
1

MULTITASKING 8051 CAMELFORTH

Brad Rodriguez, T-Recursive Technology

This article describes a multitasking extension to the 8051 CamelForth system (described
in TCJ #71 and #72). The techniques described here are not limited to Forth; they should
be useful to any 8051 assembly-language programmer.

CONTEXT SWITCHING
When several tasks are sharing a processor, the information which is specific to any one
task is called that task’s “context.” This includes the current instruction pointer, CPU
registers, subroutine return stack, and any other private data. CamelForth uses the 8051
registers as follows:

The registers labelled “scratch” may be used within Forth words, but have no guaranteed
value between Forth words (except that the register select bits in PSW must always be 00
in 8051 CamelForth).

The 8051 stack pointer SP points to the last byte actually stored in the Return stack. This
stack grows from internal RAM location (register) 09 upward to 7F.

00 R0: Data stack pointer 81 (SP) Return stack pointer
01 R1: scratch 82 (DPH) Topmost Data
02 R2: scratch 83 (DPL) stack item
03 R3: scratch
04 R4: scratch D0 (PSW) scratch
05 R5: scratch
06 R6: Loop E0 (ACC) scratch
07 R7: index
08 User address msb F0 (B) scratch
09 Return stack

...

7F FIGURE 1. 8051 REGISTER USAGE

2

In CamelForth, each task’s private data is contained within a 768-byte “task area,”
organized as in Figure 2.

All of this data is addressed relative to a pointer, UAREA, whose high byte is stored in
register 8. (The Task Area is page-aligned, so the low byte of this pointer is always 00.)
To make another Task Area current, only this pointer need be changed. Note that the
start of the Task Area is 100h bytes before UAREA.

So, to switch the from one task’s context to another, the following steps must be taken:

1. Save the “important” registers and the Return stack in external RAM, with the
task’s private data. This is is purpose of the “Task Save Area” in Figure 2.

2. Switch the UAREA pointer to the new task’s User Variables area.

3. Restore the previously-saved registers and Return stack from the new task’s Task
Save Area.

4. Resume execution.

The code to do this is shown in Listing 1, as a Forth word SWITCH. This word expects
the address of the new task’s Task Save Area on top of stack (i.e., in DPTR). Obviously,
copying the Return stack out to the Task Save Area is the time-consuming step, so
SWITCH includes a tight loop to copy registers N to 1 to external RAM, using R0 as the
loop counter. The number of the highest register to be saved is contained in the Return
stack pointer SP; this number is saved in the first byte of the Task Save Area.

Since SWITCH is called as a subroutine, the program counter will already be pushed on
the return stack (and thus saved by the copy loop). Register R0 (the Data stack pointer) is
saved by copying it to R1 before the loop. DPTR doesn’t need to be saved, since its
contents can be discarded after the task is switched. On the other hand, R2-R5 are saved

UAREA-100h Task Save Area, 128 bytes

UAREA-80h Terminal Input Buffer, 128 bytes

UAREA User variables area, 128 bytes

UAREA+80h Data stack, 128 bytes

UAREA+100h HOLD area, 40 bytes
UAREA+128h PAD buffer, 88 bytes
UAREA+180h Leave stack, 128 bytes

FIGURE 2. CAMELFORTH TASK AREA

3

needlessly, since they don’t need to be preserved across Forth words. But including them
simplifies the loop, and will come in handy later.

After SWITCH copies the current task’s context out to RAM, it fetches the new task’s
context (specified by the address parameter passed to SWITCH). The process is simply
the reverse of what was done to save the context. This assumes that the new Task Save
Area contains the data saved when that task did a SWITCH. What about a brand-new
task?

The Forth word INITTASK sets up the Task Save Area for a new task. It saves 10 bytes
in the Task Save Area: two bytes of return stack, and the eight registers 1 through 8. For
register 8, the high byte of the User Variables area address is stored. For register 1, the
low byte of the Parameter stack pointer, 0FD, is stored (this value will cause an empty
stack once the task starts running). The “saved” return stack contains only a return
address, which is where execution will begin when the task is started.

So, to create and launch a new task:

1. Reserve 768 bytes of storage for the Task Area. Call this area taskname. This
name can be defined as a Forth CONSTANT, or by using CREATE if care is taken
to keep the area page-aligned.

2. Initialize the task to perform a Forth word, with the command

‘ word taskname INITTASK

3. Launch the new task with the command
taskname SWITCH

The “main” CamelForth task will be suspended, and the new task will run. Beware: if the
new task never does a SWITCH back to the main task, it will retain control forever!

Listing 2 shows an example of how to define a task area in high RAM, by offseting it
below the main task’s user area (thus ensuring page alignment). It also shows how to
write a task that will do something and then return to the main task: after loading this
program, every time you type TASK1 SWITCH, the 8051 will emit a bell character.

ROUND-ROBIN TASK SWITCHING
For true multitasking, each task must run for a short time, and then hand off control to
another task...making sure that all of the defined tasks get a turn. One way to do this is to
have each task switch to the “next” task in the list. This can be done, clumsily, with
SWITCH statements, as long as the list never changes (since task addresses are hard-
coded in the program). A better way is to maintain a dynamic linked list of all tasks in
RAM.

Listing 3 shows high-level words to manage a linked list of tasks. The first cell of the user
variables (at offset 0 from UAREA) is reserved in CamelForth for a task link. MYTASK
always returns the address of the running task area, by offseting -100h from UAREA.

4

DETACH empties the task list, by making the running task link back to itself. (This
causes an inadvertent PAUSE to simply save and restore to the running task’s context.)
ATTACH adds a task to the list, inserting it immediately after the running task. Finally,
PAUSE just causes a switch to the next task in the list. The secret to PAUSE is that it
fetches a User variable, TASKLINK. User variables are always addressed relative to the
current UAREA pointer, so whenever a task runs PAUSE, it fetches its link to the “next”
task. In this manner, all of the tasks are linked together in a circular list. (See Figure 3.)

Listing 3 also includes the “bell” demo, this time written with PAUSE. Every time
PAUSE is typed at the keyboard, a bell character is output.

SWITCH can also be used to implement more complex task schedulers, by defining a
“dispatcher” task (or a “dispatcher” Forth word). The dispatcher might, for example,
select the task having highest-priority according to some rule. This is left as an exercise
for the student.

PRE-EMPTIVE TASK SWITCHING
SWITCH and PAUSE require a task to voluntarily give up the CPU to other tasks. This
“cooperative” multitasking is simple and efficient, and avoids many of the synchronization
problems that can occur when many tasks share a resource. But poorly written tasks can
“hog” the CPU, and with even the best-written tasks, it’s difficult to parcel out CPU time
evenly.

A pre-emptive multitasker uses some external event -- typically a timer interrupt -- to
force a task switch. This ensures that tasks are switched regularly. But since a task
switch can occur at any time -- not just between Forth words -- we must take pains to
save all of the working registers that are used by CamelForth.

SWITCH saves all of the working registers except R1-R3, DPH, DPL, ACC, B, and
PSW. The simplest solution is for the interrupt to push these onto the return stack, and
then call SWITCH with the address of the next task. When the round-robin returns to this
task, SWITCH will return to the interrupt service routine, which will then pop these eight

 TASK 0 AREA TASK 1 AREA

 TASKLINK TASKLINK

FIGURE 3. LINKED LIST OF TWO TASKS

5

registers and return to wherever this task was suspended. A subroutine PREEMPT to do
this is given in Listing 4.

Note that PREEMPT fetches the same task link as does PAUSE. We can’t use ACALL
PAUSE, since the phrase TASKLINK @ in PAUSE may destroy some registers that we
haven’t saved. (We could learn this by examining the kernel listing for USER and @, but
it’s bad form to build such hidden dependencies into kernel words.)

Also, PREEMPT saves all of the “extra” registers on the Return stack, except DPH and
DPL. This is because SWITCH, before returning to PREEMPT, pops DPH and DPL
from the Data stack.

Listing 4 also shows how to link PREEMPT to a timer interrupt, and initialize the timer.
Listing 5 is the corresponding high-level test code. Once TASK1 is ATTACHed, the
variable TICKS should increment every 65.536 msec (with a 12 MHz oscillator), and yet
there should be no visible effect on normal Forth operation. Note the use of PAUSE to
return control immediately to the “main” task, after the interrupt is processed.

A disadvantage of this approach is that the RETI instruction, required by the 8051’s
interrupt processing hardware, is not executed until the preempted task is resumed. For a
simple example this is tolerable. To avoid this problem, PREEMPT should call a second
copy of SWITCH, identical except that it ends with a RETI. Then PREEMPT should end
with a RET.

Also, the preemptive multitasker could be made slightly more efficient if SWITCH saved
all working registers (i.e., if PREEMPT were merged into the SWITCH routine). But this
adds unnecessary overhead to the “cooperative” SWITCH. The code presented here
clearly shows the extra context-switching overhead of a preemptive multitasker.

6

LISTING 1
; ===
; CamelForth Multitasker for the Intel 8051
; (c) 1996 Bradford J. Rodriguez
; Permission is granted to freely copy, modify,
; and distribute this program for personal or
; educational use. Commercial inquiries should
; be directed to the author at 115 First St.,
; #105, Collingwood, Ontario L9Y 4W3 Canada
; ===

 .equ dr1,h'01 ; r1 as direct register

; The key word of the multitasker is SWITCH.
; It saves the working registers AND the return
; stack of the currently executing task to a
; storage area in external RAM. Then it gets
; the saved registers and return stack of the
; new task, restores them, and continues
; execution wherever the new task left off.
;
; Registers as they are saved:
; 01 (R1): saved Parameter Stack pointer.
; 02 (R2): future use
; 03 (R3): "
; 04 (R4): "
; 05 (R5): "
; 06 (R6): loop index
; 07 (R7): "
; 08: P2, User Area pointer high
; 09...N: return stack (N is given by SP)
;
; DPTR is not saved, since it is consumed by
; SWITCH. (It is the address of the new task's
; save area, UAREA-100h.)
;
; Note that these are stored backwards in
; external RAM, starting at address UAREA-100h.
; Thus the save area of a newly created task
; should look like:
; SP: 0Ah
; 0A,09: init'l Program Counter, hi byte first
; 08: task's User Pointer high (stack page)
; 07,06: xxx
; 05,04: xxx
; 03,02: xxx
; 01: 0FDh, initial stack pointer
; The initial stack pointer must be FDh because
; of the poptos at the end of SWITCH.

7

; SWITCH a -- switch to new task
 .drw link
 .set link,*+1
 .db 0,6,"SWITCH"
SWITCH: mov r2,dph ; stash new task adrs
 mov r3,dpl
 mov dph,UP ; save me at UAREA-100h
 dec dph
 mov dpl,#h'0
 mov dr1,r0 ; save my Pstack pointer
; This loop copies internal RAM, from location
; (SP) down to 01, to external RAM. 6+7n cycles.
; The length is saved as the first byte.
 mov a,sp ; sp=high address,
 movx @dptr,a ; =length.
 inc dptr
 mov r0,a ; 00 won't be moved
saveregs: mov a,@r0 ; 1 cycle
 movx @dptr,a ; 2 cycles
 inc dptr ; 2 cycles
 djnz r0,saveregs ; 2 cycles

 mov dph,r2 ; now get new task
 mov dpl,r3
; This loop copies external RAM to internal RAM,
; and restores SP accordingly. 6+7n cycles.
 movx a,@dptr ; get high address
 inc dptr
 mov sp,a ; restore Rstack pointer
 mov r0,a
getregs: movx a,@dptr
 inc dptr
 mov @r0,a
 djnz r0,getregs

; The top of this restored return stack contains
; a return address in the new task. DPTR no
; longer contains its top-of-stack; so pop the
; new top of stack from RAM.
 mov r0,dr1 ; restore Pstack pointer
 mov p2,UP ; set new stack page
 ljmp poptos ; pop TOS and return

; ---
; INITTASK xt a -- initialize a task area
; Given the xt (code address) of a Forth word to
; execute, and the address of a task's save area,
; fill in that save area so the given word will
; execute when that task is started.

8

 .drw link
 .set link,*+1
 .db 0,8,"INITTASK"
INITTASK: mov a,#h'0a ; length
 movx @dptr,a
 inc dptr
 movx a,@r0 ; low byte of xt
 inc r0
 mov r2,a
 movx a,@r0 ; high byte of xt
 inc r0
 movx @dptr,a ; store high byte first
 inc dptr
 mov a,r2
 movx @dptr,a
 inc dptr
 mov a,dph ; UAREA=SaveArea+100h, so
 inc a ; DPH+1 = UAREA high byte
 movx @dptr,a
 inc dptr
 inc dptr ; skip 6 don't-cares
 inc dptr
 inc dptr
 inc dptr
 inc dptr
 inc dptr
 mov a,#h'fd ; initial Pstack pointer
 movx @dptr,a
 ljmp poptos

LISTING 2
(MULTITASKER TEST)

HEX U0 100 - CONSTANT TASK0 (start of "main" Task Area)
TASK0 300 - CONSTANT TASK1 (new Task Area, 768 bytes)
 (lower)

: TEST1 BEGIN 7 EMIT TASK0 SWITCH AGAIN ;
' TEST1 TASK1 INITTASK

LISTING 3
(ROUND-ROBIN TASK LIST)

HEX -100 USER MYTASK (start of current Task Area)
 0 USER TASKLINK (link to next task in list)

(Initialize the task list to "empty".)
: DETACH
 MYTASK TASKLINK ! ;

9

(Insert a new task into the linked list, immediately)
(after the current task.)
: ATTACH (a --)
 TASKLINK @ (my previous successor)
 OVER TASKLINK ! (new task becomes my successor)
 SWAP 100 + ! ; (prev. successor becomes new)
 (task's successor)

(Switch to the next task in the list.)
: PAUSE TASKLINK @ SWITCH ;

(EXAMPLE)
DETACH
MYTASK CONSTANT TASK0
TASK0 300 - CONSTANT TASK1
: TEST1 BEGIN 7 EMIT PAUSE AGAIN ;
' TEST1 TASK1 INITTASK
TASK1 ATTACH

LISTING 4
; ---
; PREEMPT force a task switch
; If entered from an interrupt, this will cause
; a switch to the next task in the round robin.
; The task link must be in the first cell of the
; user area (user variable U0). Note that this
; is an assembler subroutine and must not be
; called as a Forth word.
PREEMPT: push psw ; save regs used by SWITCH
 push acc
 push b
 push dr1
 push dr2
 push dr3
 lcall pushtos ; DPTR saved on Data stack!
 mov dph,UP ; fetch task link...
 mov dpl,#0
 movx a,@dptr
 mov r2,a
 inc dptr
 movx a,@dptr
 mov dpl,r2
 mov dph,a ; ...to DPTR
 acall SWITCH ; switch to next task
; Execution will resume here when the round-robin
; comes back to this task. Note that the last
; action of SWITCH is to restore DPH:DPL from the
; Data stack, with "poptos".
 pop dr3 ; restore regs

10

 pop dr2
 pop dr1
 pop b
 pop acc
 pop psw
 reti

; ---
; Sample timer 0 interrupt, entered when timer 0
; rolls over from FFFF to 0000. The interrupt
; flag is automatically cleared when the
; interrupt service routine is entered.
CLOCK: sjmp PREEMPT

; CLOCKON starts timer 0 & enables the interrupt
 .drw link
 .set link,*+1
 .db 0,7,"CLOCKON"
CLOCKON: mov tmod,#h'21 ; T1 mode 2, T0 mode 1
 mov th0,#h'0
 mov tl0,#h'0
 setb tcon.4 ; enable timer 0
 mov ie,#h'82 ; enable timer 0 irpt
 ret

; CLOCKOFF stops timer 0 & disables the interrupt
 .drw link
 .set link,*+1
 .db 0,8,"CLOCKOFF"
CLOCKOFF: clr tcon.4 ; disable timer 0
 clr ie.1 ; enable timer 0 irpt
 ret

LISTING 5
(PREEMPTIVE MULTITASKING TEST)
(requires round-robin support words)

DETACH (reset task list)
VARIABLE TICKS
: TEST2 BEGIN 1 TICKS +! PAUSE AGAIN ;
' TEST2 TASK1 INITTASK
TASK1 ATTACH (add TASK1 to task list)

