point, namely r = 0. There it is infinite, but in such a way that its
volume integral over the singularity is -4 p. Therefore, we have the identity

-“2 J 1
ÅÅÅÅÅ
r
N = — ÿ

r̀
ÅÅÅÅÅÅÅÅ
r2 = 4 p dHrL.
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